JPH09241708A - Production by reduction diffusion method of alloy powder containing rare earth and transition metal - Google Patents

Production by reduction diffusion method of alloy powder containing rare earth and transition metal

Info

Publication number
JPH09241708A
JPH09241708A JP26252296A JP26252296A JPH09241708A JP H09241708 A JPH09241708 A JP H09241708A JP 26252296 A JP26252296 A JP 26252296A JP 26252296 A JP26252296 A JP 26252296A JP H09241708 A JPH09241708 A JP H09241708A
Authority
JP
Japan
Prior art keywords
rare earth
alloy powder
transition metal
powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26252296A
Other languages
Japanese (ja)
Other versions
JP3508419B2 (en
Inventor
Yoshiyuki Asakawa
吉幸 浅川
Yumi Yoshida
由美 吉田
Kenji Omori
賢次 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP26252296A priority Critical patent/JP3508419B2/en
Publication of JPH09241708A publication Critical patent/JPH09241708A/en
Application granted granted Critical
Publication of JP3508419B2 publication Critical patent/JP3508419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing alloy products having high quality by improving the underwater collapsing property in calcined matter, thereby omitting a crushing stage and improving the yield of the products in production of a powder alloy by a reduction diffusion method. SOLUTION: Rare earth oxide powder, transition metal powder and other raw material powder are weighed and mixed. Further, a reducing agent sufficient for reducing the rare earth oxide powder is added and mixed to and with the mixture. The mixture is calcined by heating and holding the mixture up to and at the temp. at which the reducing agent melts or above and the temp. at which the desired alloy does not melt in the atmosphere where oxygen does not substantially exist, by which the rare earth oxide is reduced to a rare earth metal. The mixture is thereafter diffused into the transition metal powder to obtain the desired alloy. The calcined matter obtd. after cooling down to room temp. is charged into water to dissolve the residual reducing agent and the formed redox agent. The calcined matter is repetitively subjected to agitation and decantation and is washed. The settled alloy powder is separated and recovered and is dried. The alloy powder contg. the desired rare earth and transition metal is thus produced. The calcined matter is subjected to a hydrogen treatment after the calcination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素貯蔵合金、電
池材料、永久磁石材料として有用な希土類、遷移金属を
含む合金粉末の還元拡散法による製造方法に関し、より
詳細には、上記の製造を行うに際して、還元拡散反応を
行わせる焼成工程後の焼成物の崩壊性を改善して、焼成
物の粉砕工程を不要とし、洗浄効率や回収率を向上さ
せ、かつ不純物含有量を低減させるための新規な還元拡
散法による前記合金粉末の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing an alloy powder containing a hydrogen storage alloy, a battery material, a rare earth element useful as a permanent magnet material, and a transition metal by a reduction diffusion method. In order to improve the disintegration property of the calcined product after the calcining process in which the reduction diffusion reaction is performed, the crushing process of the calcined product is unnecessary, the cleaning efficiency and the recovery rate are improved, and the impurity content is reduced. The present invention relates to a method for producing the alloy powder by a novel reduction diffusion method.

【0002】[0002]

【従来の技術】還元拡散法は、溶解法に比べて原料が低
廉であり、熱処理温度が低く、得られた合金の組織が緻
密で、かつ組成の調整がしやすく、その上合金塊の表面
処理、粉砕工程などが不要であるなど、多くの利点を有
するので、希土類系永久磁石の製造などに多用されてい
る。
2. Description of the Related Art The reduction-diffusion method is cheaper in raw material than the melting method, the heat treatment temperature is low, the structure of the obtained alloy is dense, and the composition can be easily adjusted. Since it has many advantages such as no treatment and no crushing step, it is widely used for manufacturing rare earth permanent magnets.

【0003】この還元拡散法による合金の製造方法は、
希土類酸化物粉末、遷移金属粉末、その他の原料粉末を
秤量して混合し、さらに前記希土類酸化物粉末を還元す
るたに必要な還元剤、例えば金属カルシウムなどを添加
混合し、該混合物を酸素が実質的に存在しない雰囲気、
例えばアルゴン気流中や真空中で還元剤が溶融する温
度、例えば還元剤に金属カルシウムを使用した場合には
820℃以上の温度で、かつ所望の合金が溶解しない程
度の温度(通常は、900〜1200℃)まで昇温焼成
し、前記希土類酸化物を希土類金属に還元した後、これ
を前記遷移金属粉末に拡散させて所望の合金とし、室温
まで冷却した後得られた焼成物を水中に投入して残留還
元剤および生成した酸化還元剤を溶解させ、撹拌とデカ
ンテーションを繰り返し行って水洗し、沈殿した合金粉
末を分離回収し、乾燥して所望の希土類、遷移金属を含
む合金粉末を得るものである。
The method for producing an alloy by this reduction diffusion method is as follows:
Rare earth oxide powder, transition metal powder, and other raw material powders are weighed and mixed, and further a reducing agent necessary for reducing the rare earth oxide powder, for example, metal calcium is added and mixed, and the mixture contains oxygen. An atmosphere that is virtually nonexistent,
For example, a temperature at which the reducing agent melts in an argon stream or in a vacuum, for example, a temperature of 820 ° C. or higher when metallic calcium is used as the reducing agent, and a temperature at which a desired alloy does not melt (usually 900 to The temperature is increased to 1200 ° C.), the rare earth oxide is reduced to a rare earth metal, the transition metal powder is diffused into a desired alloy, and the alloy is cooled to room temperature. Then, the residual reducing agent and the generated redox agent are dissolved, and stirring and decantation are repeated to wash with water, and the precipitated alloy powder is separated and recovered and dried to obtain an alloy powder containing a desired rare earth element and a transition metal. It is a thing.

【0004】上記の還元拡散法においては、焼成に際し
て焼成炉として一般にステンレススチール製反応容器が
用いられ、これに上記の各酸化物を含む原料混合物を充
填して焼成が行われ、これによって原料粉末混合物にお
ける還元拡散反応が進行するが、焼成後は混合物は収縮
し、また強固に塊状に固まってしまうためにその回収が
困難であるといった問題がある。
In the above reduction diffusion method, a stainless steel reaction vessel is generally used as a firing furnace for firing, and a raw material mixture containing each of the above oxides is charged into the firing vessel to perform firing. Although the reduction-diffusion reaction proceeds in the mixture, there is a problem that the mixture shrinks after firing and solidifies into a solid state, which makes recovery thereof difficult.

