JP3138632B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3138632B2
JP3138632B2 JP08039991A JP3999196A JP3138632B2 JP 3138632 B2 JP3138632 B2 JP 3138632B2 JP 08039991 A JP08039991 A JP 08039991A JP 3999196 A JP3999196 A JP 3999196A JP 3138632 B2 JP3138632 B2 JP 3138632B2
Authority
JP
Japan
Prior art keywords
heat exchanger
blower
rectifying member
impeller
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08039991A
Other languages
Japanese (ja)
Other versions
JPH09236276A (en
Inventor
尚史 池田
憲 森主
敦史 枝吉
学 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP08039991A priority Critical patent/JP3138632B2/en
Publication of JPH09236276A publication Critical patent/JPH09236276A/en
Application granted granted Critical
Publication of JP3138632B2 publication Critical patent/JP3138632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機内風路
に配設される送風機の例えば羽根車からフィンチューブ
型熱交換器へ送風される流れが、フィンチューブ型熱交
換器のフィンに対し、迎角をもって流入するために生じ
る熱交換器のフィンでの剥離渦により引き起こされる、
ヒュルヒュルと聞こえる干渉音を低減した空気調和機に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a fin tube type heat exchanger in which the flow of air blown from, for example, an impeller to a fin tube type heat exchanger of a blower arranged in an air passage in an air conditioner is applied to a fin of the fin tube type heat exchanger. Caused by separation vortices in the fins of the heat exchanger resulting from entering at an angle of attack,
TECHNICAL FIELD The present invention relates to an air conditioner in which interference sound heard as hurul is reduced.

【0002】[0002]

【従来の技術】 図60、61は、送風機の羽根車の吹
出し側に熱交換器を配設した空気調和機の例として代表
的な従来の空気調和機を示す図で、図60は縦断面図、
図61は、図60のX−X平面で切断したときの水平断
面図を示す。図60において、天井14に埋設された本
体2の内部には、送風機の羽根車1と、この送風機の羽
根車1のまわりに立設されたフィンチューブ型熱交換器
3、熱交換器3の下方には、熱交換器表面から流れ出る
ドレン水を受け止めるドレンパン5、モータ6、制御基
盤を収納した電気品箱12等が配設されている。この本
体2の下部には、化粧パネル13が固定され、この中央
部付近に吸込み口20が形成され、この吸込口20の外
側の四方には、吹出口10が形成されている。また、本
体は、本体固定フック21で、屋根裏より吊り下げられ
た本体固定ボルト18、固定ナット19により吊り下げ
固定されている。運転時、モータ6により駆動された遠
心送風機の羽根車1により、太線矢印のように、室内空
気が吸込口20から吸込グリル7、フィルタ9を通り、
ベルマウス8に案内され遠心送風機の羽根車1に吸込ま
れる。その後、遠心送風機の羽根車1から吹き出された
空気は、冷媒の循環している熱交換器3を通ることによ
り、加熱または冷却され吹出口10から室内へ吹き出
し、空調される。
2. Description of the Related Art FIGS. 60 and 61 are views showing a typical conventional air conditioner as an example of an air conditioner in which a heat exchanger is arranged on the blowout side of an impeller of a blower. FIG. Figure,
FIG. 61 is a horizontal cross-sectional view when cut along the XX plane in FIG. In FIG. 60, inside a main body 2 buried in a ceiling 14, an impeller 1 of a blower, a fin tube type heat exchanger 3 erected around the impeller 1 of the blower, and a heat exchanger 3 are provided. A drain pan 5 for receiving drain water flowing out from the surface of the heat exchanger, a motor 6, an electric component box 12 containing a control board, and the like are provided below. A decorative panel 13 is fixed to a lower portion of the main body 2, and a suction port 20 is formed in the vicinity of a central portion thereof, and blowout ports 10 are formed on four sides outside the suction port 20. Further, the main body is suspended and fixed by a main body fixing hook 21 and a main body fixing bolt 18 and a fixing nut 19 suspended from the attic. During operation, the impeller 1 of the centrifugal blower driven by the motor 6 allows room air to pass through the suction grille 7 and the filter 9 from the suction port 20, as indicated by the thick arrow.
It is guided by the bell mouth 8 and is sucked into the impeller 1 of the centrifugal blower. Thereafter, the air blown out from the impeller 1 of the centrifugal blower is heated or cooled by passing through the heat exchanger 3 in which the refrigerant circulates, blows out from the blowout port 10 into the room, and is air-conditioned.

