JPH09239486A - Resin coated sand for shell mold - Google Patents

Resin coated sand for shell mold

Info

Publication number
JPH09239486A
JPH09239486A JP7963696A JP7963696A JPH09239486A JP H09239486 A JPH09239486 A JP H09239486A JP 7963696 A JP7963696 A JP 7963696A JP 7963696 A JP7963696 A JP 7963696A JP H09239486 A JPH09239486 A JP H09239486A
Authority
JP
Japan
Prior art keywords
resin
parts
sand
coated sand
triazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7963696A
Other languages
Japanese (ja)
Inventor
Yuji Miyashita
雄次 宮下
Toshio Hirohashi
利夫 広橋
Keiko Tsukagoshi
恵子 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP7963696A priority Critical patent/JPH09239486A/en
Publication of JPH09239486A publication Critical patent/JPH09239486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide resin coated sand for shell molds having the higher normal strength than the normal strength of conventional coated sand and the excellent collapsing property of casting molds after pouring. SOLUTION: This resin coated sand for the shell molds is produced by coating the sand with a novolak type phenol-triazine cocondensation resin obtd. by bringing a mixture composed in a range of a molar ratio (P/T)=4.0 to 19.0 of phenols (P) and triazine compd. (T) and molar ratio F/(P+T)}=0.45 to 0.90 of formaldehydes (F), phenols (P) and triazine compd. (T) into reaction at pH<=4.0 by an acidic catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention 【発明の目的】[Object of the invention]

【産業上の利用分野】本発明はシェルモールド用樹脂被
覆砂に関し、更に詳しくは常態強度が高く、注湯後の鋳
型の崩壊性を改善したシェルモールド用樹脂被覆砂に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-coated sand for a shell mold, and more particularly to a resin-coated sand for a shell mold which has high normal strength and improved disintegration of a mold after pouring.

【従来の技術】従来、シェルモールド用樹脂被覆砂を製
造する際使用されるフェノール樹脂としては、一般にホ
ルムアルデヒド類(F)とフェノール類(P)をモル比
(F/P)=0.4〜0.9の割合で、酸性触媒の存在
下で反応させて得られた固形ノボラック型フェノール樹
脂を粘結剤とし、硬化剤にヘキサメチレンテトラミン
(以下ヘキサミン)を用い、これらを加熱した珪砂と混
合して樹脂被覆砂を作成し、この樹脂被覆砂を用いて鋳
型を製造する方法が広く利用されている。しかしこれら
従来のフェノール樹脂では、高強度を与えるためには樹
脂の硬化密度を高めたり、樹脂添加量を増やさねばなら
ず、必然的に耐熱性が向上する結果、注湯後における鋳
型中子が高温に処理されていない部分の崩壊性が悪く、
砂落としが非常に困難であった。ノボラック型フェノー
ル樹脂にトリアジン化合物/ホルムアルデヒド縮合樹脂
をブレンドによりあるいは珪砂との混練時に添加する等
の方法は既知となっているが、充分な強度が得られなか
ったり、また融着点が低下しブロッキングを誘発すると
いう欠点があり実用化に至っていないのが現状である。
また充分な崩壊性も得られない。
2. Description of the Related Art Conventionally, as a phenol resin used for producing a resin-coated sand for shell mold, formaldehydes (F) and phenols (P) are generally used in a molar ratio (F / P) = 0.4- A solid novolac type phenolic resin obtained by reacting in the presence of an acidic catalyst at a ratio of 0.9 is used as a binder, hexamethylenetetramine (hereinafter hexamine) is used as a curing agent, and these are mixed with heated silica sand. A method of producing a resin-coated sand by using the above-mentioned method and manufacturing a mold using the resin-coated sand is widely used. However, in these conventional phenolic resins, in order to provide high strength, the curing density of the resin must be increased or the amount of resin added must be increased, which inevitably improves the heat resistance, resulting in a mold core after pouring. The disintegration of the part that is not treated at high temperature is bad,
Sand removal was very difficult. It has been known to add a triazine compound / formaldehyde condensation resin to a novolac type phenol resin by blending or at the time of kneading with silica sand. However, sufficient strength cannot be obtained, or a fusion point is lowered to cause blocking. The current situation is that it has not been put to practical use because it has the drawback of inducing
Also, sufficient disintegration cannot be obtained.

