JPH09236276A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09236276A
JPH09236276A JP8039991A JP3999196A JPH09236276A JP H09236276 A JPH09236276 A JP H09236276A JP 8039991 A JP8039991 A JP 8039991A JP 3999196 A JP3999196 A JP 3999196A JP H09236276 A JPH09236276 A JP H09236276A
Authority
JP
Japan
Prior art keywords
heat exchanger
blower
straight line
impeller
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8039991A
Other languages
Japanese (ja)
Other versions
JP3138632B2 (en
Inventor
Hisafumi Ikeda
尚史 池田
Ken Morinushi
憲 森主
Atsushi Edayoshi
敦史 枝吉
Manabu Asahina
学 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP08039991A priority Critical patent/JP3138632B2/en
Publication of JPH09236276A publication Critical patent/JPH09236276A/en
Application granted granted Critical
Publication of JP3138632B2 publication Critical patent/JP3138632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air-Flow Control Members (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a sound of interference of air flowing into fins of a heat exchanger at an angle of elevation from an impeller provided in an air conditioner. SOLUTION: When a point on a plane on the blower side in the minimum gap between a fin tube type heat exchanger and an impeller is adopted as A and a point is intersection of the peripheral part of the impeller and a straight line OA connecting the axis O of rotation and the point A is adopted as P and when a point at which an end part 4a of a straightening member is fitted closely to the heat exchanger at a distance being 25 to 90% of the distance AP is adopted as B and a point at which an end part 4b of the straightening member is fitted closely to the heat exchanger is adopted as F, a straightening part formed of a straight line 4a-E obtained by a method wherein a straight line having a length being equal to or smaller than the length of a straight line 4a-4b or equal to or larger than 50% thereof the rotated by an angle β=3 to 20 deg. around the point 4a from the straight line 4a-4b connecting the upstream-side end part of the straightening member and the downstream-side end part thereof and having a length of 20 to 50% if the diameter ϕD of the impeller, and by a circular arc having a tangential line which is in contact with a straight line connecting the points E and 4b or the straight line 4a-E and of which the angle to the fin at the point F is 90 deg. toward the upstream side, is provided so that it is fitted closely to the heat exchanger at the points B and F.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機内風路
に配設される送風機の例えば羽根車からフィンチューブ
型熱交換器へ送風される流れが、フィンチューブ型熱交
換器のフィンに対し、迎角をもって流入するために生じ
る熱交換器のフィンでの剥離渦により引き起こされる、
ヒュルヒュルと聞こえる干渉音を低減した空気調和機に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the fins of a fin tube type heat exchanger in which the flow of air blown from a fan, for example, of an air blower installed in an air conditioner to a fin tube type heat exchanger. , Caused by the separation vortex in the fins of the heat exchanger, which occurs due to the inflow at an angle of attack,
The present invention relates to an air conditioner with reduced interference noise that can be heard as humul.

【0002】[0002]

【従来の技術】 図60、61は、送風機の羽根車の吹
出し側に熱交換器を配設した空気調和機の例として代表
的な従来の空気調和機を示す図で、図60は縦断面図、
図61は、図60のX−X平面で切断したときの水平断
面図を示す。図60において、天井14に埋設された本
体2の内部には、送風機の羽根車1と、この送風機の羽
根車1のまわりに立設されたフィンチューブ型熱交換器
3、熱交換器3の下方には、熱交換器表面から流れ出る
ドレン水を受け止めるドレンパン5、モータ6、制御基
盤を収納した電気品箱12等が配設されている。この本
体2の下部には、化粧パネル13が固定され、この中央
部付近に吸込み口20が形成され、この吸込口20の外
側の四方には、吹出口10が形成されている。また、本
体は、本体固定フック21で、屋根裏より吊り下げられ
た本体固定ボルト18、固定ナット19により吊り下げ
固定されている。運転時、モータ6により駆動された遠
心送風機の羽根車1により、太線矢印のように、室内空
気が吸込口20から吸込グリル7、フィルタ9を通り、
ベルマウス8に案内され遠心送風機の羽根車1に吸込ま
れる。その後、遠心送風機の羽根車1から吹き出された
空気は、冷媒の循環している熱交換器3を通ることによ
り、加熱または冷却され吹出口10から室内へ吹き出
し、空調される。
2. Description of the Related Art FIGS. 60 and 61 are views showing a typical conventional air conditioner as an example of an air conditioner in which a heat exchanger is arranged on the outlet side of an impeller of a blower, and FIG. Figure,
FIG. 61 shows a horizontal sectional view taken along the line XX in FIG. In FIG. 60, inside the main body 2 embedded in the ceiling 14, the impeller 1 of the blower, the fin-tube type heat exchanger 3 standing around the impeller 1 of the blower, and the heat exchanger 3 are installed. A drain pan 5, which receives drain water flowing out from the surface of the heat exchanger, a motor 6, an electric component box 12 which houses a control board, and the like are arranged below. A decorative panel 13 is fixed to the lower part of the main body 2, a suction port 20 is formed in the vicinity of the central portion thereof, and blowout ports 10 are formed on four outer sides of the suction port 20. The main body is fixed by a main body fixing hook 21 by a main body fixing bolt 18 and a fixing nut 19 suspended from the attic. During operation, the impeller 1 of the centrifugal blower driven by the motor 6 causes room air to pass from the suction port 20 through the suction grill 7 and the filter 9 as indicated by the thick arrow.
It is guided by the bell mouth 8 and sucked into the impeller 1 of the centrifugal blower. After that, the air blown out from the impeller 1 of the centrifugal blower is heated or cooled by passing through the heat exchanger 3 in which the refrigerant circulates, is blown out into the room from the blowout port 10, and is air-conditioned.

【0003】図62は、熱交換器3と送風機の羽根車1
との最小隙間点A付近を拡大した要部拡大図で、送風機
の羽根車1から吹き出される流れ50の様子と、熱交換
器のフィン3aに対する空気の流れを示した図である。
図のように、前記送風機の羽根車1から吹き出される流
れ50の前記最小隙間点Aより上流側では、流れは熱交
換器のフィン3a方向に近く、下流側へ行くほどフィン
3aに対して垂直に近くなり、フィン3aと空気の流入
方向のなす角つまり迎角αが大きくなる。これにより、
フィン3aで剥離渦24が生じるとともに、この剥離渦
24の圧力変動により、フィン3a間での干渉音が発生
する。図63は、この従来の空気調和機の1/3OCT
分析結果による音圧レベルと周波数の関係を示す。図中
周波数3.15kHz帯域で特に干渉音が大きいことが
わかる。
FIG. 62 shows a heat exchanger 3 and an impeller 1 of a blower.
FIG. 5 is an enlarged view of an essential part in which the vicinity of the minimum clearance point A between and is illustrated, showing a state of the flow 50 blown out from the impeller 1 of the blower and the flow of air to the fins 3a of the heat exchanger.
As shown in the figure, on the upstream side of the minimum clearance point A of the flow 50 blown out from the impeller 1 of the blower, the flow is closer to the fin 3a direction of the heat exchanger, and as it goes downstream, the flow becomes closer to the fin 3a. The angle becomes nearly vertical, and the angle formed by the fins 3a and the inflow direction of air, that is, the angle of attack α increases. This allows
The separation vortex 24 is generated in the fin 3a, and the pressure fluctuation of the separation vortex 24 causes an interference sound between the fins 3a. Fig. 63 shows 1 / 3OCT of this conventional air conditioner.
The relation between the sound pressure level and the frequency according to the analysis result is shown. It can be seen that the interference sound is particularly large in the frequency band of 3.15 kHz in the figure.

【0004】[0004]

【発明が解決しようとする課題】上記従来の空気調和機
は、送風機の羽根車から吹き出された流れが、熱交換器
のフィンに対し迎角をもって流入するため、剥離渦を生
じ、フィン間で干渉音が発生する。この現象は、特に空
気調和機の小型化や送風機の羽根車外径の増加により、
熱交換器と送風機の羽根車が接近する際目立っていた。
また、このとき風切り音(NZ音)も生じ、騒音悪化す
るという問題があった。この発明は騒音に問題のない空
気調和機を得るものである。またこの発明は空気調和機
を小型化していった場合でも信頼性の高い装置を得るも
のである。
In the above-described conventional air conditioner, the flow blown out from the impeller of the blower flows into the fins of the heat exchanger at an angle of attack, so that a separation vortex is generated between the fins. Interference sound is generated. This phenomenon is due to the downsizing of the air conditioner and the increase in the outer diameter of the impeller of the blower.
It was noticeable when the heat exchanger and the impeller of the blower approached each other.
Further, at this time, there is a problem that a wind noise (NZ sound) is generated and the noise is deteriorated. The present invention is to obtain an air conditioner having no noise problem. Further, the present invention provides a highly reliable device even when the air conditioner is downsized.

【0005】[0005]

【課題を解決するための手段】第1の発明にかかわる空
気調和機は、フィンを設けた熱交換器と、この熱交換器
のフィンに対し迎角をもって流入するような吹き出し流
を有する送風機とを備えた空気調和機において、熱交換
器と送風機との最小隙間付近に設けられ、熱交換器から
送風機方向に凸となるように形成され、この凸部分で熱
交換器から離れる板状部材であって、かつこの板状部材
に通風口を有する整流部材と、この整流部材の前記最小
隙間部分より送風機から吹き出された空気の上流側およ
び下流側に延長した部分であって、熱交換器に近接して
配置された整流部材の両側の端部と、を設けたものであ
る。
An air conditioner according to a first aspect of the present invention includes a heat exchanger having fins, and a blower having a blow-out flow that flows into the fins of the heat exchanger at an angle of attack. In the air conditioner equipped with, is provided in the vicinity of the minimum gap between the heat exchanger and the blower, is formed to be convex in the direction of the blower from the heat exchanger, the plate-shaped member that separates from the heat exchanger at this convex portion. There is a rectifying member having a ventilation opening in the plate-shaped member, and a portion extending from the minimum gap portion of the rectifying member to the upstream side and the downstream side of the air blown from the blower, and to the heat exchanger. And both ends of the rectifying member arranged in close proximity to each other.

【0006】第2の発明にかかわる空気調和機は、熱交
換器から送風機方向に凸となるように形成されたこの頂
上部分が送風機の羽根車から吹き出された空気の最小隙
間より下流側に突出したものである。
In the air conditioner according to the second aspect of the invention, the top portion formed so as to be convex from the heat exchanger in the direction of the blower projects downstream from the minimum gap of the air blown out from the impeller of the blower. It was done.

【0007】第3の発明にかかわる空気調和機は、整流
部材の両側の端部の間の直線状の長さが送風機の羽根車
の直径の20−50%であることを特徴とする請求項1
記載の空気調和機
An air conditioner according to a third aspect of the present invention is characterized in that a straight length between both ends of the flow regulating member is 20-50% of a diameter of an impeller of a blower. 1
Air conditioner described

【0008】第4の発明にかかわる空気調和機は、整流
部材の上流側の端部と最小隙間点との直線状の長さが、
最小隙間長さの25−90%である。
In the air conditioner according to the fourth aspect of the present invention, the straight length between the upstream end of the rectifying member and the minimum clearance point is
It is 25-90% of the minimum gap length.

【0009】第5の発明にかかわる空気調和機は、熱交
換器から送風機方向に凸となるように形成された凸部の
先端は整流部材の上流側の端部を中心にして両側端部を
結ぶ直線を3−20度回転した範囲に設けたことを特徴
とする請求項1記載の空気調和機
In the air conditioner according to the fifth aspect of the present invention, the tip of the convex portion formed so as to be convex from the heat exchanger toward the blower has both end portions centering on the upstream end portion of the rectifying member. The air conditioner according to claim 1, wherein the connecting straight line is provided in a range rotated by 3 to 20 degrees.

【0010】第6の発明に係る空気調和機は、本体内に
送風機の羽根車と、送風機の羽根車の吹出し口側にフィ
ンを設けた熱交換器を有し、送風機の羽根車の回転軸中
心を点O、熱交換器と送風機の羽根車との最小隙間で熱
交換器の送風機側の面上の点をA、送風機の羽根車外周
部と送風機の羽根車の回転軸Oと前記最小隙間点Aを結
ぶ直線OAとの交点をP、点Aから送風機の羽根車から
吹き出された空気の上流側の整流部材の端部4aが熱交
換器に近接する点をB、また下流側の整流部材の端部4
bが熱交換器に近接する点をFとするとき、整流部材の
送風機の羽根車から吹き出された空気の上流側の整流部
材の端部と下流側の端部を結ぶ直線4a−4b上で、点
4aを中心に任意角度β°回転させた任意長さの直線状
4a−Eと、点E、4bを結ぶ直線状または直線4a−
Eに点Eで接しかつ点Fにおいて熱交換器のフィンとの
角度が上流側に90°以下の接線を有する円弧状E−4
bにより形成された整流部材を前記熱交換器上の点B、
Fに熱交換器に近接するように配設したものである。
An air conditioner according to a sixth aspect of the invention has an impeller of a blower in a main body and a heat exchanger having fins on the outlet side of the impeller of the blower, and a rotary shaft of the impeller of the blower. The center is point O, the point on the blower side of the heat exchanger is the minimum clearance between the heat exchanger and the impeller of the blower, and A is the outer circumference of the impeller of the blower and the rotation axis O of the blower impeller and the minimum. P is the intersection with the straight line OA connecting the gap points A, B is the point where the upstream side rectifying member end 4a of the air blown from the impeller of the blower from point A is close to the heat exchanger, and B is the downstream side. End 4 of rectifying member
When b is a point close to the heat exchanger, and F is a straight line 4a-4b connecting the end of the upstream rectifying member and the end of the downstream rectifying member of the air blown from the impeller of the blower of the rectifying member. , A straight line 4a-E having an arbitrary length rotated about the point 4a by an arbitrary angle β ° and a straight line or a straight line 4a- connecting the points E and 4b.
An arcuate shape E-4 which is in contact with E at a point E and has a tangent line with the fin of the heat exchanger at a point F of 90 ° or less on the upstream side.
The baffle member formed by b is connected to the point B on the heat exchanger,
It is arranged in F so as to be close to the heat exchanger.

【0011】第7の発明に係る空気調和機は、羽根車か
ら吹き出された空気の上流側の整流部材の端部と下流側
の端部を結ぶ長さが送風機の羽根車の直径φDの20〜
50%である直線4a−4b上から、点4aを中心に直
線4a−4bの長さ以下でかつ50%以上の直線を任意
角度β°回転させた直線状4a−Eと、点E、4bを結
ぶ直線状または直線4a−Eに接しかつ点Fにおいて熱
交換器のフィンとの角度が上流側に90°以下の接線を
有する円弧状E−4bと、により形成された整流部材を
前記熱交換器上の点B、Fに熱交換器に近接するように
配設したものである。
In the air conditioner according to the seventh aspect of the invention, the length connecting the end of the air flow regulating member on the upstream side to the end of the air blown from the impeller is 20 with the diameter φD of the impeller of the blower. ~
From the straight line 4a-4b which is 50%, the straight line 4a-E obtained by rotating the straight line 4a-4b which is the length of the straight line 4a-4b and 50% or more around the point 4a by an arbitrary angle β ° and the points E, 4b. A straight line or a straight line 4a-E that connects the above and a circular arc E-4b that has a tangent to the fin of the heat exchanger at the point F at an upstream side of 90 ° or less. It is arranged so that points B and F on the exchanger are close to the heat exchanger.

【0012】第8の発明に係る空気調和機は、点Aから
送風機の羽根車から吹き出された空気の上流側の整流部
材の端部4aが熱交換器に密着する点をB、また下流側
の整流部材の端部4bが熱交換器に密着する点をFとす
るとき、整流部材の送風機の羽根車から吹き出された空
気の上流側の整流部材の端部と下流側の端部を結ぶ長さ
が送風機の羽根車の直径φDの20〜50%である直線
4a−4b上から、点4aを中心に直線4a−4bの長
さ以下でかつ50%以上の直線を任意角度β°回転させ
た直線状4a−Eと、点E、4bを結ぶ直線状または直
線4a−Eに接しかつ点Fにおいて熱交換器のフィンと
の角度が上流側に90°以下の接線を有する円弧状E−
4bと、により形成された整流部材を前記熱交換器上の
点B、Fに熱交換器に近接するように配設したものであ
る。
In the air conditioner pertaining to the eighth aspect of the present invention, the point B where the end 4a of the upstream rectifying member of the air blown from the impeller of the blower from point A comes into close contact with the heat exchanger, and the downstream side When the point where the end portion 4b of the rectifying member is in close contact with the heat exchanger is F, the end portion of the rectifying member on the upstream side and the end portion on the downstream side of the air blown from the impeller of the blower of the rectifying member are connected. From a straight line 4a-4b whose length is 20 to 50% of the diameter φD of the impeller of the blower, rotate a straight line that is less than the length of the straight line 4a-4b and 50% or more around the point 4a by an arbitrary angle β °. The straight line 4a-E and the straight line connecting the points E, 4b or the straight line 4a-E in contact with the straight line 4a-E, and the arc E having a tangent line of which the angle with the fin of the heat exchanger is 90 ° or less on the upstream side at the point F −
4b, and a rectifying member formed by 4b is arranged at points B and F on the heat exchanger so as to be close to the heat exchanger.

【0013】第9の発明に係る空気調和機は、整流部材
の送風機の羽根車から吹き出された空気の上流側の整流
部材の端部と下流側の端部を結ぶ直線4a−4b上か
ら、点4aを中心に角度β°=3〜20°回転させた任
意長さの直線状4a−Eと、点E、4bを結ぶ直線状ま
たは直線4a−Eに点Eで接しかつ点Fにおいて熱交換
器のフィンとの角度が上流側に90°以下の接線を有す
る円弧状E−4bと、により形成された整流部材を前記
熱交換器上の点B、Fに熱交換器に近接するように配設
したものである。
In the air conditioner according to the ninth aspect of the invention, from the straight line 4a-4b connecting the end portion of the upstream side rectifying member and the end portion of the downstream side of the air blown from the impeller of the blower of the rectifying member, A straight line 4a-E of an arbitrary length rotated about the point 4a by an angle β ° = 3 to 20 ° and a straight line or a straight line 4a-E connecting the points E and 4b are in contact with each other at the point E and heat at the point F. A rectifying member formed by an arcuate E-4b having a tangent line of 90 ° or less on the upstream side with the fins of the exchanger is provided so that points B and F on the heat exchanger are close to the heat exchanger. It is arranged in.

【0014】第10の発明に係る空気調和機は、整流部
材の送風機の羽根車から吹き出された空気の上流側の整
流部材の端部と下流側の端部を結ぶ長さが送風機の羽根
車の直径φDの20〜50%である直線4a−4b上か
ら、点4aを中心に直線4a−4bの長さ以下かつ50
%以上の長さをもつ直線を角度β°=3〜20°回転さ
せた直線状4a−Eと、点E、4bを結ぶ直線状または
直線4a−Eに接しかつ点Fにおいて熱交換器のフィン
との角度が上流側に90°以下の接線を有する円弧状E
−4bと、により形成された整流部材を熱交換器上の点
B、Fに熱交換器に近接するように配設したものであ
る。
In the air conditioner according to the tenth aspect of the present invention, the length of the air blown out from the impeller of the blower of the air flow regulating member is such that the length connecting the upstream end of the air flow regulating member and the downstream end of the air blower impeller of the air blower. From the straight line 4a-4b which is 20 to 50% of the diameter φD of
% Of a straight line 4a-E rotated by an angle β ° = 3 to 20 ° and a straight line connecting the points E and 4b or a straight line 4a-E and at a point F of the heat exchanger Arc E with a tangent of 90 ° or less on the upstream side with the fin
-4b, and the rectifying member formed by -4b is arranged at points B and F on the heat exchanger so as to be close to the heat exchanger.

【0015】第11の発明に係る空気調和機は、熱交換
器と送風機の最小隙間付近に設けられた整流部材に網状
部材を用い、線径が熱交換器フィンピッチの1〜2倍で
かつ開口率=20〜40%であるものである。
In the air conditioner according to the eleventh aspect of the invention, a mesh member is used as a rectifying member provided near the minimum gap between the heat exchanger and the blower, and the wire diameter is 1 to 2 times the fin pitch of the heat exchanger and The aperture ratio is 20 to 40%.

