JPH09242755A - Superconductive magnetic bearing - Google Patents

Superconductive magnetic bearing

Info

Publication number
JPH09242755A
JPH09242755A JP8047425A JP4742596A JPH09242755A JP H09242755 A JPH09242755 A JP H09242755A JP 8047425 A JP8047425 A JP 8047425A JP 4742596 A JP4742596 A JP 4742596A JP H09242755 A JPH09242755 A JP H09242755A
Authority
JP
Japan
Prior art keywords
magnetic
bearing
iron plate
circumferential direction
filament winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8047425A
Other languages
Japanese (ja)
Other versions
JP3349329B2 (en
Inventor
Shigeo Nagaya
重夫 長屋
Yasuhiro Fuwa
康弘 不破
Masaharu Minami
正晴 南
Yutaka Kawashima
裕 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP04742596A priority Critical patent/JP3349329B2/en
Publication of JPH09242755A publication Critical patent/JPH09242755A/en
Application granted granted Critical
Publication of JP3349329B2 publication Critical patent/JP3349329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform stable floating and high-speed rotation by forming a rotary ring to be filament winding type FRP and connecting one pole of a divided type permanent magnet having difference poles to a magnetic iron plate. SOLUTION: Circumferential direction divided type permanent magnets 3 and 4 are attracted to a magnetic iron plate 5, adhered by adhesives to outer and inner peripheral side filament winding CFR rings 1 and 2 and an integrally formed assembly is connected to a rotor 6 by bolts 7. A plurality of high- temperature superconductive bulk bodies B are buried in a bearing casing 9 in a circumferential direction and covered with a seal plate 10. Liquid nitrogen is injected into a cooling groove 11 in an X direction, its bubbles are sent in a Y direction and then the superconductive bodies 8 are cooled. Thus, if rotary bodies having equal dimensions are used, a number of revolutions larger by three times is obtained and since the CFR rings 1 and 2 are small, a load surface pressure applied to the bearing is reduced and good load performance is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばフライホイ
ールに適用される超電導磁気軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic bearing applied to, for example, a flywheel.

【0002】[0002]

【従来の技術】図3に、従来の高温超電導磁気軸受を示
す。21はロータ、22は第1のスラスト軸受用永久磁
石、23は第2のスラスト軸受用永久磁石、24(24
a,24b)は磁石押さえ、26は高温超電導体、27
はハウジングで、28はカバーで、29は溶接部で、3
0は冷却ボックス、Xは注入口、Yは排出口である。
2. Description of the Related Art FIG. 3 shows a conventional high temperature superconducting magnetic bearing. 21 is a rotor, 22 is a first thrust bearing permanent magnet, 23 is a second thrust bearing permanent magnet, and 24 (24
a, 24b) is a magnet holder, 26 is a high temperature superconductor, 27
Is a housing, 28 is a cover, 29 is a welded part, 3
0 is a cooling box, X is an inlet, and Y is an outlet.

【0003】高温超電導体26が超電導状態にあると、
マイスナー効果により、高温超電導体26と永久磁石2
2,23との間に磁気反発力が生じ、ローター21が浮
上する。
When the high temperature superconductor 26 is in a superconducting state,
Due to the Meissner effect, the high temperature superconductor 26 and the permanent magnet 2
A magnetic repulsive force is generated between the rotors 2 and 23 and the rotor 21 floats.

【0004】[0004]

【発明が解決しようとする課題】高温超電導磁気軸受を
高速回転用として使う場合、従来は永久磁石を収納する
回転リング及び永久磁石に大きな円周方向応力が作用
し、大型、高速化が困難であった。即ち、円周応力σ
は、密度ρと周速(半径×回転数)rωの2乗に比例す
るが、Ti合金はρ=4.5、引っ張り強度σB =10
0kgf/mm2 で、自ずからロータ径と回転数に限界
があり、永久磁石もρ=7〜8、σB =8〜10kgf
/mm2 であり、さらに限界値が低い問題があった。
When a high-temperature superconducting magnetic bearing is used for high-speed rotation, a large circumferential stress acts on the rotary ring and the permanent magnet that house the permanent magnet, making it difficult to increase the size and speed. there were. That is, the circumferential stress σ
Is proportional to the square of the density ρ and the peripheral speed (radius × rotational speed) rω, but for Ti alloy, ρ = 4.5 and tensile strength σ B = 10.
At 0 kgf / mm 2 , the rotor diameter and rotation speed are naturally limited, and the permanent magnets also have ρ = 7 to 8 and σ B = 8 to 10 kgf.
/ Mm 2, there is even less limit problem.

