JPH09124953A - Resin composition for microwave fusion - Google Patents

Resin composition for microwave fusion

Info

Publication number
JPH09124953A
JPH09124953A JP7287325A JP28732595A JPH09124953A JP H09124953 A JPH09124953 A JP H09124953A JP 7287325 A JP7287325 A JP 7287325A JP 28732595 A JP28732595 A JP 28732595A JP H09124953 A JPH09124953 A JP H09124953A
Authority
JP
Japan
Prior art keywords
fusion
resin composition
resin
microwave
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7287325A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamamoto
和芳 山本
Masatoshi Murashima
正敏 村島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7287325A priority Critical patent/JPH09124953A/en
Publication of JPH09124953A publication Critical patent/JPH09124953A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for microwave fusion which gives high quantity of heat with high heat exchange rate, enables fusion bonding without being influenced by the state of deterioration of resin and provides high fusion bonding strength. SOLUTION: This resin composition consists of 100 pts.wt. thermoplastic resin, 5-100 pts.wt. fine conductive aniline polymer particles and 0.01-20 pts.wt. titanate coupling agent and/or aluminum-base coupling agent. The fine conductive aniline polymer particles are surface treated beforehand with 0.01-10 pts.wt. titanate coupling agent and/or aluminum-base coupling agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波融着用
樹脂組成物に関し、更に詳しくは、特に上下水道用合成
樹脂管、ガス用合成樹脂管、その他の熱融着性を有する
被着体の接合等に好適に使用されるマイクロ波融着用樹
脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition for microwave fusion, and more particularly, to a synthetic resin pipe for water and sewerage, a synthetic resin pipe for gas, and other adherends having a heat fusion property. The present invention relates to a resin composition for microwave fusion, which is preferably used for joining and the like.

【0002】[0002]

【従来の技術】マイクロ波による誘電加熱を利用した樹
脂の融着法は、例えば、特開昭62−39221号公報
に開示されているように、被接着体であるポリオレフィ
ン樹脂成型品の接続部の間にポリオレフィン樹脂及びカ
ーボンブラックを混練した融着材を鋏み、該融着材鋏着
部に高周波を印加することによってポリオレフィン樹脂
成型品を融着する方法、及び、特公平5−11022号
公報に開示されているように、被接着体である誘電損失
の値の小さい熱可塑性樹脂の溶着面間に誘電損失の値の
大きい塩化ビニル樹脂、ポリアミド樹脂、エチレン−酢
酸ビニル共重合体、ポリエステル樹脂等からなる発熱材
料を位置させ、高周波誘電加熱又は高周波誘導加熱によ
り該発熱材料を発熱させて熱可塑性樹脂を融着する方法
等がある。この他、特表平5−504153号公報に開
示されているように、ポリアニリン等の導電性高分子に
マイクロ波を照射することによって、該導電性高分子を
誘電加熱して樹脂の融着を行う方法等がある。
2. Description of the Related Art A resin fusion method utilizing dielectric heating by microwaves is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-39221, and a connecting portion of a polyolefin resin molded article which is an adherend. A method for fusing a fusion material obtained by kneading a polyolefin resin and carbon black between the two, and applying a high frequency to the fusion material scissor portion to fuse the polyolefin resin molded product, and JP-B-5-11022. As disclosed in, a vinyl chloride resin, a polyamide resin, an ethylene-vinyl acetate copolymer, a polyester resin having a large dielectric loss value between welding surfaces of a thermoplastic resin having a small dielectric loss value, which is an adherend. There is a method of arranging a heat generating material made of, for example, and heating the heat generating material by high frequency induction heating or high frequency induction heating to fuse the thermoplastic resin. In addition, as disclosed in JP-A-5-504153, by irradiating a conductive polymer such as polyaniline with microwaves, the conductive polymer is dielectrically heated to fuse the resin. There are ways to do it.

【0003】しかしながら、カーボンブラックを用いた
融着材はカーボンブラック自身が高温に発熱するため、
樹脂の劣化を引き起こしたり、発熱温度の制御が困難で
ある等の問題がある。又、誘電損失の大きい樹脂を用い
る場合は、温度上昇に長時間を要する等の問題がある。
又、ポリアニリンを用いた場合、極性の大きいポリアニ
リンを熱可塑性樹脂に均一に分散させ、且つ、該ポリア
ニリン微粒子界面における熱可塑性樹脂との良好な接着
性を保持することが難しく、このような分散性の悪い熱
可塑性樹脂組成物からなる発熱材料にマイクロ波を照射
して熱可塑性樹脂製品を融着する際に、ポリアニリンの
局部的な高発熱により自己劣化したり、ポリアニリンの
介在により融着面の剥離強度が低下する等の問題が生じ
る。
However, in the fusing material using carbon black, since the carbon black itself generates heat at a high temperature,
There are problems such as deterioration of the resin and difficulty in controlling the heat generation temperature. Further, when a resin having a large dielectric loss is used, there is a problem that it takes a long time to raise the temperature.
Further, when polyaniline is used, it is difficult to uniformly disperse polyaniline having a large polarity in a thermoplastic resin, and to maintain good adhesiveness with the thermoplastic resin at the polyaniline fine particle interface. When a thermoplastic resin product is fused by irradiating a heat-generating material composed of a poorly heat-resistant thermoplastic resin composition with microwaves, the polyaniline is locally deteriorated by high heat and self-deteriorates. Problems such as a decrease in peel strength occur.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記に鑑み
なされたものであって、熱交換率が高く、高熱量が得ら
れ、樹脂の劣化状態に影響されることなく融着ができ、
且つ、融着強度が高いマイクロ波融着用樹脂組成物を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has a high heat exchange rate, a high heat quantity can be obtained, and fusion can be performed without being affected by the deterioration state of the resin.
Moreover, it aims at providing the resin composition for microwave fusion with high fusion strength.

【0005】[0005]

【課題を解決するための手段】請求項1記載の本発明
は、熱可塑性樹脂100重量部、導電性のアニリン系重
合体微粒子5〜100重量部並びにチタネート系カップ
リング剤及び/又はアルミニウム系カップリング剤0.
01〜20重量部からなることを特徴とするマイクロ波
融着用樹脂組成物をその要旨とするものである。
The present invention according to claim 1 provides 100 parts by weight of a thermoplastic resin, 5 to 100 parts by weight of conductive aniline polymer fine particles, a titanate coupling agent and / or an aluminum cup. Ring agent 0.
The gist is a resin composition for microwave fusion, which is characterized by being composed of 01 to 20 parts by weight.

【0006】請求項2記載の本発明は、熱可塑性樹脂1
00重量部と、導電性のアニリン系重合体微粒子100
重量部に対し、予めチタネート系カップリング剤及び/
又はアルミニウム系カップリング剤0.01〜10重量
部で表面処理されている導電性のアニリン系重合体微粒
子5〜100重量部とからなることを特徴とするマイク
ロ波融着用樹脂組成物をその要旨とするものである。
The present invention according to claim 2 provides a thermoplastic resin 1
And 100 parts by weight of conductive aniline-based polymer particles 100
Titanate coupling agent and / or
Or a resin composition for microwave fusion, which comprises 5 to 100 parts by weight of conductive aniline-based polymer fine particles surface-treated with 0.01 to 10 parts by weight of an aluminum coupling agent. It is what

【0007】上記熱可塑性樹脂は、押出成形や射出成形
が可能な熱可塑性樹脂であれば特に限定されるのではな
く、例えば、ポリエチレン、ポリプロピレン、ポリブテ
ン−1、ポリ−4−メチルペンテン−1等のポリオレフ
ィン;塩化ビニル樹脂、ポリカーボネート、ポリエステ
ル、ポリアミド、アクリル系樹脂、ポリフェニレンサル
ファイド(PPS)、ポリふっ化ビニリデン(PVD
F)、ポリ塩化ビニリデン(PVDC)、ペルフルオロ
アルコキシふっ素樹脂(PFA)等が挙げられる。これ
らは単独で用いても2種以上を用いてもよい。
The thermoplastic resin is not particularly limited as long as it is a thermoplastic resin that can be extrusion-molded or injection-molded, and examples thereof include polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and the like. Polyolefin: Vinyl chloride resin, polycarbonate, polyester, polyamide, acrylic resin, polyphenylene sulfide (PPS), polyvinylidene fluoride (PVD)
F), polyvinylidene chloride (PVDC), perfluoroalkoxy fluororesin (PFA) and the like. These may be used alone or in combination of two or more.