【0005】[0005]

【発明が解決しようとする課題】特に、例えばNd−F
e−B系の永久磁石用合金を還元拡散法による製造のよ
うに合金の一部組成が溶融するほどに焼成温度を高くし
て還元拡散法による合金の製造が行われる場合には、焼
成物は極めて強固に固まってしまうので、これを水洗工
程に移行させるためには、ハンマーなどにより大割り
し、さらにジョークラッシャーなどの粉砕機で約1cm
角大の大きさまで粗粉砕しなければならなかった。そし
て、これら破砕、粉砕の作業はそれ自体危険な作業であ
るばかりでなく、発火防止や酸化防止のための処置を講
ずる必要がある上に、製品収率の低下や破砕、粉砕の作
業中において不純物混入による品質低下などを招く恐れ
があるので好ましくなかった。
In particular, for example, Nd-F
When an e-B type permanent magnet alloy is produced by a reduction diffusion method by raising the firing temperature so that a partial composition of the alloy is melted like a production by a reduction diffusion method, a fired product is used. Will solidify very strongly, so in order to transfer it to the washing process, it should be roughly smashed with a hammer, etc., and about 1 cm with a crusher such as a jaw crusher.
It had to be coarsely crushed to the size of a corner. And, these crushing and crushing operations are not only dangerous operations themselves, but also it is necessary to take measures to prevent ignition and oxidation, and to reduce product yield, crush and crushing operations. It is not preferable because there is a risk of quality deterioration due to inclusion of impurities.

【0006】また、一部組成の溶融を伴わないような焼
成温度で製造が行われるSm−Co系合金などの場合に
おいては、焼成物は一昼夜放置すれば自然崩壊するが、
これも完全に崩壊するわけでなく、季節、天候、気温な
どの放置環境の違いによって崩壊度が異なり、品質管理
上問題があるし、崩壊時間が一昼夜と長いために、大気
中の塩素分、窒素酸化物などを吸収して最終製品の品質
を劣化させるといった問題もあった。
Further, in the case of an Sm-Co alloy or the like which is manufactured at a firing temperature that does not involve melting of a part of the composition, the fired product spontaneously disintegrates if left to stand overnight.
This also does not completely collapse, the degree of collapse differs depending on the abandoned environment such as season, weather, temperature, etc. There is a problem in quality control, and since the collapse time is long all day and night, chlorine content in the atmosphere, There is also a problem that the quality of the final product is deteriorated by absorbing nitrogen oxides.

【0007】本発明は、この種還元拡散法による粉末合
金の製造における上記の問題を解決し、焼成物の水中崩
壊性を向上させることによって粉砕工程を省略し、これ
によって製品の収率を向上させると共に品質の高い合金
製品を得る方法を提供することを目的とするものであ
る。
The present invention solves the above-mentioned problems in the production of powder alloys by this kind of reduction diffusion method and improves the disintegration property of the fired product in water, thereby omitting the crushing step and thereby improving the product yield. It is an object of the present invention to provide a method for obtaining a high quality alloy product.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ための本発明は、希土類酸化物粉末、遷移金属粉末、そ
の他の原料粉末を秤量して混合し、さらに前記希土類酸
化物粉末を還元するのに十分な還元剤を添加混合し、該
混合物を酸素が実質的に存在しない雰囲気中で還元剤が
溶融する温度以上でかつ所望の合金が溶解しない温度ま
で昇温保持することにより焼成を行い、前記希土類酸化
物を希土類金属に還元した後、これを前記遷移金属粉末
に拡散させて所望の合金とし、室温まで冷却した後得ら
れた焼成物を水中に投入して残留還元剤および生成した
酸化還元剤を溶解させ、撹拌とデカンテーションを繰り
返し行って水洗し、沈殿した合金粉末を分離回収し、乾
燥して所望の希土類、遷移金属を含む合金粉末を製造す
る方法において、前記焼成後に焼成物を水素処理する、
希土類、遷移金属を含む合金粉末の還元拡散法による製
造方法を特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention is to measure rare earth oxide powder, transition metal powder and other raw material powders and mix them, and further reduce the rare earth oxide powder. Calcination is carried out by adding and mixing a sufficient reducing agent for heating the mixture to a temperature above the temperature at which the reducing agent melts in an atmosphere substantially free of oxygen and at a temperature at which the desired alloy does not melt. After reducing the rare earth oxide to a rare earth metal, it is diffused into the transition metal powder to obtain a desired alloy, cooled to room temperature, and the obtained calcined product is put into water to produce a residual reducing agent and generated. Dissolving the redox agent, washing with water by repeating stirring and decantation, separating and recovering the precipitated alloy powder, and drying to produce an alloy powder containing a desired rare earth and transition metal, The calcined product is hydrotreated after serial firing,
It is characterized by a method for producing an alloy powder containing a rare earth element and a transition metal by a reduction diffusion method.

【0009】本発明によるときは、焼成後の還元拡散反
応生成物は、水中崩壊性が格段に向上するので、粉砕工
程を省略することができる上に、デカンテーションの繰
り返し操作回数を大幅に低減させることができ、これに
よって、廃液処理量の削減や合金粉末製品の回収率の一
層の向上を図ることができる。
According to the present invention, the reduction-diffusion reaction product after calcination has a significantly improved disintegration property in water, so that the crushing step can be omitted and the number of repeated decantation operations can be significantly reduced. This makes it possible to reduce the amount of waste liquid processed and further improve the recovery rate of alloy powder products.

【0010】本発明において、前記した水素処理は、焼
成による還元拡散後の反応生成物の冷却工程中に焼成炉
内で行うことが好ましい。これは工程が簡略化でき、か
つエネルギー消費量も削減できるからである。また、前
記水素処理は、100〜600℃の温度範囲で行うこと
が好ましい。100℃未満では効果が小さく、一方60
0℃を超えるとエネルギー消費量が大きくなり、かつ目
的の合金化合物が分解したり副生成物が生じることがあ
るからである。さらに、焼成後は室温まで冷却してから
水素処理する必要はなく、水素処理の加熱に焼成処理の
余熱を利用してもよい。
In the present invention, the above-mentioned hydrogen treatment is preferably carried out in the firing furnace during the cooling step of the reaction product after reduction and diffusion by firing. This is because the process can be simplified and the energy consumption can be reduced. Further, the hydrogen treatment is preferably performed in a temperature range of 100 to 600 ° C. If the temperature is less than 100 ° C, the effect is small, while 60
This is because if the temperature exceeds 0 ° C., the energy consumption becomes large, and the target alloy compound may be decomposed or by-products may be generated. Furthermore, after firing, it is not necessary to cool to room temperature and then perform hydrogen treatment, and residual heat of the firing treatment may be used for heating for hydrogen treatment.