【0016】第12の発明に係る空気調和機は、熱交換
器と送風機の最小隙間付近に設けられた整流部材に穴あ
き板材を用い、この穴径が熱交換器のフィンピッチの
0.3〜2倍でかつ開口率=25〜40%であるもので
ある。
In the air conditioner according to the twelfth aspect of the invention, a rectifying member provided in the vicinity of the minimum gap between the heat exchanger and the blower uses a perforated plate material, and the hole diameter is 0.3 of the fin pitch of the heat exchanger. .About.2 times and the aperture ratio = 25 to 40%.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

発明の実施の形態1.以下、一実施の形態の例を図に基
づいて説明する。図1は、第1の発明おける空気調和機
の一実施例における空気調和機の断面図である。図中、
天井14に埋設された本体2の内部には、送風機である
遠心送風機の羽根車1、この遠心送風機の羽根車1のま
わりに立設されたフィンチューブ型熱交換器3、網状の
整流部材4、熱交換器の下方には、熱交換器表面から流
れ出るドレン水を受け止めるドレンパン5、モータ6、
制御基盤を収納した電気品箱12等が配設されている。
この本体2の下部には、化粧パネル13が固定され、こ
の中央部付近に吸込み口20が形成され、この吸込口2
0の外側の四方には、吹出口10が形成されている。ま
た、本体は、本体固定フック21で、屋根裏より吊り下
げられた本体固定ボルト18、固定ナット19により吊
り下げ固定されている。運転時、モータ6により駆動さ
れた送風機の羽根車1により、太線矢印のように、室内
空気が吸込口20から吸込グリル7、フィルタ9を通
り、ベルマウス8に案内され送風機の羽根車1に吸込ま
れる。その後、送風機の羽根車1から吹き出された空気
は、冷媒の循環している熱交換器3を通ることにより、
加熱または冷却され吹出口10から室内へ吹き出し、空
調される。
First Embodiment of the Invention Hereinafter, an example of an embodiment will be described with reference to the drawings. FIG. 1 is a sectional view of an air conditioner in an embodiment of the air conditioner according to the first invention. In the figure,
Inside the main body 2 buried in the ceiling 14, an impeller 1 of a centrifugal blower, which is a blower, a fin-tube heat exchanger 3 standing upright around the impeller 1 of the centrifugal blower, and a mesh-like rectifying member 4 Below the heat exchanger, a drain pan 5 for receiving drain water flowing from the surface of the heat exchanger, a motor 6,
An electric component box 12 and the like that accommodates the control board are arranged.
A decorative panel 13 is fixed to the lower portion of the main body 2, and a suction port 20 is formed near the center of the decorative panel 13.
Air outlets 10 are formed on the four outer sides of 0. The main body is fixed by a main body fixing hook 21 by a main body fixing bolt 18 and a fixing nut 19 suspended from the attic. During operation, by the impeller 1 of the blower driven by the motor 6, the indoor air is guided from the suction port 20 through the suction grill 7 and the filter 9 to the bell mouth 8 as shown by the thick arrow, and is directed to the impeller 1 of the blower. Be sucked. After that, the air blown out from the impeller 1 of the blower passes through the heat exchanger 3 in which the refrigerant circulates,
After being heated or cooled, it is blown into the room from the outlet 10 and is air-conditioned.

【0018】図2は、図1の送風機の羽根車1の回転軸
に直交する平面で切断したときの断面図を示す。16
は、ドレンパンに溜まったドレン水を外部へ排水するた
めに用いるドレンポンプ、17は熱交換器の高さ方向の
各銅パイプに冷媒を分配するヘッダ、15は室外機と接
続するための配管を示す。また23は、送風機の羽根車
1の回転方向、点Aは熱交換器3と送風機の羽根車1と
の最小隙間、4は、送風機の羽根車1と熱交換器3の最
小隙間点A付近に、熱交換器3から送風機の羽根車方向
に凸となるように形成された整流部材、また、4aは、
整流部材4の前記最小隙間点Aより、送風機の羽根車1
から吹き出される空気の上流側の端面、4bは前記整流
部材4の前記最小隙間点Aより送風機の羽根車から吹き
出される空気の下流側の端面を示し、この2点で整流部
材4は熱交換器に近接、例えば密着している。
FIG. 2 is a sectional view taken along a plane orthogonal to the rotation axis of the impeller 1 of the blower shown in FIG. 16
Is a drain pump used to drain the drain water collected in the drain pan to the outside, 17 is a header for distributing the refrigerant to each copper pipe in the height direction of the heat exchanger, and 15 is a pipe for connecting with an outdoor unit. Show. Further, 23 is the rotation direction of the impeller 1 of the blower, point A is the minimum clearance between the heat exchanger 3 and the impeller 1 of the blower, and 4 is the minimum clearance A between the impeller 1 of the blower and the heat exchanger 3. Further, the rectifying member formed so as to be convex from the heat exchanger 3 toward the impeller of the blower, and 4a are
From the minimum clearance point A of the flow regulating member 4, the impeller 1 of the blower
The upstream end surfaces 4b of the air blown out from the air flow guides 4b indicate the downstream end surfaces of the air blown out from the impeller of the blower from the minimum clearance point A of the rectifying member 4, and the rectifying member 4 is heated at these two points. Proximity to, for example, close contact with the exchanger.

【0019】図3は、図1、2における熱交換器3と送
風機の羽根車1との最小隙間点A付近を送風機側から見
た斜視図である。送風機の羽根車1と熱交換器3との最
小隙間点A付近に、熱交換器3から送風機方向に凸とな
るように形成された整流部材4のハンガー状の前記整流
部材の端部4a、4bで熱交換器3の銅パイプ22に掛
け固定され、熱交換器3に密着されている。図4は、図
3の整流部材4のみ取り出した図である。図中4a、4
bは、整流部材4を熱交換器3と密着させる際の整流部
材4の端部を示す。図5は、図2の要部の部分拡大図で
ある。
FIG. 3 is a perspective view of the vicinity of the minimum clearance point A between the heat exchanger 3 and the impeller 1 of the blower in FIGS. 1 and 2 as seen from the blower side. Near the minimum gap A between the impeller 1 of the blower and the heat exchanger 3, the hanger-shaped end portion 4a of the straightening member 4 of the straightening member 4 is formed so as to be convex from the heat exchanger 3 toward the blower, At 4b, it is hung and fixed on the copper pipe 22 of the heat exchanger 3 and is in close contact with the heat exchanger 3. FIG. 4 is a view showing only the flow regulating member 4 of FIG. 4a, 4 in the figure
b shows the end of the rectifying member 4 when the rectifying member 4 is brought into close contact with the heat exchanger 3. FIG. 5 is a partially enlarged view of the main part of FIG.

【0020】このように構成された空気調和機におい
て、図5のように送風機の羽根車1と熱交換器3の最小
隙間点Aより送風機の羽根車1から吹き出された空気5
0の上流側、下流側の整流部材の端部4a、4bが熱交
換器3に密着し、かつ熱交換器3整流部材4との間に空
間があるため、送風機の羽根車1から吹き出された流れ
50の熱交換器のフィン3aと垂直方向成分50xが整
流部材4により減速され、熱交換器のフィン3a方向へ
偏向され通過するとともに、整流部材4を通過しなかっ
た流れ50bは、整流部材4でのコアンダー効果によっ
て、熱交換器のフィン3a方向に偏向され、熱交換器3
を通過する。これにより、図62の整流部材が無い時の
熱交換器のフィン3aに対し、吹出し流れ50が迎角を
もって流入することによる剥離渦24や、図6の前記整
流部材4の最小隙間点Aから上流側の端部4aが熱交換
器3に密着していない時のように、送風機の羽根車1か
ら吹き出された流れ50が整流部材4を通過せず熱交換
器のフィン3aと迎角をもっていることに生じる剥離渦
24、また図7の整流部材4の前記最小隙間点Aの下流
側の端部4bが熱交換器3に密着していない時のよう
に、送風機の羽根車1を吹き出された流れ50が、整流
部材4通過後、整流部材4の前記最小隙間点Aより下流
側の端部4b付近で発生する放出渦25の圧力が周囲よ
り低いため、この放出渦25の方向へ流れが誘導される
ことにより、熱交換器のフィン3aと迎角を持ち生じる
剥離渦24を無くせると同時に、この剥離渦24の圧力
変動により誘発される熱交換器のフィン3a間の干渉騒
音を無くすことができるため、本体から発生する耳障り
な騒音を低減できる。
In the air conditioner thus constructed, as shown in FIG. 5, the air 5 blown out from the impeller 1 of the blower from the minimum clearance point A between the impeller 1 of the blower and the heat exchanger 3.
Since the ends 4a and 4b of the rectifying members on the upstream side and the downstream side of 0 are in close contact with the heat exchanger 3 and there is a space between the heat exchanger 3 and the rectifying member 4, they are blown out from the impeller 1 of the blower. The heat-exchanger fins 3a and the vertical component 50x of the flow 50 are decelerated by the rectifying member 4, are deflected in the direction of the heat-exchanger fins 3a, and pass, while the flow 50b that has not passed the rectifying member 4 is rectified. Due to the Kounder effect in the member 4, the heat is deflected in the direction of the fins 3a of the heat exchanger.
Pass through. As a result, from the separation vortex 24 due to the blowing flow 50 flowing into the fin 3a of the heat exchanger when there is no flow straightening member in FIG. 62 at an angle of attack, and the minimum clearance point A of the flow straightening member 4 in FIG. As in the case where the upstream end 4a is not in close contact with the heat exchanger 3, the flow 50 blown out from the impeller 1 of the blower does not pass through the rectifying member 4 and forms an angle of attack with the fins 3a of the heat exchanger. Blow off the impeller 1 of the blower, as in the case where the separation vortex 24 caused by the presence of the rectifying member 4 and the end 4b of the rectifying member 4 on the downstream side of the minimum clearance point A are not in close contact with the heat exchanger 3. Since the generated flow 50 passes through the flow straightening member 4 and the pressure of the discharge vortex 25 generated near the end 4b of the flow straightening member 4 on the downstream side of the minimum gap point A is lower than the surroundings, the direction of the discharge vortex 25 is increased. The flow induces the fins 3 of the heat exchanger. Since the separation vortex 24 having an angle of attack can be eliminated, and at the same time, the interference noise between the fins 3a of the heat exchanger, which is induced by the pressure fluctuation of the separation vortex 24, can be eliminated. Can be reduced.

【0021】図8は、本体の同一吹出し風量における、
1/3オクターブ分析結果による音圧レベルと周波数と
の関係を示したものである。破線で示す本発明のもの
は、実線で示す整流部材なしのものに対し、2〜5kH
zの騒音が大幅に低減している。なお上述の説明で、整
流部材4は熱交換器に密着している構成を説明したが、
この密着とは熱交換機のフィンの上端面が並ぶ線上に整
流部材が存在することが望ましいということであり、こ
の整流部材の端部がフィンに接触していても、フィンの
間にあってもよい。 更にフィンの上端面が並ぶ線上に
整流部材の端部が存在せず、例えば整流部材の厚み程度
の隙間があっても異常音を抑える効果が存在するし、更
に上流側と下流側のこの隙間が同一である必要もない。
要は異常音を抑えるのに必要なだけ、端部をフィン列に
近接すれば良い。 また熱交換器から送風機方向に凸と
なるように形成されたこの頂上部分が送風機の羽根車か
ら吹き出された空気の最小隙間より下流側に突出した構
成を説明したが、もし回転方向がどちらでも起こり得る
構造の空気調和機であれば、点Eは線OA上に設ければ
良いといえる。整流部材4は、樹脂や金属部材などで製
造することができる。またこの整流部材のの幅は必ずし
も熱交換器の幅と同じ必要はなく風の流れの強い箇所に
設置すれば耳障りな騒音を低減できる。
FIG. 8 shows the same blow-out air volume of the main body,
It shows the relationship between the sound pressure level and the frequency based on the 1/3 octave analysis result. The one of the present invention shown by the broken line is 2 to 5 kH compared with the one without the rectifying member shown by the solid line.
z noise is significantly reduced. In the above description, the rectifying member 4 is described as being in close contact with the heat exchanger.
This close contact means that it is desirable that the flow regulating member is present on the line where the upper end faces of the fins of the heat exchanger are lined up, and the end portion of the flow regulating member may be in contact with the fin or between the fins. Furthermore, even if there is no end of the rectifying member on the line where the upper end faces of the fins are lined up, and there is a gap of about the thickness of the rectifying member, for example, there is an effect of suppressing abnormal noise. Need not be the same.
The point is that the ends should be as close to the fin array as necessary to suppress abnormal noise. In addition, this top portion formed to be convex in the direction of the blower from the heat exchanger has been described as having a configuration in which it projects downstream from the minimum gap of air blown from the impeller of the blower, but if the rotation direction is either It can be said that the point E may be provided on the line OA if the air conditioner has a structure that can occur. The rectifying member 4 can be manufactured from a resin, a metal member, or the like. Further, the width of the rectifying member does not necessarily have to be the same as the width of the heat exchanger, and if the rectifying member is installed at a place where the flow of wind is strong, annoying noise can be reduced.

【0022】発明の実施の形態2.図9は、この発明の
別の実施の形態の例における空気調和機の発明実施の形
態1の図1に相当する図である。対応する符号は、同一
のものを示す。図10は、第1の発明の別の実施例にお
ける空気調和機の発明実施の形態1の図2に相当する図
である。対応する符号は、同一のものを示す。図9、1
0のように、熱交換器3が直線状であっても、最小隙間
付近に整流部材4を配設することにより、発明実施の形
態1と同様の効果を得ることができる。
Embodiment 2 of the Invention FIG. 9 is a diagram corresponding to FIG. 1 of the first embodiment of the invention of the air conditioner in the example of another embodiment of the present invention. Corresponding reference characters indicate the same. FIG. 10 is a diagram corresponding to FIG. 2 of the first embodiment of the invention of the air conditioner in another example of the first invention. Corresponding reference characters indicate the same. 9 and 1
Even if the heat exchanger 3 is linear as shown in FIG. 0, the same effect as that of the first embodiment of the invention can be obtained by disposing the rectifying member 4 near the minimum gap.

【0023】発明の実施の形態3.図11は、この発明
に係る空気調和機の他の実施の形態の例における空気調
和機の発明実施の形態1の図5に相当する要部の部分拡
大図である。送風機である遠心送風機の羽根車1の回転
軸中心を点O、フィンチューブ型熱交換器3と送風機の
羽根車1との最小隙間を点A、送風機の羽根車1外周部
と送風機の羽根車1の回転軸Oと前記最小隙間点Aを結
ぶ直線OAとの交点をP、点Aから送風機の羽根車1か
ら吹き出された空気50の上流側の整流部材の端部4a
が熱交換器3に密着する点をB、また下流側の整流部材
の端部4bが熱交換器3に密着する点をFとするとき、
前記整流部材の送風機の羽根車から吹き出された空気の
上流側の整流部材の端部と下流側の端部を結ぶ直線4a
−4b上から、点4aを中心に任意角度β°回転させた
任意長さの直線4a−Eと点E、4bを結ぶ直線E−4
bにより形成された整流部材4を示す。この整流部材4
を点B、Fで熱交換器3に密着させて配設している。ま
た図中、送風機の回転軸中心を点O、送風機の回転方向
を23、熱交換器3のアルミフィンを3a、熱交換器3
の銅パイプを22を示す。
Embodiment 3 of the Invention FIG. 11 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the invention of the air conditioner in another example of the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower, which is a blower, is point O, the minimum gap between the fin-tube heat exchanger 3 and the impeller 1 of the blower is point A, the outer peripheral portion of the impeller 1 of the blower and the impeller of the blower. The intersection point of the rotary shaft O of No. 1 and the straight line OA connecting the minimum clearance point A is P, and the end portion 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower from the point A.
Let B be the point of close contact with the heat exchanger 3 and F be the point of contact of the downstream side rectifying member 4b with the heat exchanger 3.
A straight line 4a connecting the end portion of the upstream side rectifying member and the end portion of the downstream side of the air blown from the impeller of the blower of the rectifying member.
-4b, a straight line 4a-E having an arbitrary length rotated about the point 4a by an arbitrary angle β ° and a straight line E-4 connecting the points E and 4b
The rectification | straightening member 4 formed by b is shown. This straightening member 4
Are closely attached to the heat exchanger 3 at points B and F. In the figure, the center of the rotation axis of the blower is point O, the rotation direction of the blower is 23, the aluminum fins of the heat exchanger 3 are 3a, and the heat exchanger 3 is
22 shows the copper pipe of FIG.

【0024】このよう構成された空気調和機おいて、図
11のように送風機の羽根車1と熱交換器3の最小隙間
点Aより送風機の羽根車1から吹き出された空気50の
上流側、下流側の整流部材の端部4a、4bが熱交換器
3に密着し、かつ熱交換器3整流部材4との間に空間が
あるため、送風機の羽根車1から吹き出された流れ50
の熱交換器のフィン3aと垂直方向成分50xが整流部
材4の直線4a−E部分により減速され、熱交換器のフ
ィン3a方向へ偏向され通過するとともに、整流部材4
を通過しなかった流れ50bは、整流部材4の下流側の
直線E−Fでのコアンダー効果によって、熱交換器のフ
ィン3a方向に偏向され、熱交換器3を通過する。これ
により、図62の整流部材が無い時の熱交換器のフィン
3aに対し、吹出し流れ50が迎角をもって流入するこ
とによる剥離渦24を無くせると同時に、この剥離渦2
4の圧力変動により誘発される熱交換器のフィン3a間
の干渉騒音を無くすことができるため、本体から発生す
る耳障りな騒音を低減できる。図12は、本体の同一吹
出し風量における、1/3オクターブ分析結果による音
圧レベルと周波数との関係を示したものである。破線で
示す本発明のものは、実線で示す整流部材なしのものに
対し、2〜5kHzの騒音が大幅に低減している。
In the air conditioner thus constructed, as shown in FIG. 11, the upstream side of the air 50 blown out from the impeller 1 of the blower from the minimum clearance point A between the impeller 1 of the blower and the heat exchanger 3, Since the ends 4a, 4b of the downstream side rectifying member are in close contact with the heat exchanger 3 and there is a space between the heat exchanger 3 and the rectifying member 4, the flow 50 blown out from the impeller 1 of the blower 50
Fins 3a of the heat exchanger and the vertical component 50x are decelerated by the straight line 4a-E of the rectifying member 4, are deflected in the direction of the fins 3a of the heat exchanger, and pass through the rectifying member 4.
The flow 50b that has not passed through is deflected toward the fins 3a of the heat exchanger by the Counder effect on the straight line E-F on the downstream side of the flow straightening member 4 and passes through the heat exchanger 3. As a result, the separation vortex 24 due to the blow-out flow 50 flowing into the fin 3a of the heat exchanger when there is no rectifying member in FIG.
Since the interference noise between the fins 3a of the heat exchanger, which is induced by the pressure fluctuation of 4, can be eliminated, the offensive noise generated from the main body can be reduced. FIG. 12 shows the relationship between the sound pressure level and the frequency based on the 1/3 octave analysis result for the same blow-out air volume of the main body. The one of the present invention shown by the broken line has a noise of 2 to 5 kHz significantly reduced as compared with the one without the rectifying member shown by the solid line.

【0025】なお、整流部材4の直線状4a−E部分と
はほぼ直線状の板材を使用するということで合って、凸
または凹の円弧形状を使用すると、風の流れがこの整流
板に沿ってしまうので、風の流れが沿わない範囲で直線
状であれば良いものである。
It should be noted that the straight line 4a-E portion of the straightening member 4 is matched with the fact that a substantially straight plate material is used, and if a convex or concave arc shape is used, the wind flow follows this straightening plate. Therefore, a straight line is acceptable as long as the wind does not flow.