【0008】上記導電性のアニリン系重合体微粒子は、
導電性であれば特に限定されず、なかでも、導電性が
0.1S/cm以上のアニリン系重合体が好ましい。導
電性が0.1S/cmよりも低いと発熱が不充分で、融
着が不充分となるので好ましくない。
The above conductive aniline polymer fine particles are
It is not particularly limited as long as it is conductive, and among them, an aniline-based polymer having a conductivity of 0.1 S / cm or more is preferable. When the conductivity is lower than 0.1 S / cm, heat generation is insufficient and fusion is insufficient, which is not preferable.

【0009】上記アニリン系重合体微粒子は、例えば、
アニリン誘導体モノマー及び酸を、水等の溶媒に溶解さ
せ、この溶液に酸化剤を加え攪拌することによって酸化
重合させる等の方法により製造することができる。
The above aniline-based polymer fine particles are, for example,
The aniline derivative monomer and the acid are dissolved in a solvent such as water, and an oxidant is added to this solution, and the mixture is stirred to carry out oxidative polymerization.

【0010】上記アニリン誘導体モノマーとしては、例
えば、アニリン、N−メチルアニリン、N−エチルアニ
リン、o−トルイジン、m−トルイジン、2−エチルア
ニリン、3−エチルアニリン、2,3−ジメチルアニリ
ン、2,5−ジメチルアニリン、2,6−ジメチルアニ
リン、2,6−ジエチルアニリン、2−メトキシアニリ
ン、3−メトキシアニリン、2,5−ジメトキシアニリ
ン、3,5−ジメトキシアニリン、o−フェニレンジア
ミン、m−フェニレンジアミン、2−アミノビフェニ
ル、N,N−ジフェニル−p−フェニレンジアミン等が
挙げられる。上記アニリン誘導体モノマーの上記溶媒に
対する濃度は、0.1〜1mol/lが好ましい。
Examples of the aniline derivative monomer include aniline, N-methylaniline, N-ethylaniline, o-toluidine, m-toluidine, 2-ethylaniline, 3-ethylaniline, 2,3-dimethylaniline, 2 , 5-dimethylaniline, 2,6-dimethylaniline, 2,6-diethylaniline, 2-methoxyaniline, 3-methoxyaniline, 2,5-dimethoxyaniline, 3,5-dimethoxyaniline, o-phenylenediamine, m -Phenylenediamine, 2-aminobiphenyl, N, N-diphenyl-p-phenylenediamine and the like can be mentioned. The concentration of the aniline derivative monomer in the solvent is preferably 0.1 to 1 mol / l.

【0011】上記酸としては、例えば、塩酸、硫酸、硝
酸、リン酸等の無機プロトン酸;硫酸エステル、リン酸
エステル等の無機酸エステル;p−トルエンスルホン
酸、カルボン酸等の有機酸;ポリスチレンスルホン酸等
の高分子酸が挙げられる。上記酸の濃度は、0.1N〜
1Nが好ましい。
Examples of the acid include inorganic protonic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; inorganic acid esters such as sulfuric acid ester and phosphoric acid ester; organic acids such as p-toluenesulfonic acid and carboxylic acid; polystyrene. Polymeric acids such as sulfonic acid may be mentioned. The concentration of the acid is 0.1 N
1N is preferred.

【0012】上記酸化剤としては、例えば、過硫酸塩、
過酸化水素、過マンガン酸塩、重クロム酸塩等の過酸化
物;二酸化鉛、二酸化マンガン、塩化鉄等のルイス酸等
が挙げられる。上記酸化剤の濃度は、上記溶媒に対して
0.1〜1mol/lが好ましい。
Examples of the oxidizing agent include persulfate,
Examples thereof include peroxides such as hydrogen peroxide, permanganate, and dichromate; Lewis acids such as lead dioxide, manganese dioxide, and iron chloride. The concentration of the oxidizing agent is preferably 0.1 to 1 mol / l with respect to the solvent.

【0013】上記導電性のアニリン系重合体微粒子は、
叙上の方法で作製することができるが、アライドシグナ
ル社製、商品名「Versicon」等の市販されてい
るものも使用できる。
The above conductive aniline polymer fine particles are
It can be prepared by the above method, but a commercially available product such as "Versicon" manufactured by Allied Signal Co. can also be used.

【0014】上記導電性のアニリン系重合体微粒子は、
熱可塑性樹脂100重量部中に5〜100重量部分散す
る。5重量部未満では発熱量が不充分となり、100重
量部を超えると上記マイクロ波融着用樹脂組成物の強度
が低下するので、上記範囲に限定される。
The above conductive aniline polymer fine particles are
Disperse 5 to 100 parts by weight in 100 parts by weight of the thermoplastic resin. If the amount is less than 5 parts by weight, the calorific value becomes insufficient, and if the amount exceeds 100 parts by weight, the strength of the resin composition for microwave fusion is reduced, so the amount is limited to the above range.

【0015】上記熱可塑性樹脂中に分散される上記導電
性のアニリン系重合体微粒子は、その粒子径が0.1〜
100μmの範囲にあるものを使用することが望まし
く、上記粒子径が0.1μm未満であると、熱可塑性樹
脂中への分散が難しくなり、過度の混練は熱可塑性樹脂
の劣化をきたす。又、上記粒子径が100μmを超える
とマイクロ波加熱時の発熱量が充分に得られず融着強度
を低下させる。
The conductive aniline polymer fine particles dispersed in the thermoplastic resin have a particle diameter of 0.1 to 0.1.
It is desirable to use those having a particle size in the range of 100 μm. When the particle diameter is less than 0.1 μm, it becomes difficult to disperse the particles in the thermoplastic resin, and excessive kneading causes deterioration of the thermoplastic resin. On the other hand, if the particle diameter exceeds 100 μm, a sufficient amount of heat generated during microwave heating cannot be obtained and the fusion strength is reduced.

【0016】上記導電性のアニリン系重合体微粒子の分
散粒径の測定は、粒径を正確に測定できる方法であれば
特に限定されるものではないが、例えば、予めRuO4
で染色したマイクロ波融着用樹脂組成物を走査型電子顕
微鏡の反射電子で観察すれば、比較的容易に測定するこ
とができる。
The dispersed particle size of the conductive aniline polymer fine particles is not particularly limited as long as it can accurately measure the particle size. For example, RuO 4 is previously prepared.
When the resin composition for microwave fusion dyed with is observed by backscattered electrons of a scanning electron microscope, it can be measured relatively easily.

【0017】上記チタネート系カップリング剤として
は、特に限定されるものではなく、例えば、イソプロピ
ルトリイソステアロイルチタネート、イソプロピルトリ
ス(ジオクチルパイロホスフェート)チタネート、イソ
プロピルトリ(N−アミノエチル−アミノエチル)チタ
ネート、テトラオクチルビス(ジトリデシルホスファイ
ト)チタネート、テトラ(2,2−ジアリルオキシメチ
ル−1−ブチル)ビス(ジトリデシル)ホスファイトチ
タネート、ビス(ジオクチルパイロホスフェート)オキ
シアセテートチタネート、ビス(ジオクチルパイロホス
フェート)エチレンチタネート、イソプロピルトリオク
タノイルチタネート、イソプロピルジメタクリルイソス
テアロイルチタネート、イソプロピルトリドデシルベン
ゼンスルホニルチタネート、イソプロピルイソステアロ
イルジアクリルチタネート、イソプロピルトリクミルフ
ェニルチタネート、テトライソプロピルビス(ジオクチ
ルホスファイト)チタネート等が挙げられる。又、上記
アルミニウム系カップリング剤としては、特に限定され
るものではなく、例えば、アセトアルコキシアルミニウ
ムジイソプロピレート等が挙げられる。上記カップリン
グ剤は、1種もしくは2種以上が併用される。
The titanate coupling agent is not particularly limited, and examples thereof include isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, Tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene Titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate Over DOO, isopropyl isostearoyl diacryl titanate, isopropyl tricumylphenyl titanate, tetraisopropyl bis (dioctyl phosphite) titanate. The aluminum-based coupling agent is not particularly limited, and examples thereof include acetoalkoxy aluminum diisopropylate. The above coupling agents are used alone or in combination of two or more.