【0003】図62は、熱交換器3と送風機の羽根車1
との最小隙間点A付近を拡大した要部拡大図で、送風機
の羽根車1から吹き出される流れ50の様子と、熱交換
器のフィン3aに対する空気の流れを示した図である。
図のように、前記送風機の羽根車1から吹き出される流
れ50の前記最小隙間点Aより上流側では、流れは熱交
換器のフィン3a方向に近く、下流側へ行くほどフィン
3aに対して垂直に近くなり、フィン3aと空気の流入
方向のなす角つまり迎角αが大きくなる。これにより、
フィン3aで剥離渦24が生じるとともに、この剥離渦
24の圧力変動により、フィン3a間での干渉音が発生
する。図63は、この従来の空気調和機の1/3OCT
分析結果による音圧レベルと周波数の関係を示す。図中
周波数3.15kHz帯域で特に干渉音が大きいことが
わかる。
FIG. 62 shows a heat exchanger 3 and an impeller 1 of a blower.
FIG. 4 is an enlarged view of a main part in which the vicinity of a minimum gap point A is enlarged, showing a state of a flow 50 blown out from an impeller 1 of a blower and a flow of air to a fin 3a of a heat exchanger.
As shown in the drawing, on the upstream side of the minimum gap point A of the flow 50 blown out from the impeller 1 of the blower, the flow is closer to the fins 3a of the heat exchanger, and the further downstream, the more the flow is toward the fins 3a. Therefore, the angle between the fin 3a and the inflow direction of the air, that is, the angle of attack α increases. This allows
Separation vortices 24 are generated in the fins 3a, and interference noise between the fins 3a is generated due to pressure fluctuation of the separation vortices 24. FIG. 63 shows 1/3 OCT of this conventional air conditioner.
The relationship between the sound pressure level and the frequency based on the analysis result is shown. In the figure, it can be seen that the interference sound is particularly large in the 3.15 kHz frequency band.

【0004】[0004]

【発明が解決しようとする課題】上記従来の空気調和機
は、送風機の羽根車から吹き出された流れが、熱交換器
のフィンに対し迎角をもって流入するため、剥離渦を生
じ、フィン間で干渉音が発生する。この現象は、特に空
気調和機の小型化や送風機の羽根車外径の増加により、
熱交換器と送風機の羽根車が接近する際目立っていた。
また、このとき風切り音(NZ音)も生じ、騒音悪化す
るという問題があった。この発明は騒音に問題のない空
気調和機を得るものである。またこの発明は空気調和機
を小型化していった場合でも信頼性の高い装置を得るも
のである。
In the above-mentioned conventional air conditioner, the flow blown out from the impeller of the blower flows into the fins of the heat exchanger at an angle of attack, so that a separation vortex is generated and the fins are separated between the fins. Interference noise is generated. This phenomenon is particularly caused by downsizing of air conditioners and increase of outer diameter of impeller of blower.
It was noticeable when the heat exchanger and blower impeller approached.
Further, at this time, there is a problem that a wind noise (NZ sound) is also generated and noise is deteriorated. An object of the present invention is to obtain an air conditioner having no problem in noise. The present invention also provides a highly reliable device even when the size of the air conditioner is reduced.

【0005】[0005]

【課題を解決するための手段】第1の発明にかかわる空
気調和機は、フィンを設けた熱交換器と、この熱交換器
のフィンに対し迎角をもって流入するような吹き出し流
を有する送風機とを備えた空気調和機において、熱交換
器と送風機との最小隙間付近に設けられ、前記熱交換器
から送風機方向に凸となるように形成され、この凸部分
で前記熱交換器から離れる板状部材であって、かつこの
板状部材に通風口を有する整流部材を備え、この整流部
材は前記最小隙間付近より前記送風機から吹き出された
空気の上流側および下流側に延長した部分に、熱交換器
に密着して配置された両側の端部を有するものである。
An air conditioner according to a first aspect of the present invention includes a heat exchanger provided with fins, and a blower having a blowout flow which flows into the fins of the heat exchanger at an angle of attack. In the air conditioner provided with, in the vicinity of the minimum gap between the heat exchanger and the blower, is formed so as to be convex in the direction of the blower from the heat exchanger, plate-shaped away from the heat exchanger at this convex portion A rectifying member having a ventilation opening in the plate-shaped member, and the rectifying member is provided with a heat exchange portion extending from the vicinity of the minimum gap to the upstream side and the downstream side of the air blown from the blower. It has ends on both sides which are arranged in close contact with the container.