【0026】発明の実施の形態4.図13は、この発明
に係る空気調和機の別の実施の形態の例における空気調
和機の発明実施の形態1の図5に相当する要部の部分拡
大図である。送風機である遠心送風機の羽根車1の回転
軸中心を点O、フィンチューブ型熱交換器3と送風機の
羽根車1との最小隙間を点A、送風機の羽根車1外周部
と送風機の羽根車1の回転軸Oと前記最小隙間点Aを結
ぶ直線OAとの交点をP、点Aから送風機の羽根車1か
ら吹き出された空気50の上流側の整流部材の端部4a
が熱交換器3に密着する点をB、また下流側の整流部材
の端部4bが熱交換器3に密着する点をFとするとき、
前記整流部材の送風機の羽根車から吹き出された空気の
熱交換器と送風機の羽根車との最小隙間点Aより上流側
の整流部材の端部と下流側の端部を結ぶ直線4a−4b
上から、点4aを中心にβ°回転させた任意長さの直線
4a−Eと、直線4a−Eに点Eで接しかつ点Fにおい
て熱交換器のフィン3aとの角度γが上流側に90°以
下の接線を有する円弧E−4bにより形成された整流部
材4を示す。この整流部材4を点B、Fで熱交換器3に
密着させて配設している。このように構成された空気調
和機において、発明実施の形態3.と同様の効果が得ら
れる。
Fourth Embodiment of the Invention FIG. 13 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the air conditioner in another embodiment of the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower, which is a blower, is point O, the minimum gap between the fin-tube heat exchanger 3 and the impeller 1 of the blower is point A, the outer peripheral portion of the impeller 1 of the blower and the impeller of the blower. The intersection point of the rotary shaft O of No. 1 and the straight line OA connecting the minimum clearance point A is P, and the end portion 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower from the point A.
Let B be the point of close contact with the heat exchanger 3 and F be the point of contact of the downstream side rectifying member 4b with the heat exchanger 3.
A straight line 4a-4b connecting the end of the rectifying member upstream and the end of the rectifying member upstream from the minimum clearance point A between the heat exchanger of the air blown from the impeller of the blower of the rectifying member and the impeller of the blower.
From the top, the angle γ between the straight line 4a-E of arbitrary length rotated by β ° about the point 4a and the straight line 4a-E at the point E and the fin 3a of the heat exchanger at the point F is on the upstream side. The rectification | straightening member 4 formed by the circular arc E-4b which has a tangent of 90 degrees or less is shown. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. In the air conditioner configured as described above, the third embodiment of the invention will be described. The same effect can be obtained.

【0027】発明実施の形態5.図14は、この発明に
係る空気調和機の他の実施の形態の例における発明実施
の形態1の図5に相当する要部の部分拡大図である。送
風機である遠心送風機の羽根車1の回転軸中心を点O、
フィンチューブ型熱交換器3と送風機の羽根車1との最
小隙間を点A、送風機の羽根車1外周部と送風機の羽根
車1の回転軸Oと前記最小隙間点Aを結ぶ直線OAとの
交点をP、点Aから送風機の羽根車1から吹き出された
空気50の上流側の整流部材の端部4aが熱交換器3に
密着する点をB、また下流側の整流部材の端部4bが熱
交換器3に密着する点をFとするとき、前記整流部材の
送風機の羽根車から吹き出された空気の上流側の整流部
材の端部と下流側の端部を結ぶ直線4a−4b上から、
点4aを中心に任意角度β°回転させた任意長さ直線4
a−Eと点E、4bを結ぶ直線E−4bにより形成され
た整流部材4を示す。この整流部材4を点B、Fで熱交
換器3に密着させて配設している。また図中、送風機の
回転軸中心を点O、送風機の回転方向を23、熱交換器
3のアルミフィンを3a、熱交換器3の銅パイプを22
を示す。
Embodiment 5 of the Invention FIG. 14 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the invention in an example of another embodiment of the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower, which is a blower, is point O,
The minimum gap between the fin-tube type heat exchanger 3 and the impeller 1 of the blower is a point A, and the straight line OA connecting the outer peripheral portion of the impeller 1 of the blower and the rotation axis O of the impeller 1 of the blower and the minimum gap point A. The intersection point is P, the point 4a where the end portion 4a of the upstream side rectifying member of the air 50 blown out from the impeller 1 of the blower comes into close contact with the heat exchanger 3 from the point A, and the end portion 4b of the downstream side rectifying member 4b. Where F is the point of contact with the heat exchanger 3, on the straight line 4a-4b connecting the end of the upstream rectifying member and the end of the downstream rectifying member of the air blown from the impeller of the blower of the rectifying member. From
Straight line 4 of arbitrary length rotated by an arbitrary angle β ° around point 4a
The straightening member 4 formed by the straight line E-4b connecting aE and points E and 4b is shown. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. In the drawing, the center of the rotation axis of the blower is point O, the rotation direction of the blower is 23, the aluminum fins of the heat exchanger 3 are 3a, and the copper pipe of the heat exchanger 3 is 22.
Is shown.

【0028】このよう構成された空気調和機おいて、図
14のように送風機の羽根車1と熱交換器3の最小隙間
点Aより送風機の羽根車1から吹き出された空気50の
上流側、下流側の整流部材の端部4a、4bが熱交換器
3に密着し、かつ熱交換器3整流部材4との間に空間が
あるため、送風機の羽根車1から吹き出された流れ50
の熱交換器のフィン3aと垂直方向成分50xが整流部
材4の直線4a−E部分により減速され、熱交換器のフ
ィン3a方向へ偏向され通過するとともに、整流部材4
を通過しなかった流れ50bは、整流部材4の下流側の
直線であるE−Fでのコアンダー効果によって、熱交換
器のフィン3a方向に偏向され、熱交換器3を通過す
る。これにより、図62の整流部材が無い時の熱交換器
のフィン3aに対し、吹出し流れ50が迎角をもって流
入することによる剥離渦24を無くせると同時に、この
剥離渦24の圧力変動により誘発される熱交換器のフィ
ン3a間の干渉騒音を無くすことができるため、本体か
ら発生する耳障りな騒音を低減できる。図15は、本体
の同一吹出し風量における、1/3オクターブ分析結果
による音圧レベルと周波数との関係を示したものであ
る。破線で示す本発明のものは、実線で示す整流部材な
しのものに対し、2〜5kHzの騒音が大幅に低減して
いる。
In the air conditioner configured as described above, as shown in FIG. 14, the upstream side of the air 50 blown from the impeller 1 of the blower from the minimum clearance point A between the impeller 1 of the blower and the heat exchanger 3, Since the ends 4a, 4b of the downstream side rectifying member are in close contact with the heat exchanger 3 and there is a space between the heat exchanger 3 and the rectifying member 4, the flow 50 blown out from the impeller 1 of the blower 50
Fins 3a of the heat exchanger and the vertical component 50x are decelerated by the straight line 4a-E of the rectifying member 4, are deflected in the direction of the fins 3a of the heat exchanger, and pass through the rectifying member 4.
The flow 50b that has not passed through is passed through the heat exchanger 3 by being deflected toward the fins 3a of the heat exchanger by the Counder effect in the straight line E-F on the downstream side of the flow straightening member 4. This eliminates the separation vortex 24 due to the blow-out flow 50 flowing into the fin 3a of the heat exchanger without the rectifying member shown in FIG. 62 at an angle of attack, and at the same time induces the pressure fluctuation of the separation vortex 24. Since interference noise between the fins 3a of the heat exchanger can be eliminated, it is possible to reduce annoying noise generated from the main body. FIG. 15 shows the relationship between the sound pressure level and the frequency according to the 1/3 octave analysis result in the same blowing air volume of the main body. The one of the present invention shown by the broken line has a noise of 2 to 5 kHz significantly reduced as compared with the one without the rectifying member shown by the solid line.

【0029】しかし、このように構成された空気調和機
において整流部材の形状を決定する際、前記整流部材4
の送風機の羽根車1から吹き出された空気50の前記最
小隙間点Aより上流側の整流部材の端部4aと下流側の
端部4bを結ぶ直線4a−4bの長さが、短すぎると効
果が無くなり、長すぎてもそれ以上効果が出なくなり、
逆に図16のように、送風機の羽根車1から吹き出され
る流れ50の圧力損失となる。また、前記整流部材4の
送風機の羽根車から吹き出された空気50の上流側の整
流部材の端部4aと下流側の端部4bを結ぶ直線4a−
4b上から、点4aを中心に任意角度β°回転させた直
線4a−Eの長さが長すぎて送風機の羽根車1から吹き
出される流れ50の圧力損失となり騒音悪化したり、短
すぎて熱交換器のフィン3aでの干渉音に効果が無くな
る。このため最適範囲が存在する。
However, when determining the shape of the straightening member in the air conditioner thus constructed, the straightening member 4 is used.
If the length of the straight line 4a-4b connecting the end 4a of the rectifying member on the upstream side of the minimum clearance point A of the air 50 blown out from the impeller 1 of the blower and the end 4b of the downstream side is too short, it is effective. Disappears, and even if it is too long, it will not have any further effect,
On the contrary, as shown in FIG. 16, there is a pressure loss of the flow 50 blown out from the impeller 1 of the blower. A straight line 4a-connecting the upstream end 4a and the downstream end 4b of the rectifying member 4 with respect to the air 50 blown out from the impeller of the blower.
The straight line 4a-E rotated from the point 4a about the point 4a by an arbitrary angle β ° is too long to cause pressure loss of the flow 50 blown out from the impeller 1 of the blower, resulting in noise deterioration or too short. The effect on the interference sound at the fins 3a of the heat exchanger is lost. Therefore, there is an optimum range.

【0030】図17は、整流部材4の上流側端部4aと
下流側の端部4bを結ぶ直線4a−4bの長さLと送風
機の羽根車の直径φDとの比L/Dを変更したときの、
図15の騒音値の1/3OCT分析結果における熱交換
器のフィン3a間の干渉騒音の発生周波数帯域である2
〜5kHz帯域の音圧レベルのうち、最も高い数値を示
す3.15kHz帯域での整流部材4あり、なしでの音
圧レベルの騒音低減量△SPL3.15k( 図中×印)
と、騒音値O.A.の比較△SPLOA( 図中○印)で
示している。図中L/D=0における△SPL3.15
kは整流部材なしのときの値である。
In FIG. 17, the ratio L / D between the length L of the straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the flow straightening member 4 and the diameter φD of the impeller of the blower is changed. When
It is a frequency band of occurrence of interference noise between the fins 3a of the heat exchanger in the 1/3 OCT analysis result of the noise value of FIG.
-Sound pressure level noise reduction amount without and with rectifying member 4 in the 3.15 kHz band showing the highest value among sound pressure levels in the ~ 5 kHz band ΔSPL 3.15k (marked x in the figure)
And the noise value O. A. The comparison ΔSPLOA (circle in the figure) is shown. ΔSPL 3.15 at L / D = 0 in the figure
k is a value when there is no rectifying member.

【0031】また、図18は、前記整流部材4の上流側
直線部4a−Eの長さLMと直線4a−4bの長さLと
の比LM/Lを変更したときの図17に相当する1/3
OCT分析結果における熱交換器のフィン3a間の干渉
騒音の発生周波数帯域である2〜5kHz帯域の音圧レ
ベルのうち、最も高い数値を示す3.15kHz帯域で
の整流部材4あり、なしでの音圧レベルの騒音低減量△
SPL3.15k( 図中×印)と、騒音値O.A.の比
較△SPLOA( 図中○印)で示している。図中LM/
L=0における△SPL3.15kは整流部材なしのと
きの値である。図からわかるように、整流部材4の上流
側端部4aと下流側の端部4bを結ぶ直線4a−4bの
長さと送風機の羽根車1の直径φDとの比L/D=20
〜50%の間で、かつ直線4a−Eの長さが、直線4a
−4bの長さ以下、50%以上であれば、騒音値を悪化
させることなく熱交換器のフィン3a間での干渉騒音が
低減でき、かつ耳障りな音のしない空気調和機を得られ
る。
FIG. 18 corresponds to FIG. 17 when the ratio LM / L of the length LM of the upstream straight line portion 4a-E of the straightening member 4 and the length L of the straight line 4a-4b is changed. 1/3
Of the sound pressure level in the 2 to 5 kHz band, which is the frequency band in which the interference noise occurs between the fins 3a of the heat exchanger in the OCT analysis result, the rectifying member 4 in the 3.15 kHz band showing the highest numerical value is provided. Noise reduction of sound pressure level △
SPL 3.15k (marked with X in the figure) and noise value O.S. A. The comparison ΔSPLOA (circle in the figure) is shown. LM / in the figure
ΔSPL 3.15k at L = 0 is the value when there is no rectifying member. As can be seen from the figure, the ratio L / D of the length of the straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the rectifying member 4 to the diameter φD of the impeller 1 of the blower L / D = 20
And the length of the straight line 4a-E is between 50% and 50%.
If the length is -4b or less and 50% or more, the interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the noise value, and an air conditioner without harsh noise can be obtained.

【0032】発明実施の形態6.図19は、この発明に
係る空気調和機の別の実施の形態の例における空気調和
機の発明実施の形態1の図5に相当する要部の部分拡大
図である。送風機である遠心送風機の羽根車1の回転軸
中心を点O、フィンチューブ型熱交換器3と送風機の羽
根車1との最小隙間を点A、送風機の羽根車1外周部と
送風機の羽根車1の回転軸Oと前記最小隙間点Aを結ぶ
直線OAとの交点をP、点Aから送風機の羽根車1から
吹き出された空気50の上流側の整流部材の端部4aが
熱交換器3に密着する点をB、また下流側の整流部材の
端部4bが熱交換器3に密着する点をFとするとき、前
記整流部材4の送風機の羽根車1から吹き出された空気
50の熱交換器3と送風機の羽根車1との最小隙間点A
より上流側の整流部材の端部4aと下流側の端部4bを
結ぶ直線4a−4b上から、点4aを中心に任意角度β
°回転させた任意長さの直線4a−Eと、直線4a−E
に点Eで接しかつ点Fにおいて熱交換器のフィン3aと
の角度γが上流側に90°以下の接線を有する円弧E−
4bにより形成された整流部材4を示す。この整流部材
4を点B、Fで熱交換器3に密着させて配設している。
Embodiment 6 of the Invention FIG. 19 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the invention of the air conditioner in another example of the embodiment of the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower, which is a blower, is point O, the minimum gap between the fin-tube heat exchanger 3 and the impeller 1 of the blower is point A, the outer peripheral portion of the impeller 1 of the blower and the impeller of the blower. The intersection 4 of the rotary shaft O of No. 1 and the straight line OA connecting the minimum clearance point A is P, and the end 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower from the point A is the heat exchanger 3 Let B be the point of close contact with the heat exchanger 3 and F be the point of contact of the downstream side rectifying member 4b with the heat exchanger 3, and the heat of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 Minimum clearance point A between the exchanger 3 and the impeller 1 of the blower
From a straight line 4a-4b connecting the end 4a of the rectifying member on the upstream side and the end 4b on the downstream side, an arbitrary angle β around the point 4a
Straight line 4a-E and straight line 4a-E of arbitrary length rotated by
Arc E- which is tangent to the point E and has a tangent line whose angle γ with the fin 3a of the heat exchanger at the point F is 90 ° or less on the upstream side.
4b shows the flow regulating member 4 formed by 4b. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F.

【0033】このように構成された空気調和機におい
て、発明実施の形態5.と同様の効果が得られる。しか
し、このように構成された空気調和機において整流部材
4の形状を決定する際、前記整流部材4の送風機の羽根
車1から吹き出された空気50の前記最小隙間点Aより
上流側の整流部材の端部4aと下流側の端部4bを結ぶ
直線4a−4bの長さが、短すぎると図20のように、
上流側で熱交換器のフィン3aでの剥離渦24が発生
し、効果が無くなり、長すぎてもそれ以上効果が出なく
なり、図21のように、送風機の羽根車1から吹き出さ
れる流れ50の圧力損失となり、騒音値が悪化する。ま
た、前記整流部材4の送風機の羽根車から吹き出された
空気50の上流側の整流部材の端部4aと下流側の端部
4bを結ぶ直線4a−4b上から、点4aを中心に任意
角度β°回転させた直線4a−Eの長さが長すぎて送風
機の羽根車1から吹き出される流れ50の圧力損失とな
り騒音悪化したり、短すぎて熱交換器のフィン3aでの
干渉音に効果が無くなる。そこで、最適範囲が存在す
る。
In the air conditioner configured as described above, the fifth embodiment of the invention will be described. The same effect can be obtained. However, when determining the shape of the rectifying member 4 in the air conditioner thus configured, the rectifying member 4 of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 upstream of the minimum gap point A. If the length of the straight line 4a-4b connecting the end 4a of the No. 4 and the end 4b on the downstream side is too short, as shown in FIG.
Separation vortices 24 are generated in the fins 3a of the heat exchanger on the upstream side, the effect disappears, and even if it is too long, no further effect occurs. As shown in FIG. 21, the flow 50 blown out from the impeller 1 of the blower 50 And the noise level deteriorates. Further, from the straight line 4a-4b connecting the end 4a of the upstream rectifying member and the end 4b of the downstream rectifying member of the air 50 blown out from the impeller of the blower of the rectifying member 4, an arbitrary angle around the point 4a. The length of the straight line 4a-E rotated by β ° is too long, resulting in pressure loss of the flow 50 blown out from the impeller 1 of the blower, resulting in noise deterioration, or too short, causing interference noise at the fins 3a of the heat exchanger. The effect disappears. Therefore, there is an optimum range.

【0034】図22は、整流部材4の上流側端部4aと
下流側の端部4bを結ぶ直線4a−4bの長さLと送風
機の羽根車の直径φDとの比L/Dを変更したときの、
図15のような騒音値の1/3OCT分析結果における
熱交換器フィン3a間の干渉騒音の発生周波数帯域であ
る2〜5kHz帯域の音圧レベルのうち、最も高い数値
を示す3.15kHz帯域での整流部材4あり、なしで
の音圧レベルの騒音低減量△SPL3.15k( 図中×
印)と、騒音値O.A.の比較△SPLOA(図中○
印)で示している。また、図23は、前記整流部材4の
上流側直線部4a−Eの長さLMと直線4a−4bの長
さLとの比LM/Lを変更したときの図17に相当する
1/3OCT分析結果における熱交換器のフィン3a間
の干渉騒音の発生周波数帯域である2〜5kHz帯域の
音圧レベルのうち最も数値の高い3.15kHZ帯域で
の整流部材4あり、なしでの音圧レベルの騒音低減量△
SPL3.15k( 図中×印)と、騒音値O.A.の比
較△SPLOA( 図中○印)で示している。図中LM/
L=0における△SPL3.15kは整流部材なしのと
きの値である。図からわかるように、整流部材4の上流
側端部4aと下流側の端部4bを結ぶ直線4a−4bの
長さと送風機の羽根車1の直径φDとの比L/D=20
〜50%の間で、かつ直線4a−Eの長さが、直線4a
−4bの長さ以下、50%以上であれば、騒音値を悪化
させることなく熱交換器のフィン3a間での干渉騒音が
低減でき、かつ耳障りな音のしない空気調和機を得られ
る。
In FIG. 22, the ratio L / D between the length L of the straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the rectifying member 4 and the diameter φD of the impeller of the blower is changed. When
Of the sound pressure levels in the 2 to 5 kHz band, which is the frequency band in which interference noise occurs between the heat exchanger fins 3a in the 1/3 OCT analysis result of the noise value as shown in FIG. 15, in the 3.15 kHz band showing the highest value. Noise reduction amount of sound pressure level with and without rectifying member 4 of ΔSPL 3.15k (× in the figure
Mark) and noise value O. A. Comparison of △ SPLOA (○ in the figure
Mark). 23 is a 1 / 3OCT corresponding to FIG. 17 when the ratio LM / L between the length LM of the upstream straight line portion 4a-E of the straightening member 4 and the length L of the straight line 4a-4b is changed. The sound pressure level without and with the rectifying member 4 in the 3.15 kHZ band, which has the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band of interference noise generated between the fins 3a of the heat exchanger in the analysis results. Noise reduction amount △
SPL 3.15k (marked with X in the figure) and noise value O.S. A. The comparison ΔSPLOA (circle in the figure) is shown. LM / in the figure
ΔSPL 3.15k at L = 0 is the value when there is no rectifying member. As can be seen from the figure, the ratio L / D of the length of the straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the rectifying member 4 to the diameter φD of the impeller 1 of the blower L / D = 20
And the length of the straight line 4a-E is between 50% and 50%.
If the length is -4b or less and 50% or more, the interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the noise value, and an air conditioner without harsh noise can be obtained.