【0005】また、従来の高温超電導磁気軸受の場合、
磁気回路の構成が不十分で軸受隙間内の磁束密度Bを大
きくとれず、大きな磁気反発面圧が得られなかった(磁
気反発面圧Pは磁束密度Bの2乗に比例する)。
In the case of the conventional high temperature superconducting magnetic bearing,
The magnetic circuit configuration was insufficient and the magnetic flux density B in the bearing gap could not be made large, so that a large magnetic repulsive surface pressure could not be obtained (the magnetic repulsive surface pressure P is proportional to the square of the magnetic flux density B).

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

(1)永久磁石を収納する回転リングをフィラメントワ
インディング成型FRPとし、回転により生じる円周方
向反発応力の低減と円周方向強度の向上を同時に図っ
た。 (2)永久磁石リングを分割型として、一体型の場合に
生じる円周方向発生応力をたちきった。 (3)2組の互いに異なる極を有する永久磁石の一方の
極を磁性鉄板で連結し(即ち、超電導体に対向しない極
に磁路を構成する磁性体ヨークを配置)、他方の極を高
温超電導体に対向させる磁気回路とした点。
(1) The rotating ring that houses the permanent magnet is a filament winding molded FRP, and the circumferential repulsive stress caused by the rotation is reduced and the circumferential strength is improved at the same time. (2) The permanent magnet ring is of the split type, and the stress generated in the circumferential direction in the case of the integral type is cut off. (3) One pole of two permanent magnets having mutually different poles is connected by a magnetic iron plate (that is, a magnetic yoke forming a magnetic path is arranged on the pole not facing the superconductor) and the other pole is heated to a high temperature. A magnetic circuit facing the superconductor.

【0007】[0007]

【発明の実施の形態】図1、図2に本発明の一実施形態
を示す。図2の(a)は図1のA−A’部の断面図で、
図2の(b)はB−B’部の断面図である。1は、フィ
ラメントワインディング成型からなる外周側CFRPリ
ング、2はフィラメントワインディング成型からなる内
周側CFRPリング、3は外周側円周方向分割型永久磁
石リング、4は内周側円周方向分割型永久磁石リング、
5は磁性鉄板で、3、4の永久磁石リングは磁性鉄板5
に吸着され、かつ外周側及び内周側CFRPリング1,
2に接着剤で接着され、一体成形され、本組立体はロー
タ6にボルト7で結合される構造になっている。8は高
温超電導バルク体で円周方向に複数個軸受ケーシング9
の中に埋め込まれ、シールプレート10で覆われてい
る。冷却溝11に、液体窒素がX方向に注入され、その
気泡がY方向に注出される。 (1)永久磁石3,4を収納する従来の金属リングの場
合、例えばTi合金の場合、密度ρ=4.5、引張強度
σB =100kgf/mm2 に対し、例えばCFRPの
場合ρ=1.6、σB =310kgf/mm2 となるた
め、同一寸法の回転体とした場合、約3倍、
1 and 2 show an embodiment of the present invention. 2A is a cross-sectional view taken along the line AA ′ of FIG.
FIG. 2B is a sectional view of the BB 'portion. Reference numeral 1 is an outer peripheral CFRP ring formed by filament winding molding, 2 is an inner peripheral CFRP ring formed by filament winding molding, 3 is an outer circumferential circumferential split permanent magnet ring, and 4 is an inner circumferential circumferential split permanent. Magnet ring,
5 is a magnetic iron plate, and the permanent magnet rings 3 and 4 are magnetic iron plates 5.
CFRP ring 1, which is attached to the
2 is bonded to the rotor 6 with an adhesive and integrally molded, and this assembly is structured to be coupled to the rotor 6 by the bolt 7. 8 is a high temperature superconducting bulk body, and a plurality of bearing casings 9 are arranged in the circumferential direction.
Embedded inside and covered with a seal plate 10. Liquid nitrogen is injected into the cooling groove 11 in the X direction, and the bubbles thereof are extracted in the Y direction. (1) In the case of a conventional metal ring containing the permanent magnets 3 and 4, for example, a Ti alloy has a density ρ = 4.5 and a tensile strength σ B = 100 kgf / mm 2, whereas in the case of CFRP, ρ = 1. .6, σ B = 310 kgf / mm 2 , so if the rotor of the same size is used, it is about 3 times,