【0006】第2の発明にかかわる空気調和機は、整流
部材の熱交換器から送風機方向に凸となるように形成さ
れた頂上部分は、最小隙間より下流側に突出させ、この
整流部材の両側の端部は大きくとも前記整流部材の厚み
程度の隙間で熱交換器に密着させたものである。また、
第3の発明にかかわる空気調和機は、整流部材は、凸部
の頂上部と、一方の端部から前記頂上部にいくにしたが
って送風機に近づく部材と、前記頂上部から他方の端部
にいくにしたがって前記送風機から遠ざかる部材とを有
するものである。
[0006] In the air conditioner according to the second aspect of the invention, the top portion of the rectifying member formed so as to protrude from the heat exchanger in the direction of the blower is protruded downstream from the minimum gap, and both sides of the rectifying member. The end portion is closely attached to the heat exchanger with a gap at most about the thickness of the rectifying member. Also,
In the air conditioner according to the third invention, the rectifying member is configured such that the rectifying member is a top portion of the convex portion, a member that approaches the blower from one end to the top portion, and a member that goes from the top portion to the other end. And a member moving away from the blower.

【0007】第4の発明にかかわる空気調和機は、整流
部材の両側の端部の間の直線状の長さが送風機の羽根車
の直径の20〜50%であるものである。
An air conditioner according to a fourth aspect of the present invention is the air conditioner wherein the straight length between both ends of the flow regulating member is 20 to 50% of the diameter of the impeller of the blower.

【0008】第5の発明にかかわる空気調和機は、整流
部材の上流側の端部と熱交換器と送風機との最小隙間で
前記熱交換器の送風機側の面上の点である最小隙間点と
の直線状の長さが、最小隙間長さの25〜90%である
ものである。
An air conditioner according to a fifth aspect of the present invention is the air conditioner, wherein the minimum gap between the upstream end of the flow regulating member, the heat exchanger, and the blower is a point on the surface of the heat exchanger on the blower side. Is 25 to 90% of the minimum gap length.

【0009】第6の発明にかかわる空気調和機は、熱交
換器から送風機方向に凸となるように形成された凸部の
上端は整流部材の上流側の端部を中心にして両側端部を
結ぶ直線を3〜20度回転した範囲に設けたものであ
る。
[0009] In the air conditioner according to the sixth invention, the upper end of the convex portion formed so as to protrude from the heat exchanger in the direction of the blower has both ends around the upstream end of the rectifying member. The connecting straight line is provided in a range rotated by 3 to 20 degrees.

【0010】第7の発明にかかわる空気調和機は、本体
内に送風機の羽根車と送風機の羽根車の吹出し口側にフ
ィンを設けた熱交換器を有する空気調和機において、送
風機の羽根車の回転軸中心を点O、前記熱交換器と送風
機の羽根車との最小隙間で前記熱交換器の送風機側の面
上の点をA,送風機の羽根車外周部と送風機の羽根車の
回転軸Oと前記最小隙間点Aを結ぶ直線OAとの交点を
P、点Aから送風機の羽根車から吹き出された空気の上
流側の整流部材の端部4aが熱交換器に密着する点を
B、また下流側の整流部材の端部4bが熱交換器に密着
する点をFとするとき、前記整流部材の送風機の羽根車
から吹き出された空気の上流側の整流部材の端部と下流
側の端部を結ぶ直線4a−4b上から、点4aを中心に
任意角度β°回転させた任意長さの直線状4a−Eと、
点Eと4bを結ぶ直線状または直線4a−Eに点Eで接
しかつ点Fにおいて熱交換器のフィンとの角度が上流側
に90°以下の接線を有する円弧状E−4bと、により
形成された整流部材を前記熱交換器上の点B、Fに熱交
換器に密着するように配設したものである。
[0010] An air conditioner according to a seventh aspect of the present invention is an air conditioner having an impeller of a blower and a heat exchanger provided with fins on an outlet side of the impeller of the blower in a main body of the air conditioner. A point O is at the center of the rotation axis, A is a point on the surface of the heat exchanger on the side of the fan at the minimum gap between the heat exchanger and the impeller of the blower, and the rotation axis of the outer periphery of the impeller of the blower and the impeller of the blower. The intersection point between O and the straight line OA connecting the minimum gap point A is P, and the point at which the end 4a of the rectifying member on the upstream side of the air blown out from the point A from the impeller of the blower comes into close contact with the heat exchanger is B. When the point at which the end 4b of the downstream rectifying member is in close contact with the heat exchanger is F, the end of the upstream rectifying member and the downstream side of the air blown out from the impeller of the blower of the rectifying member are referred to as F. From the straight line 4a-4b connecting the ends, rotate at an arbitrary angle β ° about the point 4a. A linear 4a-E of any length;
Formed by a straight line connecting the points E and 4b or a straight line 4a-E at a point E and an arc-shaped E-4b having a tangent line with the fin of the heat exchanger at a point F at an angle of 90 ° or less upstream at a point F. The rectifying member is disposed at points B and F on the heat exchanger so as to be in close contact with the heat exchanger.

