JPH09239796A - Production of plastic molded product - Google Patents

Production of plastic molded product

Info

Publication number
JPH09239796A
JPH09239796A JP5585296A JP5585296A JPH09239796A JP H09239796 A JPH09239796 A JP H09239796A JP 5585296 A JP5585296 A JP 5585296A JP 5585296 A JP5585296 A JP 5585296A JP H09239796 A JPH09239796 A JP H09239796A
Authority
JP
Japan
Prior art keywords
resin
temperature
base material
molding
mold cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5585296A
Other languages
Japanese (ja)
Other versions
JP3526124B2 (en
Inventor
Hisaaki Oseko
久秋 小瀬古
Toshiharu Hatakeyama
寿治 畠山
Akio Hirano
彰士 平野
Jun Watabe
順 渡部
Kiyotaka Sawada
清孝 沢田
Hidenobu Kishi
秀信 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP05585296A priority Critical patent/JP3526124B2/en
Publication of JPH09239796A publication Critical patent/JPH09239796A/en
Application granted granted Critical
Publication of JP3526124B2 publication Critical patent/JP3526124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly accurate molded product by using a crystalline resin. SOLUTION: A crystalline thermoplastic resin (polypropylene in a drawing) is molded into an almost final shape at load bending temp. (H.D.T) of 60 deg.C on a basis of a wt. determined so that the resin pressure in a mold cavity becomes atmospheric pressure. This molding matrix is inserted into the mold cavity having a transfer surface and heated to temp. of 160 deg.C (B-point) equal to or higher than thermal deformation temp. (A-point) but equal to or lower than melt temp. Tm(o) to be thermally expanded. The transfer surface is transferred to the resin in the mold cavity by the resin inner pressure caused by this thermal expansion. Thereafter, the molded matrix is gradually cooled to temp. equal to or lower than H.D.T (60 deg.C) through a route of (B→C) and taken out as a molded product in a state near to almost atmospheric pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック成形
品の製造方法に関し、より詳細には、結晶性の熱可塑性
樹脂を用いてひけ等のない高精度な成形品を作る製造方
法であり、複写機,ファクシミリ,レーザープリンタ等
の事務機や、カメラ,ビデオカメラ,ビデオプロジェク
タ等の精密機器、あるいは、コンパクトディスク,CD
−ROM等の情報機器に好適に応用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a plastic molded article, and more particularly to a method for producing a highly accurate molded article without a sink mark by using a crystalline thermoplastic resin. Office machines such as machines, facsimiles, laser printers, precision equipment such as cameras, video cameras, video projectors, compact discs and CDs
-It is preferably applied to information equipment such as ROM.

【0002】[0002]

【従来の技術】ポリエチレン,ポリプロピレン,ナイロ
ン,ポリブチレンテレフタレート等の結晶性の熱可塑性
樹脂(以後、結晶性樹脂と呼ぶ)を用いた成形品は、主
に、射出成形法によって成形される。しかし、これら結
晶性樹脂を用いた成形品は、ひけが発生し、更に成形さ
れた結晶性樹脂は、成形直後から結晶化による寸法変化
が生じ、しかも寸法変化が著しいため、高精度な部品に
は用いられないのが現状である。
2. Description of the Related Art Molded articles using a crystalline thermoplastic resin (hereinafter referred to as a crystalline resin) such as polyethylene, polypropylene, nylon, polybutylene terephthalate are mainly formed by injection molding. However, molded products using these crystalline resins have sink marks, and the molded crystalline resins undergo dimensional change due to crystallization immediately after molding, and moreover, the dimensional changes are remarkable, making them highly accurate parts. Is currently not used.

【0003】これを解決するために、結晶性樹脂に無機
充填材や強化材等が充填された複合材料を用いて、収縮
率を低下させるとともに変形量を低下させることが試み
られている。しかし、これら複合材料を用いた成形品
は、高精度といえる程のひけ等のないものとすることが
できず、現状では、このような課題を解決するには至っ
ていない。
In order to solve this, it has been attempted to use a composite material in which a crystalline resin is filled with an inorganic filler or a reinforcing material to reduce the shrinkage rate and the deformation amount. However, molded articles using these composite materials cannot be made to have a high degree of precision without sink marks, and at present, such problems have not been solved.

【0004】一方、ポリメチルメタクリレート,ポリス
チレン,ポリカーボネイト,アクリロニトリルースチレ
ンのような非晶性の熱可塑性樹脂(以後、非晶性樹脂と
呼ぶ)は、結晶化が生じないか、生じたとしても非常に
僅かなため、成形品の寸法安定性が良く、高精度部品に
多用されている。この非晶性樹脂は、該非晶性樹脂のガ
ラス転位温度が荷重たわみ温度よりも高いのが特徴であ
り、この特徴を生かして、ガラス転位温度以上の温度で
非晶性樹脂が軟化した状態から冷却してくる高精度成形
方法が知られており、この成形方法として、特開昭61
−19327号,特公平3−33494号,特公平5−
73570号の各公報に開示されている。
On the other hand, an amorphous thermoplastic resin such as polymethylmethacrylate, polystyrene, polycarbonate, acrylonitrile-styrene (hereinafter referred to as an amorphous resin) does not crystallize, or even if it crystallizes, it is very difficult. Since it is very small, the dimensional stability of the molded product is good and it is widely used for high precision parts. This amorphous resin is characterized in that the glass transition temperature of the amorphous resin is higher than the deflection temperature under load. Taking advantage of this characteristic, the amorphous resin is softened at a temperature higher than the glass transition temperature. A high-precision molding method for cooling is known.
-19327, Japanese Examined Patent Publication 3-33494, Japanese Examined Fair 5-
No. 73570.

【0005】特開昭61−19327号公報に記載の射
出圧縮成形方法は、ポリメチルメタクリレート,ポリス
チレン、あるいはポリカーボネイト樹脂等の非晶性樹脂
を用いて光学レンズ等の高精密成形品を射出圧縮成形法
により成形する成形方法であり、樹脂溶融温度に加熱さ
れ注入された金型キャビティ内の樹脂を、軟化温度域で
一旦温度分布を均一化した後、樹脂の軟化温度域を脱す
る荷重たわみ温度まで徐冷することにより、冷却に伴う
樹脂の温度不均一の発生を最小限にとどめながら樹脂を
冷却する方法である。
The injection compression molding method described in Japanese Patent Laid-Open No. 61-19327 discloses a high precision molding product such as an optical lens which is injection-compression molded using an amorphous resin such as polymethylmethacrylate, polystyrene or polycarbonate resin. This is a molding method in which the resin in the mold cavity that is heated to the resin melting temperature and injected is made to have a uniform temperature distribution in the softening temperature range, and then the deflection temperature under load to remove the resin from the softening temperature range. It is a method of cooling the resin while minimizing the occurrence of temperature nonuniformity of the resin due to cooling by gradually cooling the resin.

【0006】特公平3−33494号公報に記載の厚肉
樹脂成形方法は、ポリメチルメタクリレート等の非晶性
樹脂を用いてペンタプリズム等の超肉厚の成形品を高精
度に成形する方法に関するもので、金型キャビティに充
填された前記樹脂を溶融温度付近まで加熱して内部歪を
取り除き、ガラス転移温度に急冷してガラス転移温度付
近から加熱しながら徐冷する方法である。
The thick resin molding method disclosed in Japanese Examined Patent Publication No. 3-33494 relates to a method for molding a super thick molded product such as a penta prism with high accuracy using an amorphous resin such as polymethylmethacrylate. In this method, the resin filled in the mold cavity is heated to near the melting temperature to remove the internal strain, rapidly cooled to the glass transition temperature, and gradually cooled while heating from the glass transition temperature.

【0007】特公平5−73570号公報に記載の射出
成形方法は、ポリメチルメタクリレート等の非晶性樹脂
を用いてレンズ等の光学製品を成形する方法に関するも
ので、前記非晶性樹脂のガラス転位温度以上の温度に予
め昇温された金型キャビティに該樹脂を注入充填後、金
型温度を該樹脂のガラス転移点温度以下に徐冷しつつ下
降させてキャビティ内の成形材料を硬化させる成形方法
である。
The injection molding method described in JP-B-5-73570 relates to a method for molding an optical product such as a lens by using an amorphous resin such as polymethylmethacrylate. The glass of the amorphous resin is used. After injecting and filling the resin into a mold cavity that has been preheated to a temperature not lower than the transition temperature, the mold temperature is gradually lowered to a temperature not higher than the glass transition temperature of the resin and lowered to cure the molding material in the cavity. It is a molding method.

【0008】非晶性樹脂は、結晶化が生じないか、生じ
たとしても非常に僅かであり、且つ、ガラス転位温度よ
りも荷重たわみ温度は低いので、上述した従来技術にお
いては、ガラス転移温度以上の軟化状態から冷却するこ
とにより、高精度成形品が得られる。これに対し、結晶
性樹脂は、結晶化による寸法変化が大きく、無機充填材
や強化材等を充填した複合材料としても、高精度成形品
が得られない。結晶性樹脂を用いて高精度成形品を得る
ためには、結晶化による比容積変化が生ずる温度を通過
しない成形方法を適用することであり、この方法とし
て、本発明者が提案した特開平4−163119号公報
がある。
Amorphous resins have little or no crystallization even if they occur, and have a lower deflection temperature under load than the glass transition temperature. By cooling from the above softened state, a high precision molded product can be obtained. On the other hand, a crystalline resin has a large dimensional change due to crystallization, and a highly accurate molded product cannot be obtained even as a composite material filled with an inorganic filler or a reinforcing material. In order to obtain a highly accurate molded product using a crystalline resin, a molding method that does not pass through a temperature at which a specific volume change due to crystallization occurs is applied. As this method, Japanese Patent Laid-Open No. There is a publication of 163119.