【0011】[0011]

【発明の実施の形態】本発明は、上記したように、希土
類酸化物粉末、遷移金属粉末、その他の原料粉末を秤量
して混合し、さらに前記希土類酸化物粉末を還元するの
に十分な還元剤を添加混合し、該混合物を酸素が実質的
に存在しない雰囲気中で還元剤が溶融する温度以上でか
つ所望の合金が溶解しない温度まで昇温保持することに
より焼成を行い、前記希土類酸化物を希土類金属に還元
した後、これを前記遷移金属粉末に拡散させて所望の合
金とし、室温まで冷却した後得られた焼成物を水中に投
入して残留還元剤および生成した酸化還元剤を溶解さ
せ、撹拌とデカンテーションを繰り返し行って水洗し、
沈殿した合金粉末を分離回収し、乾燥して所望の希土
類、遷移金属を含む合金粉末を製造する方法において、
焼成による還元拡散により得られた反応生成物を水素処
理することにより、反応生成物の崩壊性を向上させて、
デカンテーション繰り返し操作回数を削減させ、これに
より合金粉末製品の収率を向上させるとともに製品の品
質向上を図ることに成功したものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as described above, a rare earth oxide powder, a transition metal powder, and other raw material powders are weighed and mixed, and further reduced enough to reduce the rare earth oxide powder. The rare earth oxide is mixed by adding the agent and firing the mixture by maintaining the mixture at a temperature not lower than the melting temperature of the reducing agent and not melting the desired alloy in an atmosphere substantially free of oxygen. Is reduced to a rare earth metal, then this is diffused into the transition metal powder to form a desired alloy, and after cooling to room temperature, the fired product obtained is put into water to dissolve the residual reducing agent and the generated redox agent. And repeat the stirring and decantation to wash with water,
In the method for producing an alloy powder containing a desired rare earth and transition metal by separating and recovering the precipitated alloy powder, and drying,
By subjecting the reaction product obtained by reduction diffusion by calcination to hydrogen treatment, the disintegration property of the reaction product is improved,
This has succeeded in reducing the number of times of decantation repetitive operations, thereby improving the yield of alloy powder products and improving product quality.

【0012】本発明において、対象とする合金粉末製品
は希土類(イットリウムを含むランタノイド元素)、遷
移金属(鉄、コバルト、ニッケル)を含む合金粉末であ
れば、いずれの合金粉末の還元拡散法においても応用す
ることができる。例えば、水素貯蔵合金、電池材料、永
久磁石用合金(例えば、Sm−Co系、Sm−Fe−N
系合金の製造に供するSm−Fe系合金、Nd−Fe−
B系、La−Ni系、Tb−Fe−Co系、Nd−Co
系など)などがあるが、特に、Sm−Co系およびNd
−Fe−B系の永久磁石用合金の製造に適用した場合に
おいて本発明の製造方法は著しい効果を発揮させること
ができる。
In the present invention, the alloy powder product of interest is any alloy powder containing a rare earth (lanthanoid element including yttrium) and a transition metal (iron, cobalt, nickel) in any method of reducing and diffusing the alloy powder. It can be applied. For example, hydrogen storage alloys, battery materials, alloys for permanent magnets (for example, Sm-Co based, Sm-Fe-N
Sm-Fe-based alloy, Nd-Fe-, which is used for the production of a system-based alloy
B type, La-Ni type, Tb-Fe-Co type, Nd-Co
System, etc.), but especially Sm-Co system and Nd
When applied to the production of a —Fe—B based alloy for permanent magnets, the production method of the present invention can exert remarkable effects.

【0013】本発明において行われる水素処理は、従来
の還元拡散法における焼成工程後の冷却期間をアルゴン
ガスなどの不活性ガスを流通して行っていたのを、所定
の冷却温度に達したときに、適当な時間アルゴンガス流
通の一部または全部を水素ガスに置換して流通させるよ
うにするのみでよい。
The hydrogen treatment carried out in the present invention was carried out by flowing an inert gas such as argon gas during the cooling period after the firing step in the conventional reduction diffusion method when the predetermined cooling temperature was reached. In addition, it is only necessary to replace a part or the whole of the argon gas flow with hydrogen gas for a suitable time.

【0014】このようにして、水素処理された焼成物
は、室温に冷却された後大気中に曝されるだけで自然崩
壊が進行し、従来必要であった焼成物の1cm角大程度
への粗粉砕工程を省略することができるばかりでなく、
従来の粗粉砕工程後の粒度よりも細粒に崩壊するので、
その後の水洗分離工程における時間短縮を図ることがで
き、篩分け、デカンテーション繰り返し操作回数などを
大幅に削減することができる。そして、これによって廃
液処理量の削減、合金粉末製品の回収率の向上並びに製
品純度の向上を果たすことができるのである。また、水
素処理にロータリーキルンなどを用いれば、粉状化した
焼成体が得られる。
As described above, the hydrogenated calcined product undergoes spontaneous disintegration simply by being exposed to the atmosphere after being cooled to room temperature, and the calcined product which has been conventionally required has a size of about 1 cm square. Not only can the coarse crushing step be omitted,
Since it disintegrates into finer particles than the particle size after the conventional coarse crushing process,
It is possible to shorten the time in the subsequent water-washing separation step, and to significantly reduce the number of times of sieving and decantation repetitive operations. As a result, the amount of waste liquid treated can be reduced, the recovery rate of alloy powder products can be improved, and the product purity can be improved. If a rotary kiln or the like is used for the hydrogen treatment, a powdered fired body can be obtained.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。実施例1〜実施例8および比較例1〜比較例3に
おいてはSm−Co系合金粉末の製造例について、また
実施例9〜実施例17および比較例4〜比較例6におい
てはNd−Fe−B系の製造例について示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. In Examples 1 to 8 and Comparative Examples 1 to 3, production examples of Sm-Co based alloy powders were used, and in Examples 9 to 17 and Comparative Examples 4 to 6, Nd-Fe-. The production example of the B type is shown.