【0035】発明実施の形態7.図24は、この発明に
係る空気調和機の他の実施の形態の例における空気調和
機の発明実施の形態1の図5に相当する要部の部分拡大
図である。送風機である遠心送風機の羽根車1の回転軸
中心を点O、フィンチューブ型熱交換器3と送風機の羽
根車1との最小隙間を点A、送風機の羽根車1外周部と
送風機の羽根車1の回転軸Oと前記最小隙間点Aを結ぶ
直線OAとの交点をP、点Aから送風機の羽根車1から
吹き出された空気50の上流側の整流部材の端部4aが
熱交換器3に密着する点をB、また下流側の整流部材の
端部4bが熱交換器3に密着する点をFとするとき、前
記整流部材の送風機の羽根車から吹き出された空気の上
流側の整流部材の端部と下流側の端部を結ぶ直線4a−
4b上から、点4aを中心に任意角度β°回転させた任
意長さの直線4a−Eと点E、4bを結ぶ直線E−4b
により形成された整流部材4を示す。この整流部材4を
点B、Fで熱交換器3に密着させて配設している。また
図中、送風機の回転軸中心を点O、送風機の回転方向を
23、熱交換器3のアルミフィンを3a、熱交換器3の
銅パイプを22を示す。このよう構成された空気調和機
おいて、図24のように送風機の羽根車1と熱交換器3
の最小隙間点Aより送風機の羽根車1から吹き出された
空気50の上流側、下流側の整流部材の端部4a、4b
が熱交換器3に密着し、かつ熱交換器3整流部材4との
間に空間があるため、送風機の羽根車1から吹き出され
た流れ50の熱交換器のフィン3aと垂直方向成分50
xが整流部材4の直線4a−E部分により減速され、熱
交換器のフィン3a方向へ偏向され通過するとともに、
整流部材4を通過しなかった流れ50bは、整流部材4
の下流側の直線E−Fでのコアンダー効果によって、熱
交換器のフィン3a方向に偏向され、熱交換器3を通過
する。これにより、図62の整流部材が無い時の熱交換
器のフィン3aに対し、吹出し流れ50が迎角をもって
流入することによる剥離渦24を無くせると同時に、こ
の剥離渦24の圧力変動により誘発される熱交換器のフ
ィン3a間の干渉騒音を無くすことができるため、本体
から発生する耳障りな騒音を低減できる。図25は、本
体の同一吹出し風量における、1/3オクターブ分析結
果による音圧レベルと周波数との関係を示したものであ
る。破線で示す本発明のものは、実線で示す整流部材な
しのものに対し、2〜5kHzの騒音が大幅に低減して
いる。しかし、このように構成された空気調和機におい
て、整流部材4の送風機の羽根車1から吹き出された空
気50の上流側の整流部材の端部4aが熱交換器に密着
する点Bの位置が上流側すぎると、圧力損失になり、点
A上では、干渉音が低減しきれない。
Embodiment 7 of the Invention FIG. 24 is a partially enlarged view of a main portion corresponding to FIG. 5 of the first embodiment of the invention of the air conditioner in the example of the other embodiment of the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower, which is a blower, is point O, the minimum gap between the fin-tube heat exchanger 3 and the impeller 1 of the blower is point A, the outer peripheral portion of the impeller 1 of the blower and the impeller of the blower. The intersection 4 of the rotary shaft O of No. 1 and the straight line OA connecting the minimum clearance point A is P, and the end 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower from the point A is the heat exchanger 3 Let B be the point of close contact with the heat exchanger 3 and F be the point of contact of the downstream side rectifying member with the heat exchanger 3, and rectify the air blown from the impeller of the blower of the rectifying member on the upstream side. Straight line 4a- connecting the end of the member and the end on the downstream side
A straight line E-4b connecting a straight line 4a-E of arbitrary length rotated from the point 4a by an arbitrary angle β around the point 4a and points E and 4b.
The rectification | straightening member 4 formed by this is shown. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. Further, in the figure, the center of the rotation axis of the blower is indicated by point O, the direction of rotation of the blower is indicated by 23, the aluminum fins 3a of the heat exchanger 3 and the copper pipe 22 of the heat exchanger 3 are indicated. In the air conditioner thus configured, as shown in FIG. 24, the impeller 1 of the blower and the heat exchanger 3
Of the air 50 blown from the impeller 1 of the blower from the minimum gap point A of
Is in close contact with the heat exchanger 3 and there is a space between the heat exchanger 3 and the rectifying member 4, so that the fins 3a of the heat exchanger and the vertical component 50 of the flow 50 blown out from the impeller 1 of the blower.
x is decelerated by the straight line 4a-E portion of the rectifying member 4, is deflected in the direction of the fins 3a of the heat exchanger and passes through,
The flow 50b that has not passed through the flow regulating member 4 is
Due to the Counder effect on the straight line E-F on the downstream side of the heat exchanger 3, it is deflected toward the fins 3a of the heat exchanger and passes through the heat exchanger 3. This eliminates the separation vortex 24 due to the blow-out flow 50 flowing into the fin 3a of the heat exchanger without the rectifying member shown in FIG. 62 at an angle of attack, and at the same time induces the pressure fluctuation of the separation vortex 24. Since interference noise between the fins 3a of the heat exchanger can be eliminated, it is possible to reduce annoying noise generated from the main body. FIG. 25 shows the relationship between the sound pressure level and the frequency based on the 1/3 octave analysis result in the same blowing air volume of the main body. The one of the present invention shown by the broken line has a noise of 2 to 5 kHz significantly reduced as compared with the one without the rectifying member shown by the solid line. However, in the air conditioner configured as described above, the position of the point B where the end 4a of the rectifying member on the upstream side of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 comes into close contact with the heat exchanger is On the upstream side, pressure loss occurs and the interference sound cannot be reduced at point A.

【0036】また、整流部材4の送風機の羽根車1から
吹き出された空気50の前記最小隙間点Aより上流側の
整流部材の端部4aと下流側の端部4bを結ぶ直線4a
−4bの長さが、短すぎると効果が無くなり、長すぎて
もそれ以上効果が出なくなり、逆に送風機の羽根車1か
ら吹き出される流れ50の圧力損失となる。そして、前
記整流部材4の送風機の羽根車から吹き出された空気5
0の上流側の整流部材の端部4aと下流側の端部4bを
結ぶ直線4a−4b上から、点4aを中心に任意角度β
°回転させた直線4a−Eの長さが長すぎて送風機の羽
根車1から吹き出される流れ50の圧力損失となり騒音
悪化したり、短すぎて熱交換器のフィン3aでの干渉音
に効果が無くなる。このため、点Bの位置を決めるAB
の距離、整流部材の上、下流端部を結ぶ直線4a−4b
の距離、および整流部材直線部4a−Eの長さに最適範
囲が存在する。図26は、前記点Bと最小隙間点Aの距
離ABの長さ範囲を、送風機の羽根車1と熱交換器の最
小隙間長さAPに対するABの長さの比率AB/APを
変更したときの、図25の騒音値の1/3OCT分析結
果における熱交換器フィン3a間の干渉騒音の発生周波
数帯域である2〜5kHz帯域の音圧レベルのうち最も
数値の高い3.15kHz帯域での整流部材4あり、な
しでの音圧レベルの騒音低減量△SPL3.15k( 図
中×印)、騒音値O.Aの騒音低減量△SPLO.A(
図中○印) で示している。図中●における△SPL3.
15kは整流部材なしのときの値である。
Further, a straight line 4a connecting the end portion 4a of the rectifying member upstream of the minimum gap point A of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 and the end portion 4b of the downstream side thereof.
If the length of -4b is too short, the effect is lost, and if it is too long, the effect is not produced any more, and conversely, there is a pressure loss of the flow 50 blown out from the impeller 1 of the blower. Then, the air 5 blown out from the impeller of the blower of the rectifying member 4
0 on a straight line 4a-4b connecting the end 4a of the rectifying member on the upstream side and the end 4b on the downstream side, an arbitrary angle β around the point 4a.
The length of the straight line 4a-E rotated is too long, resulting in a pressure loss of the flow 50 blown out from the impeller 1 of the blower, resulting in worsening of noise, and being too short, it is effective for interference noise at the fin 3a of the heat exchanger. Disappears. Therefore, AB that determines the position of point B
Line 4a-4b connecting the upstream and downstream ends of the rectifying member
There is an optimum range for the distance and the length of the straightening member straight portion 4a-E. FIG. 26 shows a case where the length range of the distance AB between the point B and the minimum gap point A is changed when the ratio AB / AP of the length AB to the minimum gap length AP of the impeller 1 of the blower and the heat exchanger is changed. Of the sound pressure level in the 2 to 5 kHz band, which is the frequency band of the interference noise generated between the heat exchanger fins 3a in the 1/3 OCT analysis result of the noise value in FIG. Noise reduction amount ΔSPL 3.15k (x mark in the figure) at sound pressure level with and without member 4, noise value O. A noise reduction amount ΔSPLO. A (
It is indicated by a circle in the figure). △ SPL3 in ● in the figure.
15k is a value when there is no rectifying member.

【0037】図27は、整流部材4の上流側端部4aと
下流側の端部4bを結ぶ直線4a−4bの長さLと送風
機の羽根車の直径φDとの比L/Dを変更したときの、
図25の騒音値の1/3OCT分析結果における熱交換
器のフィン3a間の干渉騒音の発生周波数帯域である2
〜5kHz帯域の音圧レベルのうち、最も高い数値を示
す3.15kHz帯域での整流部材4あり、なしでの音
圧レベルの騒音低減量△SPL3.15k( 図中×印)
と、騒音値O.A.の比較△SPLOA( 図中○印)で
示している。図中L/D=0における△SPL3.15
kは整流部材なしのときの値である。また、図28は、
前記整流部材4の上流側直線部4a−Eの長さLMと直
線4a−4bの長さLとの比LM/Lを変更したときの
1/3OCT分析結果における熱交換器のフィン3a間
の干渉騒音の発生周波数帯域である2〜5kHz帯域の
音圧レべルのうち、最も高い数値を示す3.15kHz
帯域での整流部材4あり、なしでの音圧レベルの騒音低
減量△SPL3.15k( 図中×印)と、騒音値O.
A.の比較△SPLOA( 図中○印)で示している。図
中LM/L=0における△SPL3.15kは整流部材
なしのときの値である。図からわかるように、整流部材
上流部端部が、最小隙間より上流側に送風機の羽根車と
熱交換器の最小隙間長さの25〜90%で、かつ整流部
材4の上流側端部4aと下流側の端部4bを結ぶ直線4
a−4bの長さと送風機の羽根車1の直径φDとの比L
/D=20〜50%の間で、さらに直線4a−Eの長さ
が、直線4a−4bの長さ以下、50%以上であれば、
騒音値を悪化させることなく熱交換器のフィン3a間で
の干渉騒音が低減でき、かつ耳障りな音のしない空気調
和機を得られる。
In FIG. 27, the ratio L / D between the length L of the straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the rectifying member 4 and the diameter φD of the impeller of the blower is changed. When
It is a frequency band of interference noise generated between the fins 3a of the heat exchanger in the 1/3 OCT analysis result of the noise value of FIG.
-Sound pressure level noise reduction amount without and with rectifying member 4 in the 3.15 kHz band showing the highest value among sound pressure levels in the ~ 5 kHz band ΔSPL 3.15k (marked x in the figure)
And the noise value O. A. The comparison ΔSPLOA (circle in the figure) is shown. ΔSPL 3.15 at L / D = 0 in the figure
k is a value when there is no rectifying member. Also, FIG.
Between the fins 3a of the heat exchanger in the 1 / 3OCT analysis result when the ratio LM / L of the length LM of the upstream straight line portion 4a-E of the straightening member 4 and the length L of the straight line 4a-4b is changed. 3.15 kHz showing the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band in which interference noise is generated
The noise reduction amount ΔSPL 3.15k (marked with X in the figure) at the sound pressure level with and without the rectifying member 4 in the band, and the noise value O.
A. The comparison ΔSPLOA (circle in the figure) is shown. In the figure, ΔSPL 3.15k at LM / L = 0 is the value when there is no rectifying member. As can be seen from the figure, the upstream end of the flow regulating member is 25 to 90% of the minimum gap length between the impeller of the blower and the heat exchanger, and the upstream end 4a of the flow regulating member 4 is located upstream of the minimum gap. 4 connecting the end part 4b on the downstream side with
Ratio L between the length of a-4b and the diameter φD of the impeller 1 of the blower
If the length of the straight line 4a-E is less than or equal to the length of the straight line 4a-4b and is 50% or more between / D = 20 to 50%,
It is possible to obtain an air conditioner in which interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the noise value, and which does not cause an offensive sound.

【0038】発明実施の形態8.図29は、この発明に
係る空気調和機における発明実施の形態1の図5に相当
する要部の部分拡大図である。送風機の羽根車1の回転
軸中心を点O、フィンチューブ型熱交換器3と送風機の
羽根車1との最小隙間を点A、送風機の羽根車1外周部
と送風機の羽根車1の回転軸Oと前記最小隙間点Aを結
ぶ直線OAとの交点をP、点Aから送風機の羽根車1か
ら吹き出された空気50の上流側の整流部材の端部4a
が熱交換器3に密着する点をB、また下流側の整流部材
の端部4bが熱交換器3に密着する点をFとするとき、
前記整流部材の送風機の羽根車から吹き出された空気の
上流側の整流部材の端部と下流側の端部を結ぶ直線4a
−4b上から、点4aを中心に任意角度β°回転させた
任意長さの直線4a−Eと点E、4bを結ぶ直線E−4
bにより形成された整流部材4を示す。この整流部材4
を点B、Fで熱交換器3に密着させて配設している。ま
た図中、送風機の回転軸中心を点O、送風機の回転方向
を23、熱交換器3のアルミフィンを3a、熱交換器3
の銅パイプを22を示す。
Embodiment 8 of the Invention FIG. 29 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the invention in the air conditioner according to the present invention. The rotation shaft center of the impeller 1 of the blower is a point O, the minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower is a point A, the outer peripheral portion of the impeller 1 of the blower and the rotation shaft of the impeller 1 of the blower. The intersection point of O and the straight line OA connecting the minimum gap point A is P, and the end portion 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower from the point A.
Let B be the point of close contact with the heat exchanger 3 and F be the point of contact of the downstream side rectifying member 4b with the heat exchanger 3.
A straight line 4a connecting the end portion of the upstream side rectifying member and the end portion of the downstream side of the air blown from the impeller of the blower of the rectifying member.
-4b, a straight line 4a-E having an arbitrary length rotated about the point 4a by an arbitrary angle β ° and a straight line E-4 connecting the points E and 4b
The rectification | straightening member 4 formed by b is shown. This straightening member 4
Are closely attached to the heat exchanger 3 at points B and F. In the figure, the center of the rotation axis of the blower is point O, the rotation direction of the blower is 23, the aluminum fins of the heat exchanger 3 are 3a, and the heat exchanger 3 is
22 shows the copper pipe of FIG.

【0039】このよう構成された空気調和機おいて、図
29のように送風機の羽根車1と熱交換器3の最小隙間
点Aより送風機の羽根車1から吹き出された空気50の
上流側、下流側の整流部材の端部4a、4bが熱交換器
3に密着し、かつ熱交換器3整流部材4との間に空間が
あるため、送風機の羽根車1から吹き出された流れ50
の熱交換器のフィン3aと垂直方向成分50xが整流部
材4の直線4a−E部分により減速され、熱交換器のフ
ィン3a方向へ偏向され通過するとともに、整流部材4
を通過しなかった流れ50bは、整流部材4の下流側の
直線E−Fでのコアンダー効果によって、熱交換器のフ
ィン3a方向に偏向され、熱交換器3を通過する。これ
により、図62の整流部材が無い時の熱交換器のフィン
3aに対し、吹出し流れ50が迎角をもって流入するこ
とによる剥離渦24を無くせると同時に、この剥離渦2
4の圧力変動により誘発される熱交換器のフィン3a間
の干渉騒音を無くすことができるため、本体から発生す
る耳障りな騒音を低減できる。図30は、本体の同一吹
出し風量における、1/3オクターブ分析結果による音
圧レベルと周波数との関係を示したものである。破線で
示す本発明のものは、実線で示す整流部材なしのものに
対し、2〜5kHzの騒音が大幅に低減している。しか
し、このように構成された空気調和機において、整流部
材4の形状を決定する際の整流部材4の送風機の羽根車
1から吹き出された空気50の上流側の整流部材の端部
4aと下流側の端部4bを結ぶ直線4a−4b上から、
点4aを中心に直線4a−4bの長さ以下の直線4a−
Eを回転させるときの角度β°が、大きすぎると、図3
1のように送風機の羽根車の吹出し流れ50の圧力損失
を招くとともに、送風機の羽根車1に整流部材4表面で
の流れが圧力変動を与え、図32のようにNz音および
騒音値が悪化する。また小さすぎると、図33のように
整流部材4と熱交換器3の間に空間ができないため、送
風機の羽根車1から吹き出された流れ50を偏向でき
ず、熱交換器のフィン3aでの剥離渦24が生じ、干渉
音が発生してしまう。そのため、角度β°の最適範囲が
存在する。
In the air conditioner thus constructed, as shown in FIG. 29, the upstream side of the air 50 blown out from the impeller 1 of the blower from the minimum clearance point A between the impeller 1 of the blower and the heat exchanger 3, Since the ends 4a, 4b of the downstream side rectifying member are in close contact with the heat exchanger 3 and there is a space between the heat exchanger 3 and the rectifying member 4, the flow 50 blown out from the impeller 1 of the blower 50
Fins 3a of the heat exchanger and the vertical component 50x are decelerated by the straight line 4a-E of the rectifying member 4, are deflected in the direction of the fins 3a of the heat exchanger, and pass through the rectifying member 4.
The flow 50b that has not passed through is deflected toward the fins 3a of the heat exchanger by the Counder effect on the straight line E-F on the downstream side of the flow straightening member 4 and passes through the heat exchanger 3. As a result, the separation vortex 24 due to the blow-out flow 50 flowing into the fin 3a of the heat exchanger when there is no rectifying member in FIG.
Since the interference noise between the fins 3a of the heat exchanger, which is induced by the pressure fluctuation of 4, can be eliminated, the offensive noise generated from the main body can be reduced. FIG. 30 shows the relationship between the sound pressure level and the frequency according to the 1/3 octave analysis result in the same blowing air volume of the main body. The one of the present invention shown by the broken line has a noise of 2 to 5 kHz significantly reduced as compared with the one without the rectifying member shown by the solid line. However, in the air conditioner configured as described above, when determining the shape of the rectifying member 4, the end portion 4a of the rectifying member on the upstream side of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 and the downstream of the rectifying member 4 are downstream. From the straight line 4a-4b connecting the side end 4b,
A straight line 4a-having a length equal to or shorter than the length of the straight line 4a-4b centered on the point 4a
If the angle β ° when E is rotated is too large,
1 causes a pressure loss of the blowout flow 50 of the impeller of the blower, and the flow on the surface of the rectifying member 4 gives pressure fluctuations to the impeller 1 of the blower, and the Nz sound and noise value deteriorate as shown in FIG. To do. If it is too small, there is no space between the flow straightening member 4 and the heat exchanger 3 as shown in FIG. 33, so that the flow 50 blown out from the impeller 1 of the blower cannot be deflected, and the fins 3a of the heat exchanger cannot be deflected. The separation vortex 24 is generated and an interference sound is generated. Therefore, there is an optimum range of the angle β °.

【0040】図34は、前記角度β°を変更したとき
の、図30の騒音値の1/3OCT分析結果における熱
交換器フィン3a間の干渉騒音の発生周波数帯域である
2〜5kHz帯域の音圧レベルのうち最も数値の高い
3.15kHz帯域での整流部材4あり、なしでの音圧
レベルの騒音低減量△SPL3.15k( 図中×印)
と、騒音値O.A.の比較△SPLOA( 図中○印)で
示している。図中●は、β°=0における△SPL3.
15kは整流部材なしのときの値である。図から分かる
ように、β°=3〜20°の間であれば、Nz音および
騒音値を悪化させることなく、熱交換器のフィン3a間
での干渉騒音が低減でき、かつ耳障りな音のしない空気
調和機を得られる。
FIG. 34 shows the sound in the 2 to 5 kHz band which is the frequency band of the interference noise between the heat exchanger fins 3a in the 1/3 OCT analysis result of the noise value of FIG. 30 when the angle β is changed. Noise reduction amount of sound pressure level with and without rectifying member 4 in the 3.15 kHz band, which has the highest numerical value among pressure levels ΔSPL 3.15k (marked x in the figure)
And the noise value O. A. The comparison ΔSPLOA (circle in the figure) is shown. In the figure, ● indicates ΔSPL3.
15k is a value when there is no rectifying member. As can be seen from the figure, if β ° = 3 to 20 °, the interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the Nz sound and the noise value, and the harsh noise can be reduced. You can get an air conditioner that does not.