【0018】上記チタネート系カップリング剤及び/又
はアルミニウム系カップリング剤の配合量は、熱可塑性
樹脂100重量部に対し0.01〜20重量部である。
上記配合量が0.01重量部未満では、導電性のアニリ
ン系重合体微粒子が熱可塑性樹脂中に充分に分散しない
ため、このようなマイクロ波融着用樹脂組成物からなる
発熱体をマイクロ波を用いて発熱させ、熱可塑性樹脂成
形体を相互に接続する場合、接続部の上記マイクロ波融
着用樹脂組成物の発熱特性が低下し、熱可塑性樹脂成形
体相互の融着が不完全となり接続強度が低下する。又、
上記配合量が20重量部を超えると、上記の如く熱可塑
性樹脂成形体を相互に接続する場合、接続部の接続強度
が低下する。
The titanate coupling agent and / or the aluminum coupling agent is blended in an amount of 0.01 to 20 parts by weight per 100 parts by weight of the thermoplastic resin.
If the blending amount is less than 0.01 parts by weight, the conductive aniline-based polymer fine particles are not sufficiently dispersed in the thermoplastic resin, so that the heating element made of such a microwave fusion resin composition is subjected to microwave irradiation. When the thermoplastic resin moldings are connected to each other by causing heat to be generated, the heat generation characteristics of the resin composition for microwave fusion at the connection portion are deteriorated, and the fusion between the thermoplastic resin moldings becomes incomplete and the connection strength is increased. Is reduced. or,
If the blending amount is more than 20 parts by weight, the connection strength of the connecting portion is lowered when the thermoplastic resin molded products are mutually connected as described above.

【0019】請求項2記載の本発明のマイクロ波融着用
樹脂組成物にあっては、上記導電性のアニリン系重合体
微粒子は、導電性のアニリン系重合体微粒子100重量
部に対し、予め上記チタネート系カップリング剤及び/
又はアルミニウム系カップリング剤で0.01〜10重
量部で表面処理されており、このように予め表面処理さ
れている導電性のアニリン系重合体微粒子と上記熱可塑
性樹脂を混合捏和するか、更に、必要に応じ、残余の上
記チタネート系カップリング剤及び/又はアルミニウム
系カップリング剤を混合捏和してマイクロ波融着用樹脂
組成物が調製される。
In the microwave fusion resin composition of the present invention as set forth in claim 2, the conductive aniline-based polymer fine particles are previously added to 100 parts by weight of the conductive aniline-based polymer fine particles. Titanate coupling agent and /
Or 0.01 to 10 parts by weight of an aluminum-based coupling agent is surface-treated, and the conductive aniline-based polymer fine particles which have been surface-treated in advance are mixed and kneaded, or Further, if necessary, the remaining titanate coupling agent and / or aluminum coupling agent are mixed and kneaded to prepare a resin composition for microwave fusion.

【0020】上記予め上記チタネート系カップリング剤
及び/又はアルミニウム系カップリング剤で表面処理さ
れた導電性のアニリン系重合体微粒子は、上記する如く
請求項1記載の本発明のマイクロ波融着用樹脂組成物に
配合される全ての量の上記チタネート系カップリング剤
及び/又はアルミニウム系カップリング剤で予め表面処
理されなくても、極性の大きい導電性のアニリン系重合
体微粒子表面の極性を捏和される熱可塑性樹脂の極性に
より近づけられる。よって、請求項2記載の本発明のマ
イクロ波融着用樹脂組成物において、予め導電性のアニ
リン系重合体微粒子の表面処理に用いられる上記チタネ
ート系カップリング剤及び/又はアルミニウム系カップ
リング剤の使用量は、導電性のアニリン系重合体微粒子
100重量部に対し、上記チタネート系カップリング剤
及び/又はアルミニウム系カップリング剤0.01〜1
0重量部である。
The conductive aniline polymer fine particles which have been surface-treated with the titanate-based coupling agent and / or the aluminum-based coupling agent in advance are the microwave fusion resin of the present invention according to claim 1 as described above. Even if it is not previously surface-treated with all the amounts of the titanate coupling agent and / or aluminum coupling agent blended in the composition, the polarity of the electrically conductive aniline polymer fine particles having high polarity is kneaded. Of the thermoplastic resin. Therefore, in the resin composition for microwave fusion of the present invention according to claim 2, use of the titanate-based coupling agent and / or the aluminum-based coupling agent, which is previously used for the surface treatment of conductive aniline-based polymer fine particles. The amount of the titanate coupling agent and / or the aluminum coupling agent is 0.01 to 1 with respect to 100 parts by weight of the conductive aniline polymer fine particles.
0 parts by weight.

【0021】上記予め導電性のアニリン系重合体微粒子
の表面処理に用いられる上記チタネート系カップリング
剤及び/又はアルミニウム系カップリング剤の使用量
が、0.01重量部未満では、上記の表面処理をされた
導電性のアニリン系重合体微粒子が熱可塑性樹脂中に充
分に分散しないため、このようなマイクロ波融着用樹脂
組成物からなる発熱体をマイクロ波を用いて発熱させ、
熱可塑性樹脂成形体を相互に接続する場合、接続部の上
記マイクロ波融着用樹脂組成物の発熱特性が低下し、熱
可塑性樹脂成形体相互の融着が不完全となり接続強度が
低下する。又、上記使用量が10重量部を超えると、上
記の表面処理をされた導電性のアニリン系重合体微粒子
同士が凝集し、熱可塑性樹脂中に充分に分散しないた
め、同様に熱可塑性樹脂成形体を相互に接続する場合、
接続部の接続強度が低下する。
If the amount of the titanate coupling agent and / or the aluminum coupling agent used for the surface treatment of the conductive aniline polymer fine particles is less than 0.01 parts by weight, the surface treatment described above is performed. Since the electrically conductive aniline-based polymer fine particles are not sufficiently dispersed in the thermoplastic resin, a heating element made of such a microwave fusion resin composition is heated using microwaves,
When the thermoplastic resin moldings are connected to each other, the heat generation characteristics of the resin composition for microwave fusion at the connection portion are deteriorated, the fusion between the thermoplastic resin moldings is incomplete, and the connection strength is deteriorated. When the amount used exceeds 10 parts by weight, the surface-treated conductive aniline-based polymer fine particles agglomerate with each other and are not sufficiently dispersed in the thermoplastic resin. If you connect your bodies to each other,
The connection strength of the connection portion is reduced.

【0022】請求項1記載の本発明のマイクロ波融着用
樹脂組成物を製造する方法は、特に限定されるものでは
ないが、例えば、一軸押出機、二軸押出機、バンバリー
ミキサー、混練ロール、ブラベンダープラストグラフ、
ニーダー等の混練装置を単独でもしくはこれらの装置を
適宜組み合わせて使用し、導電性のアニリン系重合体微
粒子並びにチタネート系カップリング剤及び/又はアル
ミニウム系カップリング剤を熱可塑性樹脂に添加し、該
熱可塑性樹脂の溶融温度において混練して製造される。
The method for producing the resin composition for microwave fusion of the present invention according to claim 1 is not particularly limited, but for example, a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneading roll, Brabender Plastograph,
A kneading device such as a kneader is used alone or in combination with these devices as appropriate, conductive aniline-based polymer fine particles and a titanate-based coupling agent and / or an aluminum-based coupling agent are added to the thermoplastic resin, It is manufactured by kneading at the melting temperature of the thermoplastic resin.