【0011】第8の発明にかかわる空気調和機は、羽根
車から吹き出された空気の上流側の整流部材の端部と下
流側の端部を結ぶ長さが送風機の羽根車の直径φDの2
0〜50%である直線4a−4b上から、点4aを中心
に直線4a−4bの長さ以下でかつ50%以上の直線を
任意角度β°回転させた直線状4a−Eと、点E、4b
を結ぶ直線状または直線4a−Eに接しかつ点Fにおい
て熱交換器のフィンとの角度が上流側に90°以下の接
線を有する円弧状E−4bと、により形成された整流部
材を前記熱交換器上の点B、Fに熱交換器に密着するよ
うに配設したものである。
An air conditioner according to an eighth aspect of the present invention is the air conditioner, wherein the length connecting the end of the upstream rectifying member and the end of the downstream of the air blown out from the impeller is two times the diameter φD of the impeller of the blower.
A straight line 4a-E obtained by rotating a straight line having a length equal to or less than the length of the straight line 4a-4b and equal to or more than 50% around the point 4a from the straight line 4a-4b which is 0 to 50% by an arbitrary angle β °, and a point E , 4b
A straight line or a straight line 4a-E, and an arc-shaped E-4b having a tangent line with the fin of the heat exchanger at the point F at an angle of 90 ° or less at the point F on the upstream side. The heat exchanger is disposed at points B and F on the exchanger so as to be in close contact with the heat exchanger.

【0012】第9の発明にかかわる空気調和機は、点A
から送風機の羽根車から吹き出された空気の上流側の整
流部材の端部4aが前記最小隙間点Aより上流側に送風
機の羽根車と熱交換器の最小隙間距離APの25〜90
%の距離の熱交換器に密着する点をB、また下流側の整
流部材の端部4bが熱交換器に密着する点をFとすると
き、前記整流部材の送風機の羽根車から吹き出された空
気の上流側の整流部材の端部と下流側の端部を結ぶ長さ
が送風機の羽根車の直径φDの20〜50%である直線
4a−4b上から、点4aを中心に直線4a−4bの長
さ以下でかつ50%以上の直線を任意角度β°回転させ
た直線状4a−Eと、点E、4bを結ぶ直線状または直
線4a−Eに接しかつ点Fにおいて熱交換器のフィンと
の角度が上流側に90°以下の接線を有する円弧状E−
4bと、により形成された整流部材を前記熱交換器上の
点B、Fに熱交換器に密着するように配設したものであ
る。
The air conditioner according to the ninth invention is characterized in that point A
The end 4a of the rectifying member on the upstream side of the air blown out from the impeller of the blower is located upstream of the minimum gap point A at 25 to 90 of the minimum gap distance AP between the impeller of the blower and the heat exchanger.
%, And the point at which the end 4b of the downstream rectifying member comes into close contact with the heat exchanger is F, and the point of the rectifying member blown out from the impeller of the blower is B. From the straight line 4a-4b whose length connecting the end of the air upstream rectifying member and the downstream end is 20 to 50% of the diameter φD of the impeller of the blower, a straight line 4a- A straight line 4a-E obtained by rotating a straight line having a length of 4b or less and 50% or more by an arbitrary angle β °, and a straight line or a straight line 4a-E connecting the points E and 4b and the point F of the heat exchanger Arc-shaped E- having an angle with the fin of 90 ° or less on the upstream side
4b, the rectifying member formed by this is disposed at points B and F on the heat exchanger so as to be in close contact with the heat exchanger.