【発明が解決しようとする課題】本発明はノボラック型
フェノール・トリアジン共縮合樹脂を用いることで、注
湯後の崩壊性が優れ、しかも従来の被覆砂よりも高強度
を有するシェルモールド用フェノール樹脂被覆砂を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention uses a novolac-type phenol-triazine co-condensation resin, which has excellent disintegration after pouring and has higher strength than conventional coated sand. The purpose is to provide coated sand.

【発明の構成】Configuration of the Invention

【課題を解決するための手段】本発明者らは上記目的を
達成するために鋭意検討を重ねた結果、シェルモールド
用フェノール樹脂の製造に際しトリアジン化合物を共縮
合させて得られる樹脂で被覆した砂を用いれば、耐熱性
の高い三次元網目構造の一部が乱れ、熱分解温度を低下
させることにより常温では高強度を保ちつつ、注湯後の
崩壊性が著しく改善されることを見いだした。本発明の
ノボラック型フェノール・トリアジン共縮合樹脂は、フ
ェノール類(P)とトリアジン化合物(T)のモル比
(P/T)=4.0〜19.0、ホルムアルデヒド類
(F)とフェノール(P)およびトリアジン化合物
(T)のモル比{F/(P+T)}=0.45〜0.9
0の範囲で構成される混合物を酸性触媒によりpH4.
0以下に調整し反応させることにより得られる。本発明
に使用されるフェノール類はフェノールあるいはo−ク
レゾール、m−クレゾール、p−クレゾール類のような
アルキルフェノール類、ビスフェノール類ならびにこれ
らフェノール類の混合物である。本発明に使用させるト
リアジン化合物としては、メラミン、アセトグアナミ
ン、ベンゾグアナミン等トリアジン環を有する化合物な
らびに、これらトリアジン化合物の混合物が挙げられ
る。本発明に使用されるホルムアルデヒド類としては、
ホルマリンまたはパラホルムアルデヒド、トリオキサ
ン、ポリオキシメチレン、テトラオキシメチレンならび
にこれらのホルムアルデヒド重合体などの混合物が挙げ
られる。本発明に使用される酸性触媒とは無機酸(硫酸
・塩酸など)、有機酸(パラトルエンスルホン酸、シュ
ウ酸など)のいずれかまたはこれらの混合物を使用する
ことができる。本発明に用いられるノボラック型フェノ
ール・トリアジン共縮合樹脂は上記原材料を用いて合成
される。まず、反応容器にフェノール類、トリアジン化
合物をそれらのモル比(P/T)=4.0〜19.0と
なるように仕込み、次いでこれらに対して、ホルムアル
デヒド類をモル比{F/(P+T)}=0.45〜0.
90になるように仕込む。ついで触媒をpH4以下にな
るように添加したのち徐々に温度を上昇させ、常圧、1
00℃にて還流開始より2〜8h反応し、ついで200
℃まで昇温しながら脱水を行い、200℃に達したとこ
ろで、真空濃縮によりさらに含有水分、未反応フェノー
ルを除去して目的の樹脂が得られる。上述の方法で得ら
れた樹脂に、内部滑剤(エチレンビスステアロアミド
等)、シランカップリング剤(γ−アミノプロピルトリ
エトキシシラン等)を添加する。上述の方法で得られた
樹脂は、ゲルタイムが長いものの、実施例の項に示す通
りベンド値は比較例とほぼ同等であり、作業には支障を
きたさない。ゲル状態つまり三次元の網目構造はフェノ
ール単独のものと異なることが予想される。このノボラ
ック型フェノール・トリアジン共縮合樹脂を、予め10
0〜180℃に過熱した珪砂に添加、混練し、更にヘキ
サミンを水に溶解したヘキサミン水溶液を添加し、樹脂
被覆砂が崩壊するまで混練後、ステアリン酸カルシウム
やステアリン酸亜鉛等の滑剤を添加し、樹脂被覆砂を得
る。樹脂の添加量は砂に対して0.5〜6.0%、好ま
しくは1.0〜3.0%である。ヘキサミンの添加量
は、樹脂に対して5〜25%、好ましくは10〜20%
である。混練は通常の方法によれば良く、また鋳物砂と
しては珪砂の他、ジルコン砂、クロマイト砂、オリビン
砂、アルミナ砂、ムライト砂等、従来技術と全く同様に
適用できる。このようにして得られた樹脂被覆砂は、高
強度を有し、注湯後の鋳型の崩壊性に優れている。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors in order to achieve the above objects, sand coated with a resin obtained by co-condensing a triazine compound in the production of a phenol resin for a shell mold It was found that the use of the above-mentioned material disturbs a part of the three-dimensional network structure having high heat resistance and lowers the thermal decomposition temperature, while maintaining high strength at room temperature and remarkably improving the disintegration property after pouring. The novolac-type phenol-triazine co-condensation resin of the present invention has a molar ratio (P / T) of phenols (P) to triazine compound (T) of 4.0 to 19.0, formaldehydes (F) and phenol (P). ) And the molar ratio of the triazine compound (T) {F / (P + T)} = 0.45 to 0.9
A mixture composed of a range of 0 to pH 4.