【0016】実施例1 合金生産規模1.0kgを目標として、酸化サマリウム
粉末460g、コバルト粉末660g、金属カルシウム
198g(酸化サマリウムの還元に必要な化学量論量の
1.25倍)および無水塩化カルシウム46g(いずれ
の原料も純度99%以上)をアルゴン雰囲気中で混合
し、混合物をステンレススチール製反応容器(焼成炉)
内に封入し、アルゴンガス気流中で1150℃まで約1
時間かけて昇温し、同温度で約4時間保持しさらに10
00℃で2時間保持して還元拡散反応を行わせた後50
0℃まで冷却し、この時点でアルゴンガスを水素ガスに
置換した。この状態で2時間放置後、さらに反応容器内
を再びアルゴンガスで置換し、次いで室温まで冷却して
塊状の反応生成物を容器から取り出して50リットルの
水中に投入し、1時間撹拌して該塊状反応生成物を十分
に水中崩壊させてスラリー状にし、得られたスラリーか
らCa(OH)を含む懸濁物を分離し、残部を48メ
ッシュの篩で篩分けして篩下を回収した。回収量を表1
に示す。
Example 1 Aiming at an alloy production scale of 1.0 kg, 460 g of samarium oxide powder, 660 g of cobalt powder, 198 g of metallic calcium (1.25 times the stoichiometric amount required for reduction of samarium oxide) and anhydrous calcium chloride. 46 g (both raw materials have a purity of 99% or more) were mixed in an argon atmosphere, and the mixture was made into a stainless steel reaction vessel (firing furnace).
It is sealed inside and up to 1150 ° C in argon gas flow for about 1
The temperature rises over a period of time, and the temperature is maintained for about 4 hours and then 10
After holding at 00 ° C for 2 hours to carry out the reduction diffusion reaction, 50
After cooling to 0 ° C., the argon gas was replaced with hydrogen gas at this point. After standing in this state for 2 hours, the inside of the reaction vessel was replaced with argon gas again, then cooled to room temperature, the reaction product in the form of a lump was taken out of the vessel, and put into 50 liters of water, and stirred for 1 hour. The lumpy reaction product was sufficiently disintegrated in water to form a slurry, and a suspension containing Ca (OH) 2 was separated from the obtained slurry, and the remainder was sieved with a 48-mesh sieve to recover the lower portion of the sieve. . Table 1 shows the collection amount
Shown in

【0017】次に、篩上および篩下の両者を混合して、
50リットルの純水を注水後、合金粉末が沈降するのを
確認してデカンテーションにより排水する操作をスラリ
ーのpHが10以下になるまで繰り返し行った。このデ
カンテーション繰り返し回数を表1に示す。次いで、さ
らに48メッシュの篩で篩分けして篩下の合金粉末を回
収し、吸引濾過後エタノールで洗浄し、50℃、10
−2Torrの真空中において8時間乾燥を行いSm−
Co系合金粉末製品を得た。最終製品回収量を表1に示
す。
Next, both the upper and lower sieves are mixed,
After pouring 50 liters of pure water and confirming that the alloy powder was settled, the operation of draining by decantation was repeated until the pH of the slurry became 10 or less. Table 1 shows the number of repetitions of this decantation. Then, the alloy powder under the sieve is recovered by further sieving with a 48-mesh sieve, suction-filtered and washed with ethanol.
For 8 hours drying in a vacuum of -2 Torr Sm-
A Co-based alloy powder product was obtained. The final product recovery amount is shown in Table 1.

【0018】実施例2 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で100℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 2 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was used as it was in argon gas. After cooling to room temperature, it was further heated to 100 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0019】実施例3 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で200℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 3 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was directly used in argon gas. After cooling to room temperature, it was further heated to 200 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0020】実施例4 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で300℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 4 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was directly used in argon gas. After cooling to room temperature, it was further heated to 300 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0021】実施例5 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で400℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 5 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was directly used in argon gas. After cooling to room temperature, it was further heated to 400 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0022】実施例6 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で500℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 6 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was used as it was in argon gas. After cooling to room temperature, it was further heated to 500 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0023】実施例7 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、反応容器内を10−2Torrになるまで排気
し、次いで反応容器内に水素ガスを0.1Torrにな
るまで導入し、2時間水素雰囲気中放置した。これによ
り得られた反応生成物を実施例1と同様の手順で湿式処
理してSm−Co系合金粉末製品を得た。本実施例にお
ける反応生成物の水中投入後篩分けした篩下回収量、p
H10以下に至るまでのデカンテーション回数および最
終製品回収量を表1に示す。
Example 7 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was used as it was in argon gas. After cooling to room temperature, the inside of the reaction vessel was evacuated to 10 −2 Torr, then hydrogen gas was introduced into the reaction vessel until it became 0.1 Torr, and left in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet-treated in the same procedure as in Example 1 to obtain an Sm-Co based alloy powder product. The amount of the under-sieve recovered after pouring the reaction product into water in this Example, p
Table 1 shows the number of decantations and the final product recovery amount up to H10 or less.

【0024】実施例8 合金生産規模1.0kgを目標として、酸化サマリウム
粉末460g、コバルト粉末660g、金属カルシウム
198g(酸化サマリウムの還元に必要な化学量論量の
1.25倍、いずれの原料も純度99%以上)をアルゴ
ン雰囲気中で混合し、混合物をステンレススチール製反
応容器内に封入し、アルゴンガス気流中で1150℃ま
で約1時間かけて昇温し、同温度で約4時間保持しさら
に1000℃で2時間保持して還元拡散反応を行わせた
後室温まで冷却し、アルゴンガスを水素ガスに置換し
た。この状態で2時間放置後、さらに容器内をアルゴン
ガスで置換し、次いで塊状の反応生成物を容器から取り
出して50リットルの水中に投入し、1時間撹拌を行っ
て該塊状の反応生成物を十分に水中崩壊させてスラリー
状にし、得られたスラリーからCa(OH)の懸濁物
を分離し、残部を48メッシュの篩で篩分けして篩下を
回収した。篩下回収量を表1に示す。
Example 8 Aiming at an alloy production scale of 1.0 kg, 460 g of samarium oxide powder, 660 g of cobalt powder, and 198 g of metallic calcium (1.25 times the stoichiometric amount required for reduction of samarium oxide, all raw materials were used). (Purity 99% or more) is mixed in an argon atmosphere, the mixture is sealed in a stainless steel reaction container, heated to 1150 ° C. in an argon gas stream over about 1 hour, and kept at the same temperature for about 4 hours. Further, the mixture was held at 1000 ° C. for 2 hours to carry out a reduction diffusion reaction and then cooled to room temperature, and the argon gas was replaced with hydrogen gas. After standing for 2 hours in this state, the inside of the container was further replaced with argon gas, and then the lumpy reaction product was taken out of the container and put into 50 liters of water, followed by stirring for 1 hour to remove the lumpy reaction product. It was sufficiently disintegrated in water to form a slurry, and a suspension of Ca (OH) 2 was separated from the obtained slurry, and the remainder was sieved with a 48-mesh sieve to recover the lower portion of the sieve. Table 1 shows the recovery amount under the sieve.