【0041】発明実施の形態9.図35は、この発明に
係る空気調和機における発明実施の形態1の図5に相当
する要部の部分拡大図である。送風機である遠心送風機
の羽根車1の回転軸中心を点O、この回転方向を23、
フィンチューブ型熱交換器3と送風機の羽根車1との最
小隙間を点A、熱交換器3の銅パイプを22、送風機の
羽根車1外周部と送風機の羽根車1の回転軸Oと前記最
小隙間点Aを結ぶ直線OAとの交点をP、点Aから送風
機の羽根車1から吹き出された空気50の上流側の整流
部材の端部4aが熱交換器3に密着する点をB、また下
流側の整流部材の端部4bが熱交換器3に密着する点を
Fとするとき、前記整流部材の送風機の羽根車から吹き
出された空気の上流側の整流部材の端部と下流側の端部
を結ぶ直線4a−4b上から、点4aを中心に直線4a
−4bの長さ以下の直線を角度β°回転させた直線4a
−Eと直線4a−Eに点Eで接しかつ点Fにおいて熱交
換器のフィン3aとの角度γが上流側に90°以下の接
線を有する円弧E−4bにより形成された整流部材4を
示す。この整流部材4を点B、Fで熱交換器3に密着さ
せて配設している。このよう構成された空気調和機おい
て、図35のように送風機の羽根車1と熱交換器3の最
小隙間点Aより送風機の羽根車1から吹き出された空気
50の上流側、下流側の整流部材の端部4a、4bが熱
交換器3に密着し、かつ熱交換器3整流部材4との間に
空間があるため、送風機の羽根車1から吹き出された流
れ50の熱交換器のフィン3aと垂直方向成分50xが
整流部材4の直線4a−E部分により減速され、熱交換
器のフィン3a方向へ偏向され通過するとともに、整流
部材4を通過しなかった流れ50bは、整流部材4の下
流側の円弧E−4bでのコアンダー効果によって、熱交
換器のフィン3a方向に偏向され、熱交換器3を通過す
る。これにより、図62の整流部材が無い時の熱交換器
のフィン3aに対し、吹出し流れ50が迎角をもって流
入することによる剥離渦24を無くせると同時に、この
剥離渦24の圧力変動により誘発される熱交換器のフィ
ン3a間の干渉騒音を無くすことができるため、空気調
和機の本体2から聞こえる耳障りな騒音を低減できる。
Embodiment 9 of the Invention FIG. 35 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the invention in the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower, which is a blower, is point O, and this rotation direction is 23.
The minimum gap between the fin-tube type heat exchanger 3 and the impeller 1 of the blower is point A, the copper pipe of the heat exchanger 3 is 22, the outer peripheral portion of the impeller 1 of the blower and the rotation axis O of the impeller 1 of the blower, and P is an intersection with a straight line OA connecting the minimum clearance points A, and B is a point where the upstream end 4a of the rectifying member of the air 50 blown from the impeller 1 of the blower from the point A is in close contact with the heat exchanger 3. Further, when the point where the end portion 4b of the rectifying member on the downstream side is in close contact with the heat exchanger 3 is F, the end portion of the rectifying member on the upstream side of the air blown from the impeller of the blower of the rectifying member and the downstream side From the straight line 4a-4b connecting the ends of the
A straight line 4a obtained by rotating a straight line having a length equal to or smaller than -4b by an angle β °.
-E and the straight line 4a-E at a point E and an angle γ with the fin 3a of the heat exchanger at a point F shows a straightening member 4 formed by an arc E-4b having a tangent line of 90 ° or less on the upstream side. . The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. In the air conditioner configured as described above, as shown in FIG. 35, the air 50 blown out from the impeller 1 of the blower from the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3 is located on the upstream side and the downstream side. Since the ends 4a and 4b of the flow regulating member are in close contact with the heat exchanger 3 and there is a space between the heat exchanger 3 and the flow regulating member 4, the heat exchanger of the flow 50 blown out from the impeller 1 of the blower is The fins 3a and the vertical direction component 50x are decelerated by the straight line 4a-E portion of the flow straightening member 4, are deflected in the direction of the fins 3a of the heat exchanger and pass, and the flow 50b that has not passed through the flow straightening member 4 is Due to the Counder effect in the arc E-4b on the downstream side of the heat exchanger 3, the heat exchanger 3 is deflected in the direction of the fins 3a of the heat exchanger and passes through the heat exchanger 3. This eliminates the separation vortex 24 due to the blow-out flow 50 flowing into the fin 3a of the heat exchanger without the rectifying member shown in FIG. 62 at an angle of attack, and at the same time induces the pressure fluctuation of the separation vortex 24. Since the interference noise between the fins 3a of the heat exchanger can be eliminated, the annoying noise heard from the main body 2 of the air conditioner can be reduced.

【0042】図36は、本体の同一吹出し風量におけ
る、1/3オクターブ分析結果による音圧レベルと周波
数との関係を示したものである。破線で示す本発明のも
のは、実線で示す整流部材なしのものに対し、2〜5k
Hzの騒音が大幅に低減している。しかし、このように
構成された空気調和機において、整流部材4の形状を決
定する際の整流部材4の送風機の羽根車1から吹き出さ
れた空気50の上流側の整流部材の端部4aと下流側の
端部4bを結ぶ直線4a−4b上から、点4aを中心に
直線4a−4bの長さ以下の直線4a−Eを回転させる
ときの角度β°が大きすぎると、送風機の羽根車1の吹
出し流れ50の圧力損失を招くとともに、送風機の羽根
車1に整流部材4表面での流れが圧力変動を与え、Nz
音および騒音値が悪化する。また小さすぎると、整流部
材4と熱交換器3の間に空間ができないため、送風機の
羽根車1から吹き出された流れ50を偏向できず、熱交
換器のフィン3aでの剥離渦24が生じ、干渉音が発生
してしまう。そのため、角度β°の最適範囲が存在す
る。図37は、前記角度β°を変更したときの、図35
の騒音値の1/3OCT分析結果における熱交換器フィ
ン3a間の干渉騒音の発生周波数帯域である2〜5kH
z帯域の音圧レベルのうち最も数値の高い3.15kH
z帯域での整流部材4あり、なしでの音圧レベルの騒音
低減量△SPL3.15k( 図中×印)と、騒音値O.
A.の比較△SPLOA( 図中○印)で示している。図
中●は、β°=0における△SPL3.15kは整流部
材なしのときの値である。図から分かるように、β°=
3〜20°の間であれば、Nz音および騒音値を悪化さ
せることなく、熱交換器のフィン3a間での干渉騒音が
低減でき、かつ耳障りな音のしない空気調和機を得られ
る。
FIG. 36 shows the relationship between the sound pressure level and the frequency according to the 1/3 octave analysis result for the same blowing air volume of the main body. The one of the present invention shown by the broken line is 2 to 5 k compared with the one without the rectifying member shown by the solid line.
Hz noise is significantly reduced. However, in the air conditioner configured as described above, when determining the shape of the rectifying member 4, the end portion 4a of the rectifying member on the upstream side of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 and the downstream of the rectifying member 4 are downstream. If the angle β ° when rotating the straight line 4a-E having a length equal to or less than the length of the straight line 4a-4b about the point 4a from the straight line 4a-4b connecting the end portions 4b on the side is too large, the impeller 1 of the blower 1 Of the blowout flow 50 of the blower, and the flow on the surface of the flow straightening member 4 causes a pressure fluctuation in the impeller 1 of the blower.
Sound and noise levels deteriorate. If it is too small, a space cannot be formed between the flow straightening member 4 and the heat exchanger 3, so that the flow 50 blown out from the impeller 1 of the blower cannot be deflected, and the separation vortex 24 is generated in the fin 3a of the heat exchanger. , Interfering sound is generated. Therefore, there is an optimum range of the angle β °. FIG. 37 shows the result of FIG. 35 when the angle β ° is changed.
2 to 5 kH, which is the frequency band of interference noise between the heat exchanger fins 3a in the 1/3 OCT analysis result of the noise value of
3.15kH, which has the highest sound pressure level in the z band
A noise reduction amount ΔSPL of 3.15 k (X mark in the figure) at the sound pressure level with and without the rectifying member 4 in the z band, and a noise value O.S.
A. The comparison ΔSPLOA (circle in the figure) is shown. In the figure, ● indicates the value of ΔSPL 3.15k at β ° = 0 without a rectifying member. As can be seen from the figure, β ° =
If it is between 3 and 20 °, an interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the Nz sound and the noise value, and an air conditioner without an offensive sound can be obtained.

【0043】発明実施の形態10.図38は、この発明
に係る空気調和機における発明実施の形態1の図5に相
当する要部の部分拡大図である。送風機である遠心送風
機の羽根車1の回転軸中心を点O、この回転方向を2
3、フィンチューブ型熱交換器3と送風機の羽根車1と
の最小隙間を点A、熱交換器3の銅パイプを22、送風
機の羽根車1外周部と送風機の羽根車1の回転軸Oと前
記最小隙間点Aを結ぶ直線OAとの交点をP、点Aから
送風機の羽根車1から吹き出された空気50の上流側の
整流部材の端部4aが熱交換器3に密着する点をB、ま
た下流側の整流部材の端部4bが熱交換器3に密着する
点をFとするとき、前記整流部材の送風機の羽根車から
吹き出された空気の上流側の整流部材の端部と下流側の
端部を結ぶ直線4a−4b上から、点4aを中心に直線
4a−4bの長さ以下の直線を角度β°回転させた直線
4a−Eと直線4a−Eに点Eで接しかつ点Fにおいて
熱交換器のフィン3aとの角度γが上流側に90°以下
の接線を有する円弧E−4bにより形成された整流部材
4を示す。この整流部材4を点B、Fで熱交換器3に密
着させて配設している。このよう構成された空気調和機
おいて、図38のように送風機の羽根車1と熱交換器3
の最小隙間点Aより送風機の羽根車1から吹き出された
空気50の上流側、下流側の整流部材の端部4a、4b
が熱交換器3に密着し、かつ熱交換器3整流部材4との
間に空間があるため、送風機の羽根車1から吹き出され
た流れ50の熱交換器のフィン3aと垂直方向成分50
xが整流部材4の直線4a−E部分により減速され、熱
交換器のフィン3a方向へ偏向され通過するとともに、
整流部材4を通過しなかった流れ50bは、整流部材4
の下流側の円弧E−4bでのコアンダー効果によって、
熱交換器のフィン3a方向に偏向され、熱交換器3を通
過する。これにより、図62の整流部材が無い時の熱交
換器のフィン3aに対し、吹出し流れ50が迎角をもっ
て流入することによる剥離渦24を無くせると同時に、
この剥離渦24の圧力変動により誘発される熱交換器の
フィン3a間の干渉騒音を無くすことができるため、空
気調和機の本体2から聞こえる耳障りな騒音を低減でき
る。
Embodiment 10 of the Invention FIG. 38 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the invention in the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower, which is a blower, is point O, and this rotation direction is 2
3, the minimum gap between the fin tube heat exchanger 3 and the impeller 1 of the blower is point A, the copper pipe of the heat exchanger 3 is 22, the outer peripheral portion of the impeller 1 of the blower and the rotation axis O of the impeller 1 of the blower And P is the intersection of the straight line OA connecting the minimum clearance point A, and the point where the end 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower from the point A is in close contact with the heat exchanger 3. B, where F is the point where the end 4b of the downstream rectifying member is in close contact with the heat exchanger 3, and F is the end of the rectifying member upstream of the air blown from the impeller of the blower of the rectifying member. From the straight line 4a-4b connecting the ends on the downstream side, a straight line 4a-E and a straight line 4a-E which are obtained by rotating a straight line having a length equal to or less than the length of the straight line 4a-4b about the point 4a are contacted at the point E. And an arc having a tangent line whose angle γ with the fin 3a of the heat exchanger is 90 ° or less on the upstream side at the point F Shows the straightening member 4 which is formed by -4b. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. In the air conditioner thus configured, as shown in FIG. 38, the impeller 1 of the blower and the heat exchanger 3
Of the air 50 blown from the impeller 1 of the blower from the minimum gap point A of
Is in close contact with the heat exchanger 3 and there is a space between the heat exchanger 3 and the rectifying member 4, so that the fins 3a of the heat exchanger and the vertical component 50 of the flow 50 blown out from the impeller 1 of the blower.
x is decelerated by the straight line 4a-E portion of the rectifying member 4, is deflected in the direction of the fins 3a of the heat exchanger and passes through,
The flow 50b that has not passed through the flow regulating member 4 is
By the Counder effect in the arc E-4b on the downstream side of
It is deflected in the direction of the fins 3 a of the heat exchanger and passes through the heat exchanger 3. As a result, the separation vortex 24 due to the blow-out flow 50 flowing into the fin 3a of the heat exchanger without the rectifying member of FIG. 62 at an angle of attack can be eliminated, and at the same time,
Since the interference noise between the fins 3a of the heat exchanger, which is induced by the pressure fluctuation of the separation vortex 24, can be eliminated, the annoying noise heard from the main body 2 of the air conditioner can be reduced.

【0044】図39は、本体の同一吹出し風量におけ
る、1/3OCT分析結果による音圧レベルと周波数と
の関係を示したものである。破線で示す本発明のもの
は、実線で示す整流部材なしのものに対し、2〜5kH
zの騒音が大幅に低減している。しかし、このように構
成された空気調和機において、整流部材4の形状を決定
する際の前記直線4a−4bの長さが短すぎると、上流
側で熱交換器のフィン3aでの剥離渦24が発生し、効
果が無くなり、長すぎてもそれ以上効果が出なくなり、
送風機の羽根車1から吹き出される流れ50の圧力損失
となり、騒音値が悪化する。そして、直線4a−Eの長
さが長すぎて送風機の羽根車1から吹き出される流れ5
0の圧力損失となり騒音悪化したり、短すぎて熱交換器
のフィン3aでの干渉音に効果が無くなる。また角度β
°が大きすぎると、送風機の羽根車の吹出し流れ50の
圧力損失を招くとともに、送風機の羽根車1に整流部材
4表面での流れが圧力変動を与え、Nz音および騒音値
が悪化する。また小さすぎると、整流部材4と熱交換器
3の間に空間ができないため、送風機の羽根車1から吹
き出された流れ50を偏向できず、熱交換器のフィン3
aでの剥離渦24が生じ、干渉音が発生してしまう。さ
らに整流部材4の送風機の羽根車1から吹き出された空
気50の上流側の整流部材の端部4aが熱交換器に密着
する点Bの位置が上流側すぎると、圧力損失になり、点
A上では、干渉音が低減しきれない。そこで、各最適範
囲が存在する。図40は、整流部材4の上流側端部4a
と下流側の端部4bを結ぶ直線4a−4bの長さLと送
風機の羽根車の直径φDとの比L/Dを変更したとき
の、騒音値の1/3OCT分析結果における熱交換器の
フィン3a間の干渉騒音の発生周波数帯域である2〜5
kHz帯域の音圧レベルのうち最も数値の高い3.15
kHz帯域での整流部材4あり、なしでの音圧レベルの
騒音低減量△SPL3.15k( 図中×印)と、騒音値
O.A.の比較△SPLOA( 図中○印)で示してい
る。図中L/D=0における△SPL3.15kは整流
部材なしのときの値である。また、図41は、前記整流
部材4の上流側直線部4a−Eの長さLMと直線4a−
4bの長さLとの比LM/Lを変更したときの1/3O
CT分析結果における熱交換器のフィン3a間の干渉騒
音の発生周波数帯域である2〜5kHz帯域の音圧レベ
ルのうち最も数値の高い3.15kHz帯域での整流部
材4あり、なしでの音圧レベルの騒音低減量△SPL
3.15k( 図中×印)と、騒音値O.A.の比較△S
PLOA( 図中○印)で示している。図中L/D=0に
おける△SPL3.15kは整流部材なしのときの値で
ある。
FIG. 39 shows the relationship between the sound pressure level and the frequency according to the 1/3 OCT analysis result in the case where the same blowing air volume of the main body. The one of the present invention shown by the broken line is 2 to 5 kH compared with the one without the rectifying member shown by the solid line.
z noise is significantly reduced. However, in the air conditioner configured as described above, if the length of the straight line 4a-4b when determining the shape of the rectifying member 4 is too short, the separation vortex 24 at the fin 3a of the heat exchanger on the upstream side 24 is formed. Occurs, the effect disappears, even if it is too long, it will not produce any further effect,
A pressure loss occurs in the flow 50 blown out from the impeller 1 of the blower, and the noise value deteriorates. And the flow 5 blown out from the impeller 1 of the blower because the length of the straight line 4a-E is too long
The pressure loss becomes 0 and the noise is deteriorated, or the noise is too short to be effective for the interference sound at the fins 3a of the heat exchanger. Also the angle β
If the angle is too large, a pressure loss of the blowout flow 50 of the impeller of the blower is caused, and the flow on the surface of the rectifying member 4 causes a pressure fluctuation in the impeller 1 of the blower, which deteriorates the Nz sound and noise value. If it is too small, there is no space between the flow straightening member 4 and the heat exchanger 3, so that the flow 50 blown out from the impeller 1 of the blower cannot be deflected, and the fins 3 of the heat exchanger are not able to be deflected.
The separation vortex 24 at a occurs and an interference sound is generated. Further, if the point B where the end 4a of the upstream rectifying member of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 comes into close contact with the heat exchanger is too upstream, pressure loss occurs, resulting in point A. In the above, the interference sound cannot be reduced completely. Therefore, each optimum range exists. FIG. 40 shows the upstream end 4 a of the flow regulating member 4.
And the ratio L / D between the length L of the straight line 4a-4b connecting the downstream end 4b and the diameter φD of the impeller of the blower is changed, the heat exchanger 1/3 OCT analysis result of the noise value 2 to 5 which is a frequency band of interference noise generated between the fins 3a
3.15, which has the highest sound pressure level in the kHz band
Noise reduction amount ΔSPL 3.15k (X mark in the figure) of sound pressure level with and without rectifying member 4 in the kHz band, and noise value O. A. The comparison ΔSPLOA (circle in the figure) is shown. In the figure, ΔSPL 3.15k at L / D = 0 is the value when there is no rectifying member. 41 shows the length LM of the upstream straight portion 4a-E of the straightening member 4 and the straight line 4a-.
1 / 3O when the ratio LM / L with the length L of 4b is changed
The sound pressure without and with the rectifying member 4 in the 3.15 kHz band, which has the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band of the interference noise generated between the fins 3a of the heat exchanger in the CT analysis result. Level noise reduction ΔSPL
3.15k (X mark in the figure) and noise value O. A. Comparison of ΔS
It is indicated by PLOA (circle in the figure). In the figure, ΔSPL 3.15k at L / D = 0 is the value when there is no rectifying member.