【0023】請求項2記載の本発明のマイクロ波融着用
樹脂組成物を製造する方法は、特に限定されるものでは
ないが、例えば、高速攪拌機を用いて高速攪拌下に導電
性のアニリン系重合体微粒子に、チタネート系カップリ
ング剤及び/又はアルミニウム系カップリング剤もしく
はチタネート系カップリング剤及び/又はアルミニウム
系カップリング剤を含有する溶液を滴下或いは噴霧して
添加し、充分攪拌を続け、上記導電性のアニリン系重合
体微粒子の表面に、上記チタネート系カップリング剤及
び/又はアルミニウム系カップリング剤の被膜を可及的
均一に付着させ、乾燥して、導電性のアニリン系重合体
微粒子を予め表面処理し、然る後、熱可塑性樹脂に添加
し、上記請求項1記載の本発明のマイクロ波融着用樹脂
組成物の製造方法と同様に該熱可塑性樹脂の溶融温度に
おいて混練して製造される。
The method for producing the microwave fusion resin composition of the present invention according to claim 2 is not particularly limited, but, for example, a conductive aniline-based resin under high-speed agitation using a high-speed agitator is used. A solution containing a titanate-based coupling agent and / or an aluminum-based coupling agent or a titanate-based coupling agent and / or an aluminum-based coupling agent is added dropwise or sprayed to the coalesced fine particles, and sufficient stirring is continued, The coating of the titanate coupling agent and / or the aluminum coupling agent is adhered to the surface of the conductive aniline polymer fine particles as uniformly as possible, followed by drying to form the conductive aniline polymer fine particles. A method for producing the resin composition for microwave fusion according to the present invention as set forth in claim 1, which is surface-treated in advance and then added to a thermoplastic resin. It is prepared by kneading at the melting temperature of the likewise thermoplastic resin.

【0024】更に、本発明のマイクロ波融着用樹脂組成
物には、必要に応じ、紫外線吸収剤、酸化防止剤、難燃
剤、可塑剤、滑剤、帯電防止剤、着色剤等が添加されて
もよい。
Further, if necessary, an ultraviolet absorber, an antioxidant, a flame retardant, a plasticizer, a lubricant, an antistatic agent, a coloring agent, etc. may be added to the resin composition for microwave fusion of the present invention. Good.

【0025】本発明のマイクロ波融着用樹脂組成物は、
例えば、熱可塑性樹脂管継手等の接合部分を有する成形
体全体を成形する材料として用いられてもよいが、熱可
塑性樹脂成形体の接合を必要とする部分のみに、例え
ば、射出成形によるインサート方式やラミネーターによ
る積層方式等により成形体中に埋設もしくは表面に露出
させて用いられてもよい。又、例えば、熱可塑性樹脂管
の管端面同士を衝合わせて融着するバット接合におい
て、上記熱可塑性樹脂管の衝合面に上記管端の端面に合
わせて円環状のシートを挟持させる際のマイクロ波融着
用樹脂シートとして用いられてもよい。
The microwave fusion resin composition of the present invention comprises:
For example, although it may be used as a material for molding the entire molded body having a joint portion such as a thermoplastic resin pipe joint, only a portion requiring joining of the thermoplastic resin molded body, for example, an injection molding by injection molding Alternatively, it may be embedded in the molded body or exposed on the surface by a laminating method using a laminator or the like. Further, for example, in the butt joining in which the pipe end faces of the thermoplastic resin pipe are abutted and fused to each other, when the annular sheet is sandwiched by the abutting face of the thermoplastic resin pipe to the end face of the pipe end, It may be used as a resin sheet for microwave fusion.

【0026】上記熱可塑性樹脂成形体の接合を必要とす
る部分のみに埋設もしくは表面に露出させて用いられる
場合や、接合部の間に介在させるマイクロ波融着用樹脂
シート等のマイクロ波融着用樹脂組成物部分の厚さは、
0.01〜5mm程度である。上記マイクロ波融着用樹
脂組成物部分の厚さが0.01mm未満では発熱量が不
充分であり、上記厚さが5mmを超えると融着後の被接
合熱可塑性樹脂成形体の接合部の機械的強度が低下す
る。
A resin for microwave fusion such as a resin sheet for microwave fusion to be embedded in or exposed to the surface only in a portion of the thermoplastic resin molded body that needs to be joined, or to be interposed between the joined portions. The thickness of the composition part is
It is about 0.01 to 5 mm. If the thickness of the resin composition portion for microwave fusion is less than 0.01 mm, the amount of heat generated is insufficient, and if the thickness exceeds 5 mm, the machine of the joint portion of the thermoplastic resin molded article to be joined after fusion bonding. Strength decreases.

【0027】上記マイクロ波融着用樹脂シートは、マイ
クロ波融着用樹脂組成物からなるシートに被接合熱可塑
性樹脂成形体と相溶性のある熱可塑性樹脂シートが積層
されたマイクロ波融着用樹脂シートであってもよい。
又、上記被接合熱可塑性樹脂成形体と相溶性のある熱可
塑性樹脂シートが積層されたマイクロ波融着用樹脂シー
トは2層からなるものの他、マイクロ波融着用樹脂組成
物からなるシートを上記熱可塑性樹脂シートでサンドウ
ィッチ状に積層されているもの等被接合熱可塑性樹脂成
形体や接合用熱可塑性樹脂成形体の構造や用途に応じて
種々の適用が可能である。
The above-mentioned resin sheet for microwave fusion is a resin sheet for microwave fusion in which a thermoplastic resin sheet compatible with the thermoplastic resin molding to be joined is laminated on a sheet made of a resin composition for microwave fusion. It may be.
Further, the microwave fusion resin sheet in which the thermoplastic resin sheet compatible with the thermoplastic resin molding to be bonded is laminated has two layers, and a sheet made of the microwave fusion resin composition has the above heat treatment. Various applications can be made depending on the structure and application of the thermoplastic resin molded product to be bonded or the thermoplastic resin molded product for bonding, such as a thermoplastic resin sheet laminated in a sandwich.

【0028】本発明のマイクロ波融着用樹脂組成物を被
接合熱可塑性樹脂成形体等と一体に融着するために照射
されるマイクロ波としては、例えば、商用周波数の2.
45GHzで、電力は、100〜2,000W等が好ま
しい。
The microwaves that are irradiated to integrally fuse the resin composition for microwave fusion of the present invention with the thermoplastic resin molding to be joined are, for example, commercial frequencies of 2.
The power is preferably 100 to 2,000 W at 45 GHz.

【0029】上記マイクロ波の照射時間は、接合される
被着体のサイズや形状によっても異なるが、例えば、ガ
ス用中密度ポリエチレン管を同材質からなる管継手の内
面に上記マイクロ波融着用樹脂シートを埋設してなるマ
イクロ波融着管継手に接合し、融着する場合、専用のマ
イクロ波照射機によって上記マイクロ波を照射して、融
着が完了する照射時間は、10秒〜180秒である。
The microwave irradiation time varies depending on the size and shape of the adherend to be joined, but for example, a medium density polyethylene pipe for gas may be applied to the inner surface of a pipe joint made of the same material as the microwave fusion resin. When the sheet is joined to a microwave fusion tube fitting which is embedded and fused, the microwave is irradiated by a dedicated microwave irradiator to complete the fusion, and the irradiation time is 10 seconds to 180 seconds. Is.

【0030】請求項1記載の本発明のマイクロ波融着用
樹脂組成物は、叙上の如く構成されているので、熱可塑
性樹脂中に導電性のアニリン系重合体微粒子が微細に分
散されており、該マイクロ波融着用樹脂組成物から得ら
れる接合用成形体は、マイクロ波を照射して誘電加熱す
ると被接合熱可塑性樹脂成形体の溶融温度に均一且つ効
率的に昇温し、部分的な過熱による熱可塑性樹脂の劣化
もなく被接合熱可塑性樹脂成形体を融着する。更に、上
記熱可塑性樹脂成形体の融着部分の熱可塑性樹脂と導電
性のアニリン系重合体微粒子の界面における密着状態は
強固であるので、優れた融着強度が得られる。
Since the microwave fusion resin composition of the present invention according to claim 1 is constructed as described above, the conductive aniline polymer fine particles are finely dispersed in the thermoplastic resin. The molded body for bonding obtained from the resin composition for microwave fusion is heated uniformly and efficiently to the melting temperature of the thermoplastic resin molded body to be bonded when dielectric heating is performed by irradiating with microwaves. The thermoplastic resin molding to be joined is fused without deterioration of the thermoplastic resin due to overheating. Furthermore, since the adhered state at the interface between the thermoplastic resin and the conductive aniline-based polymer particles in the fused portion of the thermoplastic resin molded product is strong, excellent fusion strength can be obtained.

【0031】請求項2記載の本発明のマイクロ波融着用
樹脂組成物は、叙上の如く構成されているので、熱可塑
性樹脂中に導電性のアニリン系重合体微粒子が微細に分
散された極性の強い導電性のアニリン系重合体微粒子表
面の性質が被接合熱可塑性樹脂成形体の接合面の性質に
極めて近づいており、該マイクロ波融着用樹脂組成物か
ら得られる接合用成形体は、マイクロ波を照射して誘電
加熱すると被接合熱可塑性樹脂成形体の溶融温度に均一
且つ効率的に昇温し、部分的な過熱による熱可塑性樹脂
の劣化もなく被接合熱可塑性樹脂成形体を融着する。更
に、上記熱可塑性樹脂成形体の融着部分の熱可塑性樹脂
と導電性のアニリン系重合体微粒子の界面における密着
状態は強固であるので、より優れた融着強度が得られ
る。
Since the resin composition for microwave fusion of the present invention according to claim 2 is constructed as described above, a polar composition in which conductive aniline polymer fine particles are finely dispersed in a thermoplastic resin is used. The property of the surface of the electrically conductive aniline-based polymer fine particles having high strength is extremely close to the property of the bonding surface of the thermoplastic resin molded product to be bonded, and the molded product for bonding obtained from the microwave fusion resin composition is When waves are applied and dielectric heating is performed, the melting temperature of the thermoplastic resin molding to be joined is raised uniformly and efficiently, and the thermoplastic resin molding to be joined is fused without deterioration of the thermoplastic resin due to partial overheating. To do. Furthermore, since the adhesion state at the interface between the thermoplastic resin and the conductive aniline-based polymer fine particles in the fusion-bonded portion of the thermoplastic resin molding is strong, more excellent fusion-bonding strength can be obtained.

【0032】[0032]

【実施例】以下に実施例を掲げて、本発明を更に詳しく
説明するが、本発明はこれら実施例のみに限定されるも
のではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0033】(実施例1)中密度ポリエチレン(三井石
油化学社製、190℃、2.16kg、MFR=0.2
g/10min)100重量部、イソプロピルトリイソ
ステアロイルチタネート(味の素社製)0.5重量部及
び導電性のアニリン系重合体微粒子(アライドシグナル
社製、商品名:Versicon)20重量部をブラベ
ンダープラストグラフ(東洋精機社製)にて160℃で
混練し、マイクロ波融着用樹脂組成物を作製した。
(Example 1) Medium density polyethylene (manufactured by Mitsui Petrochemical Co., Ltd., 190 ° C, 2.16 kg, MFR = 0.2)
g / 10 min) 100 parts by weight, isopropyl triisostearoyl titanate (manufactured by Ajinomoto Co.) 0.5 part by weight, and conductive aniline polymer fine particles (manufactured by Allied Signal Co., trade name: Versicon) 20 parts by weight Brabender Plast. It was kneaded at 160 ° C. with a graph (manufactured by Toyo Seiki Co., Ltd.) to prepare a resin composition for microwave fusion.

【0034】得られたマイクロ波融着用樹脂組成物をプ
レス成形機にて厚さ0.5mmのシート状に成形し、2
0mm×10mmのマイクロ波融着用樹脂シートを作製
し、上記中密度ポリエチレン製の厚さ4mm、10mm
×80mmの2本の短冊状シートの間に鋏込み、上記中
密度ポリエチレン製短冊状シート上からマイクロ波
(2.45GHz、500W)を照射し、上記中密度ポ
リエチレン製短冊状シートを相互に融着した。
The obtained microwave fusion resin composition was molded into a sheet having a thickness of 0.5 mm by a press molding machine, and 2
A resin sheet for microwave fusion of 0 mm × 10 mm was prepared, and the thickness of the medium density polyethylene was 4 mm and 10 mm.
Scissors are inserted between two strips of 80 mm, and microwaves (2.45 GHz, 500 W) are irradiated onto the strips of medium-density polyethylene to melt the strips of medium-density polyethylene. I wore it.

【0035】上記マイクロ波融着用樹脂シートで融着さ
れた上記中密度ポリエチレン製短冊状シートを引張試験
機によって、50mm/minの引張速度で剥離試験を
行い、剥離強度を測定し、剥離強度14.2kgf/c
mを得た。
The strip sheet made of the medium-density polyethylene fused with the microwave fusion resin sheet was subjected to a peel test at a pulling speed of 50 mm / min by a tensile tester to measure the peel strength, and the peel strength 14 .2 kgf / c
m was obtained.

【0036】(実施例2)実施例1のイソプロピルトリ
イソステアロイルチタネートの添加量0.5重量部を1
重量部に変更したこと以外、実施例1と同様にしてマイ
クロ波融着用樹脂組成物を作製した。実施例1と同様
に、得られたマイクロ波融着用樹脂組成物からマイクロ
波融着用樹脂シートを作製し、該マイクロ波融着用樹脂
シートを用いて中密度ポリエチレン製短冊状シートを相
互に融着した。上記融着された中密度ポリエチレン製短
冊状シートの剥離強度を実施例1と同様に測定し、剥離
強度14.1kgf/cmを得た。
(Example 2) 0.5 parts by weight of isopropyltriisostearoyl titanate of Example 1 was added to 1 part.
A resin composition for microwave fusion was prepared in the same manner as in Example 1 except that the weight part was changed. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1 to obtain a peel strength of 14.1 kgf / cm.

【0037】(実施例3)実施例2の導電性のアニリン
系重合体微粒子の添加量20重量部を30重量部に変更
したこと以外、実施例2と同様にしてマイクロ波融着用
樹脂組成物を作製した。実施例2と同様に、得られたマ
イクロ波融着用樹脂組成物からマイクロ波融着用樹脂シ
ートを作製し、該マイクロ波融着用樹脂シートを用いて
中密度ポリエチレン製短冊状シートを相互に融着した。
上記融着された中密度ポリエチレン製短冊状シートの剥
離強度を実施例2と同様に測定し、剥離強度12.7k
gf/cmを得た。
Example 3 A resin composition for microwave fusion in the same manner as in Example 2 except that the amount of the conductive aniline polymer fine particles added in Example 2 was changed from 20 parts by weight to 30 parts by weight. Was produced. In the same manner as in Example 2, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and medium-density polyethylene strip sheets were fused to each other using the microwave fusion resin sheet. did.
The peel strength of the fused medium-density polyethylene strip-shaped sheet was measured in the same manner as in Example 2, and the peel strength was 12.7 k.
gf / cm was obtained.

【0038】(実施例4)実施例1のイソプロピルトリ
イソステアロイルチタネートの添加量0.5重量部を2
重量部に変更し、導電性のアニリン系重合体微粒子の添
加量20重量部を40重量部に変更したこと以外、実施
例1と同様にしてマイクロ波融着用樹脂組成物を作製し
た。実施例1と同様に、得られたマイクロ波融着用樹脂
組成物からマイクロ波融着用樹脂シートを作製し、該マ
イクロ波融着用樹脂シートを用いて中密度ポリエチレン
製短冊状シートを相互に融着した。上記融着された中密
度ポリエチレン製短冊状シートの剥離強度を実施例1と
同様に測定し、剥離強度10.5kgf/cmを得た。
(Example 4) 0.5 parts by weight of isopropyltriisostearoyl titanate of Example 1 was added to 2 parts.
A resin composition for microwave fusion was produced in the same manner as in Example 1 except that the amount of the conductive aniline-based polymer particles was changed to 20 parts by weight and the amount of conductive aniline-based polymer particles was changed to 40 parts by weight. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused medium-density polyethylene strip-shaped sheet was measured in the same manner as in Example 1 to obtain a peel strength of 10.5 kgf / cm.

【0039】(実施例5)実施例1のイソプロピルトリ
イソステアロイルチタネートに替え、ビス(ジオクチル
パイロホスフェート)オキシアセテートチタネート(味
の素社製)1重量部を用いたこと以外、実施例1と同様
にしてマイクロ波融着用樹脂組成物を作製した。実施例
1と同様に、得られたマイクロ波融着用樹脂組成物から
マイクロ波融着用樹脂シートを作製し、該マイクロ波融
着用樹脂シートを用いて中密度ポリエチレン製短冊状シ
ートを相互に融着した。上記融着された中密度ポリエチ
レン製短冊状シートの剥離強度を実施例1と同様に測定
し、剥離強度14.0kgf/cmを得た。
(Example 5) In the same manner as in Example 1 except that 1 part by weight of bis (dioctylpyrophosphate) oxyacetate titanate (manufactured by Ajinomoto Co.) was used instead of the isopropyltriisostearoyl titanate of Example 1. A resin composition for microwave fusion was prepared. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused medium-density polyethylene strip-shaped sheet was measured in the same manner as in Example 1 to obtain a peel strength of 14.0 kgf / cm.

【0040】(実施例6)実施例1のイソプロピルトリ
イソステアロイルチタネートに替え、イソプロピルトリ
クミルフェニルチタネート(味の素社製)1重量部を用
いたこと以外、実施例1と同様にしてマイクロ波融着用
樹脂組成物を作製した。実施例1と同様に、得られたマ
イクロ波融着用樹脂組成物からマイクロ波融着用樹脂シ
ートを作製し、該マイクロ波融着用樹脂シートを用いて
中密度ポリエチレン製短冊状シートを相互に融着した。
上記融着された中密度ポリエチレン製短冊状シートの剥
離強度を実施例1と同様に測定し、剥離強度14.8k
gf/cmを得た。
Example 6 Microwave fusion was carried out in the same manner as in Example 1 except that 1 part by weight of isopropyl tricumyl phenyl titanate (manufactured by Ajinomoto Co.) was used in place of the isopropyl triisostearoyl titanate of Example 1. A resin composition was prepared. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did.
The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1, and the peel strength was 14.8 k.
gf / cm was obtained.

【0041】(実施例7)実施例1のイソプロピルトリ
イソステアロイルチタネートに替え、アセトアルコキシ
アルミニウムジイソプロピレート(味の素社製)1重量
部を用いたこと以外、実施例1と同様にしてマイクロ波
融着用樹脂組成物を作製した。実施例1と同様に、得ら
れたマイクロ波融着用樹脂組成物からマイクロ波融着用
樹脂シートを作製し、該マイクロ波融着用樹脂シートを
用いて中密度ポリエチレン製短冊状シートを相互に融着
した。上記融着された中密度ポリエチレン製短冊状シー
トの剥離強度を実施例1と同様に測定し、剥離強度1
4.8kgf/cmを得た。
Example 7 Microwave melting was carried out in the same manner as in Example 1 except that 1 part by weight of acetoalkoxyaluminum diisopropylate (manufactured by Ajinomoto Co.) was used instead of isopropyltriisostearoyl titanate of Example 1. A wearing resin composition was prepared. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1, and the peel strength was 1
4.8 kgf / cm was obtained.

【0042】(実施例8)実施例7のアセトアルコキシ
アルミニウムジイソプロピレートの添加量1重量部を5
重量部に変更し、導電性のアニリン系重合体微粒子の添
加量20重量部を40重量部に変更したこと以外、実施
例7と同様にしてマイクロ波融着用樹脂組成物を作製し
た。実施例7と同様に、得られたマイクロ波融着用樹脂
組成物からマイクロ波融着用樹脂シートを作製し、該マ
イクロ波融着用樹脂シートを用いて中密度ポリエチレン
製短冊状シートを相互に融着した。上記融着された中密
度ポリエチレン製短冊状シートの剥離強度を実施例7と
同様に測定し、剥離強度13.2kgf/cmを得た。
(Example 8) The addition amount of acetoalkoxyaluminum diisopropylate of Example 7 was changed to 5 parts by weight.
A resin composition for microwave fusion was prepared in the same manner as in Example 7, except that the amount of conductive aniline-based polymer particles was changed to 20 parts by weight and the amount of conductive aniline-based polymer particles was changed to 40 parts by weight. In the same manner as in Example 7, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and medium-density polyethylene strip sheets were fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 7 to obtain a peel strength of 13.2 kgf / cm.

【0043】(実施例9)実施例3の中密度ポリエチレ
ン(三井石油化学社製、190℃、2.16kg、MF
R=0.2g/10min)100重量部に替えて、高
密度ポリエチレン(三井石油化学社製、190℃、2.
16kg、MFR=0.4g/10min)100重量
部を用いたこと以外、実施例3と同様にしてマイクロ波
融着用樹脂組成物を作製した。実施例3と同様に、得ら
れたマイクロ波融着用樹脂組成物からマイクロ波融着用
樹脂シートを作製し、該マイクロ波融着用樹脂シートを
用いて中密度ポリエチレン製短冊状シートを相互に融着
した。上記融着された中密度ポリエチレン製短冊状シー
トの剥離強度を実施例3と同様に測定し、剥離強度1
4.3kgf/cmを得た。
Example 9 Medium density polyethylene of Example 3 (manufactured by Mitsui Petrochemical Co., Ltd., 190 ° C., 2.16 kg, MF)
R = 0.2 g / 10 min) In place of 100 parts by weight, high density polyethylene (manufactured by Mitsui Petrochemical Co., 190 ° C., 2.
A resin composition for microwave fusion was prepared in the same manner as in Example 3 except that 100 parts by weight of 16 kg and MFR = 0.4 g / 10 min) was used. In the same manner as in Example 3, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and medium density polyethylene strip-shaped sheets were fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 3, and the peel strength was 1
4.3 kgf / cm was obtained.

【0044】(実施例10) (イソプロピルトリイソステアロイルチタネートで表面
処理された導電性のアニリン系重合体微粒子の調製)ス
ーパーミキサーを用い、導電性のアニリン系重合体微粒
子100重量部に対し、イソプロピルトリイソステアロ
イルチタネート0.5重量部を高速攪拌下に添加市、充
分攪拌した後、乾燥させて、イソプロピルトリイソステ
アロイルチタネートで表面処理された導電性のアニリン
系重合体微粒子を調製した。
(Example 10) (Preparation of conductive aniline-based polymer fine particles surface-treated with isopropyltriisostearoyl titanate) Using a super mixer, 100 parts by weight of conductive aniline-based polymer fine particles were mixed with isopropyl. 0.5 parts by weight of triisostearoyl titanate was added under high speed stirring, thoroughly stirred, and then dried to prepare conductive aniline-based polymer fine particles surface-treated with isopropyltriisostearoyl titanate.

【0045】実施例1の中密度ポリエチレン100重量
部及び上記イソプロピルトリイソステアロイルチタネー
トで表面処理された導電性のアニリン系重合体微粒子2
0重量部を実施例1と同様にしてマイクロ波融着用樹脂
組成物を作製した。実施例1と同様に、得られたマイク
ロ波融着用樹脂組成物からマイクロ波融着用樹脂シート
を作成し、該マイクロ波融着用樹脂シートを用いて中密
度ポリエチレン製短冊状シートを相互に融着した。上記
融着された中密度ポリエチレン製短冊状シートの剥離強
度を実施例1と同様に測定し、剥離強度18.6kgf
/cmを得た。
Conductive aniline polymer fine particles 2 surface-treated with 100 parts by weight of medium-density polyethylene of Example 1 and the above-mentioned isopropyltriisostearoyl titanate.
A resin composition for microwave fusion was prepared in the same manner as in Example 1 except that 0 part by weight was used. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused medium-density polyethylene strip-shaped sheet was measured in the same manner as in Example 1, and the peel strength was 18.6 kgf.
/ Cm was obtained.

【0046】(実施例11〜20)実施例1〜10のマ
イクロ波融着用樹脂組成物を用い、それぞれ内径34m
m、厚さ1mm、長さ30mmの円筒状成形体を作製し
た。上記円筒状成形体をそれぞれポリエチレン管継手
(ソケット)用インサート金型のコア部に装着した後、
実施例1で用いた中密度ポリエチレンを射出成形して、
ソケット受口(厚さ10mm、内径34mm)内面に上
記マイクロ波融着用樹脂組成物円筒状成形体がインサー
トされたポリエチレン管継手(ソケット)を作製した。
(Examples 11 to 20) The resin compositions for microwave fusion of Examples 1 to 10 were used and each had an inner diameter of 34 m.
A cylindrical molded body having m, a thickness of 1 mm and a length of 30 mm was produced. After mounting each of the above cylindrical molded bodies on the core part of the insert mold for polyethylene pipe joint (socket),
Injection molding the medium density polyethylene used in Example 1,
A polyethylene pipe joint (socket) was produced in which the cylindrical molded body of the resin composition for microwave fusion was inserted into the inner surface of the socket (thickness 10 mm, inner diameter 34 mm).

【0047】上記ポリエチレン管継手(ソケット)に、
外径34mm、厚さ4mmの実施例1で用いた中密度ポ
リエチレン製の管2本を接合し、マイクロ波(2.45
GHz、600W)を90秒間照射し、上記中密度ポリ
エチレン管を上記中密度ポリエチレン管継手(ソケッ
ト)で融着接合した。
In the polyethylene pipe joint (socket),
The two tubes of medium density polyethylene used in Example 1 having an outer diameter of 34 mm and a thickness of 4 mm were joined to each other by microwave (2.45 mm).
GHz, 600 W) for 90 seconds, and the medium density polyethylene pipe was fusion-bonded with the medium density polyethylene pipe joint (socket).

【0048】上記融着接合した中密度ポリエチレン管と
中密度ポリエチレン管継手(ソケット)の融着性能を評
価するため、熱間内圧試験(80℃、0.78MPa)
を行った。上記熱間内圧試験の結果、いずれの接合部も
1,000時間、水漏れ、破壊等の異常はなかった。
In order to evaluate the fusion performance of the fusion-bonded medium-density polyethylene pipe and medium-density polyethylene pipe joint (socket), a hot internal pressure test (80 ° C., 0.78 MPa)
Was done. As a result of the hot internal pressure test, no abnormality such as water leakage or breakage was observed in any of the joints for 1,000 hours.

【0049】(比較例1)実施例1のイソプロピルトリ
イソステアロイルチタネートを用いず、導電性のアニリ
ン系重合体微粒子の添加量20重量部を60重量部に変
更したこと以外、実施例1と同様にしてマイクロ波融着
用樹脂組成物を作製した。実施例1と同様に、得られた
マイクロ波融着用樹脂組成物からマイクロ波融着用樹脂
シートを作製し、該マイクロ波融着用樹脂シートを用い
て中密度ポリエチレン製短冊状シートを相互に融着し
た。上記融着された中密度ポリエチレン製短冊状シート
の剥離強度を実施例1と同様に測定し、剥離強度6.4
kgf/cmを得た。
Comparative Example 1 The same as Example 1 except that the isopropyl triisostearoyl titanate of Example 1 was not used and the addition amount of the conductive aniline polymer fine particles was changed to 20 parts by weight to 60 parts by weight. Then, a resin composition for microwave fusion was prepared. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused medium-strength polyethylene strip sheet was measured in the same manner as in Example 1, and the peel strength was 6.4.
kgf / cm was obtained.

【0050】(比較例2)実施例1のイソプロピルトリ
イソステアロイルチタネートの添加量0.5重量部を3
重量部に変更し、導電性のアニリン系重合体微粒子の添
加量20重量部を150重量部に変更したこと以外、実
施例1と同様にしてマイクロ波融着用樹脂組成物を作製
した。実施例1と同様に、得られたマイクロ波融着用樹
脂組成物からマイクロ波融着用樹脂シートを作製し、該
マイクロ波融着用樹脂シートを用いて中密度ポリエチレ
ン製短冊状シートを相互に融着した。上記融着された中
密度ポリエチレン製短冊状シートの剥離強度を実施例1
と同様に測定し、剥離強度2.4kgf/cmを得た。
(Comparative Example 2) 0.5 part by weight of the isopropyltriisostearoyl titanate of Example 1 was added to 3 parts.
A resin composition for microwave fusion was prepared in the same manner as in Example 1 except that the amount of the conductive aniline-based polymer particles was changed to 20 parts by weight and the amount of conductive aniline-based polymer particles was changed to 150 parts by weight. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused and fused medium-density polyethylene strip-shaped sheet was measured in Example 1.
The peel strength was 2.4 kgf / cm.

【0051】(比較例3)実施例2の導電性のアニリン
系重合体微粒子の添加量20重量部を3重量部に変更し
たこと以外、実施例2と同様にしてマイクロ波融着用樹
脂組成物を作製した。実施例1と同様に、得られたマイ
クロ波融着用樹脂組成物からマイクロ波融着用樹脂シー
トを作製し、該マイクロ波融着用樹脂シートを用いて中
密度ポリエチレン製短冊状シートを相互に融着しようと
したが、発熱が充分でなく融着しなかった。
(Comparative Example 3) A resin composition for microwave fusion was prepared in the same manner as in Example 2 except that the addition amount of the conductive aniline polymer fine particles of Example 2 was changed to 20 parts by weight. Was produced. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. I tried to do this, but the heat was not enough and the fusion did not occur.

【0052】(比較例4)実施例1のイソプロピルトリ
イソステアロイルチタネートの添加量0.5重量部を2
5重量部に変更し、導電性のアニリン系重合体微粒子の
添加量20重量部を60重量部に変更したこと以外、実
施例1と同様にしてマイクロ波融着用樹脂組成物を作製
した。実施例1と同様に、得られたマイクロ波融着用樹
脂組成物からマイクロ波融着用樹脂シートを作製し、該
マイクロ波融着用樹脂シートを用いて中密度ポリエチレ
ン製短冊状シートを相互に融着した。上記融着された中
密度ポリエチレン製短冊状シートの剥離強度を実施例1
と同様に測定し、剥離強度2.8kgf/cmを得た。
(Comparative Example 4) 0.5 parts by weight of isopropyltriisostearoyl titanate of Example 1 was added to 2 parts.
A resin composition for microwave fusion was prepared in the same manner as in Example 1 except that the amount was changed to 5 parts by weight and the amount of conductive aniline-based polymer particles added was changed to 20 parts by weight from 60 parts by weight. In the same manner as in Example 1, a microwave fusion resin sheet was prepared from the obtained microwave fusion resin composition, and a medium-density polyethylene strip sheet was fused to each other using the microwave fusion resin sheet. did. The peel strength of the fused and fused medium-density polyethylene strip-shaped sheet was measured in Example 1.
The peel strength was 2.8 kgf / cm.

【0053】上記実施例1〜10及び比較例1〜4の評
価結果を、表1に示す。猶、表中、中密度ポリエチレン
をMDPEと、高密度ポリエチレンをHDPEと、導電
性のアニリン系重合体微粒子をポリアニリンと略称し
た。又、使用したカップリング剤の種類を下記の番号で
表1に記入した。
Table 1 shows the evaluation results of the above Examples 1 to 10 and Comparative Examples 1 to 4. In the table, medium density polyethylene is abbreviated as MDPE, high density polyethylene is abbreviated as HDPE, and conductive aniline-based polymer particles are abbreviated as polyaniline. Also, the type of coupling agent used is shown in Table 1 with the following numbers.

【0054】カップリング剤:イソプロピルトリイソ
ステアロイルチタネート カップリング剤:ビス(ジオクチルパイロホスフェー
ト)オキシアセテートチタネート カップリング剤:イソプロピルトリクミルフェニルチ
タネート カップリング剤:アセトアルコキシアルミニウムジイ
ソプロピレート
Coupling agent: isopropyl triisostearoyl titanate Coupling agent: bis (dioctyl pyrophosphate) oxyacetate titanate Coupling agent: isopropyl tricumyl phenyl titanate Coupling agent: acetoalkoxyaluminum diisopropylate

【0055】又、予めイソプロピルトリイソステアロイ
ルチタネートで表面処理された導電性のアニリン系重合
体微粒子は、処理ポリアニリンと略称した。
Further, the conductive aniline polymer fine particles which have been surface-treated with isopropyltriisostearoyl titanate in advance are abbreviated as treated polyaniline.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【本発明の効果】請求項1記載の本発明のマイクロ波融
着用樹脂組成物は、叙上の如く構成されているので、熱
可塑性樹脂中に導電性のアニリン系重合体微粒子が微細
に分散されており、該マイクロ波融着用樹脂組成物から
得られる接合用成形体は、マイクロ波を照射して誘電加
熱すると被接合熱可塑性樹脂成形体の溶融温度に均一且
つ効率的に昇温し、部分的な過熱による熱可塑性樹脂の
劣化もなく被接合熱可塑性樹脂成形体を融着する。更
に、上記熱可塑性樹脂成形体の融着部分の熱可塑性樹脂
と導電性のアニリン系重合体微粒子の界面における密着
状態は強固であるので、優れた融着強度が得られる。
EFFECT OF THE INVENTION Since the resin composition for microwave fusion of the present invention according to claim 1 is constituted as described above, the conductive aniline polymer fine particles are finely dispersed in the thermoplastic resin. The molded article for bonding obtained from the resin composition for microwave fusion is heated uniformly and efficiently to the melting temperature of the thermoplastic resin molded article to be bonded when dielectric heating is performed by irradiating microwaves, The thermoplastic resin molding to be joined is fused without deterioration of the thermoplastic resin due to partial overheating. Furthermore, since the adhered state at the interface between the thermoplastic resin and the conductive aniline-based polymer particles in the fused portion of the thermoplastic resin molded product is strong, excellent fusion strength can be obtained.

【0058】請求項2記載の本発明のマイクロ波融着用
樹脂組成物は、叙上の如く構成されているので、熱可塑
性樹脂中に導電性のアニリン系重合体微粒子が微細に分
散された極性の強い導電性のアニリン系重合体微粒子表
面の性質が被接合熱可塑性樹脂成形体の接合面の性質に
極めて近づいており、該マイクロ波融着用樹脂組成物か
ら得られる接合用成形体は、マイクロ波を照射して誘電
加熱すると被接合熱可塑性樹脂成形体の溶融温度に均一
且つ効率的に昇温し、部分的な過熱による熱可塑性樹脂
の劣化もなく被接合熱可塑性樹脂成形体を融着する。更
に、上記熱可塑性樹脂成形体の融着部分の熱可塑性樹脂
と導電性のアニリン系重合体微粒子の界面における密着
状態は強固であるので、より優れた融着強度が得られ
る。
Since the microwave fusion resin composition of the present invention according to claim 2 is constructed as described above, it is a polar composition in which conductive aniline polymer fine particles are finely dispersed in a thermoplastic resin. The property of the surface of the electrically conductive aniline-based polymer fine particles having high strength is extremely close to the property of the bonding surface of the thermoplastic resin molded product to be bonded, and the molded product for bonding obtained from the microwave fusion resin composition is When waves are applied and dielectric heating is performed, the melting temperature of the thermoplastic resin molding to be joined is raised uniformly and efficiently, and the thermoplastic resin molding to be joined is fused without deterioration of the thermoplastic resin due to partial overheating. To do. Furthermore, since the adhesion state at the interface between the thermoplastic resin and the conductive aniline-based polymer fine particles in the fusion-bonded portion of the thermoplastic resin molding is strong, more excellent fusion-bonding strength can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂100重量部、導電性のア
ニリン系重合体微粒子5〜100重量部並びにチタネー
ト系カップリング剤及び/又はアルミニウム系カップリ
ング剤0.01〜20重量部からなることを特徴とする
マイクロ波融着用樹脂組成物。
1. A thermoplastic resin of 100 parts by weight, conductive aniline polymer fine particles of 5 to 100 parts by weight, and a titanate coupling agent and / or an aluminum coupling agent of 0.01 to 20 parts by weight. A characteristic resin composition for microwave fusion.
【請求項2】 熱可塑性樹脂100重量部と、導電性の
アニリン系重合体微粒子100重量部に対し、予めチタ
ネート系カップリング剤及び/又はアルミニウム系カッ
プリング剤0.01〜10重量部で表面処理されている
導電性のアニリン系重合体微粒子5〜100重量部とか
らなることを特徴とするマイクロ波融着用樹脂組成物。
2. A surface of a thermoplastic resin and 0.01 to 10 parts by weight of a titanate-based coupling agent and / or an aluminum-based coupling agent based on 100 parts by weight of conductive aniline-based polymer particles. A resin composition for microwave fusion, which comprises 5 to 100 parts by weight of conductive aniline-based polymer particles that have been treated.
JP7287325A 1995-11-06 1995-11-06 Resin composition for microwave fusion Pending JPH09124953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7287325A JPH09124953A (en) 1995-11-06 1995-11-06 Resin composition for microwave fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7287325A JPH09124953A (en) 1995-11-06 1995-11-06 Resin composition for microwave fusion

Publications (1)

Publication Number Publication Date
JPH09124953A true JPH09124953A (en) 1997-05-13

Family

ID=17715908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7287325A Pending JPH09124953A (en) 1995-11-06 1995-11-06 Resin composition for microwave fusion

Country Status (1)

Country Link
JP (1) JPH09124953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138642A (en) * 1997-11-12 1999-05-25 Denki Kagaku Kogyo Kk Resin frame assembly and assembling method thereof
JP2012084438A (en) * 2010-10-13 2012-04-26 Aisin Chemical Co Ltd Microwave heating element and welding method thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138642A (en) * 1997-11-12 1999-05-25 Denki Kagaku Kogyo Kk Resin frame assembly and assembling method thereof
JP2012084438A (en) * 2010-10-13 2012-04-26 Aisin Chemical Co Ltd Microwave heating element and welding method thereby

Similar Documents

Publication Publication Date Title
US6403889B1 (en) Bi-layer covering sheath
US20060099368A1 (en) Fuel hose with a fluoropolymer inner layer
EP0507855A1 (en) Laminated structures containing adhesive, rf-heatable grafted polymers and blends
JPH09124953A (en) Resin composition for microwave fusion
JPH0664929B2 (en) Electrical device
JPH08239631A (en) Resin sheet for microwave welding, resin composition for microwave welding, and method of welding therewith
JPH09208755A (en) Resin composition for melt adhesion
JP2009114267A (en) Liquid resin additive, olefinic resin insulated power cable for direct current power transmission using it, and manufacturing method of resin composition for molding insulator of olefinic resin insulated power cable joint part for direct current power transmission
JP7223553B2 (en) High-frequency dielectric heating adhesive sheet, pipe joining method, and pipe joint
WO2002009123A1 (en) Insulated power cable
JPH09187876A (en) Resin joint for microwave fusion and fusing method
JPH0967461A (en) Resin composition for fusing with microwave
JPH09241508A (en) Microwave-weldable resin composition
JPH08336898A (en) Method for connecting thermoplastic resin tube
JPH0873753A (en) Resin composition for fusion with microwave and joint fused with microwave
JPH09241599A (en) Resin composition for microwave welding
JP2016035327A (en) Electrofusion joint and method for producing the same
JPH09241588A (en) Resin composition for microwave welding and method for jointing pipes therewith
JPH09241507A (en) Microwave-weldable resin composition
JPH08259746A (en) Microwave-weldable resin composition
JPH0953017A (en) Resin composition for microwave welding and its production
JP2842914B2 (en) Bonding method of polyolefin resin molding
JP3408623B2 (en) Forming method of conductive sheet
JPH031144B2 (en)
JPH06270233A (en) Production of extrusion molded product