【0025】次ぎに、篩上および篩下の両者を混合し
て、50リットルの純水を注水後、合金粉末が沈降する
のを確認してデカンテーションにより排水する操作をス
ラリーのpHが10以下になるまで繰り返し行った。こ
のデカンテーション繰り返し回数を表1に示す。次い
で、さらに48メッシュの篩で篩分けして篩下の合金粉
末を回収し、吸引濾過後エタノールで洗浄し、50℃、
10−2Torrの真空中において8時間乾燥を行いS
m−Co系合金粉末製品を得た。最終製品回収量を表1
に示す。
Next, after mixing both the upper and lower sieves and pouring 50 liters of pure water, it was confirmed that the alloy powder had settled and drained by decantation. The pH of the slurry was 10 or less. Repeatedly until. Table 1 shows the number of repetitions of this decantation. Next, the alloy powder under the sieve is recovered by further sieving with a 48-mesh sieve, suction-filtered, and washed with ethanol.
After drying in a vacuum of 10 −2 Torr for 8 hours, S
An m-Co alloy powder product was obtained. Table 1 shows the amount of final product collected
Shown in

【0026】比較例1 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、反応容器内の雰囲気を水素ガスに置換し、水素ガ
ス雰囲気内での保持を行わずにただちに反応容器内から
取り出した反応生成物を実施例1と同様の手順で湿式処
理して合金粉末製品を得た。本比較例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Comparative Example 1 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was directly used in argon gas. After cooling to room temperature, the atmosphere in the reaction vessel was replaced with hydrogen gas, and the reaction product immediately taken out of the reaction vessel without holding in the hydrogen gas atmosphere was wet-treated in the same manner as in Example 1. Then, an alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged into water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this comparative example.

【0027】比較例2 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で650℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた塊
状反応生成物を実施例1と同様の手順で湿式処理してS
m−Co系合金粉末製品を得た。本比較例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表1に示す。
Comparative Example 2 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was used as it was in argon gas. After cooling to room temperature, it was further heated to 650 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The bulk reaction product thus obtained was wet treated in the same manner as in Example 1 to give S.
An m-Co alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged into water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this comparative example.

【0028】比較例3 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた塊
状反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、該反応生成物を実施例1と同様の手順で湿式
処理してSm−Co系合金粉末製品を得た。本比較例に
おける反応生成物の水中投入後篩分けした篩下回収量、
pH10以下に至るまでのデカンテーション回数および
最終製品回収量を表1に示す。
Comparative Example 3 A bulk reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was used as it was in argon gas. After being cooled to room temperature in, the reaction product was wet-treated in the same manner as in Example 1 to obtain an Sm-Co based alloy powder product. The amount of the under-sieve recovered after the reaction product was put into water in the present comparative example,
Table 1 shows the number of decantations until reaching pH 10 or less and the final product recovery amount.

【0029】[0029]

【表1】 水中崩壊後の デカンテーシ 合金粉末製品 48メッシュ ョンの繰り返 の回収量 実施番号 篩下量(g) し回数(回) (g) ───────────────────────────────── 実施例1 981 5 974 実施例2 979 5 972 実施例3 976 5 968 実施例4 982 5 970 実施例5 980 5 971 実施例6 971 5 963 実施例7 976 5 964 実施例8 955 6 945 比較例1 901 14 921 比較例2 968 5 964 比較例3 825 19 834 ─────────────────────────────────[Table 1] Decantation alloy powder product after water disintegration Repeated recovery amount of 48 mesh Execution number Sieving amount (g) Number of times (times) (g) ───────────── ───────────────────── Example 1 981 5 974 Example 2 979 5 972 Example 3 976 5 968 Example 4 982 5 970 Example 5 980 5 971 Example 6 971 5 963 Example 7 976 5 964 Example 8 955 6 945 Comparative Example 1 901 14 921 Comparative Example 2 968 5 964 Comparative Example 3 825 19 834 ────────────── ────────────────────

【0030】表1の結果より分かるように、本発明の実
施例1〜実施例8によるものは、比較例1および3によ
るものに比べて水中崩壊後の篩下回収量が多く、またデ
カンテーションの繰り返し操作回数が少なくて済み、さ
らに最終製品回収量も高い。また、比較例2の結果で
は、水中崩壊後の回収量、デカンテーション操作回数、
製品回収量は、本発明の実施例のものと殆ど変わりはな
いが、反応生成物中において主相を構成するSmCo
相が分解を起こし、コバルトおよびサマリウム水酸化
物などが生成し、そのままでは良好な磁石粉末製品を得
ることができなかった。
As can be seen from the results of Table 1, the samples according to Examples 1 to 8 of the present invention have a larger amount of under-sieving recovery after water disintegration and decantation than those according to Comparative Examples 1 and 3. The number of repeated operations is small, and the final product recovery amount is high. In addition, in the result of Comparative Example 2, the recovery amount after the water collapse, the number of decantation operations,
The product recovery amount is almost the same as that of the example of the present invention, but Sm 1 Co which constitutes the main phase in the reaction product
Five phases decomposed and cobalt, samarium hydroxide, etc. were produced, and a good magnet powder product could not be obtained as it was.