It is obtained by adjusting to 0 or less and reacting. The phenols used in the present invention are phenols or alkylphenols such as o-cresol, m-cresol, p-cresols, bisphenols and mixtures of these phenols. Examples of the triazine compound used in the present invention include compounds having a triazine ring such as melamine, acetoguanamine, and benzoguanamine, and mixtures of these triazine compounds. Formaldehyde used in the present invention,
Examples include formalin or paraformaldehyde, trioxane, polyoxymethylene, tetraoxymethylene, and mixtures of these formaldehyde polymers. The acidic catalyst used in the present invention may be either an inorganic acid (sulfuric acid, hydrochloric acid, etc.), an organic acid (paratoluenesulfonic acid, oxalic acid, etc.), or a mixture thereof. The novolac-type phenol-triazine co-condensation resin used in the present invention is synthesized by using the above raw materials. First, phenols and triazine compounds were charged into a reaction vessel so that their molar ratio (P / T) was 4.0 to 19.0. Then, formaldehydes were added to these in a molar ratio {F / (P + T )} = 0.45-0.
Prepare so that it becomes 90. Then, the catalyst is added so that the pH becomes 4 or less, and the temperature is gradually raised to atmospheric pressure, 1
After reacting at 00 ° C. for 2 to 8 hours from the start of reflux, then 200
Dehydration is performed while raising the temperature to 0 ° C, and when the temperature reaches 200 ° C, the water content and unreacted phenol are further removed by vacuum concentration to obtain the target resin. An internal lubricant (ethylene bisstearamide, etc.) and a silane coupling agent (γ-aminopropyltriethoxysilane, etc.) are added to the resin obtained by the above method. Although the resin obtained by the above-mentioned method has a long gel time, the bend value is almost the same as that of the comparative example as shown in the section of Examples, and the work is not hindered. It is expected that the gel state, that is, the three-dimensional network structure, is different from that of phenol alone. This novolac-type phenol-triazine co-condensation resin was previously
Add to kneaded sand heated to 0 to 180 ° C., knead, add an aqueous solution of hexamine in which hexamine is dissolved in water, knead until the resin-coated sand disintegrates, and then add a lubricant such as calcium stearate or zinc stearate. Obtain resin coated sand. The amount of resin added is 0.5 to 6.0%, preferably 1.0 to 3.0%, based on the sand. Hexamine is added to the resin in an amount of 5 to 25%, preferably 10 to 20%
It is. The kneading may be carried out by an ordinary method, and as the casting sand, other than silica sand, zircon sand, chromite sand, olivine sand, alumina sand, mullite sand and the like can be applied in exactly the same manner as in the prior art. The resin-coated sand thus obtained has high strength and is excellent in mold disintegration after pouring.