【0009】特開平4−163119号公報に記載され
たプラスチック成形品の製造方法は、流動温度に加熱し
た樹脂を熱変形温度以下の温度の金型内に注入充填後、
金型温度を樹脂温度がガラス転移温度以上になるように
加熱して、この温度を所定時間保持して、熱変形温度以
下になるまで徐冷する方法である。
The method for producing a plastic molded article described in Japanese Patent Laid-Open No. 4-163119 discloses a method in which a resin heated to a flow temperature is injected and filled into a mold at a temperature not higher than a heat deformation temperature.
This is a method in which the mold temperature is heated so that the resin temperature becomes equal to or higher than the glass transition temperature, the temperature is maintained for a predetermined time, and the temperature is gradually cooled to the heat deformation temperature or lower.

【0010】[0010]

【発明が解決しようとする課題】射出成形法で結晶化に
より収縮率の大きな結晶性樹脂を用いて樹脂成形したと
き、高精密な成形品が得られないのが現状であるのに対
し、殆ど結晶化しない非晶性樹脂では、高精度な成形品
の成形が可能である。この原因は、当然ながら結晶性樹
脂を用いて射出成形する場合、樹脂の結晶化に伴う著し
い比容積減少が高精度化を妨げているためである。従っ
て、著しい比容積減少の過程を通らない成形方法を見い
だせば、この結晶樹脂による成形品の高精度化が可能と
なる。
However, when resin molding is performed using a crystalline resin having a large shrinkage rate due to crystallization by the injection molding method, a high precision molded product cannot be obtained at present. An amorphous resin that does not crystallize enables highly accurate molding of a molded product. The reason for this is, of course, when injection molding is performed using a crystalline resin, a remarkable decrease in specific volume due to crystallization of the resin hinders high precision. Therefore, if a molding method that does not go through the process of significantly reducing the specific volume is found, it is possible to improve the accuracy of the molded product made of this crystalline resin.

【0011】このためには、高温側から溶融した樹脂を
高圧充填するのではなく、特開平4−163119号公
報に記載されたプラスチック成形品の製造方法のよう
に、低温側から樹脂の比容積変化が急激に生じる温度以
下で、且つ形状変形が容易にできる温度まで加熱してや
ればよい。この方法については、前記特開平4−163
119号公報により、非晶性樹脂では既に公知となって
いるが、結晶性の樹脂については具体的に記述されてい
ない。
For this purpose, rather than high-pressure filling of the molten resin from the high temperature side, the specific volume of the resin from the low temperature side is changed from the low temperature side as in the method for producing a plastic molded article described in JP-A-4-163119. It may be heated to a temperature at which the change abruptly occurs or less and at which the shape can be easily deformed. This method is described in the above-mentioned JP-A-4-163.
Although the amorphous resin has already been known from Japanese Patent No. 119, the crystalline resin is not specifically described.

【0012】本発明は、射出成形工程において、結晶化
により比容積変化を生じさせる温度を通過する工程をな
くして、結晶性樹脂を用いて高精度な成形品を得ること
を目的とする。
It is an object of the present invention to obtain a highly accurate molded product using a crystalline resin by eliminating the step of passing a temperature which causes a change in specific volume due to crystallization in the injection molding process.

【0013】[0013]

【課題を解決するための手段】請求項1の発明は、結晶
性の熱可塑性樹脂からなる一定重量で略最終形状の結晶
化した成形母材を成形し、該成形母材を少くとも一つの
転写面を有する金型キャビティに挿入後型締めし、該成
形母材を構成する前記熱可塑性樹脂の荷重たわみ温度以
上で溶融温度未満の温度まで加熱し、前記金型キャビテ
ィ容積一定の条件下で、該熱可塑性樹脂の熱膨張と結晶
化度低下による膨張によって前記転写面の法線方向に発
生する樹脂内圧を利用し転写面に密着させた後、冷却し
て該熱塑性樹脂の荷重たわみ温度以下の温度で該成形母
材を金型キャビティから取り出し、前記転写面を有する
成形品を得るようにするものである。
According to a first aspect of the present invention, a crystallized molded base material having a substantially final shape is molded from a crystalline thermoplastic resin with a constant weight, and the molded base material is at least one. After inserting into a mold cavity having a transfer surface, the mold is clamped, and the thermoplastic resin constituting the molding base material is heated to a temperature not lower than a deflection temperature under load and lower than a melting temperature, and the mold cavity volume is constant. , The temperature below the deflection temperature under load of the thermoplastic resin by using the internal pressure of the resin generated in the normal direction of the transfer surface due to the thermal expansion of the thermoplastic resin and the expansion due to the decrease in the crystallinity to bring it into close contact with the transfer surface, followed by cooling. The molded base material is taken out from the mold cavity at the temperature of 1 to obtain a molded product having the transfer surface.

【0014】請求項2の発明は、請求項1に記載の高精
度成形品の製造方法において、前記成形母材を該成形母
材樹脂の荷重たわみ温度以上で溶融温度未満の温度まで
加熱した後、前記金型キャビティ容積を小さくして圧縮
変形させ、かつ、一定の樹脂内圧を発生させたのち、該
金型キャビティ容積を一定にしたものである。
According to a second aspect of the present invention, in the method for producing a high-precision molded article according to the first aspect, after heating the molding base material to a temperature not lower than the deflection temperature under load of the molding base resin and lower than the melting temperature, The mold cavity volume is reduced, the mold cavity is compressed and deformed, and a constant resin internal pressure is generated, and then the mold cavity volume is made constant.

【0015】請求項3の発明は、請求項1に記載の高精
度成形品の製造方法において、前記成形母材の加熱温度
を、加熱による該成形母材の結晶化度の低下率が50%
以下になる温度範囲とするものである。
According to a third aspect of the present invention, in the method for producing a high precision molded product according to the first aspect, the heating temperature of the molding base material is such that the rate of decrease in crystallinity of the molding base material is 50%.
The temperature range is as follows.

【0016】請求項4の発明は、請求項1に記載の高精
度成形品の製造方法において、前記成形母材の重量を、
該成形母材を冷却し荷重たわみ温度通過時の樹脂内圧が
大気圧〜10MPaの圧力範囲となるように調整するもの
である。
According to a fourth aspect of the present invention, in the method for producing a high precision molded product according to the first aspect, the weight of the molding base material is
The molding base material is cooled and adjusted so that the resin internal pressure when passing through the deflection temperature under load falls within the pressure range of atmospheric pressure to 10 MPa.

【0017】請求項5の発明は、請求項1に記載の高精
度成形品の製造方法において、前記成形母材を、前もっ
てアニール処理して該成形母材の結晶化度を高めるよう
にするものである。
According to a fifth aspect of the present invention, in the method for producing a high precision molded product according to the first aspect, the molding base material is annealed in advance to increase the crystallinity of the molding base material. Is.

【0018】請求項6の発明は、請求項1に記載の高精
度成形品の製造方法において、前記結晶性の熱可塑性樹
脂として、該結晶性の熱可塑性樹脂に無機充填材,強化
材等が充填された複合材料を用いるものである。
According to a sixth aspect of the present invention, in the method for producing a high precision molded article according to the first aspect, as the crystalline thermoplastic resin, an inorganic filler, a reinforcing material or the like is added to the crystalline thermoplastic resin. It uses a filled composite material.

【0019】請求項7の発明は、請求項1に記載の高精
度成形品の製造方法において、前記金型キャビティの転
写面を鏡面として、レンズ,ミラー,プリズム等の光学
部品に応用するものである。
According to a seventh aspect of the present invention, in the method for producing a high precision molded product according to the first aspect, the transfer surface of the mold cavity is used as a mirror surface and is applied to an optical component such as a lens, a mirror or a prism. is there.

【0020】請求項8の発明は、請求項1に記載の高精
度成形品の製造方法において、前記金型キャビティの転
写面として、フレネルレンズ,ディスク,回折格子等の
微細加工部品に応用するものである。
The invention of claim 8 is the method of manufacturing a high precision molded product according to claim 1, which is applied to a microfabricated component such as a Fresnel lens, a disk, a diffraction grating, etc. as a transfer surface of the mold cavity. Is.

【0021】請求項9の発明は、請求項1に記載の高精
度成形品の製造方法において、前記結晶性の熱可塑樹脂
に、結晶化を促進するための結晶核剤を配合するもので
ある。
According to a ninth aspect of the present invention, in the method for producing a high precision molded article according to the first aspect, the crystalline thermoplastic resin is mixed with a crystal nucleating agent for promoting crystallization. .