【0045】図42は、前記角度β°を変更したとき
の、騒音値の1/3OCT分析結果における熱交換器フ
ィン3a間の干渉騒音の発生周波数帯域である2〜5k
Hz帯域の音圧レベルのうち最も数値の高い3.15k
Hz帯域での整流部材4あり、なしでの音圧レベルの騒
音低減量△SPL3.15k(図中×印)と、騒音値
O.A.の比較△SPLOA( 図中○印)で示してい
る。図中●は、β°=0における△SPL3.15kは
整流部材なしのときの値である。図43は、前記点Bと
最小隙間点Aの距離ABの長さ範囲を、送風機の羽根車
1と熱交換器の最小隙間長さAPに対するABの長さの
比率AB/APを変更したときの、図39の騒音値の1
/3OCT分析結果における熱交換器フィン3a間の干
渉騒音の発生周波数帯域である2〜5kHz帯域の音圧
レベルのうち最も数値の高い3.15kHz帯域での整
流部材4あり、なしでの音圧レベルの騒音低減量△SP
L3.15k( 図中×印)、騒音値の低減量△SPL
O.A( 図中○印)で示している。図中●における△S
PL3.15k= 0は整流部材なしのときの値である。
図から分かるように、直線4a−4bの長さが送風機の
羽根車の直径の20〜50%、直線4a−Eの長さが直
線4a−4bの50%から100%、さらに角度β°が
3〜20°の間、かつ点Bの位置が最小隙間点Aより送
風機の羽根車の吹出し流れに対し上流側に、送風機の羽
根車と熱交換器の最小隙間距離APの25〜90%の間
の距離であれば、Nz音および騒音値を悪化させること
なく、熱交換器のフィン3a間での干渉騒音が低減で
き、かつ耳障りな音のしない空気調和機を得られる。
FIG. 42 shows a frequency band of occurrence of interference noise between the heat exchanger fins 3a in the result of 1/3 OCT analysis of noise value when the angle β ° is changed from 2 to 5k.
3.15k, which has the highest sound pressure level in the Hz band
Hz noise reduction amount ΔSPL 3.15k (X mark in the figure) at the sound pressure level with and without the rectifying member 4, and the noise value O. A. The comparison ΔSPLOA (circle in the figure) is shown. In the figure, ● indicates the value of ΔSPL 3.15k at β ° = 0 without a rectifying member. FIG. 43 shows a case where the length range of the distance AB between the point B and the minimum gap point A is changed when the ratio AB / AP of the length AB to the minimum gap length AP of the impeller 1 of the blower and the heat exchanger is changed. Of the noise level of Fig. 39
The sound pressure without and with the rectifying member 4 in the 3.15 kHz band, which has the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band of interference noise generated between the heat exchanger fins 3a in the / 3OCT analysis result. Level noise reduction △ SP
L3.15k (marked x in the figure), noise level reduction amount SPL
O. It is indicated by A (circle in the figure). △ S in the figure
PL 3.15k = 0 is the value when there is no rectifying member.
As can be seen from the figure, the length of the straight line 4a-4b is 20 to 50% of the diameter of the impeller of the blower, the length of the straight line 4a-E is 50% to 100% of the straight line 4a-4b, and the angle β ° is Between 3 and 20 °, and the position of the point B is 25 to 90% of the minimum clearance distance AP between the impeller of the blower and the heat exchanger, upstream of the blowout flow of the impeller of the blower from the minimum clearance point A. With the distance between them, an interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the Nz sound and the noise value, and an air conditioner with no offensive noise can be obtained.

【0046】発明実施の形態11.図44はこの発明に
係る空気調和機における送風機の羽根車1と熱交換器3
の最小隙間点A付近に配設された網状部材でできている
整流部材の一実施例を示す。図のようにステンレスや亜
鉛等で錆防止を施された針金を格子状に張り合わせ、ま
たは編み込まれている。また、図45は、図44と異な
り編み込み型の網状部材の材質を示す。整流部材4がこ
のようなものであるため、図46のように、送風機の羽
根車1から吹き出された流れ50はの熱交換器のフィン
3aと垂直方向の流れ50xがこの整流部材で減速され
るとともに、熱交換器のフィン3aの方向へ偏向され
る。これにより、図47のように、熱交換器のフィン3
aで起きる干渉騒音が低減できる。 しかし、整流部材
の線径が太すぎると、図48の熱交換器と整流部材4の
間の拡大図のように、針金の後流渦26により、図49
のように2kHz付近の音が増大し、ジージーというよ
うな干渉音が発生する。逆に線径が細すぎると、整流部
材4の強度がなく、送風機の羽根車1から吹き出された
流れにたなびいてしまう。また、整流部材の開口率(=
(開口部ありでの全面積/開口部なしでの全面積)が大
きすぎると干渉音が消し切らず、小さすぎると整流部材
により送風機の羽根車の吹出し流れ50の圧力損失にな
る。そこで、整流部材の線径おいび開口率に最適範囲が
存在する。
Eleventh Embodiment of the Invention FIG. 44 shows the impeller 1 and the heat exchanger 3 of the blower in the air conditioner according to the present invention.
An example of a rectifying member made of a net-like member disposed near the minimum gap point A of FIG. As shown in the figure, rust-proof wires made of stainless steel, zinc, etc. are laminated or knitted in a grid pattern. Further, FIG. 45 shows the material of the braided mesh member unlike FIG. Since the flow straightening member 4 is such a structure, as shown in FIG. 46, the flow 50 blown out from the impeller 1 of the blower is decelerated by the flow straightening member 50a in the direction perpendicular to the fins 3a of the heat exchanger. And is deflected in the direction of the fins 3a of the heat exchanger. As a result, as shown in FIG. 47, the fins 3 of the heat exchanger are
The interference noise generated in a can be reduced. However, if the wire diameter of the rectifying member is too large, as shown in the enlarged view between the heat exchanger and the rectifying member 4 in FIG.
As described above, the sound around 2 kHz increases, and an interference sound such as jizz is generated. On the contrary, if the wire diameter is too small, the flow straightening member 4 has no strength and the flow blows out from the impeller 1 of the blower. Further, the opening ratio of the rectifying member (=
If the (total area with the opening / total area without the opening) is too large, the interference sound cannot be completely eliminated, and if it is too small, the rectifying member causes pressure loss of the blowout flow 50 of the impeller of the blower. Therefore, there is an optimum range for the wire diameter and the aperture ratio of the rectifying member.

【0047】図50は、網状の整流部材4の線径φdM
を変更したときの1/3OCT分析結果における熱交換
器のフィン3a間の干渉騒音の発生周波数帯域である2
〜5kHz帯域の音圧レベルのうち最も数値の高い3.
15kHz帯域での整流部材4あり、なしでの音圧レベ
ルの騒音低減量△SPL3.15k( 図中×印)と、図
50の2kHz帯域の干渉音の比較△SPL2k( 図中
○印)で示している。図51は、開口率Tを変更したと
きの1/3OCT分析結果における熱交換器のフィン3
a間の干渉騒音の発生周波数帯域である2〜5kHz帯
域の音圧レベルのうち最も数値の高い3.15kHz帯
域での整流部材4あり、なしでの音圧レベルの騒音低減
量△SPL3.15k( 図中×印)と、騒音値O.A.
の比較△SPLOA( 図中○印)で示している。図5
0、51から分かるように、線径φdMが熱交換器のフ
ィンピッチの1〜2倍で、かつ開口率が20〜40%で
あれば、騒音値を低減させ、熱交換器のフィン3a間で
の干渉騒音が低減でき、かつ耳障りな音のしない空気調
和機を得られる。
FIG. 50 shows the wire diameter φdM of the mesh-shaped rectifying member 4.
2 is the frequency band of the interference noise generated between the fins 3a of the heat exchanger in the result of 1/3 OCT analysis when
Highest numerical value among sound pressure levels in the ~ 5 kHz band 3.
The noise reduction amount of the sound pressure level with and without the rectifying member 4 in the 15 kHz band ΔSPL3.15k (marked by X in the figure) and the interference sound in the 2 kHz band of FIG. 50 are compared by ΔSPL2k (marked by ○ in the figure). Shows. FIG. 51 shows the fins 3 of the heat exchanger in the 1/3 OCT analysis result when the aperture ratio T is changed.
The noise reduction amount of the sound pressure level ΔSPL 3.15k with and without the rectifying member 4 in the 3.15 kHz band, which has the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band of interference noise between a. (X mark in the figure) and noise value O. A.
The comparison ΔSPLOA (circle in the figure) is shown. FIG.
As can be seen from 0 and 51, if the wire diameter φdM is 1 to 2 times the fin pitch of the heat exchanger and the aperture ratio is 20 to 40%, the noise value is reduced and the fins 3a of the heat exchanger are It is possible to obtain an air conditioner that can reduce the interference noise in the air and does not produce an offensive sound.

【0048】発明実施の形態12.図52はこの発明に
係る空気調和機における送風機の羽根車1と熱交換器3
の最小隙間点A付近に配設された網状部材でできている
整流部材の別実施例を示す。図のように、直線4a−E
の面について、網のピッチが異なっても線径φdMと開
口率Tが前記範囲φdM= フィンピッチの1〜2倍、T
=20〜40%の範囲であれば、同様な効果が得られ
る。
Embodiment 12 of the Invention FIG. 52 shows the impeller 1 and the heat exchanger 3 of the blower in the air conditioner according to the present invention.
Another embodiment of the rectifying member made of a mesh member disposed near the minimum clearance point A of FIG. As shown, straight line 4a-E
Even if the pitch of the net is different, the wire diameter φdM and the aperture ratio T of the surface are in the range φdM = 1 to 2 times the fin pitch, T
= 20 to 40%, the same effect can be obtained.

【0049】発明実施の形態13.図53は、この発明
に係る空気調和機における送風機の羽根車1と熱交換器
3の最小隙間点A付近に配設された穴あき板材でできて
いる整流部材の一実施例を示す。これは、板金または樹
脂性でできている。このような整流部材4により、図5
4のように、送風機の羽根車1から吹き出された流れ5
0はの熱交換器のフィン3aと垂直方向の流れ50xが
減速されるとともに、熱交換器のフィン3aの方向へ偏
向される。これにより、図55のように、熱交換器のフ
ィン3aで起きる2〜5kHz帯域での干渉騒音が低減
できる。 しかし、穴あき板材の穴径φdtが大きすぎ
ると、図56の熱交換器3と整流部材4の間の拡大図の
ように、穴により発生する噴流27により、2kHz帯
域で熱交換器のフィン3aから干渉騒音が発生する。ま
た、この整流部材の開口率(=(開口部ありでの全面積
/開口部なしでの全面積)が大きすぎると干渉音が消し
切らず、小さすぎると整流部材により送風機の羽根車の
吹出し流れ50の圧力損失となる。そのため、最適範囲
が存在する。
Embodiment 13 of the Invention FIG. 53 shows an embodiment of a rectifying member made of a perforated plate material disposed near the minimum clearance point A between the impeller 1 of the blower and the heat exchanger 3 in the air conditioner according to the present invention. It is made of sheet metal or resinous. With such a rectifying member 4, as shown in FIG.
4, the flow 5 blown out from the impeller 1 of the blower
The flow 50x perpendicular to the heat-exchanger fins 3a of 0 is decelerated and deflected toward the heat-exchanger fins 3a. Thereby, as shown in FIG. 55, the interference noise in the 2 to 5 kHz band generated in the fin 3a of the heat exchanger can be reduced. However, if the hole diameter φdt of the perforated plate material is too large, as shown in the enlarged view between the heat exchanger 3 and the rectifying member 4 in FIG. 56, the jet 27 generated by the holes causes the fins of the heat exchanger in the 2 kHz band. Interference noise is generated from 3a. Also, if the opening ratio (= (total area with opening / total area without opening) of this rectifying member is too large, the interference sound cannot be eliminated, and if it is too small, the impeller of the blower blows out by the rectifying member. There is a pressure drop in stream 50, so there is an optimum range.

【0050】図57は、熱交換器3のフィンピッチF.
Pと穴径φdtとの比F.P/φdtを変更したとき
の、図55における1/3OCT分析結果における熱交
換器のフィン3a間の干渉騒音の発生周波数帯域である
2〜5kHz帯域の音圧レベルのうち最も数値の高い
3.15kHz帯域での整流部材4あり、なしでの音圧
レベルの騒音低減量△SPL3.15k( 図中×印)
と、図55の2kHz帯域の干渉音の比較△SPL2k
( 図中▲印)、騒音値O.A.の比較△SPLOA(図
中○)で示している。図58は、開口率Tを変更したと
きの1/3OCT分析結果における熱交換器のフィン3
a間の干渉騒音の発生周波数帯域である2〜5kHz帯
域の音圧レベルのうち最も数値の高い3.15kHz帯
域での整流部材4あり、なしでの音圧レベルの騒音低減
量△SPL(図中×印)と、騒音値O.A.の比較△S
PLOA( 図中○印)で示している。図57、58から
分かるように、穴径φdtが熱交換器のフィンピッチの
0.3〜2倍で、かつ開口率が25〜40%であれば、
騒音値を低減させ、熱交換器のフィン3a間での干渉騒
音が低減でき、かつ耳障りな音のしない空気調和機を得
られる。
FIG. 57 shows the fin pitch F.F. of the heat exchanger 3.
P to hole diameter φdt F. When P / φdt is changed, the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band of the interference noise generated between the fins 3a of the heat exchanger in the 1/3 OCT analysis result in FIG. Noise reduction amount of sound pressure level with and without rectifying member 4 in the 15 kHz band ΔSPL 3.15k (marked x in the figure)
And comparison of interference sound of 2 kHz band in FIG. 55 ΔSPL2k
(Marked with ▲ in the figure), noise level O. A. Comparison ΔSPLOA (○ in the figure). FIG. 58 shows fins 3 of the heat exchanger in the 1/3 OCT analysis result when the aperture ratio T is changed.
The noise reduction amount ΔSPL of the sound pressure level without and with the rectifying member 4 in the 3.15 kHz band, which has the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band in which interference noise occurs between a and (Middle x mark) and noise value O. A. Comparison of ΔS
It is indicated by PLOA (circle in the figure). As can be seen from FIGS. 57 and 58, if the hole diameter φdt is 0.3 to 2 times the fin pitch of the heat exchanger and the aperture ratio is 25 to 40%,
It is possible to obtain an air conditioner that reduces the noise value, reduces the interference noise between the fins 3a of the heat exchanger, and does not produce a jarring sound.

【0051】発明実施の形態14.図59は、この発明
に係る空気調和機における送風機の羽根車1と熱交換器
3の最小隙間点A付近に配設された穴あき板材でできて
いる整流部材の別の実施例を示す。図中、穴空き部材を
用いた整流部材について、穴径が全て等しくなくても、
前記発明実施の形態13.の穴径の範囲である熱交換器
のフィンピッチF.Pの0.3〜2倍の範囲で、開口率
も前記範囲の25〜40%であれば、騒音値を低減さ
せ、熱交換器のフィン3a間での干渉騒音が低減でき、
かつ耳障りな音のしない空気調和機が得られる。
Fourteenth Embodiment of the Invention FIG. 59 shows another embodiment of the rectifying member made of a perforated plate material disposed near the minimum clearance point A between the impeller 1 of the blower and the heat exchanger 3 in the air conditioner according to the present invention. In the figure, for the rectifying member using the perforated member, even if the hole diameters are not all the same,
Embodiment 13 of the invention. The fin pitch of the heat exchanger F. If the aperture ratio is in the range of 0.3 to 2 times P and the range is 25 to 40%, the noise value can be reduced and the interference noise between the fins 3a of the heat exchanger can be reduced.
In addition, an air conditioner with no harsh sound can be obtained.

【0052】[0052]

【発明の効果】第一の発明により、熱交換器と送風機と
の最小隙間付近に設けられた整流部材により、送風機か
らの吹出流が熱交換器のフィンに対し、迎角をもって流
入するために生じる干渉騒音を低減し、耳障りな音のし
ない空気調和機を得ることができる。
According to the first aspect of the present invention, the rectifying member provided in the vicinity of the minimum gap between the heat exchanger and the blower allows the blowout flow from the blower to flow into the fins of the heat exchanger at an angle of attack. It is possible to obtain an air conditioner that reduces the generated interference noise and does not produce offensive noise.

【0053】第二の発明により、特に最小隙間から下流
側の熱交換機のフィンに対し大きな迎角を持つ送風機か
らの吹出流が熱交換器のフィンに対し効率よく流れると
共に熱交換器への送風が、迎角をもって流入するために
生じる干渉騒音を低減し、耳障りな音のしない空気調和
機を得ることができる。
According to the second aspect of the invention, the blowout flow from the blower having a large angle of attack with respect to the fins of the heat exchanger on the downstream side from the minimum gap efficiently flows to the fins of the heat exchanger and the air is blown to the heat exchanger. However, it is possible to obtain an air conditioner that reduces interference noise that occurs due to an inflow with an angle of attack, and that produces no harsh sound.

【0054】第三の発明により、整流部材を干渉騒音が
発生している領域をカバ−するように最適な配置が可能
となり効果的に熱交換器のフィンに対し、迎角をもって
流入するために生じる干渉騒音を低減し、耳障りな音の
しない空気調和機を得ることができる。
According to the third aspect of the present invention, the rectifying member can be optimally arranged so as to cover the area where the interference noise is generated, and the fins of the heat exchanger can be effectively flowed at an angle of attack. It is possible to obtain an air conditioner that reduces the generated interference noise and does not produce offensive noise.

【0055】第四の発明により、整流部材の最適な配置
が可能となり風量、風圧を急激に変動することなく効果
的に熱交換器のフィンに対し、迎角をもって流入するた
めに生じる干渉騒音を低減し、耳障りな音のしない空気
調和機を得ることができる。
According to the fourth aspect of the present invention, the rectifying member can be optimally arranged, and the interference noise caused by the inflow to the fins of the heat exchanger at an angle of attack can be effectively generated without drastically changing the air volume and the air pressure. It is possible to obtain an air conditioner that reduces noise and does not produce offensive sounds.

【0056】第五の発明により、風圧を大幅に増やさず
にかつ急激に変動することなく効率の良い、耳障りな音
のしない空気調和機を得ることができる。
According to the fifth aspect of the present invention, it is possible to obtain an efficient air conditioner that does not cause a jarring sound, without significantly increasing the wind pressure and without causing a sudden change.

【0057】第六の発明により、送風機の風切り音(NZ
音) を上昇、かつ騒音値を悪化させることなく空気調和
機内風路に配設される送風機の羽根車から熱交換器へ送
風される空気が、熱交換器のフィンに対し、迎角をもっ
て流入するために生じる干渉騒音を低減し、耳障りな音
のしない空気調和機を得ることができる。
According to the sixth invention, the wind noise of the blower (NZ
The air blown from the impeller of the blower installed in the air passage in the air conditioner to the heat exchanger flows into the fins of the heat exchanger at an angle of attack without increasing noise. It is possible to obtain an air conditioner that reduces the interference noise that is caused by doing so and does not produce an offensive sound.

【0058】第七の発明により、整流部材を最適位置に
設けることにより、空気調和機を小型化でき、かつ、迎
角をもって流入するために生じる熱交換器のフインでの
干渉騒音を低減し、耳障りな音のしない空気調和機を得
ることができる。
According to the seventh invention, the air conditioner can be downsized by providing the rectifying member at the optimum position, and the interference noise at the fin of the heat exchanger caused by the inflow at an angle of attack can be reduced. It is possible to obtain an air conditioner that does not produce offensive sounds.

【0059】第八の発明により、整流部材を最適位置に
設けることにより、空気調和機を小型化でき、かつ、迎
角をもって流入するために生じる熱交換器のフインでの
干渉騒音を低減し、耳障りな音のしない空気調和機を得
ることができる。
According to the eighth aspect of the present invention, by providing the rectifying member at the optimum position, the air conditioner can be downsized, and the interference noise at the fin of the heat exchanger caused by the inflow at an angle of attack can be reduced. It is possible to obtain an air conditioner that does not produce offensive sounds.

【0060】第九の発明により、小型化した空気調和機
に対し、風圧を増やさずに熱交換器のフインでの干渉騒
音を低減し、耳障りな音のしない空気調和機を得ること
ができる。
According to the ninth aspect of the present invention, it is possible to obtain an air conditioner that does not produce annoying noise by reducing the interference noise at the fins of the heat exchanger without increasing the wind pressure in the downsized air conditioner.

【0061】第十の発明により、整流部材を最適位置に
設けることにより、空気調和機を小型化でき、かつ効率
よく熱交換器のフインでの干渉騒音を低減し、耳障りな
音のしない空気調和機を得ることができる。
According to the tenth aspect of the present invention, the air conditioner can be downsized by providing the rectifying member at the optimum position, and the interference noise in the fins of the heat exchanger can be efficiently reduced, and the air conditioning without the harsh sound. You can get the opportunity.

【0062】第十一の発明により、簡単な構造で熱交換
器のフインでの干渉騒音を低減し、耳障りな音のしない
空気調和機を得ることができる。
According to the eleventh aspect of the present invention, it is possible to obtain an air conditioner which has a simple structure, reduces interference noise at the fins of the heat exchanger, and produces no harsh sound.

【0063】第十二の発明により、効果的に熱交換器の
フインでの干渉騒音を低減し、耳障りな音のしない空気
調和機を得ることができる。
According to the twelfth aspect of the invention, it is possible to effectively reduce the interference noise at the fins of the heat exchanger and obtain an air conditioner that does not produce a jarring noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明に係る空気調和機の第一の実施の形
態の例における空気調和機の断面図。
FIG. 1 is a cross-sectional view of an air conditioner in an example of a first embodiment of an air conditioner according to the present invention.