【0031】実施例9 合金生産規模1.0kgを目標として、酸化ネオジウム
粉末405g、鉄粉末608g、硼素含有量19.0%
のフェロボロン粉末65g、金属カルシウム217g
(酸化ネオジウムの還元に必要な化学量論量の1.5
倍)および無水酸化カルシウム46g(いずれの原料も
純度99%以上)をアルゴン雰囲気中で混合し、混合物
をステンレススチール製反応容器(焼成炉)内に封入
し、アルゴンガス気流中で1000℃まで約1時間かけ
て昇温し、同温度で約2時間保持して還元拡散反応を行
わせた後500℃まで冷却し、この時点で反応容器内の
アルゴンガスを水素ガスに置換した。この状態で2時間
放置後、さらに反応容器内を再びアルゴンガスで置換
し、次いで室温まで冷却して塊状の反応生成物を容器か
ら取り出して50リットルの水中に投入し、1時間撹拌
して該塊状生成物を十分に水中崩壊させてスラリー状と
し、得られたスラリーからCa(OH)を含む懸濁物
を分離し、残部を48メッシュの篩で篩分けして篩下を
回収した。該篩下回収量を表2に示す。
Example 9 Aiming at an alloy production scale of 1.0 kg, neodymium oxide powder 405 g, iron powder 608 g, and boron content 19.0%.
65g of ferroboron powder, 217g of metallic calcium
(Stoichiometric amount of 1.5 required for reduction of neodymium oxide
2 times) and 46 g of anhydrous calcium oxide (purity of all raw materials is 99% or more) are mixed in an argon atmosphere, the mixture is sealed in a stainless steel reaction vessel (firing furnace), and the mixture is heated to about 1000 ° C. in an argon gas stream. The temperature was raised over 1 hour, the temperature was maintained for about 2 hours to carry out a reduction diffusion reaction, and then the temperature was cooled to 500 ° C. At this point, the argon gas in the reaction vessel was replaced with hydrogen gas. After standing in this state for 2 hours, the inside of the reaction vessel was replaced with argon gas again, then cooled to room temperature, the reaction product in the form of a lump was taken out of the vessel, and put into 50 liters of water, and stirred for 1 hour. The agglomerated product was sufficiently disintegrated in water to form a slurry, and a suspension containing Ca (OH) 2 was separated from the obtained slurry, and the remainder was sieved with a 48-mesh sieve to recover the lower portion of the sieve. The amount recovered under the sieve is shown in Table 2.

【0032】次に、篩上および篩下の両者を混合して、
50リットルの純水を注水後、合金粉末が沈降するのを
確認してデカンテーションにより排水する操作をスラリ
ーのpHが10以下になるまで繰り返し行った。このデ
カンテーション繰り返し回数を表2に示す。次いで、さ
らに48メッシュの篩で篩分けして篩下の合金粉末を回
収し、吸引濾過後エタノールで洗浄し、50℃、10
−2Torrの真空中で8時間乾燥を行いNd−Fe−
B系合金粉末製品を得た。最終製品回収量を表2に示
す。
Next, both the upper and lower sieves are mixed,
After pouring 50 liters of pure water and confirming that the alloy powder was settled, the operation of draining by decantation was repeated until the pH of the slurry became 10 or less. The number of repetitions of this decantation is shown in Table 2. Then, the alloy powder under the sieve is recovered by further sieving with a 48-mesh sieve, suction-filtered and washed with ethanol.
Nd-Fe- for 8 hours drying in vacuo at -2 Torr
A B-based alloy powder product was obtained. The final product recovery amount is shown in Table 2.

【0033】実施例10 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で100℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例9と同様の手順で湿式処理してNd−
Fe−B系合金粉末製品を得た。本実施例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表2に示す。
Example 10 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was used as it was in argon gas. After cooling to room temperature, it was further heated to 100 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 9 to obtain Nd-
An Fe-B based alloy powder product was obtained. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0034】実施例11 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で200℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例9と同様の手順で湿式処理してNd−
Fe−B系合金粉末製品を得た。本実施例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表2に示す。
Example 11 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was used as it was in argon gas. After cooling to room temperature, it was further heated to 200 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 9 to obtain Nd-
An Fe-B based alloy powder product was obtained. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0035】実施例12 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で300℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例9と同様の手順で湿式処理してNd−
Fe−B系合金粉末製品を得た。本実施例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表2に示す。
Example 12 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was used as it was in argon gas. After cooling to room temperature, it was further heated to 300 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 9 to obtain Nd-
An Fe-B based alloy powder product was obtained. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0036】実施例13 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で400℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例9と同様の手順で湿式処理してNd−
Fe−B系合金粉末製品を得た。本実施例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表2に示す。
Example 13 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was directly used in argon gas. After cooling to room temperature, it was further heated to 400 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 9 to obtain Nd-
An Fe-B based alloy powder product was obtained. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0037】実施例14 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で500℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例9と同様の手順で湿式処理してNd−
Fe−B系合金粉末製品を得た。本実施例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表2に示す。
Example 14 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was directly used in argon gas. After cooling to room temperature, it was further heated to 500 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 9 to obtain Nd-
An Fe-B based alloy powder product was obtained. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0038】実施例15 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で600℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例9と同様の手順で湿式処理してNd−
Fe−B系合金粉末製品を得た。本実施例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表2に示す。
Example 15 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was directly used in argon gas. After cooling to room temperature, it was further heated to 600 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 9 to obtain Nd-
An Fe-B based alloy powder product was obtained. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0039】実施例16 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、反応容器内を10−2Torrになるまで排気
し、次いで反応容器内に水素ガスを0.1Torrにな
るまで導入し、2時間水素雰囲気中で放置した。これに
より得られた反応生成物を実施例9と同様の手順で処理
してNd−Fe−B系合金粉末製品を得た。本実施例に
おける反応生成物の水中投入後篩分けした篩下回収量、
pH10以下に至るまでのデカンテーション回数および
最終製品回収量を表2に示す。
Example 16 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was used as it was in argon gas. After cooling to room temperature, the inside of the reaction vessel was evacuated to 10 −2 Torr, then hydrogen gas was introduced into the reaction vessel until it became 0.1 Torr, and left in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was treated in the same manner as in Example 9 to obtain an Nd-Fe-B based alloy powder product. The amount of under-sieving recovered after the reaction product was put into water after being sieved in this example,
Table 2 shows the number of decantations until the pH reached 10 or less and the final product recovery amount.

【0040】実施例17 合金生産規模1.0kgを目標として、酸化ネオジウム
粉末405g、鉄粉末608g、硼素含有量19.0%
のフェロボロン粉末65g、金属カルシウム217g
(酸化ネオジウムの還元に必要な化学量論量の1.5
倍、いずれの原料も純度99%以上)をアルゴン雰囲気
中で混合し、混合物をステンレススチール製反応容器内
に封入し、アルゴンガス気流中で1000℃まで約1時
間かけて昇温し、同温度で約2時間保持して還元拡散反
応を行わせた後室温まで冷却し、この時点で反応容器内
のアルゴンガスを水素ガスに置換した。この状態で2時
間放置後、さらに反応容器内を再びアルゴンガスで置換
し、塊状の反応生成物を容器から取り出して50リット
ルの水中に投入し、1時間撹拌して該塊状反応生成物を
十分に水中崩壊させてスラリー状にし、得られたスラリ
ーからCa(OH)を含む懸濁物を分離し、残部を4
8メッシュの篩で篩分けして篩下を回収した。該篩下回
収量を表2に示す。
Example 17 Aiming at an alloy production scale of 1.0 kg, neodymium oxide powder 405 g, iron powder 608 g, and boron content 19.0%.
65g of ferroboron powder, 217g of metallic calcium
(Stoichiometric amount of 1.5 required for reduction of neodymium oxide
2 times, all raw materials have a purity of 99% or more) are mixed in an argon atmosphere, the mixture is sealed in a stainless steel reaction vessel, and the temperature is raised to 1000 ° C. in an argon gas stream over about 1 hour. The temperature was maintained for about 2 hours to carry out a reduction diffusion reaction and then cooled to room temperature. At this point, the argon gas in the reaction vessel was replaced with hydrogen gas. After leaving for 2 hours in this state, the inside of the reaction vessel was replaced with argon gas again, and the lumpy reaction product was taken out of the vessel and put into 50 liters of water, and stirred for 1 hour to sufficiently remove the lumpy reaction product. It is disintegrated in water to form a slurry, and a suspension containing Ca (OH) 2 is separated from the obtained slurry, and the remaining 4
The bottom of the sieve was recovered by sieving with an 8 mesh sieve. The amount recovered under the sieve is shown in Table 2.