【0008】[0008]

【数1】 の回転数が得られる。 (2)永久磁石3,4を分割型としたため、永久磁石に
一体型の場合に生じる大きな円周方向が作用しなくな
る。 (3)磁気回路中に、磁性鉄板5をいれることにより、
磁気抵抗が低減した結果、磁気軸受隙間内の磁束密度が
向上し、軸受の磁気反発面圧が上がる。又、CFRPリ
ング1,2は密度ρが小さいため、軸受に作用する負荷
面圧が軽減し、良好な軸受負荷性能が得られる。 (4)上記CFRPリング1,2、永久磁石3,4、磁
性鉄板5を一体組立するに永久磁石3,4と磁性鉄板5
の吸着力と、接着剤による接着力を利用することによ
り、ボルト締め付けが不要となり、切欠け等による応力
集中を防ぐことができ、高速回転が達成できる。
[Equation 1] Is obtained. (2) Since the permanent magnets 3 and 4 are of the split type, the large circumferential direction that occurs when the permanent magnets are of the integral type does not act. (3) By inserting the magnetic iron plate 5 in the magnetic circuit,
As a result of the reduced magnetic resistance, the magnetic flux density in the magnetic bearing gap is improved, and the magnetic repulsive surface pressure of the bearing is increased. Further, since the CFRP rings 1 and 2 have a small density ρ, the load surface pressure acting on the bearing is reduced, and good bearing load performance can be obtained. (4) In order to integrally assemble the CFRP rings 1, 2, permanent magnets 3, 4 and magnetic iron plate 5, the permanent magnets 3, 4 and magnetic iron plate 5
By using the suction force and the adhesive force of the adhesive, bolt tightening becomes unnecessary, stress concentration due to notches and the like can be prevented, and high speed rotation can be achieved.

【0009】[0009]

【発明の効果】1〜6の回転体は、永久磁石3及び4
と、高温超電導バルク体8の磁気反発作用により、安定
に浮上し、かつ永久磁石を収納するフィラメントワイン
ディング成形によるCFRPリングの高比高度(強度/
密度)特性と、円周方向発生応力をたちきった、分割型
永久磁石を組み合わせた軽量一体化構造とすることによ
り、高速回転が可能となる。
The rotating bodies 1 to 6 are the permanent magnets 3 and 4.
And a high specific height (strength / strength / strength / strength) of the CFRP ring that is stably floated by the magnetic repulsion action of the high-temperature superconducting bulk body 8 and is formed by filament winding that houses the permanent magnet.
High-speed rotation is possible by using a light-weight integrated structure that combines split permanent magnets, which has excellent density characteristics and stress generated in the circumferential direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態に係わる高温超電導磁気
軸受の断面図。
FIG. 1 is a sectional view of a high temperature superconducting magnetic bearing according to a first embodiment of the present invention.

【図2】図1の断面図。FIG. 2 is a sectional view of FIG.

【図3】従来の超電導磁気軸受の断面図。FIG. 3 is a sectional view of a conventional superconducting magnetic bearing.