【実施例】以下本発明を実施例により詳細に説明する
が、本発明は実施例に限定されるものではない。なお、
例中の部または%は特に断りのない限り、重量部であ
る。 [実施例1]反応容器にフェノール678部、メラミン
101部、50%ホルマリン192部を仕込んだ。次い
でシュウ酸27部を仕込み、徐々に昇温して、100℃
に達してから4時間還流反応を行った。次いで200℃
まで昇温しながら脱水反応を行い、200℃に達したと
ころで、14.2Paに減圧してさらに含有水分及び、
未反応フェノールを除去したのち、内部滑剤・シランカ
ップリング剤を添加し、冷却用バットに取り出し、常温
で固形のノボラック型フェノール・メラミン共縮合樹脂
492部を得た。このノボラック型フェノール・メラミ
ン共縮合樹脂160部を、予め140〜150℃に加熱
した珪砂8000部に添加し、遠州鉄工製スピードマラ
ーで60秒間混練し、更にヘキサミン24部を水120
部に溶解したヘキサミン水溶液を添加し、樹脂被覆砂が
崩壊するまで混練した後、ステアリン酸カルシウム8部
を添加し、10秒間混合し、樹脂被覆砂を得た。 [実施例2]反応容器にフェノール715部、メラミン
50部、50%ホルマリン288部を仕込んだ。次いで
シュウ酸29部を仕込み、徐々に昇温して、100℃に
達してから4時間還流反応を行った。次いで200℃ま
で昇温しながら脱水反応を行い、200℃に達したとこ
ろで、14.2Paに減圧してさらに含有水分及び、未
反応フェノールを除去したところで、内部滑剤・シラン
カップリング剤を添加し、冷却バットに取り出し、常温
で固形のノボラック型フェノール・メラミン共縮合樹脂
672部を得た。このノボラック型フェノール・メラミ
ン共縮合樹脂160部を、実施例1と同様に混練し、樹
脂被覆砂を得た。 [実施例3]反応容器にフェノール447部、ベンゾグ
アナミン28部、50%ホルマリン180部を仕込ん
だ。次いでシュウ酸18部を仕込み、徐々に昇温して、
100℃に達してから4時間還流反応を行った。次いで
200℃まで昇温しながら脱水反応を行い、200℃に
達したところで、14.2Paに減圧してさらに含有水
分及び、未反応フェノールを除去したところで、内部滑
剤・シランカップリング剤を添加し、冷却バットに取り
出し、常温で固形のノボラック型フェノール・グアナミ
ン共縮合樹脂416部を得た。 このノボラック型フ
ェノール・グアナミン共縮合樹脂160部を、実施例1
と同様に混練し、樹脂被覆砂を得た。 [比較例1]反応容器にフェノール400部、50%ホ
ルマリン179部を仕込んだ。次いで10%塩酸2部を
仕込み、徐々に昇温して100℃に達してから4時間還
流反応を行った。次いで200℃まで昇温しながら脱水
反応を行い、200℃に達したところで、14.2Pa
に減圧してさらに含有水分及び未反応フェノールを除去
したところで、内部滑剤・シランカップリング剤を添加
し、冷却バットに取り出し、常温で固形のノボラック型
フェノール樹脂395部を得た。このノボラック型フェ
ノール樹脂160部を、実施例1と同様に混練し、樹脂
被覆砂を得た。 [比較例2]反応容器にフェノール260部、ビスフェ
ノールA140部、50%ホルマリン109部を仕込ん
だ。次いで10%塩酸2部を仕込み、徐々に昇温して1
00℃に達してから4時間還流反応を行った。次いで2
00℃まで昇温しながら脱水反応を行い、200℃に達
したところで、14.2Paに減圧してさらに含有水分
及び未反応フェノールを除去したところで、内部滑剤・
シランカップリング剤を添加し、冷却バットに取り出
し、常温で固形のノボラック型フェノール樹脂338部
を得た。このノボラック型フェノール樹脂160部を、
実施例1と同様に混練し、樹脂被覆砂を得た。 [比較例3]比較例1の樹脂95に対し、メラミン5部
を溶融混合した。このノボラック型フェノール樹脂・メ
ラミン混合物160部を、実施例1と同様に混練し、樹
脂被覆砂を得た。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to the examples. In addition,
Parts or% in the examples are parts by weight unless otherwise specified. Example 1 A reaction vessel was charged with 678 parts of phenol, 101 parts of melamine and 192 parts of 50% formalin. Then, 27 parts of oxalic acid was charged, and the temperature was gradually raised to 100 ° C.
After the temperature reached, the reaction was refluxed for 4 hours. Then 200 ° C
The dehydration reaction is carried out while the temperature is raised to 200 ° C., and when the temperature reaches 200 ° C., the pressure is reduced to 14.2 Pa and the water content and
After removing unreacted phenol, an internal lubricant / silane coupling agent was added and taken out in a cooling vat to obtain 492 parts of a novolac-type phenol / melamine co-condensed resin which was solid at room temperature. 160 parts of this novolac-type phenol / melamine co-condensation resin was added to 8000 parts of silica sand preheated to 140 to 150 ° C., and kneaded for 60 seconds with a speed muller manufactured by Enshu Tekko Co., Ltd.