【0041】次に、篩上および篩下の両者を混合して、
50リットルの純水を注水後、合金粉末が沈降するのを
確認してデカンテーションにより排水する操作をスラリ
ーのpHが10以下になるまで繰り返し行った。このデ
カンテーション繰り返し回数を表2に示す。次いで、さ
らに48メッシュの篩で篩分けして篩下の合金粉末を回
収し、吸引濾過後エタノールで洗浄し、50℃、10
−2Torrの真空中で8時間乾燥を行い、Nd−Fe
−B系合金粉末製品を得た。最終製品回収量を表2に示
す。
Next, both the upper and lower sieves are mixed,
After pouring 50 liters of pure water and confirming that the alloy powder was settled, the operation of draining by decantation was repeated until the pH of the slurry became 10 or less. The number of repetitions of this decantation is shown in Table 2. Then, the alloy powder under the sieve is recovered by further sieving with a 48-mesh sieve, suction-filtered and washed with ethanol.
-Nd-Fe was dried for 8 hours in a vacuum of -2 Torr.
A B-based alloy powder product was obtained. The final product recovery amount is shown in Table 2.

【0042】比較例4 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、反応容器内の雰囲気を水素ガスに置換し、水素ガ
ス雰囲気内での保持を行わずに、ただちに反応容器内か
ら取り出した反応生成物を実施例9と同様の手順で湿式
処理して、Nd−Fe−B系合金粉末製品を得た。本比
較例における反応生成物の水中投入後篩分けした篩下回
収量、pH10以下に至るまでのデカンテーション回数
および最終製品回収量を表2に示す。
Comparative Example 4 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was directly used in argon gas. After cooling to room temperature, the atmosphere in the reaction vessel was replaced with hydrogen gas, and the reaction product immediately taken out of the reaction vessel was wet-processed in the same manner as in Example 9 without holding in the hydrogen gas atmosphere. It processed and the Nd-Fe-B type | system | group alloy powder product was obtained. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of final product recovered in this comparative example.

【0043】比較例5 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で650℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例9と同様の手順で湿式処理してNd−
Fe−B系合金粉末製品を得た。本比較例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表2に示す。
Comparative Example 5 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was directly used in argon gas. After cooling to room temperature, it was further heated to 650 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 9 to obtain Nd-
An Fe-B based alloy powder product was obtained. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of final product recovered in this comparative example.

【0044】比較例6 実施例9と同様の組成の原料を、実施例9と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
て、得られた反応生成物を実施例9と同様の手順で湿式
処理してNd−Fe−B系合金粉末製品を得た。本比較
例における反応生成物の水中投入後篩分けした篩下回収
量、pH10以下に至るまでのデカンテーション回数お
よび最終製品回収量を表2に示す。
Comparative Example 6 A reaction product obtained by subjecting a raw material having the same composition as in Example 9 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 9 was directly used in argon gas. After cooling to room temperature, the obtained reaction product was wet-treated in the same procedure as in Example 9 to obtain an Nd-Fe-B based alloy powder product. Table 2 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of final product recovered in this comparative example.

【0045】[0045]

【表2】 水中崩壊後の デカンテーシ 合金粉末製品 48メッシュ ョンの繰り返 の回収量 実施番号 篩下量(g) し回数(回) (g) ───────────────────────────────── 実施例9 982 5 972 実施例10 988 5 974 実施例11 984 5 973 実施例12 982 5 971 実施例13 987 5 975 実施例14 985 5 973 実施例15 978 5 965 実施例16 932 6 925 実施例17 925 6 910 比較例4 902 12 918 比較例5 987 5 974 比較例6 715 20 685 ─────────────────────────────────[Table 2] Decantation alloy powder product after water disintegration Repeated recovery amount of 48 mesh Implementation number Execution amount (g) Number of times (times) (g) ───────────── ───────────────────── Example 9 982 5 972 Example 10 988 5 974 Example 11 984 5 973 Example 12 982 5 971 Example 13 987 5 975 Example 14 985 5 973 Example 15 978 5 965 Example 16 932 6 925 Example 17 925 6 910 Comparative Example 4 902 12 918 Comparative Example 5 987 5 974 Comparative Example 6 715 20 685 ──────── ──────────────────────────

【0046】表2の結果より分かるように、本発明の実
施例9〜17によるものは、比較例4および6によるも
のに比べて水中崩壊後の篩下回収量が多く、またデカン
テーションの繰り返し操作回数が少なくて済み、さらに
最終製品回収量も高い。また、比較例5の結果では、水
中崩壊後の回収量、デカンテーション操作回数、製品回
収量は、本発明の実施例のものとその値が殆ど変わりが
ないが、反応生成物中の主相を構成するNdFe14
B相が分解を起こし、αFe、FeB、ネオジウム水
素化物などが生成し、そのままでは良好な磁石粉末製品
を得ることができなかった。
As can be seen from the results in Table 2, the samples according to Examples 9 to 17 of the present invention had a larger amount of under-sieving recovery after water disintegration than the samples according to Comparative Examples 4 and 6, and repeated decantation. The number of operations is small, and the final product recovery amount is high. Further, in the results of Comparative Example 5, the recovery amount after decomposing in water, the number of decantation operations, and the product recovery amount are almost the same as those in the example of the present invention, but the main phase in the reaction product Which constitutes Nd 2 Fe 14
Phase B decomposed and αFe, Fe 2 B, neodymium hydride, etc. were produced, and good magnet powder products could not be obtained as they were.