【図2】 図1の空気調和機の送風機の羽根車の回転軸
に直交する平面で切断したときの断面図。
FIG. 2 is a cross-sectional view taken along a plane orthogonal to the rotation axis of the impeller of the blower of the air conditioner of FIG.

【図3】 図1、2における熱交換器と送風機の羽根車
との最小隙間点付近を送風機側から見た斜視図。
FIG. 3 is a perspective view of the vicinity of a minimum clearance point between the heat exchanger and the impeller of the blower in FIGS. 1 and 2 as viewed from the blower side.

【図4】 図3の整流部材のみを取り出した図。FIG. 4 is a view showing only the rectifying member of FIG.

【図5】 図2の要部の部分拡大図。FIG. 5 is a partially enlarged view of a main part of FIG.

【図6】 整流部材の前記最小隙間より送風機の羽根車
の吹出し流れの上流側の端部4aが熱交換器に密着して
いないときの流れの様子を示す説明図。
FIG. 6 is an explanatory diagram showing the flow when the end 4a on the upstream side of the blowout flow of the impeller of the blower is not in close contact with the heat exchanger with respect to the minimum gap of the rectifying member.

【図7】 整流部材の前記最小隙間より送風機の羽根車
の吹出し流れの下流側の端部4bが熱交換器に密着して
いないときの流れの様子を示す説明図。
FIG. 7 is an explanatory view showing the flow when the end portion 4b on the downstream side of the blowout flow of the impeller of the blower is not in close contact with the heat exchanger with respect to the minimum gap of the flow regulating member.

【図8】 この発明に係る空気調和機における、本体の
同一吹出し風量における1/3OCT分析結果による音
圧レベルと周波数の関係を示した図。
FIG. 8 is a diagram showing the relationship between the sound pressure level and the frequency according to the 1 / 3OCT analysis result in the same blowing air volume of the main body in the air conditioner according to the present invention.

【図9】 この発明に係る空気調和機の第二の実施の形
態の例における空気調和機の断面図。
FIG. 9 is a cross-sectional view of an air conditioner in an example of a second embodiment of the air conditioner according to the present invention.

【図10】 図9の空気調和機の送風機の羽根車の回転
軸に直交する平面で切断したときの断面図。
FIG. 10 is a cross-sectional view taken along a plane orthogonal to the rotation axis of the impeller of the blower of the air conditioner of FIG. 9.

【図11】 この発明に係る空気調和機の第三の実施の
形態の例における図5に相当する要部の部分拡大図。
FIG. 11 is a partially enlarged view of a main part corresponding to FIG. 5 in an example of the third embodiment of the air conditioner according to the present invention.

【図12】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 12 is a diagram showing the relationship between the sound pressure level and the frequency according to the 1/3 OCT analysis result in the same blown air volume of the main body in the air conditioner according to the present invention.

【図13】 この発明に係る空気調和機の第四の実施の
形態の例における空気調和機の要部の部分拡大図。
FIG. 13 is a partially enlarged view of the essential parts of the air conditioner in the example of the fourth embodiment of the air conditioner according to the present invention.

【図14】 この発明に係る空気調和機の第五の実施の
形態の例における空気調和機の要部の部分拡大図。
FIG. 14 is a partially enlarged view of the essential parts of the air conditioner in the example of the fifth embodiment of the air conditioner according to the present invention.

【図15】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 15 is a diagram showing the relationship between the sound pressure level and the frequency according to the 1 / 3OCT analysis result in the same blown air volume of the main body in the air conditioner according to the present invention.

【図16】 この発明に係る空気調和機の要部の部分拡
大図。
FIG. 16 is a partially enlarged view of a main part of the air conditioner according to the present invention.

【図17】 この発明に係る空気調和機の整流部材の上
流側端部4aと下流側端部4bを結ぶ直線4a−4bの
長さLと送風機の羽根車の直径φDとの比率L/φDに
対する最も大きな数値を示す3.15kHz帯域での騒
音低減量 SPL3.15kおよび騒音値O.Aの低減
量△SPLOAの関係を示した図。
FIG. 17 is a ratio L / φD of the length L of a straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the air flow regulating member of the air conditioner according to the present invention to the diameter φD of the impeller of the blower. Which shows the largest value for the noise reduction amount SPL 3.15k in the 3.15 kHz band and the noise value O. The figure which showed the reduction amount (DELTA) SPLOA of A.

【図18】 整流部材の上流側直線部4a−Eの長さL
Mと整流部材上流、下流端部を結ぶ直線4a−4bの長
さLとの比LM/Lに対する最も大きな数値を示す3.
15kHz帯域での騒音低減量△SPL3.15kおよ
び騒音値O.Aの低減量△SPLOAの関係を示した
図。
FIG. 18 is a length L of the upstream straight portion 4a-E of the straightening member.
2. The largest numerical value is shown for the ratio LM / L between M and the length L of the straight line 4a-4b connecting the upstream and downstream ends of the rectifying member.
Noise reduction amount ΔSPL 3.15k and noise value O.S. The figure which showed the reduction amount (DELTA) SPLOA of A.

【図19】 この発明に係る空気調和機の第六の実施の
形態の例における要部の部分拡大図。
FIG. 19 is a partially enlarged view of the essential parts of the example of the sixth embodiment of the air-conditioning apparatus according to the present invention.

【図20】 整流部材の上流端部、下流端部を結ぶ直線
4a−4bの長さが短すぎるときの流れの様子を示す要
部の部分拡大図。
FIG. 20 is a partially enlarged view of a main part showing a state of a flow when a length of a straight line 4a-4b connecting the upstream end portion and the downstream end portion of the rectifying member is too short.

【図21】 整流部材の上流端部、下流端部を結ぶ直線
4a−4bの長さが長すぎるときの流れの様子を示す要
部の部分拡大図。
FIG. 21 is a partially enlarged view of a main part showing a state of flow when a straight line 4a-4b connecting the upstream end portion and the downstream end portion of the rectifying member is too long.

【図22】 この発明に係る空気調和機における整流部
材の上流側端部4aと下流側端部4bを結ぶ直線4a−
4bの長さLと送風機の羽根車の直径φDとの比率L/
φDに対する最も大きな数値を示す3.15kHz帯域
での騒音低減量△SPL3.15kおよび騒音値O.A
の低減量△SPLOAの関係を示した図
FIG. 22 is a straight line 4a-connecting the upstream end 4a and the downstream end 4b of the rectifying member in the air conditioner according to the present invention.
Ratio of length L of 4b to diameter φD of fan impeller of blower L /
The noise reduction amount ΔSPL 3.15k and the noise value O.S. A
Showing the relationship between the amount of reduction ΔSPLOA

【図23】 整流部材の上流側直線部4a−Eの長さL
Mと整流部材の上流側、下流側端部を結ぶ直線4a−4
bの長さLとの比LM/Lに対する1/3OCT分析の
3.15kHz帯域での騒音低減量△SPL3.15k
および騒音値O.A.の低減量△SPLO.Aとの関係
を示した図。
FIG. 23 is a length L of the upstream straight portion 4a-E of the straightening member.
A straight line 4a-4 connecting M and the upstream and downstream ends of the rectifying member
Noise reduction amount in the 3.15 kHz band of 1/3 OCT analysis with respect to the ratio LM / L with the length L of b ΔSPL 3.15k
And noise value O. A. Reduction amount ΔSPLO. The figure which showed the relationship with A.

【図24】 第4の発明に係る空気調和機の一実施例に
おける空気調和機の図5に相当する要部の部分拡大図。
FIG. 24 is a partially enlarged view of a main part of an air conditioner according to an embodiment of the fourth invention, the part corresponding to FIG.

【図25】 この発明に係る空気調和機の第七の実施の
形態の例における、本体の同一吹出し風量における1/
3OCT分析結果による音圧レベルと周波数の関係を示
した図。
FIG. 25 is a diagram showing an example of the seventh embodiment of the air conditioner according to the present invention, in which 1 /
The figure which showed the relationship between the sound pressure level and frequency by 3OCT analysis result.

【図26】 送風機の羽根車と熱交換器の最小隙間距離
APに対する、整流部材の上流側端部4aの熱交換器に
密着する点Bと最小隙間点A間の距離ABとの比を示す
AB/APに対する1/3OCT分析の3.15kHz
帯域での騒音低減量△SPL3.15kおよび騒音値
O.A.の低減量△SPLO.Aとの関係を示した図。
FIG. 26 shows a ratio of a distance AB between a point B close to the heat exchanger at the upstream end 4a of the rectifying member and a minimum clearance point A to a minimum clearance distance AP between the impeller of the blower and the heat exchanger. 3.15 kHz with 1/3 OCT analysis for AB / AP
Noise reduction amount ΔSPL 3.15k and noise value O.S. A. Reduction amount ΔSPLO. The figure which showed the relationship with A.

【図27】 この発明に係る空気調和機における整流部
材の上流側端部4aと下流側端部4bを結ぶ直線4a−
4bの長さLと送風機の羽根車の直径φDとの比率L/
φDに対する最も大きな数値を示す3.15kHz帯域
での騒音低減量△SPL3.15kおよび騒音値O.A
の低減量△SPLOAの関係を示した図。
FIG. 27 is a straight line 4a-connecting the upstream end 4a and the downstream end 4b of the rectifying member in the air conditioner according to the present invention.
Ratio of length L of 4b to diameter φD of fan impeller of blower L /
The noise reduction amount ΔSPL 3.15k and the noise value O.S. A
FIG. 6 is a diagram showing the relationship of the reduction amount ΔSPLOA of FIG.

【図28】 整流部材の上流側直線部4a−Eの長さL
Mと整流部材上流、下流端部を結ぶ直線4a−4bの長
さLとの比LM/Lに対する最も大きな数値を示す3.
15kHz帯域での騒音低減量△SPL3.15kおよ
び騒音値O.Aの低減量△SPLOAの関係を示した
図。
FIG. 28 is a length L of the upstream straight portion 4a-E of the straightening member.
2. The largest numerical value is shown for the ratio LM / L between M and the length L of the straight line 4a-4b connecting the upstream and downstream ends of the rectifying member.
Noise reduction amount ΔSPL 3.15k and noise value O.S. The figure which showed the reduction amount (DELTA) SPLOA of A.

【図29】 この発明に係る空気調和機の第八の実施の
形態の例における空気調和機の要部の部分拡大図を示
す。
FIG. 29 is a partially enlarged view of the essential parts of the air conditioner in the example of the eighth embodiment of the air conditioner according to the present invention.

【図30】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 30 is a diagram showing the relationship between the sound pressure level and the frequency according to the 1 / 3OCT analysis result in the same blowing air volume of the main body in the air conditioner according to the present invention.

【図31】 回転角度β°が大きすぎる場合の流れの様
子を示した要部の部分拡大図。
FIG. 31 is a partially enlarged view of the essential part showing the flow when the rotation angle β is too large.

【図32】 回転角度β°が大きすぎる場合の周波数と
音圧レベルの関係を示した図。
FIG. 32 is a diagram showing the relationship between frequency and sound pressure level when the rotation angle β ° is too large.

【図33】 回転角度β°が小さすぎる場合の流れの様
子を示した要部の部分拡大図。
FIG. 33 is a partially enlarged view of a main portion showing a flow state when the rotation angle β ° is too small.

【図34】 この発明に係る空気調和機における整流部
材の上流側直線部4a−Eの回転角度β°に対する最も
大きな数値を示す3.15kHz帯域での騒音低減量△
SPL3.15kおよび騒音値O.Aの低減量△SPL
OAの関係を示した図。
FIG. 34 is a noise reduction amount Δ in the 3.15 kHz band showing the largest numerical value with respect to the rotation angle β ° of the upstream straight portion 4a-E of the rectifying member in the air conditioner according to the present invention.
SPL 3.15k and noise value O.S. Reduction amount of A △ SPL
The figure which showed the relationship of OA.

【図35】 この発明に係る空気調和機の第九の実施の
形態の例における空気調和機の要部の部分拡大図を示
す。
FIG. 35 is a partially enlarged view of the essential parts of the air conditioner in the example of the ninth embodiment of the air conditioner according to the present invention.

【図36】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 36 is a diagram showing the relationship between the sound pressure level and the frequency according to the 1 / 3OCT analysis result in the same blow-out air volume of the main body in the air conditioner according to the present invention.

【図37】 整流部材の上流側直線部4a−Eを整流部
材の上流、下流側端部4a−4b上から、上流側端部4
aを中心に回転させるときの角度β°に対する1/3O
CT分析の3.15kHz帯域での騒音低減量△SPL
3.15kおよび騒音値O.A.の低減量△SPLO.
Aとの関係を示した図。
FIG. 37 shows the upstream straight end portion 4a-E of the straightening member from the upstream end portion 4a-4b of the straightening member to the upstream end portion 4a.
1 / 3O against the angle β ° when rotating around a
Noise reduction amount in 3.15 kHz band of CT analysis ΔSPL
3.15k and noise value O. A. Reduction amount ΔSPLO.
The figure which showed the relationship with A.

【図38】 この発明に係る空気調和機の第十の実施の
形態の例における空気調和機の要部の部分拡大図。
FIG. 38 is a partially enlarged view of the essential parts of the air conditioner in the example of the tenth embodiment of the air conditioner according to the present invention.

【図39】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 39 is a diagram showing the relationship between the sound pressure level and the frequency according to the 1 / 3OCT analysis result in the same blowing air volume of the main body in the air conditioner according to the present invention.

【図40】 この発明に係る空気調和機における整流部
材の上流側端部4aと下流側端部4bを結ぶ直線4a−
4bの長さLと送風機の羽根車の直径φDとの比率L/
φDに対する最も大きな数値を示す3.15kHz帯域
での騒音低減量△SPL3.15kおよび騒音値O.A
の低減量△SPLOAの関係を示した図。
FIG. 40 is a straight line 4a-connecting the upstream end 4a and the downstream end 4b of the rectifying member in the air conditioner according to the present invention.
Ratio of length L of 4b to diameter φD of fan impeller of blower L /
The noise reduction amount ΔSPL 3.15k and the noise value O.S. A
FIG. 6 is a diagram showing the relationship of the reduction amount ΔSPLOA of FIG.

【図41】 整流部材の上流側直線部4a−Eの長さL
Mと整流部材の上流側、下流側端部を結ぶ直線4a−4
bの長さLとの比LM/Lに対する1/3OCT分析の
3.15kHz帯域での騒音低減量△SPL3.15k
および騒音値O.A.の低減量△SPLO.Aとの関係
を示した図。
FIG. 41 is a length L of the upstream straight portion 4a-E of the rectifying member.
A straight line 4a-4 connecting M and the upstream and downstream ends of the rectifying member
Noise reduction amount in the 3.15 kHz band of 1/3 OCT analysis with respect to the ratio LM / L with the length L of b ΔSPL 3.15k
And noise value O. A. Reduction amount ΔSPLO. The figure which showed the relationship with A.

【図42】 この発明に係る空気調和機における整流部
材の上流側直線部4a−Eの回転角度β°に対する最も
大きな数値を示す3.15kHz帯域での騒音低減量△
SPL3.15kおよび騒音値O.Aの低減量△SPL
OAの関係を示した図。
FIG. 42 is a noise reduction amount Δ in the 3.15 kHz band showing the largest numerical value with respect to the rotation angle β ° of the upstream straight portion 4a-E of the rectifying member in the air conditioner according to the present invention.
SPL 3.15k and noise value O.S. Reduction amount of A △ SPL
The figure which showed the relationship of OA.

【図43】 送風機の羽根車と熱交換器の最小隙間距離
APに対する、整流部材の上流側端部4aの熱交換器に
密着する点Bと最小隙間点A間の距離ABとの比を示す
AB/APに対する1/3OCT分析の3.15kHz
帯域での騒 音低減量△SPL3.15kおよび騒音値
O.A.の低減量△SPLO.Aとの関係を示した図。
FIG. 43 shows a ratio of a distance AB between a point B close to the heat exchanger at the upstream end 4a of the rectifying member and a minimum gap point A to a minimum gap distance AP between the impeller of the blower and the heat exchanger. 3.15 kHz with 1/3 OCT analysis for AB / AP
Noise reduction amount ΔSPL 3.15k and noise value O.S. A. Reduction amount ΔSPLO. The figure which showed the relationship with A.

【図44】 この発明に係る空気調和機の第十一の実施
の形態の例における空気調和機に配設される整流部材の
例を示す図。
FIG. 44 is a view showing an example of a rectifying member arranged in the air conditioner in the example of the eleventh embodiment of the air conditioner according to the present invention.

【図45】 この発明に係る空気調和機における空気調
和機に配設される整流部材の別の例を示す図。
FIG. 45 is a view showing another example of the rectifying member arranged in the air conditioner in the air conditioner according to the present invention.

【図46】 この発明に係る空気調和機における空気調
和機の要部の部分拡大図。
FIG. 46 is a partially enlarged view of a main part of the air conditioner in the air conditioner according to the present invention.

【図47】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 47 is a diagram showing the relationship between the sound pressure level and the frequency according to the 1 / 3OCT analysis result for the same blown air volume of the main body in the air conditioner according to the present invention.

【図48】 整流部材の線径が太すぎるときの熱交換器
と整流部材の間の拡大図。
FIG. 48 is an enlarged view between the heat exchanger and the rectifying member when the wire diameter of the rectifying member is too large.

【図49】 整流部材の線径が太すぎるときの騒音のス
ペクトルを示す。
FIG. 49 shows a noise spectrum when the wire diameter of the rectifying member is too large.

【図50】 この発明に係る空気調和機における整流部
材の、熱交換器のフィンピッチF.Pと整流部材の線径
φdMの比率F.P/φdMに対する最も大きな数値を
示す3.15kHz帯域での騒音低減量△SPL3.1
5Kおよび2kHz帯域での騒音低減量△SPL2kの
関係を示した図 。
FIG. 50 is a fin pitch F.F. of a heat exchanger of a rectifying member in the air conditioner according to the present invention. P and ratio of wire diameter φdM of rectifying member F.P. Noise reduction amount in the 3.15 kHz band showing the largest value for P / φdM ΔSPL3.1
The figure which showed the relationship of noise reduction amount (triangle | delta) SPL2k in 5K and 2kHz band.

【図51】 この発明に係る空気調和機における整流部
材の、開口率Tに対する最も大きな数値を示す3.15
kHz帯域での騒音低減量△SPL3.15kおよび騒
音値O.A.の騒音低減量△SPLOAの関係を示した
図。
FIG. 51 shows the largest numerical value with respect to the aperture ratio T of the rectifying member in the air conditioner according to the present invention.
Noise reduction amount ΔSPL 3.15k and noise value O.V. A. Showing the relationship between the noise reduction amount ΔSPLOA of FIG.

【図52】 この発明に係る空気調和機に配設された網
状の整流部材の別の実施の形態の例を示す図。
FIG. 52 is a view showing an example of another embodiment of a net-shaped rectifying member arranged in the air conditioner according to the present invention.

【図53】 この発明に係る空気調和機の第十三の実施
の形態の例に配設された穴あき板材を用いた整流部材の
一実施例を示す図。
FIG. 53 is a diagram showing an example of a rectifying member using a perforated plate member arranged in the thirteenth embodiment of the air-conditioning apparatus according to the present invention.

【図54】 この発明に係る空気調和機の図53の整流
部材による送風機の羽根車と熱交換器の最小隙間付近の
要部の部分拡大図。
54 is a partially enlarged view of a main part in the vicinity of the minimum gap between the impeller and the heat exchanger of the blower using the flow regulating member of FIG. 53 of the air conditioner according to the present invention.

【図55】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 55 is a diagram showing the relationship between the sound pressure level and the frequency according to the 1 / 3OCT analysis result at the same blown air volume of the main body in the air conditioner according to the present invention.

【図56】 穴空き部材を用いた整流部材の穴径が大き
すぎる場合の、整流部材と熱交換器の間の拡大図。
FIG. 56 is an enlarged view between the straightening member and the heat exchanger when the hole diameter of the straightening member using the perforated member is too large.