A hexamine aqueous solution dissolved in 1 part was kneaded until the resin-coated sand was disintegrated, then 8 parts of calcium stearate was added and mixed for 10 seconds to obtain a resin-coated sand. Example 2 A reaction vessel was charged with 715 parts of phenol, 50 parts of melamine, and 288 parts of 50% formalin. Next, 29 parts of oxalic acid was charged, the temperature was gradually raised, and after reaching 100 ° C., a reflux reaction was carried out for 4 hours. Then, dehydration reaction was carried out while raising the temperature to 200 ° C. When the temperature reached 200 ° C., the pressure was reduced to 14.2 Pa to further remove the water content and unreacted phenol, and then an internal lubricant / silane coupling agent was added. Then, it was taken out in a cooling vat to obtain 672 parts of a novolac-type phenol / melamine co-condensed resin which was solid at room temperature. 160 parts of this novolac type phenol / melamine co-condensation resin was kneaded in the same manner as in Example 1 to obtain resin-coated sand. Example 3 A reactor was charged with 447 parts of phenol, 28 parts of benzoguanamine, and 180 parts of 50% formalin. Then, add 18 parts of oxalic acid, gradually raise the temperature,
After reaching 100 ° C., a reflux reaction was carried out for 4 hours. Then, dehydration reaction was performed while raising the temperature to 200 ° C., and when the temperature reached 200 ° C., the content of water and unreacted phenol were further reduced by reducing the pressure to 14.2 Pa, and then an internal lubricant / silane coupling agent was added. Then, it was taken out in a cooling vat to obtain 416 parts of a novolac-type phenol / guanamine co-condensation resin which was solid at room temperature. 160 parts of this novolac-type phenol-guanamine co-condensation resin was used in Example 1.
Kneading was carried out in the same manner as above to obtain resin-coated sand. Comparative Example 1 A reaction vessel was charged with 400 parts of phenol and 179 parts of 50% formalin. Then, 2 parts of 10% hydrochloric acid was charged, the temperature was gradually raised, and after reaching 100 ° C., a reflux reaction was carried out for 4 hours. Next, dehydration reaction was performed while raising the temperature to 200 ° C., and when reaching 200 ° C., 14.2 Pa
When the water content and the unreacted phenol were further removed by depressurizing, the internal lubricant / silane coupling agent was added and taken out into a cooling vat to obtain 395 parts of a novolac type phenol resin solid at room temperature. 160 parts of this novolac type phenol resin was kneaded in the same manner as in Example 1 to obtain resin-coated sand. [Comparative Example 2] 260 parts of phenol, 140 parts of bisphenol A, and 109 parts of 50% formalin were charged into a reaction vessel. Then, 2 parts of 10% hydrochloric acid was charged, and the temperature was gradually raised to 1
After reaching 00 ° C, a reflux reaction was carried out for 4 hours. Then 2
The dehydration reaction was carried out while the temperature was raised to 00 ° C, and when the temperature reached 200 ° C, the pressure was reduced to 14.2 Pa to further remove the water content and unreacted phenol.
A silane coupling agent was added, and the mixture was taken out in a cooling vat to obtain 338 parts of a novolac type phenol resin which was solid at room temperature. 160 parts of this novolac type phenol resin
Kneading was performed in the same manner as in Example 1 to obtain resin-coated sand. Comparative Example 3 5 parts of melamine was melt-mixed with the resin 95 of Comparative Example 1. 160 parts of this novolac-type phenol resin / melamine mixture was kneaded in the same manner as in Example 1 to obtain resin-coated sand.