【符号の説明】[Explanation of symbols]

1 フィラメントワインディング成型からなる外周側C
FRPリング 2 内周側CFRPリング 3 外周側円周方向分割永久磁石リング 4 内周側円周方向分割型永久磁石リング 5 磁性鉄板 6 ロータ 7 ボルト 8 高温超電導バルク体 9 軸受ケーシング 10 シールプレート 11 冷却溝
1 Peripheral side C made of filament winding molding
FRP ring 2 Inner circumference side CFRP ring 3 Outer circumference side circumferentially-divided permanent magnet ring 4 Inner circumference side circumferentially-divided permanent magnet ring 5 Magnetic iron plate 6 Rotor 7 Bolt 8 High-temperature superconducting bulk body 9 Bearing casing 10 Seal plate 11 Cooling groove

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月22日[Submission date] March 22, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】 (1)永久磁石を収納する回転リングをフィラメントワ
インディング成型FRPとし、回転により生じる円周方
発生応力の低減と円周方向強度の向上を同時に図っ
た。 (2)永久磁石リングを分割型として、一体型の場合に
生じる円周方向発生応力をたちきった。 (3)2組の互いに異なる極を有する永久磁石の一方の
極を磁性鉄板で連結し(即ち、超電導体に対向しない極
に磁路を構成する磁性体ヨークを配置)、他方の極を高
温超電導体に対向させる磁気回路とした点。
Means for Solving the Problems (1) The rotary ring for housing the permanent magnets and filament winding molding FRP, aimed improvement of reducing the circumferential strength of the circumferential generation stress caused by the rotation at the same time. (2) The permanent magnet ring is of the split type, and the stress generated in the circumferential direction in the case of the integral type is cut off. (3) One pole of two permanent magnets having mutually different poles is connected by a magnetic iron plate (that is, a magnetic yoke forming a magnetic path is arranged on the pole not facing the superconductor) and the other pole is heated to a high temperature. A magnetic circuit facing the superconductor.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】[0009]

【発明の効果】1〜6の回転体は、永久磁石3及び4
と、高温超電導バルク体8の磁気反発作用により、安定
に浮上し、かつ永久磁石を収納するフィラメントワイン
ディング成形によるCFRPリングの高比強度(強度/
密度)特性と、円周方向発生応力をたちきった、分割型
永久磁石を組み合わせた軽量一体化構造とすることによ
り、高速回転が可能となる。
The rotating bodies 1 to 6 are the permanent magnets 3 and 4.
And the high specific strength (strength / strength / strength
High-speed rotation is possible by using a light-weight integrated structure that combines split permanent magnets, which has excellent density characteristics and stress generated in the circumferential direction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南 正晴 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 河島 裕 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaharu Minami, 1-1 1-1 Niihama, Arai-cho, Takasago, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Yutaka Kawashima 2-1-1, Niihama, Arai-cho, Takasago, Hyogo Prefecture No. 1 Mitsubishi Heavy Industries, Ltd. Takasago Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高温超電導バルク体の磁気反発力を利用し
た磁気軸受において、 内外径の異なる2個の一体型のフィラメントワインディ
ング成型FRPリングと、一方の端面を磁性鉄板から構
成された内外周部の凹部に、内外周の磁極を互いに異な
る極となるように円周方向に分割した永久磁石を組み込
んだことを特徴とする超電導磁気軸受。
1. A magnetic bearing utilizing the magnetic repulsive force of a high temperature superconducting bulk body, comprising two integral type filament winding molded FRP rings having different inner and outer diameters, and an inner and outer peripheral portion having one end surface made of a magnetic iron plate. 2. A superconducting magnetic bearing, characterized in that a permanent magnet, in which the magnetic poles on the inner and outer circumferences are divided in the circumferential direction so as to be different poles from each other, is incorporated in the concave portion.
JP04742596A 1996-03-05 1996-03-05 Superconducting magnetic bearing Expired - Fee Related JP3349329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04742596A JP3349329B2 (en) 1996-03-05 1996-03-05 Superconducting magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04742596A JP3349329B2 (en) 1996-03-05 1996-03-05 Superconducting magnetic bearing

Publications (2)