【図57】 この発明に係る空気調和機における穴あき
部材を用いた整流部材において、熱交換器のフィンピッ
チF.Pと穴空き部材の穴径φdtとの比F.P/φd
t に対する最も大きな数値を示す3.15kHz帯域
での騒音低減量△SPL3.15kおよび2kHz帯域
の騒音低減量△SPL2kの関係を示した図。
FIG. 57 is a diagram showing a flow regulating member using a perforated member in the air conditioner according to the present invention, wherein the fin pitch F. Ratio of P to hole diameter φdt of perforated member F.P. P / φd
The figure which showed the relationship of the noise reduction amount (DELTA) SPL3.15k in 3.15kHz band which shows the largest numerical value with respect to t, and the noise reduction amount (DELTA) SPL2k in 2kHz band.

【図58】 この発明に係る空気調和機における整流部
材の、開口率Tに対する最も大きな数値を示す3.15
kHz帯域での騒音低減量△SPL3.15kおよび騒
音値O.A.の騒音低減量△SPLOAの関係を示した
図。
FIG. 58 shows the largest numerical value with respect to the opening ratio T of the rectifying member in the air conditioner according to the present invention.
Noise reduction amount ΔSPL 3.15k and noise value O.V. A. Showing the relationship between the noise reduction amount ΔSPLOA of FIG.

【図59】 この発明に係る空気調和機における整流部
材の別の実施例を示す図。
FIG. 59 is a view showing another embodiment of the rectifying member in the air conditioner according to the present invention.

【図60】 従来の空気調和機の断面図。FIG. 60 is a cross-sectional view of a conventional air conditioner.

【図61】 従来の空気調和機の送風機の羽根車の回転
軸に直交する平面で切断した断面図。
FIG. 61 is a cross-sectional view taken along a plane orthogonal to the rotation axis of an impeller of a conventional air conditioner blower.

【図62】 従来の空気調和機の要部の部分拡大図。FIG. 62 is a partial enlarged view of a main part of a conventional air conditioner.

【図63】 従来の空気調和機における1/3OCT分
析結果による音圧レベルと周波数の関係を示した図。
FIG. 63 is a diagram showing a relationship between sound pressure level and frequency based on a 1 / 3OCT analysis result in a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 送風機の羽根車、2 本体、3 フィンチューブ型
熱交換器、3a フィンチューブ熱交換器のアルミフィ
ン、4 整流部材、4a 送風機の羽根車1と熱交換器
3の最小隙間より送風機の羽根車から吹き出された流れ
より上流側の整流部材の端部、4b 送風機の羽根車1
と熱交換器3の最小隙間より送風機の羽根車から吹き出
された流れより下流側の整流部材の端部、5 ドレンパ
ン、6モータ、7 吸込みグリル、8 ベルマウス、9
フィルタ、10 本体吹出口、11 風向偏向ベー
ン、12 電気品箱、13 化粧パネル、14 天井、
15 配管、16 ドレン水排水用ポンプ、17 ヘッ
ダ、18 本体固定ボルト、19 本体固定ナット、2
0 本体吸込口、21 本体固定フック、22銅パイ
プ、23 送風機の羽根車の回転方向、24 熱交換器
のフィン3aで生じる剥離渦、25 整流部材4の送風
機の羽根車と熱交換器の最小隙間より下流側の端部4b
付近で生じる放出渦、26 整流部材の針金の後流渦、
27 整流部材の穴で生じる噴流、50 送風機の羽根
車から吹き出される空気
1 blower impeller, 2 main body, 3 fin-tube heat exchanger, 3a aluminum fin of fin-tube heat exchanger, 4 rectifying member, 4a End of the rectifying member on the upstream side of the flow blown from the blower, 4b Impeller 1 of the blower
And the end of the rectifying member downstream of the flow blown from the impeller of the blower through the minimum gap between the heat exchanger 3 and the drain pan, 6 motor, 7 suction grill, 8 bell mouth, 9
Filter, 10 air outlet, 11 wind deflector vane, 12 electrical component box, 13 decorative panel, 14 ceiling,
15 piping, 16 drain water drainage pump, 17 header, 18 body fixing bolt, 19 body fixing nut, 2
0 main body suction port, 21 main body fixing hook, 22 copper pipe, 23 rotational direction of impeller of blower, 24 separation vortex generated by fin 3a of heat exchanger, 25 minimum of impeller of blower and heat exchanger of rectifying member 4 End 4b on the downstream side of the gap
Ejection vortex that occurs in the vicinity, 26 Wake vortex of wire of rectifying member,
27 Jet generated in the hole of the flow regulating member, 50 Air blown from the impeller of the blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝比奈 学 東京都千代田区大手町二丁目6番2号 三 菱電機エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Manabu Asahina 2-6-2 Otemachi, Chiyoda-ku, Tokyo Sanryo Electric Engineering Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 フィンを設けた熱交換器と、この熱交換
器のフィンに対し迎角をもって流入するような吹き出し
流を有する送風機とを備えた空気調和機において、熱交
換器と送風機との最小隙間付近に設けられ、前記熱交換
器から送風機方向に凸となるように形成され、この凸部
分で前記熱交換器から離れる板状部材であって、かつこ
の板状部材に通風口を有する整流部材と、この整流部材
の前記最小隙間部分より送風機から吹き出された空気の
上流側および下流側に延長した部分であって、前記熱交
換器に近接して配置された整流部材の両側の端部と、を
設けたことを特徴とする空気調和機
1. An air conditioner comprising a heat exchanger provided with fins and a blower having a blow-off flow that flows into the fins of the heat exchanger at an angle of attack, wherein the heat exchanger and the blower are combined. It is a plate-like member that is provided near the minimum gap and is formed so as to project from the heat exchanger in the direction of the blower, and is separated from the heat exchanger by the projecting portion, and the plate-like member has a ventilation port. A rectifying member and a part extending from the minimum gap portion of the rectifying member to the upstream side and the downstream side of the air blown from the blower, and both ends of the rectifying member arranged in proximity to the heat exchanger. And an air conditioner
【請求項2】 熱交換器から送風機方向に凸となるよう
に形成されたこの頂上部分が送風機の羽根車から吹き出
された空気の最小隙間より下流側に突出したことを特徴
とする請求項1記載の空気調和機
2. The top portion formed so as to project from the heat exchanger in the direction of the blower projects downstream from the minimum gap of the air blown from the impeller of the blower. Air conditioner described
【請求項3】 整流部材の両側の端部の間の直線状の長
さが送風機の羽根車の直径の20−50%であることを
特徴とする請求項1記載の空気調和機
3. The air conditioner according to claim 1, wherein the straight length between the both ends of the flow regulating member is 20-50% of the diameter of the impeller of the blower.
【請求項4】 整流部材の上流側の端部と最小隙間点と
の直線状の長さが、最小隙間長さの25−90%である
ことを特徴とする請求項1記載の空気調和機
4. The air conditioner according to claim 1, wherein the straight length between the upstream end of the flow regulating member and the minimum gap point is 25-90% of the minimum gap length.
【請求項5】 熱交換器から送風機方向に凸となるよう
に形成された凸部の上端は整流部材の上流側の端部を中
心にして両側端部を結ぶ直線を3−20度回転した範囲
に設けたことを特徴とする請求項1記載の空気調和機
5. The upper end of the convex portion formed so as to be convex from the heat exchanger toward the blower is rotated by 3-20 degrees about a straight line connecting both end portions with the upstream end portion of the rectifying member as the center. The air conditioner according to claim 1, wherein the air conditioner is provided in a range.
【請求項6】 本体内に送風機の羽根車と送風機の羽根
車の吹出し口側にフィンを設けた熱交換器を有する空気
調和機において、送風機の羽根車の回転軸中心を点O、
前記熱交換器と送風機の羽根車との最小隙間で前記熱交
換器の送風機側の面上の点をA、送風機の羽根車外周部
と送風機の羽根車の回転軸Oと前記最小隙間点Aを結ぶ
直線OAとの交点をP、点Aから送風機の羽根車から吹
き出された空気の上流側の整流部材の端部4aが熱交換
器に近接する点をB、また下流側の整流部材の端部4b
が熱交換器に近接する点をFとするとき、前記整流部材
の送風機の羽根車から吹き出された空気の上流側の整流
部材の端部と下流側の端部を結ぶ直線4a−4b上か
ら、点4aを中心に任意角度β°回転させた任意長さの
直線状4a−Eと、点Eと4bを結ぶ直線状または直線
4a−Eに点Eで接しかつ点Fにおいて熱交換器のフィ
ンとの角度が上流側に90°以下の接線を有する円弧状
E−4bと、により形成された整流部材を前記熱交換器
上の点B、Fに熱交換器に近接するように配設したこと
を特徴とする空気調和機
6. An air conditioner having a fan impeller of a blower and a heat exchanger having fins on the outlet side of the impeller of the blower in the main body, wherein the center of the rotation axis of the impeller of the blower is point O,
The minimum clearance between the heat exchanger and the impeller of the blower is A on the blower side surface of the heat exchanger, A is the outer peripheral part of the impeller of the blower, the rotation axis O of the impeller of the blower, and the minimum clearance point A. P is the point of intersection with the straight line OA connecting points B, B is the point where the upstream side rectifying member end 4a of the air blown from the impeller of the blower from point A is close to the heat exchanger, and B is the downstream rectifying member. End 4b
Where F is the point close to the heat exchanger, from the straight line 4a-4b connecting the end of the upstream side rectifying member and the end of the downstream side of the air blown from the impeller of the blower of the rectifying member. , A straight line 4a-E having an arbitrary length rotated about the point 4a by an arbitrary angle β °, and a straight line connecting the points E and 4b or a straight line 4a-E at the point E and at the point F of the heat exchanger. A straightening member formed by an arcuate shape E-4b having a tangent line of 90 ° or less on the upstream side with the fins is disposed so as to be close to the heat exchanger at points B and F on the heat exchanger. An air conditioner characterized by
【請求項7】 羽根車から吹き出された空気の上流側の
整流部材の端部と下流側の端部を結ぶ長さが送風機の羽
根車の直径φDの20〜50%である直線4a−4b上
から、点4aを中心に直線4a−4bの長さ以下でかつ
50%以上の直線を任意角度β°回転させた直線状4a
−Eと、点E、4bを結ぶ直線状または直線4a−Eに
接しかつ点Fにおいて熱交換器のフィンとの角度が上流
側に90°以下の接線を有する円弧状E−4bと、によ
り形成された整流部材を前記熱交換器上の点B、Fに熱
交換器に近接するように配設したことを特徴とする請求
項6記載の空気調和機
7. A straight line 4a-4b in which the length connecting the end of the air flow regulating member on the upstream side and the end of the air blown from the impeller is 20 to 50% of the diameter φD of the impeller of the blower. From above, a straight line 4a obtained by rotating a straight line that is equal to or less than the length of the straight line 4a-4b and 50% or more around the point 4a by an arbitrary angle β °.
-E and an arcuate shape E-4b which is in contact with a straight line connecting the points E and 4b or a straight line 4a-E and which has a tangent line whose angle to the fin of the heat exchanger is 90 ° or less on the upstream side at the point F, 7. The air conditioner according to claim 6, wherein the formed rectifying member is arranged at points B and F on the heat exchanger so as to be close to the heat exchanger.
【請求項8】 点Aから送風機の羽根車から吹き出され
た空気の上流側の整流部材の端部4aが前記最小隙間点
Aより上流側に送風機の羽根車と熱交換器の最小隙間距
離APの25〜90%の距離の熱交換器に密着する点を
B、また下流側の整流部材の端部4bが熱交換器に密着
する点をFとするとき、前記整流部材の送風機の羽根車
から吹き出された空気の上流側の整流部材の端部と下流
側の端部を結ぶ長さが送風機の羽根車の直径φDの20
〜50%である直線4a−4b上から、点4aを中心に
直線4a−4bの長さ以下でかつ50%以上の直線を任
意角度β°回転させた直線状4a−Eと、点E、4bを
結ぶ直線状または直線4a−Eに接しかつ点Fにおいて
熱交換器のフィンとの角度が上流側に90°以下の接線
を有する円弧状E−4bと、により形成された整流部材
を前記熱交換器上の点B、Fに熱交換器に近接するよう
に配設したことを特徴とする請求項6記載の空気調和機
8. The minimum clearance distance AP between the impeller of the blower and the heat exchanger is located upstream of the minimum clearance point A where the end portion 4a of the rectifying member on the upstream side of the air blown from the impeller of the blower from the point A is upstream of the minimum clearance point A. Let B be the point of close contact with the heat exchanger at a distance of 25 to 90%, and F be the point of contact of the end 4b of the downstream rectifying member with the heat exchanger. The length connecting the upstream end of the air flow rectifying member and the downstream end of the air blown from the fan is 20 when the impeller diameter of the blower is φD.
From the straight line 4a-4b, which is ˜50%, a straight line 4a-E obtained by rotating a straight line 4a-4b having a length equal to or less than the length of the straight line 4a-4b around the point 4a and at least 50%, and a point E, A straight line connecting 4b or a straight line 4a-E and an arc E-4b having a tangent line with the fin of the heat exchanger at a point F having an angle of 90 ° or less on the upstream side; 7. The air conditioner according to claim 6, wherein points B and F on the heat exchanger are arranged close to the heat exchanger.
【請求項9】 整流部材の送風機の羽根車から吹き出さ
れた空気の上流側の整流部材の端部と下流側の端部を結
ぶ直線4a−4b上から、点4aを中心に角度β°=3
〜20°回転させた任意長さの直線状4a−Eと、点
E、4bを結ぶ直線状または直線4a−Eに点Eで接し
かつ点Fにおいて熱交換器のフィンとの角度が上流側に
90°以下の接線を有する円弧状E−4bと、により形
成された整流部材を前記熱交換器上の点B、Fに熱交換
器に近接するように配設したことを特徴とする請求項6
または7または8記載の空気調和機
9. An angle β ° = centered at a point 4a from a straight line 4a-4b connecting the end of the upstream side rectifying member and the end of the downstream side rectifying member of the air blown out from the impeller of the blower of the rectifying member. Three
The straight line 4a-E of an arbitrary length rotated by -20 ° and the straight line connecting the points E and 4b or the straight line 4a-E are in contact with each other at the point E, and at the point F, the angle with the fin of the heat exchanger is on the upstream side. A rectifying member formed by an arcuate E-4b having a tangent line of 90 ° or less is disposed at points B and F on the heat exchanger so as to be close to the heat exchanger. Item 6
Or the air conditioner described in 7 or 8.
【請求項10】 整流部材の送風機の羽根車から吹き出
された空気の上流側の整流部材の端部と下流側の端部を
結ぶ長さが送風機の羽根車の直径φDの20〜50%で
ある直線4a−4b上から、点4aを中心に直線4a−
4bの長さ以下かつ50%以上の長さをもつ直線を角度
β°=3〜20°回転させた直線状4a−Eと、点E、
4bを結ぶ直線状または直線4a−Eに接しかつ点Fに
おいて熱交換器のフィンとの角度が上流側に90°以下
の接線を有する円弧状E−4bにより形成された整流部
材を前記熱交換器上の点B、Fに熱交換器に近接するよ
うに配設したことを特徴とする請求項6または7または
8または9記載の空気調和機
10. The length of the air blown out from the impeller of the blower of the flow regulating member, which connects the end of the flow regulating member on the upstream side and the end on the downstream side, is 20 to 50% of the diameter φD of the impeller of the blower. From a straight line 4a-4b, a straight line 4a-
A straight line 4a-E obtained by rotating a straight line having a length not more than 4b and not less than 50% and an angle β = 3 to 20 °, and a point E,
The straightening member formed by an arcuate E-4b which is in contact with a straight line connecting 4b or a straight line 4a-E and has an angle with the fin of the heat exchanger at the point F of 90 ° or less on the upstream side. The air conditioner according to claim 6, 7 or 8 or 9, wherein the points B and F on the device are arranged so as to be close to the heat exchanger.
【請求項11】 熱交換器と送風機の最小隙間付近に設
けられた整流部材に網状部材を用い、線径が熱交換器フ
ィンピッチの1〜2倍でかつ開口率=20〜40%であ
ることを特徴とする請求項1〜10記載の空気調和機
11. A rectifying member provided in the vicinity of the minimum gap between the heat exchanger and the blower is a mesh member, and the wire diameter is 1 to 2 times the fin pitch of the heat exchanger and the aperture ratio is 20 to 40%. The air conditioner according to claim 1, wherein
【請求項12】 熱交換器と送風機の最小隙間付近に設
けられた整流部材に穴あき板材を用い、この穴径が熱交
換器のフィンピッチの0.3〜2倍でかつ開口率=25
〜40%であることを特徴とする請求項1〜10記載の
空気調和機
12. A perforated plate member is used as a rectifying member provided in the vicinity of the minimum gap between the heat exchanger and the blower, and the hole diameter is 0.3 to 2 times the fin pitch of the heat exchanger and the aperture ratio = 25.
It is -40%, The air conditioner of Claim 1-10 characterized by the above-mentioned.
JP08039991A 1996-02-27 1996-02-27 Air conditioner Expired - Lifetime JP3138632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08039991A JP3138632B2 (en) 1996-02-27 1996-02-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08039991A JP3138632B2 (en) 1996-02-27 1996-02-27 Air conditioner

Publications (2)

Publication Number Publication Date
JPH09236276A true JPH09236276A (en) 1997-09-09
JP3138632B2 JP3138632B2 (en) 2001-02-26

Family

ID=12568410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08039991A Expired - Lifetime JP3138632B2 (en) 1996-02-27 1996-02-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP3138632B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182961A (en) * 1999-12-27 2001-07-06 Hitachi Ltd Air conditioner
JP2007113824A (en) * 2005-10-19 2007-05-10 Daikin Ind Ltd Air conditioner
JP2007187402A (en) * 2006-01-16 2007-07-26 Daikin Ind Ltd Air conditioner
JP2011012937A (en) * 2009-07-06 2011-01-20 Mitsubishi Heavy Ind Ltd Indoor unit for air conditioning
JP2014126260A (en) * 2012-12-26 2014-07-07 Daikin Ind Ltd Indoor unit
JP2014198227A (en) * 2013-03-13 2014-10-23 パナソニック株式会社 Ion generator
JP2015081692A (en) * 2013-10-21 2015-04-27 日立アプライアンス株式会社 Indoor unit of air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182961A (en) * 1999-12-27 2001-07-06 Hitachi Ltd Air conditioner
JP2007113824A (en) * 2005-10-19 2007-05-10 Daikin Ind Ltd Air conditioner
JP2007187402A (en) * 2006-01-16 2007-07-26 Daikin Ind Ltd Air conditioner
JP2011012937A (en) * 2009-07-06 2011-01-20 Mitsubishi Heavy Ind Ltd Indoor unit for air conditioning
JP2014126260A (en) * 2012-12-26 2014-07-07 Daikin Ind Ltd Indoor unit
JP2014198227A (en) * 2013-03-13 2014-10-23 パナソニック株式会社 Ion generator
JP2015081692A (en) * 2013-10-21 2015-04-27 日立アプライアンス株式会社 Indoor unit of air conditioner
WO2015060128A1 (en) * 2013-10-21 2015-04-30 日立アプライアンス株式会社 Air conditioner indoor unit

Also Published As

Publication number Publication date
JP3138632B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
JP3624813B2 (en) Air conditioner decorative panel, air outlet unit, and air conditioner
EP1139033B1 (en) Air conditioner
CN110325745B (en) Propeller fan, blower, and air conditioner
WO2001011241A1 (en) Fan guard of blower unit and air conditioner
JP6008993B2 (en) Air conditioner
JP3624814B2 (en) Air conditioner decorative panel, air outlet unit, and air conditioner
JP3138632B2 (en) Air conditioner
JP2611595B2 (en) Air conditioner
JP4432702B2 (en) Air duct
JPH0914686A (en) Indoor machine of air conditioning equipment
JP4760950B2 (en) Recessed ceiling ventilation fan
JP3141663B2 (en) Indoor unit of air conditioner
JP2000121089A (en) Air conditioner
JP3240907B2 (en) Heat exchange equipment
JP2000220859A (en) Air conditioner
JP3918111B2 (en) Air conditioner
JP4005016B2 (en) Air conditioner
JPH09137970A (en) Outdoor unit for air conditioner
JPH09209994A (en) Centrifugal type multiblade blower and ventilator using this
JPH0972300A (en) Blower
JPH10176861A (en) Air-conditioner
JP3846468B2 (en) Turbo fan
JPH09178203A (en) Air conditioning apparatus
JP2006038312A (en) Outdoor unit for air conditioner
JPH05248662A (en) Outdoor equipment for air conditioning device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term