【試験例】[Test example]

・樹脂試験方法 冷間抗折強度;JIS K6910による。 融着点;JACT試験方法C−1による。 -Resin test method Cold bending strength: According to JIS K6910. Fusion point: According to JACT test method C-1.

【表1】樹脂特性 [Table 1] Resin properties

【表2】樹脂被覆砂特性 [Table 2] Characteristics of resin-coated sand

【発明の効果】本発明により得られる鋳型用ノボラック
型フェノール・トリアジン化合物共縮合樹脂を用いる
と、高強度を有し、注湯後の鋳型の崩壊性に優れたシェ
ルモールド用樹脂被覆砂を得ることができる。これによ
り、鋳型造型時の作業性に優れたシェルモールド法の鋳
型用バインダーとして幅広く利用できる。
EFFECTS OF THE INVENTION By using the novolac-type phenol / triazine compound co-condensation resin for a mold obtained according to the present invention, a resin-coated sand for shell mold having high strength and excellent in collapsibility of the mold after pouring is obtained. be able to. As a result, it can be widely used as a binder for a mold in the shell molding method, which is excellent in workability during molding.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フェノール類(P)とトリアジン環
(T)を有する化合物(以下トリアジン化合物)のモル
比(P/T)=4.0〜19.0、ホルムアルデヒド類
(F)とフェノール類およびトリアジン化合物のモル比
{F/(P+T)}=0.45〜0.90の範囲で構成
される混合物を酸性触媒によりpH4.0以下で反応さ
せて得たノボラック型フェノール・トリアジン共縮合樹
脂を砂に被覆してなることを特徴とする、高強度・易崩
壊性シェルモールド用樹脂被覆砂。
1. A molar ratio (P / T) of phenols (P) to a compound having a triazine ring (T) (hereinafter referred to as a triazine compound) = 4.0 to 19.0, formaldehydes (F) to phenols, and A novolac-type phenol-triazine co-condensation resin obtained by reacting a mixture composed of a triazine compound in a molar ratio {F / (P + T)} of 0.45 to 0.90 with an acidic catalyst at a pH of 4.0 or less. A resin-coated sand for a high-strength, easily disintegrating shell mold, which is characterized by being coated with sand.
JP7963696A 1996-03-06 1996-03-06 Resin coated sand for shell mold Pending JPH09239486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7963696A JPH09239486A (en) 1996-03-06 1996-03-06 Resin coated sand for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7963696A JPH09239486A (en) 1996-03-06 1996-03-06 Resin coated sand for shell mold

Publications (1)

Publication Number Publication Date
JPH09239486A true JPH09239486A (en) 1997-09-16

Family

ID=13695589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7963696A Pending JPH09239486A (en) 1996-03-06 1996-03-06 Resin coated sand for shell mold

Country Status (1)

Country Link
JP (1) JPH09239486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155256A (en) * 2006-12-25 2008-07-10 Kao Corp Structure for casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155256A (en) * 2006-12-25 2008-07-10 Kao Corp Structure for casting

Similar Documents

Publication Publication Date Title
US4113916A (en) Shell sand with improved thermal shock resistance
JPH09239486A (en) Resin coated sand for shell mold
JPS6195735A (en) Bonding agent of phenol resin for shell mold
JPS5978745A (en) Resin coated sand for casting
JPS59127946A (en) Resin coated sand for shell mold
JPH0270717A (en) Novolac phenol resin for shell mold
JP4439774B2 (en) Novolac type phenolic resin and resin coated sand for shell mold
JPS58224038A (en) Composition of coated sand and its production
JPS63132917A (en) Production of quick-curing phenolic resin
JPS58184034A (en) Resin coated sand
JP2831826B2 (en) Binder composition for foundry sand
JPS6056729B2 (en) Manufacturing method of modified phenolic resin for shell mold
JP3170904B2 (en) Carbon dioxide gas-curable binder aqueous solution for casting sand and method for producing mold
KR100336978B1 (en) Binder resin composition for casting
JP2954395B2 (en) Resin composition for producing curable mold and method for producing mold
JPH05123818A (en) Production of casting mold
JPS58196137A (en) Resin coated sand for shell mold method
JP2954396B2 (en) Resin composition for producing curable mold and method for producing mold
JPH08275B2 (en) Method for producing resin-coated sand grains for shell mold
JPS6327103B2 (en)
JP4452965B2 (en) Resin composition for shell mold
JP2003164943A (en) Novolac type phenolic resin composition for shell mold and resin-coated sand
JPH0647482A (en) Production of resin coated sand grain for shell mold
JPS6015648B2 (en) Manufacturing method of resin for shell mold
JP2001259785A (en) Binder for shell mold