Publication Number Publication Date
JPH09242755A true JPH09242755A (en) 1997-09-16
JP3349329B2 JP3349329B2 (en) 2002-11-25

Family

ID=12774811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04742596A Expired - Fee Related JP3349329B2 (en) 1996-03-05 1996-03-05 Superconducting magnetic bearing

Country Status (1)

Country Link
JP (1) JP3349329B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026084A1 (en) * 1998-11-02 2000-05-11 The University Of Houston System Satellite angular momentum control system using flywheels supported by superconductor magnetic bearings
JP2002276659A (en) * 2001-03-16 2002-09-25 Kenzo Miya Superconductive magnetic bearing
KR20160060720A (en) * 2013-09-26 2016-05-30 도미니언 얼터너티브 에너지 엘엘씨 Superconductive electric motor and generator
CN106402174A (en) * 2016-11-21 2017-02-15 南京磁谷科技有限公司 Magnetic bearing cooling seat

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026084A1 (en) * 1998-11-02 2000-05-11 The University Of Houston System Satellite angular momentum control system using flywheels supported by superconductor magnetic bearings
JP2002276659A (en) * 2001-03-16 2002-09-25 Kenzo Miya Superconductive magnetic bearing
KR20160060720A (en) * 2013-09-26 2016-05-30 도미니언 얼터너티브 에너지 엘엘씨 Superconductive electric motor and generator
CN105659477A (en) * 2013-09-26 2016-06-08 领土替代能源有限责任公司 Superconductive electric motor and generator
JP2016532431A (en) * 2013-09-26 2016-10-13 ドミニオン オルタナティブ エナジー、エルエルシー Superconducting motor and generator
EP3050193A4 (en) * 2013-09-26 2017-06-14 Dominion Alternative Energy, LLC Superconductive electric motor and generator
US9917500B2 (en) 2013-09-26 2018-03-13 Dominion Alternative Energy, Llc Superconductive electro-magnetic device for use within a direct current motor or generator
JP2018061435A (en) * 2013-09-26 2018-04-12 ドミニオン オルタナティブ エナジー、エルエルシー Superconduction motor and dynamo-electric generator
CN106402174A (en) * 2016-11-21 2017-02-15 南京磁谷科技有限公司 Magnetic bearing cooling seat

Also Published As

Publication number Publication date
JP3349329B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
US4115040A (en) Permanent magnet type pump
EP1830457A1 (en) Axial-gap superconducting motor
US6841912B2 (en) Permanent magnet rotor
US6806604B2 (en) Centrifuge with a magnetically stabilized rotor for centrifugal goods
US4120618A (en) Permanent magnetic centrifugal pump
JP2018151072A (en) Nested-rotor open-core flywheel
US5540116A (en) Low-loss, high-speed, high-TC superconducting bearings
US9673680B2 (en) Electromechanical flywheels
JPH09242755A (en) Superconductive magnetic bearing
US5554583A (en) Permanent magnet design for high-speed superconducting bearings
JPS6342180Y2 (en)
JPS60125456A (en) Magnet coupling
JPS57154516A (en) Bearing device for rapidly rotating body
JPH08200368A (en) Superconducting magnetic bearing device
JPH11257354A (en) Rotor for magnetic bearing and superconductive magnetic bearing
JP3233812B2 (en) Radial bearing device
CN210156196U (en) Permanent magnet protector and magnet unit
CN216216136U (en) High-speed permanent magnet motor capable of reducing rotor loss and improving heat dissipation capacity of rotor
Sung et al. Effect of a passive magnetic damper in a flywheel system with a hybrid superconductor bearing set
CN219394507U (en) High-speed permanent magnet motor rotor structure
JP3367068B2 (en) Superconducting bearing
JP2003299278A (en) Rotor for rotating machine and its manufacturing method, rotating machine and gas turbine power plant
LIU et al. Design of permanent magnet systems using finite element analysis
GB2205002A (en) Permanent magnet rotor for a dynamo-electric machine
SE466878B (en) PERMANENT MAGNETIZED ROTATING ELECTRIC HIGH SPEED MACHINE

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees