JPH09241508A - Microwave-weldable resin composition - Google Patents

Microwave-weldable resin composition

Info

Publication number
JPH09241508A
JPH09241508A JP8052927A JP5292796A JPH09241508A JP H09241508 A JPH09241508 A JP H09241508A JP 8052927 A JP8052927 A JP 8052927A JP 5292796 A JP5292796 A JP 5292796A JP H09241508 A JPH09241508 A JP H09241508A
Authority
JP
Japan
Prior art keywords
resin
microwave
resin composition
conductive
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8052927A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamamoto
和芳 山本
Masatoshi Murashima
正敏 村島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP8052927A priority Critical patent/JPH09241508A/en
Publication of JPH09241508A publication Critical patent/JPH09241508A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a microwave-weldable resin compsn. which exhibits a high heat exchange rate and provides a high amt. of heat and of which the heat generation can be easily controlled, enabling the prevention of degradation of the resin, by compounding a thermoplastic resin with fine conductive aniline polymer particles and a conductive inorg. powder. SOLUTION: This compsn. comprises 100 pts.wt. thermoplastic resin, 5-100 pts.wt. fine conductive aniline polymer particles, and 3-50 pts.wt. conductive inorg. powder, the content of the polymer particles being higher than that of the inorg. powder. Examples of the resin are a polyolefin resin (e.g. polyethylene or polypropylene), a vinyl chloride resin, and an acrylic resin. Examples of the inorg. powder are barium titanate, titanium oxide, a metal powder such as of copper or zinc, and carbon black.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波融着用
樹脂組成物に関し、更に詳しくは、合成樹脂管、その他
の熱融着性を有する被着体の接合等に好適に使用される
マイクロ波融着用樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition for microwave fusion, and more specifically, a microwave suitable for use in joining synthetic resin pipes and other adherends having a heat fusion property. The present invention relates to a resin composition for fusing.

【0002】[0002]

【従来の技術】従来より、マイクロ波による誘電加熱を
利用した樹脂の融着法は、例えば、特開昭62−392
21号公報に、被着体であるポリオレフィン樹脂成形品
の接続部の間に、ポリオレフィン樹脂にカーボンブラッ
クを混練した融着材を挟み、該融着材挟着部に高周波電
力を印加することによってポリオレフィン樹脂成形品を
融着して接続する方法が開示されており、又、特公平5
−11022号公報に、被着体である誘電損失の値の小
さい熱可塑性樹脂成形品の接続部の間に、誘電損失の値
の大きい塩化ビニル樹脂、ポリアミド樹脂、エチレン−
酢酸ビニル共重合体、ポリエステル樹脂等からなる発熱
材料を介在させて高周波誘電加熱又は高周波誘導加熱に
より上記発熱材料を発熱させて誘電損失の値の小さい熱
可塑性樹脂成形品融着して接続する方法が開示されてい
る。
2. Description of the Related Art Conventionally, a resin fusion method utilizing dielectric heating by microwave has been disclosed in, for example, Japanese Patent Laid-Open No. 62-392.
No. 21 discloses that a fusion material obtained by kneading a polyolefin resin with carbon black is sandwiched between the connection portions of a polyolefin resin molded article as an adherend, and high-frequency power is applied to the fusion material sandwich portion. A method for fusing and connecting polyolefin resin molded products is disclosed, and Japanese Patent Publication No.
No. 11022, a vinyl chloride resin, a polyamide resin, and an ethylene resin having a large dielectric loss value are provided between connecting portions of a thermoplastic resin molded article having a small dielectric loss value, which is an adherend.
A method of fusion-bonding a thermoplastic resin molded product having a small dielectric loss value by heating the above-mentioned heat-generating material by high-frequency dielectric heating or high-frequency induction heating through a heat-generating material made of vinyl acetate copolymer, polyester resin, etc. Is disclosed.

【0003】しかしながら、上記カーボンブラックを用
いた融着材は、カーボンブラック自体が高温に発熱する
ため樹脂の劣化を引き起こしたり、発熱温度の制御が困
難である等の問題がある。又、誘電損失の値の大きい樹
脂を用いる上記誘電損失の値の小さい熱可塑性樹脂成形
品融着法は、温度上昇に長時間を要する等の問題があ
る。
However, the fusing material using the above carbon black has problems that the carbon black itself generates heat at a high temperature, which causes deterioration of the resin and the heat generation temperature is difficult to control. In addition, the thermoplastic resin molded product fusion method with a small dielectric loss value using a resin with a large dielectric loss value has a problem that it takes a long time to increase the temperature.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記に鑑み
なされたものであって、熱交換率が高く、高熱量が得ら
れ、且つ、樹脂の劣化を防止し得る発熱制御が容易であ
るマイクロ波融着用樹脂組成物を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has a high heat exchange rate, a high amount of heat can be obtained, and heat generation control that can prevent deterioration of a resin is easy. An object is to provide a resin composition for microwave fusion.

【0005】[0005]

【課題を解決するための手段】本発明は、熱可塑性樹脂
100重量部、導電性のアニリン系重合体微粒子5〜1
00重量部及び導電性の無機系粉体3〜50重量部から
なり、導電性のアニリン系重合体微粒子の含有量が導電
性の無機系粉体の含有量より多いことを特徴とするマイ
クロ波融着用樹脂組成物をその要旨とするものである。
According to the present invention, 100 parts by weight of a thermoplastic resin and conductive aniline polymer fine particles 5-1 are used.
Microwave, which comprises 00 parts by weight and 3 to 50 parts by weight of the conductive inorganic powder, and the content of the conductive aniline polymer fine particles is higher than the content of the conductive inorganic powder. The gist is a resin composition for fusing.

【0006】上記熱可塑性樹脂は、押出成形や射出成形
が可能な熱可塑性樹脂であれば特に限定されるものでは
なく、例えば、ポリエチレン、ポリプロピレン、ポリブ
テン−1、ポリ−4−メチルペンテン等のポリオレフィ
ン系樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、ポ
リエステル系樹脂、ポリアミド系樹脂、アクリル系樹
脂、ポリフェニレンサルファイド樹脂(PPS)、ペル
フルオロアルコキシフッ素樹脂(PFA)等が挙げられ
る。これらは単独で用いられてもよく、2種以上が併用
されてもよい。
The above-mentioned thermoplastic resin is not particularly limited as long as it is a thermoplastic resin which can be extrusion-molded or injection-molded, and for example, polyolefins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene and the like. Examples of the resin include vinyl resin, vinyl chloride resin, polycarbonate resin, polyester resin, polyamide resin, acrylic resin, polyphenylene sulfide resin (PPS), and perfluoroalkoxy fluororesin (PFA). These may be used alone or in combination of two or more.

【0007】上記導電性のアニリン系重合体微粒子は、
導電性であれば特に限定されず、なかでも、導電性が
0.1S/cm以上のアニリン系重合体が好ましい。導
電性が0.1S/cmよりも低いと発熱が不充分で、融
着が不充分となるので好ましくない。
The above conductive aniline polymer fine particles are
It is not particularly limited as long as it is conductive, and among them, an aniline-based polymer having a conductivity of 0.1 S / cm or more is preferable. When the conductivity is lower than 0.1 S / cm, heat generation is insufficient and fusion is insufficient, which is not preferable.

【0008】上記アニリン系重合体微粒子は、例えば、
アニリン誘導体モノマー及び酸を、水等の溶媒に溶解さ
せ、この溶液に酸化剤を加え攪拌することによって酸化
重合させる等の方法により製造することができる。
The above aniline-based polymer fine particles are, for example,
The aniline derivative monomer and the acid are dissolved in a solvent such as water, and an oxidant is added to this solution, and the mixture is stirred to carry out oxidative polymerization.

【0009】上記アニリン誘導体モノマーとしては、例
えば、アニリン、N−メチルアニリン、N−エチルアニ
リン、o−トルイジン、m−トルイジン、2−エチルア
ニリン、3−エチルアニリン、2,3−ジメチルアニリ
ン、2,5−ジメチルアニリン、2,6−ジメチルアニ
リン、2,6−ジエチルアニリン、2−メトキシアニリ
ン、3−メトキシアニリン、2,5−ジメトキシアニリ
ン、3,5−ジメトキシアニリン、o−フェニレンジア
ミン、m−フェニレンジアミン、2−アミノビフェニ
ル、N,N−ジフェニル−p−フェニレンジアミン等が
挙げられる。上記アニリン誘導体モノマーの上記溶媒に
対する濃度は、0.1〜1mol/lが好ましい。
Examples of the aniline derivative monomer include aniline, N-methylaniline, N-ethylaniline, o-toluidine, m-toluidine, 2-ethylaniline, 3-ethylaniline, 2,3-dimethylaniline, 2 , 5-dimethylaniline, 2,6-dimethylaniline, 2,6-diethylaniline, 2-methoxyaniline, 3-methoxyaniline, 2,5-dimethoxyaniline, 3,5-dimethoxyaniline, o-phenylenediamine, m -Phenylenediamine, 2-aminobiphenyl, N, N-diphenyl-p-phenylenediamine and the like can be mentioned. The concentration of the aniline derivative monomer in the solvent is preferably 0.1 to 1 mol / l.

【0010】上記酸としては、例えば、塩酸、硫酸、硝
酸、リン酸等の無機プロトン酸;硫酸エステル、リン酸
エステル等の無機酸エステル;p−トルエンスルホン
酸、カルボン酸等の有機酸;ポリスチレンスルホン酸等
の高分子酸が挙げられる。上記酸の濃度は、0.1N〜
1Nが好ましい。
Examples of the acid include inorganic protonic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; inorganic acid esters such as sulfuric acid ester and phosphoric acid ester; organic acids such as p-toluenesulfonic acid and carboxylic acid; polystyrene. Polymeric acids such as sulfonic acid may be mentioned. The concentration of the acid is 0.1 N
1N is preferred.

【0011】上記酸化剤としては、例えば、過硫酸塩、
過酸化水素、過マンガン酸塩、重クロム酸塩等の過酸化
物;二酸化鉛、二酸化マンガン、塩化鉄等のルイス酸等
が挙げられる。上記酸化剤の濃度は、上記溶媒に対して
0.1〜1mol/lが好ましい。
Examples of the oxidizing agent include persulfate,
Examples thereof include peroxides such as hydrogen peroxide, permanganate, and dichromate; Lewis acids such as lead dioxide, manganese dioxide, and iron chloride. The concentration of the oxidizing agent is preferably 0.1 to 1 mol / l with respect to the solvent.

【0012】上記導電性のアニリン系重合体微粒子は、
叙上の方法で作製することができるが、アライドシグナ
ル社製、商品名「Versicon」等の市販されてい
るものも使用できる。
The above conductive aniline polymer fine particles are
It can be prepared by the above method, but a commercially available product such as "Versicon" manufactured by Allied Signal Co. can also be used.

【0013】上記導電性の無機系粉体は、マイクロ波を
照射すると発熱する導電性粉体であれば特に限定される
ものではないが、例えば、チタン酸バリウム、チタン酸
カリウム、酸化チタン、硫酸アルミニウム、酸化スズ、
酸化亜鉛、銅、亜鉛、ステンレス鋼等の金属粉体、カー
ボンブラック、硫酸バリウムの表面に酸化スズ系の導電
性薄膜を形成した粉体等が挙げられる。
The conductive inorganic powder is not particularly limited as long as it is a conductive powder that generates heat when irradiated with microwaves. For example, barium titanate, potassium titanate, titanium oxide, sulfuric acid. Aluminum, tin oxide,
Examples thereof include metal powders such as zinc oxide, copper, zinc, and stainless steel, carbon black, and powders in which a tin oxide-based conductive thin film is formed on the surface of barium sulfate.

【0014】上記導電性のアニリン系重合体微粒子は、
熱可塑性樹脂100重量部中に5〜100重量部が分散
される。5重量部未満では発熱量が不充分となり、10
0重量部を超えると上記マイクロ波融着用樹脂組成物の
強度が低下するので、上記範囲に限定される。
The above conductive aniline polymer fine particles are
5 to 100 parts by weight are dispersed in 100 parts by weight of the thermoplastic resin. If the amount is less than 5 parts by weight, the calorific value becomes insufficient, and 10
If the amount exceeds 0 parts by weight, the strength of the resin composition for microwave fusion decreases, so the content is limited to the above range.

【0015】上記熱可塑性樹脂中に分散される上記導電
性のアニリン系重合体微粒子は、その粒子径が0.1〜
100μmの範囲にあるものを使用することが望まし
く、上記粒子径が0.1μm未満であると、熱可塑性樹
脂中への分散が難しくなり、過度の混練は熱可塑性樹脂
の劣化をきたす。又、上記粒子径が100μmを超える
とマイクロ波加熱時の発熱量が充分に得られず融着強度
を低下させる。
The conductive aniline polymer fine particles dispersed in the thermoplastic resin have a particle diameter of 0.1 to 0.1.
It is desirable to use those having a particle size in the range of 100 μm. When the particle diameter is less than 0.1 μm, it becomes difficult to disperse the particles in the thermoplastic resin, and excessive kneading causes deterioration of the thermoplastic resin. On the other hand, if the particle diameter exceeds 100 μm, a sufficient amount of heat generated during microwave heating cannot be obtained and the fusion strength is reduced.

【0016】上記導電性のアニリン系重合体微粒子の分
散粒径の測定は、粒径を正確に測定できる方法であれば
特に限定されるものではないが、例えば、予めRuO4
で染色したマイクロ波融着用樹脂組成物を走査型電子顕
微鏡の反射電子で観察すれば、比較的容易に測定するこ
とができる。
The dispersed particle size of the conductive aniline polymer fine particles is not particularly limited as long as it can accurately measure the particle size. For example, RuO 4 is previously prepared.
When the resin composition for microwave fusion dyed with is observed by backscattered electrons of a scanning electron microscope, it can be measured relatively easily.

【0017】上記導電性の無機系粉体は、熱可塑性樹脂
100重量部中に3〜50重量部が分散される。3重量
部未満では発熱量が不充分となり、50重量部を超える
と発熱制御が困難となるだけでなく、上記マイクロ波融
着用樹脂組成物の強度が低下するので、上記範囲に限定
される。
The conductive inorganic powder is dispersed in an amount of 3 to 50 parts by weight in 100 parts by weight of the thermoplastic resin. If it is less than 3 parts by weight, the amount of heat generation becomes insufficient, and if it exceeds 50 parts by weight, not only is it difficult to control heat generation, but also the strength of the resin composition for microwave fusion is lowered, so the amount is limited to the above range.

【0018】上記導電性の無機系粉体は、その粒子径が
0.01〜100μmの範囲にあるものを使用すること
が望ましく、上記粒子径が0.01μm未満であると、
熱可塑性樹脂中への分散が難しくなり、過度の混練は熱
可塑性樹脂の劣化をきたす。又、上記粒子径が100μ
mを超えると上記マイクロ波融着用樹脂組成物の強度が
低下し、マイクロ波加熱時の発熱量が充分に得られず融
着強度も低下させる。
It is desirable to use the conductive inorganic powder having a particle diameter in the range of 0.01 to 100 μm. If the particle diameter is less than 0.01 μm,
Dispersion in the thermoplastic resin becomes difficult, and excessive kneading causes deterioration of the thermoplastic resin. The particle size is 100μ
When it exceeds m, the strength of the resin composition for microwave fusion is reduced, the heat generation amount at the time of microwave heating is not sufficiently obtained, and the fusion strength is also reduced.

【0019】上記マイクロ波融着用樹脂組成物におい
て、上記導電性のアニリン系重合体微粒子の含有量は、
上記導電性の無機系粉体の含有量より必ず多い。上記導
電性の無機系粉体の含有量が上記導電性のアニリン系重
合体微粒子の含有量を上回ると、上記マイクロ波融着用
樹脂組成物の発熱制御が難しくなる。
In the resin composition for microwave fusion, the content of the conductive aniline-based polymer fine particles is
It is always higher than the content of the conductive inorganic powder. When the content of the conductive inorganic powder exceeds the content of the conductive aniline polymer fine particles, it becomes difficult to control heat generation of the microwave fusion resin composition.

【0020】本発明のマイクロ波融着用樹脂組成物を製
造する方法は、特に限定されるものではないが、例え
ば、一軸押出機、二軸押出機、バンバリーミキサー、混
練ロール、ブラベンダープラストグラフ、ニーダー等の
混練装置を単独でもしくはこれらの装置を適宜組み合わ
せて使用し、上記熱可塑性樹脂中に、上記導電性のアニ
リン系重合体微粒子及び導電性の無機系粉体を混合し、
上記熱可塑性樹脂の溶融温度において混練して製造され
る。更に、本発明のマイクロ波融着用樹脂組成物には、
必要に応じ、シラン化合物等の分散剤、紫外線吸収剤、
酸化防止剤、難燃剤、可塑剤、滑剤、帯電防止剤、着色
剤等が添加されてもよい。
The method for producing the resin composition for microwave fusion of the present invention is not particularly limited, and examples thereof include a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneading roll, a Brabender plastograph, A kneading device such as a kneader is used alone or in appropriate combination of these devices, and in the thermoplastic resin, the conductive aniline polymer fine particles and the conductive inorganic powder are mixed,
It is manufactured by kneading at the melting temperature of the thermoplastic resin. Furthermore, the resin composition for microwave fusion of the present invention,
If necessary, a dispersant such as a silane compound, an ultraviolet absorber,
Antioxidants, flame retardants, plasticizers, lubricants, antistatic agents, colorants and the like may be added.

【0021】上記シラン化合物としては、例えば、メチ
ルトリクロロシラン、メチルジクロロシラン、ジメチル
ジクロロシラン、トリメチルクロロシラン、フェニルト
リクロロシラン、ジフェニルジクロロシラン等のクロロ
シラン、ジメチルジメトキシシラン、フェニルトリメト
キシシラン、ジフェニルジメトキシシラン、テトラエト
キシシラン、メチルトリエトキシシラン、ジメチルジエ
トキシシラン、フェニルトリエトキシシラン、ジフェニ
ルジエトキシシラン、イソブチルトリメトキシシラン、
デシルトリメトキシシラン等のアルコキシシラン等が挙
げられ、就中、アルコキシシランが好適に用いられる。
Examples of the silane compound include chlorosilanes such as methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane and diphenyldichlorosilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, Tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane,
Examples include alkoxysilanes such as decyltrimethoxysilane, and among them, alkoxysilanes are preferably used.

【0022】又、上記シラン化合物として、例えば、ビ
ニルトリクロロシラン、ビニルトリメトキシシラン、ビ
ニルトリエトキシシラン、ビニルトリス(β−メトキシ
エトキシ)シラン、β−(3,4−エポキシシクロヘキ
シル)エチルトリメトキシシラン、γ−グリシドキシプ
ロピルトリメトキシシラン、γ−グリシドキシプロピル
トリエトキシシラン、γ−メタクリロキシメチルジメト
キシシラン、γ−メタクリロキシメチルジエトキシシラ
ン、N−β−(アミノエチル)γ−アミノプロピルメチ
ルジメトキシシラン、N−β−(アミノエチル)γ−ア
ミノプロピルトリメトキシシラン、N−β−(アミノエ
チル)γ−アミノプロピルトリエトキシシラン、γ−ア
ミノプロピルトリメトキシシラン、γ−アミノプロピル
トリエトキシシラン、N−フェニル−γ−アミノプロピ
ルトリメトキシシラン、γ−クロロプロピルトリメトキ
シシラン、γ−メルカプトプロピルトリメトキシシラン
等のシランカップリング剤等も同様に好適に用いられ
る。
As the silane compound, for example, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxymethyldimethoxysilane, γ-methacryloxymethyldiethoxysilane, N-β- (aminoethyl) γ-aminopropylmethyl Dimethoxysilane, N-β- (aminoethyl) γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane , N-F Similarly, silane coupling agents such as phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane and the like are preferably used.

【0023】更に、上記シラン化合物として、例えば、
アミノ変性、エポキシ変性、カルボキシル変性、カルビ
ノール変性、メタクリル変性、メルカプト変性、フェノ
ール変性、ポリエーテル変性、メチルスチリル変性、ア
ルキル変性、高級脂肪酸エステル変性等の各種変性シリ
コーンオイル、シリコーン改質剤等も同様に好適に用い
られる。上記クロロシラン、アルコキシシラン等のシラ
ン化合物、シランカップリング剤、各種変性シリコーン
オイル及びシリコーン改質剤等からなる分散剤は、単独
で用いられてもよく、複数種を併用してもよい。
Further, as the silane compound, for example,
Amino-modified, epoxy-modified, carboxyl-modified, carbinol-modified, methacryl-modified, mercapto-modified, phenol-modified, polyether-modified, methylstyryl-modified, alkyl-modified and higher fatty acid ester-modified silicone oils, silicone modifiers, etc. It is also preferably used. The dispersant composed of a silane compound such as chlorosilane and alkoxysilane, a silane coupling agent, various modified silicone oils and silicone modifiers may be used alone or in combination of two or more.

【0024】上記シラン化合物の添加量は、熱可塑性樹
脂100重量部に対して、好ましくは0.01〜20重
量部である。上記添加量が0.01重量部未満では、上
記導電性のアニリン系重合体微粒子及び導電性の無機系
粉体が上記樹脂成分中に充分分散せず、融着時の発熱特
性が低下すると共に、得られる成形体の融着部における
機械的強度が低下する。又、上記添加量が20重量部を
超えると、得られる成形体の融着強度が低下する。
The amount of the silane compound added is preferably 0.01 to 20 parts by weight, based on 100 parts by weight of the thermoplastic resin. When the addition amount is less than 0.01 parts by weight, the conductive aniline-based polymer fine particles and the conductive inorganic-based powder are not sufficiently dispersed in the resin component, and the heat generation property during fusion is deteriorated. The mechanical strength at the fusion-bonded part of the obtained molded body is reduced. On the other hand, if the above-mentioned addition amount exceeds 20 parts by weight, the fusion strength of the obtained molded product will be reduced.

【0025】上記シラン化合物の添加方法は、特に限定
されるものではないが、例えば、溶融させた上記熱可塑
性樹脂及び上記導電性のアニリン系重合体微粒子及び導
電性の無機系粉体を混合する際に、これらの成分と同時
に添加し混合してもよいが、上記導電性のアニリン系重
合体微粒子もしくは導電性の無機系粉体とのみ混合し
て、予め、該導電性のアニリン系重合体微粒子もしくは
導電性の無機系粉体の表面を前処理しておき、上記熱可
塑性樹脂に添加し混合してもよい。
The method of adding the silane compound is not particularly limited, but for example, the molten thermoplastic resin, the conductive aniline polymer fine particles and the conductive inorganic powder are mixed. At this time, these components may be added and mixed at the same time, but they may be mixed only with the conductive aniline-based polymer fine particles or the conductive inorganic-based powder to prepare the conductive aniline-based polymer in advance. The surface of the fine particles or the electrically conductive inorganic powder may be pretreated and then added to and mixed with the thermoplastic resin.

【0026】上記導電性のアニリン系重合体微粒子もし
くは導電性の無機系粉体の表面を上記シラン化合物で前
処理する方法は、特に限定されるものではないが、例え
ば、上記導電性のアニリン系重合体微粒子もしくは導電
性の無機系粉体をヘンシェルミキサーやスーパーミキサ
ー(いずれも商標)等の高速攪拌機にて高速攪拌しなが
ら、上記シラン化合物又は上記シラン化合物含有溶液を
滴下或いはスプレーによって上記導電性のアニリン系重
合体微粒子もしくは導電性の無機系粉体表面に皮膜を形
成するよう添加し、均一に混合した後、乾燥させ含有溶
剤等を揮発させる方法等が挙げられる。
The method of pretreating the surface of the conductive aniline polymer fine particles or the conductive inorganic powder with the silane compound is not particularly limited. For example, the conductive aniline polymer is used. While conducting high-speed stirring of polymer fine particles or conductive inorganic powder with a high-speed stirrer such as a Henschel mixer or a super mixer (both are trademarks), the silane compound or the silane compound-containing solution is dropped or sprayed to make the conductive The method of adding the aniline-based polymer fine particles or the conductive inorganic-based powder so as to form a film on the surface thereof, uniformly mixing, and then drying to volatilize the contained solvent and the like.

【0027】上記のようにして調製された本発明のマイ
クロ波融着用樹脂組成物は、例えば、熱可塑性樹脂管継
手の接合部分を有する成形体全体を成形する材料として
用いられてもよいが、熱可塑性樹脂成形体の接合を必要
とする部分のみに、例えば、射出成形によるインサート
方式やラミネーターによる積層方式等により成形体中に
埋設もしくは表面に露出させて用いられてもよい。又、
例えば、熱可塑性樹脂管の管端同士を衝合わせて融着す
るバット接合において、上記熱可塑性樹脂管の突合面に
上記管端の端面にあわせて円環状のシートを挟持させる
際のマイクロ波融着用樹脂シートとして用いられてもよ
い。
The microwave fusion resin composition of the present invention prepared as described above may be used, for example, as a material for molding the entire molded body having the joint portion of the thermoplastic resin pipe joint. It may be used by embedding it in the molded body or exposing it to the surface only in a portion of the thermoplastic resin molded body that requires joining, for example, by an insert method by injection molding or a laminating method by a laminator. or,
For example, in butt joining in which pipe ends of a thermoplastic resin pipe are abutted against each other and fused, microwave fusion when sandwiching an annular sheet to the abutting surface of the thermoplastic resin pipe in accordance with the end face of the pipe end is performed. It may be used as a worn resin sheet.

【0028】本発明のマイクロ波融着用樹脂組成物を用
いて被接合熱可塑性樹脂成形体を融着するために使用さ
れるマイクロ波電源として、例えば、商用周波数の2.
45GHz、電力100〜2000Wが用いられる。
As a microwave power source used for fusing a thermoplastic resin molding to be joined using the resin composition for microwave fusion of the present invention, for example, a commercial frequency of 2.
45 GHz and power of 100 to 2000 W are used.

【0029】上記マイクロ波の照射時間は、接合される
被接合熱可塑性樹脂成形体のサイズや形状によっても異
なるが、例えば、ガス用中密度ポリエチレン管を同材質
からなる管継手の内面に上記マイクロ波融着用樹脂シー
トを埋設してなるマイクロ波融着管継手に接合し、融着
する場合、専用のマイクロ波照射機によって上記マイク
ロ波を照射して、融着が完了する照射時間は、10秒〜
180秒である。
The irradiation time of the microwave varies depending on the size and shape of the thermoplastic resin moldings to be bonded, but, for example, a medium density polyethylene pipe for gas is used on the inner surface of a pipe joint made of the same material as the microwave. When the resin sheet for wave fusion is joined to a microwave fusion pipe joint which is embedded and fused, the microwave is irradiated by a dedicated microwave irradiator, and the irradiation time for completing the fusion is 10 Seconds ~
180 seconds.

【0030】本発明のマイクロ波融着用樹脂組成物は、
叙上の如く構成されているので、熱可塑性樹脂中に上記
導電性のアニリン系重合体微粒子及び導電性の無機系粉
体が微細に分散されており、該マイクロ波融着用樹脂組
成物から得られる接合用成形体は、マイクロ波を照射し
て誘電加熱すると上記導電性のアニリン系重合体微粒子
及び導電性の無機系粉体の約200℃を境界とする低温
域と高温域の発熱特性が相補って安定して被接合熱可塑
性樹脂成形体の溶融温度に、均一、且つ、効率的に昇温
し、部分的な過熱による熱可塑性樹脂の劣化もなく、被
接合熱可塑性樹脂成形体を融着する。
The microwave fusion resin composition of the present invention comprises:
Since it is configured as described above, the conductive aniline polymer fine particles and the conductive inorganic powder are finely dispersed in the thermoplastic resin, and obtained from the microwave fusion resin composition. The molded article for bonding has a heat generation characteristic in a low temperature range and a high temperature range of about 200 ° C. of the conductive aniline-based polymer fine particles and the conductive inorganic-based powder when dielectric heating is performed by irradiating microwaves. Complementarily and stably, the temperature of the thermoplastic resin molding to be joined can be uniformly and efficiently raised, and the thermoplastic resin molding to be joined can be formed without deterioration of the thermoplastic resin due to partial overheating. Fuse together.

【0031】[0031]

【発明の実施の形態】以下に実施例を掲げて、本発明を
更に詳しく説明するが、本発明はこれら実施例のみに限
定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

【0032】(実施例1)中密度ポリエチレン(三井石
油化学社製、190℃、2.16kg、MFR=0.2
g/10min)100重量部、導電性のアニリン系重
合体微粒子(アライドシグナル社製、商品名:Vers
icon)30重量部及び酸化アンチモン含有酸化スズ
粉末(三菱マテリアル社製)20重量部をブラベンダー
プラストグラフ(東洋精機社製)にて160℃で混練
し、マイクロ波融着用樹脂組成物を作製した。
(Example 1) Medium density polyethylene (manufactured by Mitsui Petrochemical Co., Ltd., 190 ° C., 2.16 kg, MFR = 0.2)
g / 10 min) 100 parts by weight, conductive aniline-based polymer particles (manufactured by Allied Signal Co., trade name: Vers)
30 parts by weight of iron) and 20 parts by weight of antimony oxide-containing tin oxide powder (manufactured by Mitsubishi Materials Corporation) were kneaded at 160 ° C. with a Brabender Plastograph (manufactured by Toyo Seiki Co., Ltd.) to prepare a resin composition for microwave fusion. .

【0033】得られたマイクロ波融着用樹脂組成物をプ
レス成形機にて厚さ0.5mmのシート状に成形し、2
0mm×10mmの試験片を切り出し、上記中密度ポリ
エチレン製の厚さ4mm、10mm×80mmの2本の
短冊状シートの間に鋏込み、上記中密度ポリエチレン製
短冊状シート上からマイクロ波(2.45GHz、50
0W)を照射し、上記中密度ポリエチレン製短冊状シー
トを相互に融着させた。
The obtained microwave fusion resin composition was molded into a sheet having a thickness of 0.5 mm by a press molding machine, and 2
A 0 mm × 10 mm test piece was cut out, and scissors were inserted between two strips of the medium-density polyethylene having a thickness of 4 mm and 10 mm × 80 mm, and a microwave (2. 45 GHz, 50
0 W) to irradiate the medium-density polyethylene strip-shaped sheets to each other.

【0034】上記試験片で融着された上記中密度ポリエ
チレン製短冊状シートを引張試験機によって、50mm
/minの引張速度で剥離試験を行い、剥離強度を測定
し、剥離強度12.6kgf/cmを得た。
The medium-density polyethylene strip-shaped sheet fused with the test piece was set to 50 mm by a tensile tester.
A peeling test was performed at a tensile speed of / min to measure the peeling strength to obtain a peeling strength of 12.6 kgf / cm.

【0035】(実施例2)実施例1の酸化アンチモン含
有酸化スズ粉末に替えて、アンチモンドープした酸化ス
ズでコートした硫酸バリウム粉末(三井金属社製)20
重量部を用いたこと以外、実施例1と同様にしてマイク
ロ波融着用樹脂組成物を作製した。実施例1と同様に、
得られたマイクロ波融着用樹脂組成物から試験片を作製
し、該試験片を用いて中密度ポリエチレン製短冊状シー
トを相互に融着した。上記融着された中密度ポリエチレ
ン製短冊状シートの剥離強度を実施例1と同様に測定
し、剥離強度12.8kgf/cmを得た。
(Example 2) Barium sulfate powder (manufactured by Mitsui Kinzoku Co., Ltd.) 20 coated with antimony-doped tin oxide instead of the tin oxide powder containing antimony oxide of Example 1 20
A resin composition for microwave fusion was prepared in the same manner as in Example 1 except that parts by weight were used. As in Example 1,
A test piece was prepared from the obtained resin composition for microwave fusion, and the medium-density polyethylene strip-shaped sheets were fused to each other using the test piece. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1 to obtain a peel strength of 12.8 kgf / cm.

【0036】(実施例3)実施例1の酸化アンチモン含
有酸化スズ粉末に替えて、カーボンブラック(三菱化学
社製)10重量部を用いたこと以外、実施例1と同様に
してマイクロ波融着用樹脂組成物を作製した。実施例1
と同様に、得られたマイクロ波融着用樹脂組成物から試
験片を作製し、該試験片を用いて中密度ポリエチレン製
短冊状シートを相互に融着した。上記融着された中密度
ポリエチレン製短冊状シートの剥離強度を実施例1と同
様に測定し、剥離強度14.5kgf/cmを得た。
Example 3 Microwave fusion was carried out in the same manner as in Example 1 except that 10 parts by weight of carbon black (manufactured by Mitsubishi Chemical Co., Ltd.) was used in place of the tin oxide powder containing antimony oxide of Example 1. A resin composition was prepared. Example 1
Similarly to the above, a test piece was prepared from the obtained resin composition for microwave fusion, and a strip sheet of medium density polyethylene was fused to each other using the test piece. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1 to obtain a peel strength of 14.5 kgf / cm.

【0037】(実施例4)実施例3の導電性のアニリン
系重合体微粒子の添加量を20重量部から30重量部に
変更したこと以外、実施例3と同様にしてマイクロ波融
着用樹脂組成物を作製した。実施例3と同様に、得られ
たマイクロ波融着用樹脂組成物から試験片を作製し、該
試験片を用いて中密度ポリエチレン製短冊状シートを相
互に融着した。上記融着された中密度ポリエチレン製短
冊状シートの剥離強度を実施例1と同様に測定し、剥離
強度13.7kgf/cmを得た。
(Example 4) A resin composition for microwave fusion was prepared in the same manner as in Example 3 except that the amount of the conductive aniline polymer fine particles added in Example 3 was changed from 20 parts by weight to 30 parts by weight. The thing was made. In the same manner as in Example 3, a test piece was prepared from the obtained resin composition for microwave fusion, and the medium-density polyethylene strip-shaped sheets were fused to each other using the test piece. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1 to obtain a peel strength of 13.7 kgf / cm.

【0038】(実施例5)実施例3の導電性のアニリン
系重合体微粒子の添加量を20重量部から60重量部に
変更し、カーボンブラックの添加量を10重量部から5
重量部に変更したこと以外、実施例3と同様にしてマイ
クロ波融着用樹脂組成物を作製した。実施例3と同様
に、得られたマイクロ波融着用樹脂組成物から試験片を
作製し、該試験片を用いて中密度ポリエチレン製短冊状
シートを相互に融着した。上記融着された中密度ポリエ
チレン製短冊状シートの剥離強度を実施例1と同様に測
定し、剥離強度10.1kgf/cmを得た。
Example 5 The amount of conductive aniline-based polymer particles added in Example 3 was changed from 20 parts by weight to 60 parts by weight, and the amount of carbon black added was changed from 10 parts by weight to 5 parts by weight.
A resin composition for microwave fusion was prepared in the same manner as in Example 3 except that the weight part was changed. In the same manner as in Example 3, a test piece was prepared from the obtained resin composition for microwave fusion, and the medium-density polyethylene strip-shaped sheets were fused to each other using the test piece. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1 to obtain a peel strength of 10.1 kgf / cm.

【0039】(実施例6)実施例4の中密度ポリエチレ
ン樹脂に替えて、高密度ポリエチレン樹脂(三井石油化
学社製、190℃、2.16kg、MFR=0.1g/
10min)100重量部を用いたこと以外、実施例4
と同様にしてマイクロ波融着用樹脂組成物を作製した。
実施例4と同様に、得られたマイクロ波融着用樹脂組成
物から試験片を作製し、該試験片を用いて中密度ポリエ
チレン製短冊状シートを相互に融着した。上記融着され
た中密度ポリエチレン製短冊状シートの剥離強度を実施
例4と同様に測定し、剥離強度13.9kgf/cmを
得た。
Example 6 In place of the medium-density polyethylene resin of Example 4, a high-density polyethylene resin (Mitsui Petrochemical Co., Ltd., 190 ° C., 2.16 kg, MFR = 0.1 g /
Example 4 except that 100 parts by weight of 10 min) was used.
A resin composition for microwave fusion was prepared in the same manner as in.
A test piece was prepared from the obtained resin composition for microwave fusion in the same manner as in Example 4, and the medium-density polyethylene strip-shaped sheets were fused to each other using the test piece. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 4 to obtain a peel strength of 13.9 kgf / cm.

【0040】(比較例1)実施例1の中密度ポリエチレ
ンを100重量部と導電性のアニリン系重合体微粒子6
0重量部を、実施例1と同様に混合してマイクロ波融着
用樹脂組成物を作製した。実施例1と同様に、得られた
マイクロ波融着用樹脂組成物から試験片を作製し、該試
験片を用いて中密度ポリエチレン製短冊状シートを相互
に融着した。上記融着された中密度ポリエチレン製短冊
状シートの剥離強度を実施例1と同様に測定し、剥離強
度6.4kgf/cmを得た。
Comparative Example 1 100 parts by weight of the medium-density polyethylene of Example 1 and conductive aniline polymer fine particles 6 were used.
0 parts by weight were mixed in the same manner as in Example 1 to prepare a resin composition for microwave fusion. In the same manner as in Example 1, test pieces were prepared from the obtained resin composition for microwave fusion, and strips of medium-density polyethylene were fused to each other using the test pieces. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1 to obtain a peel strength of 6.4 kgf / cm.

【0041】(比較例2)実施例5の導電性のアニリン
系重合体微粒子の添加量を60重量部から3重量部に変
更したこと以外、実施例5と同様にしてマイクロ波融着
用樹脂組成物を作製した。実施例5と同様に、得られた
マイクロ波融着用樹脂組成物から試験片を作製し、該試
験片を用いて中密度ポリエチレン製短冊状シートを相互
に融着しようとしたが、発熱量不足で融着しなかった。
(Comparative Example 2) A resin composition for microwave fusion was prepared in the same manner as in Example 5, except that the amount of the conductive aniline-based polymer particles added in Example 5 was changed from 60 parts by weight to 3 parts by weight. The thing was made. A test piece was prepared from the obtained resin composition for microwave fusion in the same manner as in Example 5, and it was attempted to fuse the medium-density polyethylene strip-shaped sheets to each other using the test piece, but the calorific value was insufficient. It didn't fuse.

【0042】(比較例3)実施例3の導電性のアニリン
系重合体微粒子の添加量を20重量部から150重量部
に変更したこと以外、実施例3と同様にしてマイクロ波
融着用樹脂組成物を作製した。実施例3と同様に、得ら
れたマイクロ波融着用樹脂組成物から試験片を作製し、
該試験片を用いて中密度ポリエチレン製短冊状シートを
相互に融着した。上記融着された中密度ポリエチレン製
短冊状シートの剥離強度を実施例3と同様に測定し、剥
離強度1.4kgf/cmを得た。
Comparative Example 3 A resin composition for microwave fusion was prepared in the same manner as in Example 3 except that the amount of conductive aniline polymer fine particles added in Example 3 was changed from 20 parts by weight to 150 parts by weight. The thing was made. A test piece was prepared from the obtained resin composition for microwave fusion in the same manner as in Example 3,
Strips of medium density polyethylene were fused together using the test pieces. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 3 to obtain a peel strength of 1.4 kgf / cm.

【0043】(比較例4)実施例1の中密度ポリエチレ
ンを100重量部と実施例3のカーボンブラック30重
量部を、実施例1と同様に混合してマイクロ波融着用樹
脂組成物を作製した。実施例1と同様に、得られたマイ
クロ波融着用樹脂組成物から試験片を作製し、該試験片
を用いて中密度ポリエチレン製短冊状シートを相互に融
着しようとしたが、マイクロ波照射時にマイクロ波融着
用樹脂組成物が部分的に発火し、融着できなかった。
Comparative Example 4 100 parts by weight of the medium-density polyethylene of Example 1 and 30 parts by weight of carbon black of Example 3 were mixed in the same manner as in Example 1 to prepare a resin composition for microwave fusion. . In the same manner as in Example 1, a test piece was prepared from the obtained resin composition for microwave fusion and an attempt was made to fuse the medium-density polyethylene strip-shaped sheets to each other using the test piece. At some time, the resin composition for microwave fusion partially ignited and could not be fused.

【0044】上記実施例1〜6及び比較例1〜4の評価
結果を、表1に示す。猶、表中、中密度ポリエチレンを
MDPEと、高密度ポリエチレンをHDPEと、導電性
のアニリン系重合体微粒子をポリアニリンと略称した。
又、導電性の無機系粉体の種類を下記の略号で表1に記
入した。
Table 1 shows the evaluation results of Examples 1 to 6 and Comparative Examples 1 to 4. In the table, medium density polyethylene is abbreviated as MDPE, high density polyethylene is abbreviated as HDPE, and conductive aniline-based polymer particles are abbreviated as polyaniline.
Further, the types of conductive inorganic powders are listed in Table 1 by the following abbreviations.

【0045】SnO:酸化アンチモン含有酸化スズ粉末 BaSO4 :アンチモンドープした酸化スズでコートし
た硫酸バリウム粉末 CB:カーボンブラック
SnO: antimony oxide-containing tin oxide powder BaSO 4 : barium sulfate powder coated with antimony-doped tin oxide CB: carbon black

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【発明の効果】本発明のマイクロ波融着用樹脂組成物
は、叙上の如く構成されているので、熱可塑性樹脂中に
上記導電性のアニリン系重合体微粒子及び導電性の無機
系粉体が微細に分散されており、該マイクロ波融着用樹
脂組成物から得られる接合用成形体は、マイクロ波を照
射して誘電加熱すると上記導電性のアニリン系重合体微
粒子及び導電性の無機系粉体の約200℃を境界とする
低温域と高温域の発熱特性が相補って安定して被接合熱
可塑性樹脂成形体の溶融温度に、均一、且つ、効率的に
昇温し、部分的な過熱による熱可塑性樹脂の劣化もな
く、被接合熱可塑性樹脂成形体を融着する。
Since the resin composition for microwave fusion of the present invention is constructed as described above, the conductive aniline polymer fine particles and the conductive inorganic powder are contained in the thermoplastic resin. The molding for bonding which is finely dispersed and is obtained from the resin composition for microwave fusion is a conductive aniline-based polymer fine particle and a conductive inorganic-based powder when the dielectric heating is performed by irradiating microwaves. The heat generation characteristics of the low temperature region and the high temperature region of which the temperature is about 200 ° C as a boundary are complementary to each other, and the temperature of the thermoplastic resin molding to be joined is uniformly and efficiently raised to the partial melting temperature. The thermoplastic resin moldings to be joined are fused together without deterioration of the thermoplastic resin due to.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08J 5/12 C08J 5/12 B29L 23:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C08J 5/12 C08J 5/12 B29L 23:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂100重量部、導電性のア
ニリン系重合体微粒子5〜100重量部及び導電性の無
機系粉体3〜50重量部からなり、導電性のアニリン系
重合体微粒子の含有量が導電性の無機系粉体の含有量よ
り多いことを特徴とするマイクロ波融着用樹脂組成物。
1. A conductive aniline polymer fine particle comprising 100 parts by weight of a thermoplastic resin, 5 to 100 parts by weight of conductive aniline polymer fine particles and 3 to 50 parts by weight of conductive inorganic powder. A resin composition for microwave fusion, characterized in that the content is higher than the content of the electrically conductive inorganic powder.
JP8052927A 1996-03-11 1996-03-11 Microwave-weldable resin composition Pending JPH09241508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8052927A JPH09241508A (en) 1996-03-11 1996-03-11 Microwave-weldable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8052927A JPH09241508A (en) 1996-03-11 1996-03-11 Microwave-weldable resin composition

Publications (1)

Publication Number Publication Date
JPH09241508A true JPH09241508A (en) 1997-09-16

Family

ID=12928483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8052927A Pending JPH09241508A (en) 1996-03-11 1996-03-11 Microwave-weldable resin composition

Country Status (1)

Country Link
JP (1) JPH09241508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138642A (en) * 1997-11-12 1999-05-25 Denki Kagaku Kogyo Kk Resin frame assembly and assembling method thereof
JP2003238745A (en) * 2002-02-15 2003-08-27 Toyobo Co Ltd Resin composition, adhesive by using the same and method for bonding using the adhesive
WO2016129610A1 (en) * 2015-02-09 2016-08-18 三菱重工業株式会社 Adhesive and structure, and bonding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138642A (en) * 1997-11-12 1999-05-25 Denki Kagaku Kogyo Kk Resin frame assembly and assembling method thereof
JP2003238745A (en) * 2002-02-15 2003-08-27 Toyobo Co Ltd Resin composition, adhesive by using the same and method for bonding using the adhesive
WO2016129610A1 (en) * 2015-02-09 2016-08-18 三菱重工業株式会社 Adhesive and structure, and bonding method
US10647892B2 (en) 2015-02-09 2020-05-12 Mitsubishi Heavy Industries, Ltd. Adhesive and structure, and adhesion method

Similar Documents

Publication Publication Date Title
US6403889B1 (en) Bi-layer covering sheath
JPH09241508A (en) Microwave-weldable resin composition
JPS5840488B2 (en) Method of fusing non-elastomeric thermoplastic elements to block structured elastomeric joining elements
JPH09241507A (en) Microwave-weldable resin composition
JPH09241599A (en) Resin composition for microwave welding
JPH0764962B2 (en) Heat-resistant conductive adhesive resin composition
JP2012074173A (en) Insulated electric wire
JPH09241588A (en) Resin composition for microwave welding and method for jointing pipes therewith
JPS63118391A (en) Bonding process
JPH0953017A (en) Resin composition for microwave welding and its production
JPH11263943A (en) Hot welding material and adhesive member and jointing of resin product and jointed structure
JPH09208755A (en) Resin composition for melt adhesion
JP7223553B2 (en) High-frequency dielectric heating adhesive sheet, pipe joining method, and pipe joint
JPH08239631A (en) Resin sheet for microwave welding, resin composition for microwave welding, and method of welding therewith
JPH0967461A (en) Resin composition for fusing with microwave
JPH09124953A (en) Resin composition for microwave fusion
JPS5946774B2 (en) Welder Kakousei no Kairiyousareta Netsukaso Seigou Seijyushi Sheet
JPH09187876A (en) Resin joint for microwave fusion and fusing method
JP2842914B2 (en) Bonding method of polyolefin resin molding
JP2002109970A (en) Power cable
JPS59176371A (en) Electrically conductive heat-sensitive adhesive composition
JPH07121555B2 (en) Resin material joining method
JPH04308729A (en) Fusion bonding or sealing method and conductive fusing heating element
JP2000109615A (en) Conductive polymer composition having positive temperature coefficient characteristic
JPS61151256A (en) Composition for welding polyolefin resin and welding method