【0047】[0047]

【発明の効果】上述したように、本発明によるときは、
還元拡散反応後の反応生成物に水素処理を施すことによ
って、該反応生成物の崩壊性が向上し、デカンテーショ
ン工程でのpH低下速度が早く排水−注水の繰り返し回
数が少なくて済むために、アルカリ廃液処理量が少なく
なる。また、それに伴い合金粉末製品の回収率も向上
し、かつ湿式処理の工程を大幅に短縮することができる
などその利点は大きい。
As described above, according to the present invention,
By subjecting the reaction product after the reduction diffusion reaction to hydrogen treatment, the disintegration property of the reaction product is improved, and the pH lowering rate in the decantation process is faster, so that the number of drainage-injection repetitions can be reduced, The amount of alkaline waste liquid processed is reduced. In addition, along with this, the recovery rate of the alloy powder product is improved, and the wet treatment process can be significantly shortened, which is a great advantage.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 希土類酸化物粉末、遷移金属粉末、その
他の原料粉末を秤量して混合し、さらに前記希土類酸化
物粉末を還元するのに十分な還元剤を添加混合し、該混
合物を酸素が実質的に存在しない雰囲気中で還元剤が溶
融する温度以上でかつ所望の合金が溶解しない温度まで
昇温保持することにより焼成を行い、前記希土類酸化物
を希土類金属に還元した後、これを前記遷移金属粉末に
拡散させて所望の合金とし、室温まで冷却した後得られ
た焼成物を水中に投入して残留還元剤および生成した酸
化還元剤を溶解させ、撹拌とデカンテーションを繰り返
し行って水洗し、沈殿した合金粉末を分離回収し、乾燥
することにより所望の希土類、遷移金属を含む合金粉末
を製造する方法において、前記焼成後に焼成物を水素処
理することを特徴とする希土類、遷移金属を含む合金粉
末の還元拡散法による製造方法。
1. A rare earth oxide powder, a transition metal powder, and other raw material powders are weighed and mixed, and further a reducing agent sufficient to reduce the rare earth oxide powder is added and mixed, and the mixture is mixed with oxygen. After reducing the rare earth oxide to a rare earth metal by firing by holding the temperature above the temperature at which the reducing agent melts in a substantially nonexistent atmosphere and at a temperature at which the desired alloy does not dissolve, the rare earth oxide is reduced to the above Diffusion into the transition metal powder to form the desired alloy, cooling to room temperature, and then pouring the resulting fired product into water to dissolve the residual reducing agent and the generated redox agent, and repeat stirring and decantation to wash with water. Then, the precipitated alloy powder is separated and collected, and a method for producing an alloy powder containing a desired rare earth or transition metal by drying, characterized in that the fired product is subjected to hydrogen treatment after the firing. A method for producing an alloy powder containing a rare earth element or a transition metal by a reduction diffusion method.
【請求項2】 前記焼成物の水素処理を、焼成後の冷却
中に焼成炉内で行うことを特徴とする請求項1記載の希
土類、遷移金属を含む合金粉末の還元拡散法による製造
方法。
2. The method for producing an alloy powder containing a rare earth element and a transition metal by a reduction diffusion method according to claim 1, wherein the hydrogen treatment of the fired product is performed in a firing furnace during cooling after firing.
【請求項3】 前記焼成物の水素処理を、100〜60
0℃で行うことを特徴とする請求項1または2記載の希
土類、遷移金属を含む合金粉末の還元拡散法による製造
方法。
3. The hydrogen treatment of the fired product is carried out by 100 to 60.
The method for producing an alloy powder containing a rare earth metal and a transition metal by the reduction diffusion method according to claim 1 or 2, which is performed at 0 ° C.
【請求項4】 前記希土類、遷移金属を含む合金粉末
は、Sm−Co系合金粉末またはNd−Fe−B系合金
粉末であることを特徴とする請求項1〜3のいずれか1
項記載の希土類、遷移金属を含む合金粉末の還元拡散法
による製造方法。
4. The alloy powder containing a rare earth or a transition metal is Sm—Co based alloy powder or Nd—Fe—B based alloy powder.
A method for producing an alloy powder containing a rare earth or a transition metal according to the item 1 by a reduction diffusion method.
JP26252296A 1996-01-05 1996-09-11 Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method Expired - Lifetime JP3508419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26252296A JP3508419B2 (en) 1996-01-05 1996-09-11 Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-17166 1996-01-05
JP1716696 1996-01-05
JP26252296A JP3508419B2 (en) 1996-01-05 1996-09-11 Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method

Publications (2)

Publication Number Publication Date
JPH09241708A true JPH09241708A (en) 1997-09-16
JP3508419B2 JP3508419B2 (en) 2004-03-22

Family

ID=26353651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26252296A Expired - Lifetime JP3508419B2 (en) 1996-01-05 1996-09-11 Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method

Country Status (1)

Country Link
JP (1) JP3508419B2 (en)

Also Published As

Publication number Publication date
JP3508419B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP5327409B2 (en) Recovery method of rare earth elements
US4681623A (en) Process for producing alloy powder containing rare earth metals
US8696788B1 (en) Process for the Recovery of AB5 Alloy from Used Nickel/Metal Hydride Batteries
EP0237587A1 (en) Method for producing a rare earth alloy and rare earth alloy
US3883346A (en) Nickel-lanthanum alloy produced by a reduction-diffusion process
CN102576919B (en) Process for production of hydrogen-storing alloy composition
JP3777226B2 (en) Method for recovering reusable rare earth-containing compounds
US4806155A (en) Method for producing dysprosium-iron-boron alloy powder
JP2014080653A (en) Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder
JP6060704B2 (en) Recovery method of rare earth elements
KR101352371B1 (en) Fabrication method of low oxygen titanium powders by Self-propagating High-temperature synthesis
JP6299181B2 (en) Recovery method of rare earth elements
JP3508419B2 (en) Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
WO2014066776A1 (en) Process for the recovery of ab5 alloy from used nickel/metal hydride batteries and/or cells
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JPS61157646A (en) Manufacture of rare earth metal alloy
JPH11124605A (en) Manufacture of alloy powder containing rare earth and transition metal
JPS6153413B2 (en)
CN116479266A (en) Method for separating main product and by-product of calcium thermal reduction diffusion reaction
JPH052722B2 (en)
JPH04128306A (en) Manufacture of alloy powder incorporating rare earth metal
JPH10280002A (en) Production of alloy powder for magnet
JPH04202612A (en) Manufacture of alloy powder containing rare earth metal and boron
JPH0797608A (en) Production of alloy powder containing rare earth metal

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

EXPY Cancellation because of completion of term