【0022】[0022]

【発明の実施の形態】本発明による結晶性樹脂の高精度
成形品の製造方法は、本出願人が非晶性樹脂の高精度形
成方法を鋭意研究する過程で見出したもので、まず、従
来の成形方法をとりあげ、非晶性樹脂および結晶性樹脂
を成形した場合について説明する。図1は、非晶性樹脂
ポリカーボネイトのp-v-T線図を用いた、従来の高精
度成形方法の例を説明するための図で、圧力pは(MP
a)、比容積vは(cm3/g)、温度Tは(℃)であり、図
中、Tgoは大気圧下でのガラス転位温度(148℃)、
H.D.Tは荷重たわみ温度(℃)である。図1に示した
非晶性樹脂ポリカーボネイトのp-v-T線図において、
高精度な成形品を得るための非晶性樹脂の成形過程は、
図1に示すA-B-C-Dの経路をたどる。280℃に加
熱された高温の溶融非晶性樹脂を130MPaの樹脂内圧
で充填し(A−Bの経路)、ガラス転移温度148℃以
上の温度170℃に保たれた金型キャビティと同じ温度
になるまで冷却し均一な温度にして(B−Cの経路)、
温度が均一化された状態で冷却して、樹脂の荷重たわみ
温度(H.D.T:135℃)以下の130℃で成形品を
取り出している(C−Dの経路)。樹脂の荷重たわみ温
度以下で樹脂内圧がほぼゼロとなる充填圧力が必要とな
るが、この充填圧力は、100〜160MPaであり、通
常の射出成形機の能力で充分である。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a high-precision molded product of a crystalline resin according to the present invention was found by the present applicant in the process of earnestly researching a high-precision forming method for an amorphous resin. The molding method will be described and the case of molding an amorphous resin and a crystalline resin will be described. FIG. 1 is a diagram for explaining an example of a conventional high-precision molding method using a p-v-T diagram of an amorphous resin polycarbonate, where the pressure p is (MP
a), the specific volume v is (cm 3 / g), the temperature T is (° C.), Tgo is the glass transition temperature under atmospheric pressure (148 ° C.),
HDT is the deflection temperature under load (° C). In the pvt diagram of the amorphous resin polycarbonate shown in FIG.
The amorphous resin molding process to obtain highly accurate molded products is
Follow the path ABCD shown in FIG. A high temperature molten amorphous resin heated to 280 ° C. was filled with a resin internal pressure of 130 MPa (path A-B), and the temperature was the same as that of the mold cavity kept at a glass transition temperature of 148 ° C. or higher at 170 ° C. Until it becomes uniform temperature (B-C route),
The molded product is taken out at 130 ° C., which is lower than the deflection temperature under load (HDT: 135 ° C.) of the resin by cooling in a state where the temperature is made uniform (C-D route). A filling pressure is required so that the internal pressure of the resin becomes almost zero at the temperature below the deflection temperature under load of the resin. The filling pressure is 100 to 160 MPa, and the capacity of a normal injection molding machine is sufficient.

【0023】図2は、結晶性樹脂ポリプロピレンのp-
v-T線図を用いた、従来の成形法の例を説明するため
の図であり、p,v,Tは、図1の場合と同じ単位を用い
ている。図2に示した結晶性樹脂ポリプロピレンのp-
v-T線図において、ポリプロピレン樹脂の溶融温度2
30℃で、樹脂内圧が160MPaと、図1に示した樹脂
内圧以上の充填圧力を発生させた場合、図1の場合と同
様にA-B-C-Dの経路をたどる。ところが、樹脂圧力
ゼロの線と交わるD点の温度はほぼ140℃であり、樹
脂の荷重たわみ温度(H.D.T:66℃)以上である。
この温度で樹脂内圧がゼロとなることは、この温度以下
でキャビティ内に大気圧以下、すなわち負圧が発生する
ことを意味し、樹脂の変形が可能なことから、ひけが生
じてしまうのである。従って、非晶性樹脂で高精度成形
法といわれる射出成形法を結晶性樹脂に適用しても、高
精度なものは得られないのである。すなわち、結晶性樹
脂が寸法精度の悪いのは、従来の射出成形法では、射出
充填直後からの冷却と結晶化による収縮、及び成形後の
結晶化の進行により寸法変化が原因しているためであ
る。従って、上記した収縮と寸法変化の両者を解決すれ
ばよいわけだが、後者の寸法変化は、金型温度を高くし
て金型内で結晶化を完結させてやればよいが、前者の収
縮は、従来の射出成形法では基本的に解決できない。す
なわち、結晶性樹脂は、溶融温度以下で急激に比容積変
化をもたらす結晶化が生じるため、金型キャビティ内の
樹脂内圧が負圧といわれる大気圧以下の状態になってし
まい、金型外から内部に空気が流入してひけが生ずるの
である。このように、この結晶化に伴う比容積変化が結
晶性樹脂の高精度化を妨げているのである。従って、比
容積変化をもたらす状態変化温度を通過しない成形法を
見出せば、この結晶性樹脂の高精度化が可能となる。す
なわち、高温側から溶融した結晶性樹脂を高圧充填する
のではなく、略最終形状に成形された成形母材を金型キ
ャビティ内に挿入型締めし、低温側から比容積変化が急
激に生じる温度以下の温度で形状変化が容易にできる温
度まで加熱してやればよい。
FIG. 2 shows p- of crystalline resin polypropylene.
It is a figure for demonstrating the example of the conventional shaping | molding method using a v-T diagram, and p, v, and T are using the same unit as the case of FIG. P- of the crystalline resin polypropylene shown in FIG.
In the v-T diagram, the melting temperature of polypropylene resin is 2
At 30 ° C., the resin internal pressure is 160 MPa, and when a filling pressure equal to or higher than the resin internal pressure shown in FIG. 1 is generated, the path of ABCD is traced as in the case of FIG. However, the temperature at point D, which intersects with the line where the resin pressure is zero, is approximately 140 ° C., which is higher than the deflection temperature of the resin under load (HDT: 66 ° C.).
The fact that the resin internal pressure becomes zero at this temperature means that atmospheric pressure or less, that is, negative pressure is generated in the cavity at this temperature or less, and sinking occurs because the resin can be deformed. . Therefore, even if an injection molding method called a high-precision molding method for an amorphous resin is applied to a crystalline resin, a high-precision molding cannot be obtained. That is, the reason why the dimensional accuracy of the crystalline resin is poor is that in the conventional injection molding method, the dimensional change is caused by the shrinkage caused by cooling and crystallization immediately after injection filling, and the progress of crystallization after molding. is there. Therefore, it suffices to solve both the above-mentioned shrinkage and dimensional change. For the latter dimensional change, it is sufficient to raise the mold temperature to complete crystallization in the mold, but the former shrinkage However, the conventional injection molding method cannot basically solve the problem. In other words, crystalline resin undergoes crystallization that causes a rapid change in specific volume below the melting temperature, so the internal pressure of the resin in the mold cavity is below atmospheric pressure, which is called negative pressure, and the resin is not exposed to the outside of the mold. The air flows into the interior, causing sink marks. Thus, the change in specific volume due to the crystallization hinders the accuracy of the crystalline resin from being increased. Therefore, if a molding method that does not pass the state change temperature that causes a change in the specific volume is found, it is possible to improve the accuracy of the crystalline resin. That is, instead of high-pressure filling of the crystalline resin melted from the high temperature side, the molding base material molded into a substantially final shape is inserted into the mold cavity and clamped, and the temperature at which the specific volume change suddenly changes from the low temperature side. It suffices to heat to the temperature below which the shape can be easily changed.

【0024】しかし、略最終形状の成形母材を一定キャ
ビティ容積下で加熱すればよいわけではない。例えば、
急冷固化によって得た結晶化が進んでいないものについ
ては、加熱に伴い一度結晶化が進み、それ自身の容積が
小さくなって、転写面に十分な圧力が発生できなくな
り、取り出し時に負圧となってひけが生じる。これを見
込んだ形状にした場合は、母材が大きくなって金型キャ
ビティに入らなくなってしまう。従って、母材は、一定
以上の結晶化度、好ましくは、その樹脂材料の持つ最高
結晶化度にして、加熱に伴う結晶化による比容積変化を
最小限に押さえる必要がある。このために、荷重たわみ
温度(H.D.T)で金型キャビティの内圧が略大気圧と
なるような一定の重量が定められた成形母材とすればよ
い。
However, it is not always necessary to heat the molding base material having a substantially final shape under a constant cavity volume. For example,
For the crystallization obtained by rapid solidification that has not progressed, crystallization once progressed with heating, the volume of itself decreased, and sufficient pressure could not be generated on the transfer surface, resulting in negative pressure at the time of removal. A sink mark occurs. If the shape is taken into consideration, the base material becomes too large to enter the mold cavity. Therefore, the base material must have a crystallinity of a certain level or higher, preferably the highest crystallinity of the resin material, so as to minimize the change in specific volume due to crystallization due to heating. For this reason, the forming base material may have a certain weight so that the internal pressure of the mold cavity becomes approximately atmospheric pressure at the deflection temperature under load (HDT).

【0025】すなわち、本発明による結晶性樹脂による
高精度成形品の製造方法としては、結晶性の熱可塑性樹
脂からなる一定重量で略最終形状の結晶化した成形母材
を、少なくとも一つの転写面を有する金型キャビティに
挿入後型締めし、その荷重たわみ温度以上でその溶融温
度未満まで加熱し、一定キャビティ容積下で樹脂の熱膨
張と結晶化度の低下による膨張によって転写面に垂直に
発生する樹脂内圧を利用して転写面を転写させた後、冷
却してその荷重たわみ温度以下で取り出し成形品を得る
ことである。
That is, as a method for producing a high-precision molded product of a crystalline resin according to the present invention, at least one transfer surface is formed by crystallizing a molded base material of crystalline thermoplastic resin having a substantially constant shape with a constant weight. After inserting into a mold cavity with a mold, the mold is clamped, heated above its deflection temperature under load and below its melting temperature, and is generated perpendicularly to the transfer surface due to thermal expansion of the resin and expansion due to a decrease in crystallinity under a fixed cavity volume. After the transfer surface is transferred using the internal pressure of the resin, the product is cooled and the molded product is taken out at a temperature below the deflection temperature under load.

【0026】すなわち、結晶性樹脂を荷重たわみ温度以
上に加熱することにより、該結晶性樹脂の弾性率が低下
して変形しやすくなる性質と、その樹脂の単調な熱膨張
以上に結晶性が低下することに伴う急激な膨張による樹
脂内圧発生でもって転写面に樹脂を密着させた後、温度
を均一に保持しつつ冷却させ、且つ、その荷重たわみ温
度以下で樹脂内圧が大気圧以下となるようにして、ひけ
のない高精度な転写面を有する高精度成形品を得る方法
である。温度を均一にして冷却することは圧力分布のむ
らを最小にするために必要なことで、温度ばらつきとし
ては、10℃以下、好ましくは5℃以下、冷却速度とし
ては15℃/min以下、好ましくは8℃/min以下にする必
要がある。ここでの荷重たわみ温度(H.D.T)は、成
形品の取り出し時の変形を考慮してASTM:D648
に定められた荷重1.84MPaにおける値である(請求項
1に対応)。
That is, when the crystalline resin is heated to a temperature above the deflection temperature under load, the elastic modulus of the crystalline resin is lowered and the crystalline resin is easily deformed, and the crystallinity is lowered more than the monotonous thermal expansion of the resin. After the resin is brought into close contact with the transfer surface due to the generation of the internal pressure of the resin due to the rapid expansion, the temperature is kept uniform and cooled, and the internal pressure of the resin becomes the atmospheric pressure or less at the load deflection temperature or less. Is a method for obtaining a high-precision molded product having a highly accurate transfer surface without sink marks. It is necessary to make the temperature uniform and cool in order to minimize the unevenness of the pressure distribution. The temperature variation is 10 ° C or less, preferably 5 ° C or less, and the cooling rate is 15 ° C / min or less, preferably It should be 8 ° C / min or less. The deflection temperature under load (HDT) here is ASTM: D648 in consideration of the deformation when the molded product is taken out.
It is a value at a load of 1.84 MPa defined in (corresponding to claim 1).

【0027】また、最終形状の成形母材を加熱するとき
のキャビティ容積は、できるだけ一定なのがよい。も
し、キャビティ容積が大きく変動すると、樹脂内圧がば
らつくだけでなく、キャビティ内の圧力分布が不均一に
なり、ひけや残留圧力の解放による変形が生じて高精度
な成形品が得られなくなる。ただ、金型を構成する材料
も熱により膨張収縮を生じるため、その容積変化をゼロ
にすることはできない。このため、キャビティ容積変動
を最小にするのが好ましい。
Further, the volume of the cavity when heating the molded base material in the final shape is preferably as constant as possible. If the cavity volume fluctuates significantly, not only the resin internal pressure varies, but also the pressure distribution in the cavity becomes non-uniform, and sink marks and deformation due to release of residual pressure occur, making it impossible to obtain a highly accurate molded product. However, since the material forming the mold also expands and contracts due to heat, the volume change cannot be made zero. For this reason, it is preferable to minimize cavity volume variations.

【0028】図3は、本発明による成形方法の第2の実
施形態を説明するための金型構造を説明するための図
で、図中、1,2は金型、3は圧縮駒(鏡面駒)、4は
キャビティ、5,6は鏡面、7,8は加熱・冷却プレー
ト、9は加熱・冷却管である。図3に示す金型構造は、
射出成形機(図示せず)の可動盤(図示せず)側の加熱
・冷却プレート7と、固定盤(図示せず)側の加熱・冷
却プレート8に各々取り付けられた移動側の圧縮駒3を
有し、鏡面5が形成された金型1と、固定側の鏡面6を
有する金型2とからなり、加熱・冷却プレート7,8
は、加熱・冷却管9に流れる熱水又は冷水により金型
1,2の温度を所定の温度に保っている。
FIG. 3 is a view for explaining a mold structure for explaining a second embodiment of the molding method according to the present invention. In the figure, 1 and 2 are molds, 3 is a compression piece (mirror surface). (Piece) 4 is a cavity, 5 and 6 are mirror surfaces, 7 and 8 are heating / cooling plates, and 9 is a heating / cooling pipe. The mold structure shown in FIG.
The moving side compression piece 3 attached to the heating / cooling plate 7 on the movable platen (not shown) side and the heating / cooling plate 8 on the fixed platen (not shown) side of the injection molding machine (not shown), respectively. And a mold 2 having a mirror surface 6 on the fixed side, and a heating / cooling plate 7, 8
Maintain the temperature of the molds 1 and 2 at a predetermined temperature by hot water or cold water flowing through the heating / cooling pipe 9.

【0029】図3に示す金型構造において、キャビティ
4内に挿入された成形母材(荷重たわみ温度で樹脂内圧
が大気圧となるような重量をもって略最終形状に成形さ
れた母材)を型締めし、熱変形温度以上で、溶融温度以
下の温度に加熱したとき、もし、金型材料の熱膨張と成
形母材の膨張差により圧力変動が生じた場合、圧縮駒3
を駆動して圧力変動を最小にしてひけの発生を防いでい
る。また、キャビティ容積を一定に保って加熱冷却して
もよいが、成形母材の挿入性を改善した金型構造とし
て、成形母材をその荷重たわみ温度以上で溶融温度未満
の温度まで加熱してから、キャビティ容積を小さくして
圧縮変形させたのち、キャビティ容積を一定にしてもよ
い(請求項2に対応)。
In the mold structure shown in FIG. 3, a molding base material (a base material molded into a substantially final shape with a weight such that the internal pressure of the resin becomes atmospheric pressure at the deflection temperature under load) is inserted into the cavity 4. When tightened and heated to a temperature not lower than the heat distortion temperature and not higher than the melting temperature, if a pressure fluctuation occurs due to the thermal expansion of the mold material and the expansion difference of the molding base material, the compression piece 3
Drive to minimize pressure fluctuations and prevent sink marks. Also, the cavity volume may be kept constant and heated and cooled, but as a mold structure with improved insertability of the molding base material, the molding base material is heated to a temperature above its deflection temperature under load and below its melting temperature. Therefore, after the cavity volume is reduced and the cavity is compressed and deformed, the cavity volume may be made constant (corresponding to claim 2).

【0030】上述した本発明の実施形態は、成形母材を
加熱して、熱膨張と結晶化度が低下する膨張を利用する
わけだが、結晶化度が低下しすぎると、樹脂内圧が大き
くなり過ぎる。その圧力に耐えさせるために、金型を大
きくせねばならないし、バリ等が発生して好ましくな
い。このために、結晶化度の低下率の目安としては、5
0%以下、より好ましくは30%以下が良い(請求項3
に対応)。
In the above-described embodiment of the present invention, the molding base material is heated to utilize the thermal expansion and the expansion that reduces the crystallinity. However, if the crystallinity is too low, the resin internal pressure increases. Pass. In order to withstand the pressure, the mold must be made large, and burrs are generated, which is not preferable. For this reason, as a measure of the reduction rate of crystallinity, 5
It is preferably 0% or less, more preferably 30% or less (claim 3
Corresponding to).

【0031】本発明の成形方法は、樹脂内圧を利用して
いるため、基本的に樹脂内圧がその荷重たわみ温度以上
で大気圧以下、すなわち負圧となると、ひけが生じやす
い。また、逆に、荷重たわみ温度以下でもある一定以上
の圧力(10MPa)が残っていると、型開き時に圧力解
放が生じて変形が生じる。従って、荷重たわみ温度前後
での樹脂内圧が非常に重要となる。このため、前記成形
母材の重量を、該成形母材を冷却し荷重たわみ温度通過
時の樹脂内圧が大気圧〜10MPaの圧力範囲となるよう
に調整する(請求項4に対応)。
Since the molding method of the present invention utilizes the resin internal pressure, basically, when the resin internal pressure is equal to or higher than the deflection temperature under load and equal to or lower than atmospheric pressure, that is, negative pressure, sink marks are liable to occur. On the contrary, if a pressure (10 MPa) above a certain level, which is lower than the deflection temperature under load, remains, the pressure is released when the mold is opened, and the deformation occurs. Therefore, the resin internal pressure around the deflection temperature under load is very important. Therefore, the weight of the molding base material is adjusted such that the internal pressure of the resin when the molding base material is cooled and the deflection temperature under load passes is within the pressure range of atmospheric pressure to 10 MPa (corresponding to claim 4).

【0032】略最終形状の結晶化した成形母材は、射出
成形,ブレス成形,圧縮成形,真空成形等により得るこ
とができるが、成形法やそのときの成形条件により結晶
化度が変化する。本成形法は、結晶化した母材の結晶化
度の低下を利用するものであるため、この結晶化が不十
分だと次のような問題点が生じる。 一端加熱途中に結晶化が進み(特に加熱速度が遅い場
合著しい)、その後、結晶化が低下する現象を生じ、成
形品の品質が安定しない。 成形母材の結晶化度が低下していることは、結晶化度
がばらついていることでもある。これも、成形品の品質
が安定しない。 結晶化度が低下していることは、密度が低下している
ことになる。 従って、一定容積のキャビティに結晶化が不充分な一定
重量の成形母材を挿入した場合、その成形母材の容積は
大きくなっている。そのため、荷重たわみ温度で樹脂内
圧が大気圧近くになるような重量の成形母材を挿入しよ
うとした場合、成形母材の寸法の方がキャビティのそれ
より大きくなって挿入できないことが生じる。従って、
結晶性樹脂からなる略最終形状の成形母材を、前もって
アニール処理して結晶化度を高めておくのがよい(請求
項5に対応)。
The crystallized molding base material having a substantially final shape can be obtained by injection molding, press molding, compression molding, vacuum molding or the like, but the crystallinity changes depending on the molding method and molding conditions at that time. Since this molding method utilizes the decrease in the crystallinity of the crystallized base material, the following problems occur if this crystallization is insufficient. Once the crystallization progresses during heating (particularly when the heating rate is slow), the crystallization lowers, and the quality of the molded product is not stable. The decrease in the crystallinity of the forming base material also means that the crystallinity varies. Again, the quality of the molded product is not stable. A decrease in crystallinity means a decrease in density. Therefore, when the molding base material having a constant weight and insufficient crystallization is inserted into the cavity having a constant volume, the volume of the molding base material becomes large. Therefore, when an attempt is made to insert a molding base material having such a weight that the resin internal pressure becomes close to the atmospheric pressure at the deflection temperature under load, the size of the molding base material becomes larger than that of the cavity, and it may not be possible to insert. Therefore,
It is preferable to anneal a molded base material of a substantially final shape made of a crystalline resin to increase the crystallinity in advance (corresponding to claim 5).

【0033】上述のように、結晶性材料は、それ単独で
用いられる場合もあるが、多くは増量,改質,強化のた
めに球状(炭酸カルシウム,水酸化マグネシウム),板
状(タルク,マイカ),繊維状(ガラス繊維,炭素繊
維)の無機物を充填している。実際、結晶性樹脂そのも
のでは、樹脂の荷重たわみ温度と融点との温度差は大き
い。例えば、ポリプロピレンの場合、荷重たわみ温度は
60℃であり、融点が176℃であるのに対して、荷重
たわみ温度はかなり低い。そのため、加熱温度165℃
とした場合に、加熱温度と荷重たわみ温度との温度差は
100℃以上となり、加熱と冷却に時間がかかり、また
形状によっては50℃まで冷却して取り出さねばならな
い。また、荷重を0.45MPaとし、すなわち型開きと取
り出し時に変形が生じない形状とした場合でも、その荷
重たわみ温度は102℃で、加熱温度と荷重たわみ温度
との温度差は大きい。ところが、充填材を入れた複合材
料にすると、荷重たわみ温度は大幅に改善できる。例え
ば、ガラス短繊維を20%充填したものは、その荷重た
わみ温度が110℃、ガラス長繊維を20%したもの
は、その荷重たわみ温度が140℃となる。加熱温度と
の差としては、各々55℃、25℃となる(請求項6に
対応)。
As described above, the crystalline material may be used alone, but in many cases, it is spherical (calcium carbonate, magnesium hydroxide), plate-shaped (talc, mica) for increasing, modifying, and strengthening. ), And a fibrous (glass fiber, carbon fiber) inorganic substance is filled. In fact, the crystalline resin itself has a large temperature difference between the deflection temperature under load and the melting point of the resin. For example, in the case of polypropylene, the deflection temperature under load is 60 ° C., and the melting point is 176 ° C., while the deflection temperature under load is considerably low. Therefore, heating temperature 165 ℃
In such a case, the temperature difference between the heating temperature and the deflection temperature under load becomes 100 ° C. or more, and it takes time to heat and cool, and depending on the shape, it must be cooled to 50 ° C. and taken out. Further, even when the load is 0.45 MPa, that is, even when the shape is such that no deformation occurs during mold opening and removal, the load deflection temperature is 102 ° C., and the temperature difference between the heating temperature and the load deflection temperature is large. However, when a composite material containing a filler is used, the deflection temperature under load can be significantly improved. For example, when 20% glass short fibers are filled, the deflection temperature under load is 110 ° C., and when 20% glass long fibers are provided, the deflection temperature under load is 140 ° C. Differences from the heating temperature are 55 ° C. and 25 ° C., respectively (corresponding to claim 6).

【0034】以上述べた結晶性樹脂の成形方法におい
て、キャビティの少なくとも一部を鏡面とすれば、その
転写面も鏡面となる。また、冷却を結晶化が終了できる
速度で行えば、経時変化もなくなるため、レンズ,ミラ
ー,プリズム等の光学部品に利用できる(請求項7に対
応)。また、キャビティの少なくとも一部を微細加工面
とすれば、その転写面も微細加工面となる。従って、フ
レネルレンズ,ディスク,回折格子等の微細加工部品に
利用できる(請求項8に対応)。
In the above-described method for molding a crystalline resin, if at least a part of the cavity has a mirror surface, the transfer surface will also have a mirror surface. Further, if cooling is performed at a speed at which crystallization can be completed, there is no change over time, and therefore it can be used for optical parts such as lenses, mirrors, prisms, etc. Further, if at least a part of the cavity is a microfabricated surface, the transfer surface is also a microfabricated surface. Therefore, it can be used for microfabricated components such as Fresnel lenses, disks, and diffraction gratings (corresponding to claim 8).

【0035】また、加熱温度と成形品取り出し温度との
差がその成形サイクルを決めてしまう。ただ、冷却速度
を速くしすぎると、温度分布と圧力分布が生じて精度が
低下するが、均肉形状では、この影響は小さい。しか
し、冷却速度が速いと、十分結晶化ができなくなる。こ
れを解決するため、樹脂中に結晶化を促進するための結
晶核剤を配合するとよい。結晶核材としては、NaHP
4,Pb3(PO42,Na7516などのりん化合物,
リブデン,ルチル,カオリン,アスベストなどの鉱石微
粉末,グラファイト,2硫化モリブデン,シリカ,タル
クなどの無機化合物,ポリエチレンテレフタレートなど
の有機粉末が挙げられる(請求項9に対応)。
Further, the difference between the heating temperature and the molded product take-out temperature determines the molding cycle. However, if the cooling rate is too fast, the temperature distribution and the pressure distribution are generated and the accuracy is lowered, but in the uniform thickness shape, this effect is small. However, if the cooling rate is high, sufficient crystallization cannot be achieved. In order to solve this, a crystal nucleating agent for promoting crystallization may be added to the resin. As a crystal nucleus material, NaHP
Phosphorus compounds such as O 4 , Pb 3 (PO 4 ) 2 and Na 7 P 5 O 16 ,
Fine powders of ore such as ribden, rutile, kaolin and asbestos, inorganic compounds such as graphite, molybdenum disulfide, silica and talc, and organic powders such as polyethylene terephthalate are included (corresponding to claim 9).

【0036】〔実施例〕結晶性樹脂による凸レンズ形状
の成形品を得る実施例と比較例とを、以下に説明する。
図4は、本発明による成形方法による実施例と、従来の
成形方法による比較例による成形品形状と金型構造を説
明するための図で、図4(A)は成形品の断面形状を示
す図、図4(B)は金型構造の断面図であり、図中、1
0は成形品で、図3の場合と同じ作用をする部分には、
図3と同じ参照番号が付されてある。図4に示す成形品
は、 外径D=50mm,曲率半径R=50mm 中央部厚さtmax=15mm,端部厚さte≒4mm の凸レンズであり、図4(B)に示す金型は、鏡面5と
鏡面6とにより一定容積の金型キャビティ4が形成され
ている。凸レンズの両球面部に対応する鏡面5,6の面
精度は、全面に亘り、0.2μmをもっている。なお、以
下に示す比較例1では、金型2,3に溶融樹脂を流入す
るゲート部(図示せず)を設けてある。
[Examples] Examples and comparative examples for obtaining a convex lens-shaped molded product of a crystalline resin will be described below.
FIG. 4 is a diagram for explaining a shape of a molded product and a mold structure according to an example of a molding method according to the present invention and a comparative example of a conventional molding method, and FIG. 4A shows a cross-sectional shape of the molded product. FIG. 4 (B) is a cross-sectional view of the mold structure.
0 is a molded product, and the part that has the same function as in FIG.
The same reference numerals as in FIG. 3 are attached. The molded product shown in FIG. 4 is a convex lens having an outer diameter D = 50 mm, a radius of curvature R = 50 mm, a central portion thickness tmax = 15 mm, and an end portion thickness te≈4 mm. The mold shown in FIG. The mirror surface 5 and the mirror surface 6 form a mold cavity 4 having a constant volume. The surface accuracy of the mirror surfaces 5 and 6 corresponding to both spherical surfaces of the convex lens is 0.2 μm over the entire surface. In Comparative Example 1 shown below, the molds 2 and 3 are provided with gate portions (not shown) through which molten resin flows.

【0037】〔比較例1〕成形樹脂に結晶性ポリプロピ
レンを用い、従来の成形方法により成形した場合で、図
5は、比較例1の成形における金型キャビティ内の温度
・圧力の時間径過を示す図であり、横軸に時間(mi
n)、縦軸に圧力(MPa)および温度(℃)をとってい
る。まず、結晶性ポリプロピレンを230℃に加熱した
溶融樹脂として、該溶融樹脂を、溶融温度以下の温度1
70℃に保たれた金型キャビティ4内に160MPaの樹
脂圧力で充填しゲートシール後、樹脂温度を金型温度と
等しくなる温度まで冷却して均一温度にし、均一な温度
を保った状態で4℃/minの冷却速度で徐冷後、その荷重
たわみ温度60℃以下の50℃で成形品を取り出した。
このようにして得られた成形品は、ひけが生じ、面精度
が劣り、到底精密測定できるものではなかった。
COMPARATIVE EXAMPLE 1 Crystalline polypropylene was used as the molding resin, and the molding was carried out by the conventional molding method. FIG. 5 shows the temperature and pressure in the mold cavity in the molding of Comparative Example 1 over time. The figure shows the time (mi
n), and the vertical axis shows pressure (MPa) and temperature (° C). First, a crystalline polypropylene is heated to 230 ° C. to obtain a molten resin, and the molten resin is heated to a temperature of 1 or lower than the melting temperature.
After filling the mold cavity 4 kept at 70 ° C with a resin pressure of 160 MPa and sealing the gate, the resin temperature is cooled to a temperature equal to the mold temperature to a uniform temperature, and while maintaining a uniform temperature, 4 After gradually cooling at a cooling rate of ° C / min, the molded product was taken out at 50 ° C, which is a deflection temperature under load of 60 ° C or less.
The molded product thus obtained had sink marks, was inferior in surface accuracy, and could not be precisely measured.

【0038】〔実施例1〕成形樹脂に結晶性ポリプロピ
レンを用い、本発明による成形方法により成形した場合
の例であり、図6は、実施例1を適用する結晶性樹脂ポ
リプロピレンのp-v-T線図、図7は、図6に示した実
施例1の成形における金型キャビティ内の温度・圧力の
時間経過を示す図であり、横軸に時間(min)、縦軸に
圧力(MPa)および温度(℃)をとっている。ポリプロ
ピレンの荷重たわみ温度60℃において、金型キャビテ
ィ4内でその樹脂内圧が大気圧となるような重量をもっ
た略最終形状の成形母材を、射出成形により成形し、1
00℃の温度で24時間アニールして十分結晶化させ
た。これを、少なくとも一つの転写面、この場合は、図
4に示す転写面5,6を有する金型キャビティ4に挿入
後型締めし、その荷重たわみ温度以上、溶融温度未満の
温度である160℃まで加熱し、樹脂の熱膨張と結晶化
度の低下による膨張によって転写面5,6に垂直に発生
する樹脂内圧を利用して転写面5,6に密着させた後
(図6のA−Bの経路)、冷却時の温度分布による圧力
の偏差が生じないように、−4℃/minの温度傾斜でゆっ
くり冷却して、その荷重たわみ温度以下の温度55℃で
取り出し(図6のB−Cの経路)、高精度な転写面を有
する成形品を得た。得られた成形品の面精度は、0.9
μmと高精度なものであった。
[Example 1] This is an example of the case where crystalline polypropylene was used as the molding resin and was molded by the molding method according to the present invention. Fig. 6 is a p-v- line of the crystalline resin polypropylene to which Example 1 is applied. FIG. 7 is a diagram showing the temperature and pressure in the mold cavity over time in the molding of Example 1 shown in FIG. 6, where the horizontal axis represents time (min) and the vertical axis represents pressure (MPa). ) And temperature (° C). At a load deflection temperature of polypropylene of 60 ° C., a molding base material having a substantially final shape having a weight such that the resin internal pressure becomes atmospheric pressure in the mold cavity 4 is molded by injection molding, and 1
It was annealed at a temperature of 00 ° C. for 24 hours for sufficient crystallization. This is inserted into a mold cavity 4 having at least one transfer surface, in this case, the transfer surfaces 5 and 6 shown in FIG. 4, and then the mold is clamped, which is 160 ° C. which is a temperature above the deflection temperature under load and below the melting temperature. Up to the transfer surfaces 5 and 6 by using the internal pressure of the resin generated perpendicularly to the transfer surfaces 5 and 6 due to the thermal expansion of the resin and the expansion due to the decrease in the crystallinity (AB in FIG. 6). Path), so that pressure deviation due to temperature distribution during cooling does not occur, the material is slowly cooled at a temperature gradient of -4 ° C / min and taken out at a temperature of 55 ° C below the deflection temperature under load (B- in Fig. 6). A molded product having a highly accurate transfer surface was obtained. The surface accuracy of the obtained molded product is 0.9.
It was as precise as μm.

【0039】〔実施例2〕実施例2は、ガラス短繊維2
5%入りのポリアセタール樹脂の成形例を示す。まず、
図4に示すキャビティ内での温度が163℃で、その樹
脂内圧が大気圧となるような重量をもった略最終形状の
成形母材を射出成形にて成形し、温度130℃で24時
間アニールして十分結晶化させた。これを、少なくとも
一つの転写面を有する金型キャビティ4に挿入後型締め
し、その荷重たわみ温度以上、溶融温度未満の温度であ
る温度175℃まで加熱し、樹脂の熱膨張と結晶化度の
低下による膨張によって転写面に直角に発生する樹脂内
圧を利用して転写面に密着させた後、冷却時の温度分布
による圧力の偏在が生じないようにゆっくり冷却して、
その荷重たわみ温度以下の温度155℃で取り出し、高
精度な転写面を有する成形品を得た。得られた成形品の
面精度は、1.5μmと高精度なものであった。
Example 2 In Example 2, short glass fiber 2 was used.
A molding example of a polyacetal resin containing 5% is shown. First,
A molding base material of a substantially final shape having a temperature of 163 ° C. in the cavity shown in FIG. 4 and having a resin internal pressure of atmospheric pressure is injection-molded and annealed at a temperature of 130 ° C. for 24 hours. To fully crystallize. After inserting this into a mold cavity 4 having at least one transfer surface, the mold is clamped, and heated to a temperature of 175 ° C., which is a temperature above the deflection temperature under load and below the melting temperature, to determine the thermal expansion and crystallinity of the resin. Using the resin internal pressure generated at right angles to the transfer surface due to the expansion due to the drop, it is brought into close contact with the transfer surface, and then slowly cooled so that the pressure distribution due to the temperature distribution during cooling does not occur.
The product was taken out at a temperature of 155 ° C., which was lower than the deflection temperature under load, to obtain a molded product having a highly accurate transfer surface. The surface accuracy of the obtained molded product was as high as 1.5 μm.

【0040】〔実施例3〕実施例3は、結晶核材として
タルクを30重量%含んだ結晶性樹脂ポリプロピレンを
用いた場合の、本成形法の他の例を示す。まず、荷重た
わみ温度110℃において、金型キャビティ内でその樹
脂内圧が大気圧となるような重量をもった略最終形状の
成形母材を、少なくとも一つの転写面を有する図3に示
す金型キャビティ4に挿入し、その荷重たわみ温度以
上、溶融温度未満の温度である温度165℃まで加熱
し、温度上昇による樹脂の熱膨張と結晶化度の低下によ
る膨張をさせ、一方の鏡面駒3を移動して圧縮して転写
面に密着させた後、冷却時の温度分布による圧力の偏在
が生じないように、ゆっくり冷却してその荷重たわみ温
度以下の105℃で取り出し、高精度な転写面を有する
成形品を得た。得られた成形品の面精度は、1.3μmと
高精度なものであった。
[Example 3] Example 3 shows another example of the present molding method when a crystalline resin polypropylene containing 30% by weight of talc is used as a crystal nucleus material. First, at a deflection temperature under load of 110 ° C., a molding base material having a substantially final shape and having a weight such that the resin internal pressure becomes atmospheric pressure in a mold cavity has at least one transfer surface as shown in FIG. It is inserted into the cavity 4 and heated to a temperature of 165 ° C., which is a temperature above the deflection temperature under load and below the melting temperature, to cause thermal expansion of the resin due to temperature rise and expansion due to decrease in crystallinity. After moving and compressing it to make close contact with the transfer surface, cool it slowly and take it out at 105 ° C below the deflection temperature under load so that the pressure distribution due to the temperature distribution during cooling does not occur. A molded product having The surface accuracy of the obtained molded product was as high as 1.3 μm.

【0041】[0041]

【発明の効果】【The invention's effect】

請求項1に対応する効果:結晶性の熱可塑性樹脂からな
る一定重量で略最終形状の結晶化した成形母材を成形
し、該成形母材を少くとも一つの転写面を有する金型キ
ャビティに挿入後型締めし、該成形母材を構成する前記
熱可塑性樹脂の荷重たわみ温度以上で溶融温度未満の温
度まで加熱し、前記金型キャビティ容積一定の条件下
で、該熱可塑性樹脂の熱膨張と結晶化度低下による膨張
によって前記転写面の法線方向に発生する樹脂内圧を利
用し転写面に密着させた後、冷却して該熱塑性樹脂の荷
重たわみ温度以下の温度で該成形母材を金型キャビティ
から取り出し、前記転写面を有する成形品を得るように
したので、結晶性樹脂が結晶化して比容積が変化する温
度領域を通過して温度が下降し、荷重たわみ温度に達す
る間では、樹脂の比容積増加による樹脂圧が増大し、成
形品は金型キャビティの転写面に密着し、荷重たわみ温
度以下で取り出すので、結晶性樹脂でもひけが発生する
ことなく、高精度成形品を得ることができる。
Effect corresponding to claim 1: A crystallized molding base material of substantially final shape is molded with a constant weight made of a crystalline thermoplastic resin, and the molding base material is formed into a mold cavity having at least one transfer surface. After insertion, the mold is clamped and heated to a temperature above the deflection temperature under load of the thermoplastic resin that constitutes the molding base material and below the melting temperature, and the thermal expansion of the thermoplastic resin under conditions where the mold cavity volume is constant. And, by making use of the internal resin pressure generated in the normal direction of the transfer surface due to the expansion due to the decrease in crystallinity, it is brought into close contact with the transfer surface, then cooled and the molded base material is cooled at a temperature not higher than the deflection temperature under load of the thermoplastic resin. Since it was taken out from the mold cavity to obtain a molded product having the transfer surface, the temperature falls after passing through the temperature region where the crystalline resin is crystallized and the specific volume changes, and the deflection temperature under load is reached. , Resin specific volume Resin pressure due to increased increases, the molded article is in close contact with the transfer surface of the mold cavity, since retrieved by heat deflection temperature below without shrinkage occurs in the crystalline resin, it is possible to obtain a high-precision molded products.

【0042】請求項2に対応する効果:請求項1に記載
したプラスチック成形品の製造方法において、前記成形
母材を該成形母材樹脂の荷重たわみ温度以上で溶融温度
未満の温度まで加熱した後、前記金型キャビティ容積を
小さくして圧縮変形させ、かつ、一定の樹脂内圧を発生
させたのち、該金型キャビティ容積を一定にしたので、
金型型締め時に鏡面駒が局部的な圧力を受けて変形する
ことが防げ、金型寿命を長くでき、信頼性を向上させる
ことができる。
Effect corresponding to claim 2: In the method for producing a plastic molded product according to claim 1, after heating the molding base material to a temperature above the deflection temperature under load of the molding base resin and below the melting temperature. Since the mold cavity volume is reduced to cause compressive deformation, and a constant resin internal pressure is generated, the mold cavity volume is made constant,
When the mold is clamped, the mirror surface piece can be prevented from being deformed by receiving a local pressure, the life of the mold can be extended, and the reliability can be improved.

【0043】請求項3に対応する効果:請求項1に記載
したプラスチック成形品の製造方法において、前記成形
母材の加熱温度を、加熱による該成形母材の結晶化度の
低下率が50%以下になる温度範囲として、結晶化度の
低下率が低いため、金型キャビティ内に発生する樹脂内
圧は小さくて済む。このため、強固な金型が必要なくな
り、金型変形を防げるとともに、金型寿命を長くでき
る。また、多数個取りが容易となり、生産性が向上でき
る。
Effect corresponding to claim 3: In the method for producing a plastic molded article according to claim 1, the heating temperature of the molding base material is set so that the rate of decrease in crystallinity of the molding base material is 50%. In the temperature range below, the decrease rate of the crystallinity is low, so that the resin internal pressure generated in the mold cavity can be small. Therefore, a strong mold is not required, deformation of the mold can be prevented, and the life of the mold can be extended. Further, it becomes easy to take a large number of pieces, and the productivity can be improved.

【0044】請求項4に対応する効果:請求項1に記載
したプラスチック成形品の製造方法において、前記成形
母材の重量を、該成形母材を冷却し荷重たわみ温度通過
時の樹脂内圧が大気圧〜10MPaの圧力範囲となるよう
に調整するので、ひけや変形が生ぜず、高精度な成形品
を得ることができる。
Effect corresponding to claim 4: In the method for producing a plastic molded article according to claim 1, the weight of the molding base material is set so that the internal pressure of the resin is large when the molding base material is cooled and the deflection temperature under load is passed. Since the pressure is adjusted so as to fall within the range of atmospheric pressure to 10 MPa, it is possible to obtain a highly accurate molded product without sink marks or deformation.

【0045】請求項5に対応する効果:請求項1に記載
したプラスチック成形品の製造方法において、前記成形
母材を、前もってアニール処理して該成形母材の結晶化
度を高めているので、品質の安定化と母材の高密度化に
よるキャビティへの挿入性が向上できる。
Effect corresponding to claim 5: In the method for producing a plastic molded product according to claim 1, since the molding base material is annealed in advance to increase the crystallinity of the molding base material, Insertion into the cavity can be improved by stabilizing the quality and increasing the density of the base material.

【0046】請求項6に対応する効果:請求項1に記載
したプラスチック成形品の製造方法において、前記結晶
性の熱可塑性樹脂として、該結晶性の熱可塑性樹脂に無
機充填材,強化材等が充填された複合材料を用いている
ので、樹脂組成物の物性である強度,耐熱性,寸法精度
が向上するばかりでなく、荷重たわみ温度が上昇できる
ことから、高温取り出しが容易となり、成形サイクルを
短縮することができる。
Effect corresponding to claim 6: In the method for producing a plastic molded article according to claim 1, as the crystalline thermoplastic resin, an inorganic filler, a reinforcing material or the like is added to the crystalline thermoplastic resin. Since the filled composite material is used, not only the physical properties of the resin composition such as strength, heat resistance and dimensional accuracy are improved, but also the deflection temperature under load can be increased, making it easier to take out at high temperatures and shortening the molding cycle. can do.

【0047】請求項7に対応する効果:請求項1に記載
したプラスチック成形品の製造方法において、前記金型
キャビティの転写面を鏡面として、レンズ,ミラー,プ
リズム等の光学部品に応用することにより、成形用樹脂
に安価な汎用材料が利用できるので、低コストな光学部
品ができる。
Effect corresponding to claim 7: In the method for manufacturing a plastic molded product according to claim 1, by applying the transfer surface of the mold cavity as a mirror surface to an optical component such as a lens, a mirror or a prism. Since an inexpensive general-purpose material can be used as the molding resin, a low-cost optical component can be obtained.

【0048】請求項8に対応する効果:請求項1に記載
したプラスチック成形品の製造方法において、前記金型
キャビティの転写面として、フレネルレンズ,ディス
ク,回折格子等の微細加工部品に応用することにより、
成形樹脂に安価な汎用材料が利用できるので、低コスト
な微細加工部品ができる。
Effect corresponding to claim 8: In the method of manufacturing a plastic molded product according to claim 1, as a transfer surface of the mold cavity, it is applied to a finely processed component such as a Fresnel lens, a disk, a diffraction grating. Due to
Since inexpensive general-purpose materials can be used for molding resin, low-cost microfabricated parts can be produced.

【0049】請求項9に対応する効果:請求項1に記載
したプラスチック成形品の製造方法において、前記結晶
性の熱可塑樹脂に、結晶化を促進するための結晶核剤を
配合することによって、結晶化の促進ができるため、冷
却速度を速められ、成形サイクルを短縮することができ
る。
Effect corresponding to claim 9: In the method for producing a plastic molded article according to claim 1, by adding a crystal nucleating agent for promoting crystallization to the crystalline thermoplastic resin, Since the crystallization can be promoted, the cooling rate can be increased and the molding cycle can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】 非晶性樹脂ポリカーボネイトのp-v-T線図
を用いた、従来の高精度成形方法の例を説明するための
図である。
FIG. 1 is a diagram for explaining an example of a conventional high-precision molding method using a pvT diagram of an amorphous resin polycarbonate.

【図2】 結晶性樹脂ポリプロピレンのp-v-T線図を
用いた、従来の成形法の例を説明するための図である。
FIG. 2 is a diagram for explaining an example of a conventional molding method using a pvt diagram of a crystalline resin polypropylene.

【図3】 本発明による成形方法の第2の実施形態を説
明するための金型構造を説明するための図である。
FIG. 3 is a view for explaining a mold structure for explaining a second embodiment of the molding method according to the present invention.

【図4】 本発明による成形方法による実施例と従来の
成形方法による比較例による成形品形状と金型構造を説
明するための図である。
FIG. 4 is a diagram for explaining a shape of a molded product and a mold structure according to an example of a molding method according to the present invention and a comparative example of a conventional molding method.

【図5】 比較例1の成形における金型キャビティ内の
温度・圧力の時間径過を示す図である。
FIG. 5 is a diagram showing a time-dependent temperature / pressure overpass in a mold cavity in Comparative Example 1;

【図6】 実施例1を適用する結晶性樹脂ポリプロピレ
ンのp-v-T線図である。
6 is a pvT diagram of the crystalline resin polypropylene to which Example 1 is applied. FIG.

【図7】 図6に示した実施例1の成形における金型キ
ャビティ内の温度・圧力の時間経過を示す図である。
FIG. 7 is a diagram showing a time course of temperature and pressure in a mold cavity in the molding of Example 1 shown in FIG.

【符号の説明】[Explanation of symbols]

1,2…金型、3…圧縮駒(鏡面駒)、4…キャビテ
ィ、5,6…鏡面、7,8…加熱・冷却プレート、9…
加熱・冷却管。
1, 2 ... Mold, 3 ... Compression piece (mirror surface piece), 4 ... Cavity, 5, 6 ... Mirror surface, 7, 8 ... Heating / cooling plate, 9 ...
Heating / cooling pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 順 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 沢田 清孝 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 岸 秀信 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Jun Watanabe 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company (72) Inventor Kiyotaka Sawada 1-3-6 Nakamagome, Ota-ku, Tokyo Share Inside Ricoh Company (72) Inventor Hidenobu Kishi 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 結晶性の熱可塑性樹脂からなる一定重量
で略最終形状の結晶化した成形母材を成形し、該成形母
材を少くとも一つの転写面を有する金型キャビティに挿
入後型締めし、該成形母材を構成する前記熱可塑性樹脂
の荷重たわみ温度以上で溶融温度未満の温度まで加熱
し、前記金型キャビティ容積一定の条件下で、該熱可塑
性樹脂の熱膨張と結晶化度低下による膨張によって前記
転写面の法線方向に発生する樹脂内圧を利用し転写面に
密着させた後、冷却して該熱塑性樹脂の荷重たわみ温度
以下の温度で該成形母材を金型キャビティから取り出
し、前記転写面を有する成形品を得ることを特徴とする
プラスチック成形品の製造方法。
1. A mold after molding a crystallized molding base material having a substantially final shape with a constant weight made of a crystalline thermoplastic resin, and inserting the molding base material into a mold cavity having at least one transfer surface. Tighten and heat to a temperature above the deflection temperature under load of the thermoplastic resin constituting the molding base material and below the melting temperature, and under the condition that the mold cavity volume is constant, the thermal expansion and crystallization of the thermoplastic resin. Of the molding base material at a temperature equal to or lower than the deflection temperature under load of the thermoplastic resin by using the internal pressure of the resin generated in the normal direction of the transfer surface due to the expansion due to the decrease in temperature A method for producing a plastic molded article, characterized in that the molded article having the transfer surface is obtained.
【請求項2】 前記成形母材を該成形母材樹脂の荷重た
わみ温度以上で溶融温度未満の温度まで加熱した後、前
記金型キャビティ容積を小さくして圧縮変形させ、か
つ、一定の樹脂内圧を発生させたのち、該金型キャビテ
ィ容積を一定にすることを特徴とする請求項1記載のプ
ラスチック成形品の製造方法。
2. The molding base material is heated to a temperature above the deflection temperature under load of the molding base material resin and below the melting temperature, and then the mold cavity volume is reduced to cause compression deformation and a constant resin internal pressure. 2. The method for producing a plastic molded article according to claim 1, wherein the mold cavity volume is made constant after the occurrence of the above.
【請求項3】 前記成形母材の加熱温度を、加熱による
該成形母材の結晶化度の低下率が50%以下になる温度
範囲とすることを特徴とする請求項1記載のプラスチッ
ク成形品の製造方法。
3. The plastic molded article according to claim 1, wherein the heating temperature of the molding base material is set to a temperature range in which the reduction rate of the crystallinity of the molding base material due to heating is 50% or less. Manufacturing method.
【請求項4】 前記成形母材の重量を、該成形母材を冷
却し荷重たわみ温度通過時の樹脂内圧が大気圧〜10MP
aの圧力範囲となるように調整することを特徴とする請
求項1記載のプラスチック成形品の製造方法。
4. The weight of the forming base material is set such that the internal pressure of the resin when the forming base material is cooled and the deflection temperature under load passes through is from atmospheric pressure to 10 MPa.
The method for producing a plastic molded article according to claim 1, wherein the pressure is adjusted so that the pressure range is a.
【請求項5】 前記成形母材を、前もってアニール処理
して該成形母材の結晶化度を高めることを特徴とする請
求項1記載のプラスチック成形品の製造方法。
5. The method for producing a plastic molded article according to claim 1, wherein the molded base material is annealed in advance to increase the crystallinity of the molded base material.
【請求項6】 前記結晶性の熱可塑性樹脂として、該結
晶性の熱可塑性樹脂に無機充填材,強化材等が充填され
た複合材料を用いることを特徴とする請求項1記載のプ
ラスチック成形品の製造方法。
6. The plastic molded article according to claim 1, wherein the crystalline thermoplastic resin is a composite material in which the crystalline thermoplastic resin is filled with an inorganic filler, a reinforcing material, or the like. Manufacturing method.
【請求項7】 前記金型キャビティの転写面を鏡面とし
て、レンズ,ミラー,プリズム等の光学部品に応用する
ことを特徴とする請求項1記載のプラスチック成形品の
製造方法。
7. The method for producing a plastic molded product according to claim 1, wherein the transfer surface of the mold cavity is used as a mirror surface and is applied to an optical component such as a lens, a mirror or a prism.
【請求項8】 前記金型キャビティの転写面として、フ
レネルレンズ,ディスク,回折格子等の微細加工部品に
応用することを特徴とする請求項1記載のプラスチック
成形品の製造方法。
8. The method for producing a plastic molded product according to claim 1, wherein the transfer surface of the mold cavity is applied to a microfabricated component such as a Fresnel lens, a disc, a diffraction grating or the like.
【請求項9】 前記結晶性の熱可塑樹脂に、結晶化を促
進するための結晶核剤を配合することを特徴とする請求
項1記載のプラスチック成形品の製造方法。
9. The method for producing a plastic molded article according to claim 1, wherein the crystalline thermoplastic resin is blended with a crystal nucleating agent for promoting crystallization.
JP05585296A 1996-03-13 1996-03-13 Manufacturing method of plastic molded products Expired - Fee Related JP3526124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05585296A JP3526124B2 (en) 1996-03-13 1996-03-13 Manufacturing method of plastic molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05585296A JP3526124B2 (en) 1996-03-13 1996-03-13 Manufacturing method of plastic molded products

Publications (2)

Publication Number Publication Date
JPH09239796A true JPH09239796A (en) 1997-09-16
JP3526124B2 JP3526124B2 (en) 2004-05-10

Family

ID=13010588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05585296A Expired - Fee Related JP3526124B2 (en) 1996-03-13 1996-03-13 Manufacturing method of plastic molded products

Country Status (1)

Country Link
JP (1) JP3526124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187254A (en) * 2010-03-08 2011-09-22 Sumitomo Bakelite Co Ltd Light guide plate and lighting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187254A (en) * 2010-03-08 2011-09-22 Sumitomo Bakelite Co Ltd Light guide plate and lighting system

Also Published As

Publication number Publication date
JP3526124B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
JP3526124B2 (en) Manufacturing method of plastic molded products
JP3385491B2 (en) Injection molding method
JP4371525B2 (en) Optical reflection member made of thermoplastic resin and method for manufacturing the same
JP3130099B2 (en) Manufacturing method of plastic molded products
JP3131620B2 (en) Injection compression molding method
JPH05293861A (en) Molding device
JP3279859B2 (en) Manufacturing method of plastic molded products
JP2821093B2 (en) Manufacturing method of plastic molded article and molding die
JP3578570B2 (en) Molding method of molded article using thermoplastic resin composition containing inorganic fiber
JPH07156234A (en) Manufacture of plastic molded product
JPH0421574B2 (en)
JP3719757B2 (en) Mold and molding method
JPS61100420A (en) Manufacture of plastic lens
JPH07323486A (en) Manufacture of plastic molded product
JP2003001689A (en) Method for manufacturing resin molded product and optical element manufactured by this manufacturing method
JP2002086517A (en) Method for manufacturing plastic molded product and mold therefor
JP2008087407A (en) Injection-molding method
JP2001062870A (en) Mold and method for molding plastic material
JP3549341B2 (en) Molding method of molded article made of polymer alloy material
JPS61182918A (en) Injection compression mold
Fukushima et al. Development of ultraprecise injection molding method for thermoplasticlenses
JP2831959B2 (en) Manufacturing method of plastic molded article and plastic molding apparatus
Wadhwa et al. Experimental Results of Low Thermal Inertia Molding. I. Length of Filling
JP2003181897A (en) Plastic optical element and method for manufacturing the same
JP2855671B2 (en) Manufacturing method of optical fiber branch coupler

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130227

LAPS Cancellation because of no payment of annual fees