【0013】第10の発明にかかわる空気調和機は、整
流部材の送風機の羽根車から吹き出された空気の上流側
の整流部材の端部と下流側の端部を結ぶ直線4a−4b
上から、点4aを中心に角度β°=3〜20°回転させ
た任意長さの直線状4a−Eと、点E、4bを結ぶ直線
状または直線4a−Eに点Eで接しかつ点Fにおいて熱
交換器のフィンとの角度が上流側に90°以下の接線を
有する円弧状E−4bと、により形成された整流部材を
前記熱交換器上の点B、Fに熱交換器に密着するように
配設したものである。
An air conditioner according to a tenth aspect of the present invention is the air conditioner, wherein straight lines 4a-4b connecting the end of the upstream rectifying member and the downstream end of the air blown out from the impeller of the blower of the rectifying member.
From above, a point E contacts a straight line 4a-E of an arbitrary length rotated by an angle β ° = 3 to 20 ° around the point 4a and a straight line or a straight line 4a-E connecting the points E and 4b, and In F, an arc-shaped E-4b having a tangent of 90 ° or less on the upstream side with respect to the fin of the heat exchanger, and a rectifying member formed by the heat exchanger at points B and F on the heat exchanger. It is arranged so as to be in close contact.

【0014】[0014]

【0015】第11の発明にかかわる空気調和機は、熱
交換器と送風機の最小隙間付近に設けられた整流部材に
網状部材を用い、線径が熱交換器フィンピッチの1〜2
倍でかつ開口率=20〜40%であるものである。
An air conditioner according to an eleventh aspect of the present invention uses a net-like member as a rectifying member provided near the minimum gap between the heat exchanger and the blower, and has a wire diameter of 1 to 2 of the heat exchanger fin pitch.
It is doubled and the aperture ratio is 20 to 40%.

【0016】第12の発明にかかわる空気調和機は、熱
交換器と送風機の最小隙間付近に設けられた整流部材に
穴あき板材を用い、この穴径が熱交換器のフィンピッチ
の0.3〜2倍でかつ開口率=25〜40%であるもの
である。第13の発明にかかわる空気調和機は、複数枚
のフィンを設けた熱交換器と、この熱交換器のフィンに
対し迎角をもって流入するような吹き出し流を有する送
風機とを備えた空気調和機において、前記熱交換器と前
記送風機との最小隙間の上流側にて前記複数枚のフィン
を跨ぎ、かつ下流側にて前記複数枚のフィンを跨いで設
けられ、前記送風機から吹き出された流れのうち前記フ
ィンとの垂直方向成分を減速する通風口を有する整流部
材を備えたものである。また、第14の発明にかかわる
空気調和機は、整流部材は、最小隙間部分を境に一方の
端部から前記最小隙間部分に行くにしたがって送風機に
近づく部材と、前記最小隙間部分から他方の端部に行く
にしたがって前記送風機から遠ざかる部材とを有するも
のである。また、第15の発明にかかわる空気調和機
は、熱交換器および送風機を収納する本体と、前記本体
の下部に設けられた化粧パネルとを備え、前記送風機を
挟むよう該送風機の両側に一対のみの化粧パネルの吹出
し口を形成し、前記送風機と吹出し口との間に前記熱交
換器を配置したものである。
The air conditioner according to the twelfth aspect uses a perforated plate material for a rectifying member provided near the minimum gap between the heat exchanger and the blower, and the diameter of the hole is 0.3 mm of the fin pitch of the heat exchanger. 22 times and the aperture ratio = 25-40%. An air conditioner according to a thirteenth invention is an air conditioner comprising: a heat exchanger provided with a plurality of fins; and a blower having a blowout flow which flows into the fins of the heat exchanger at an angle of attack. In the above, the plurality of fins are provided across the plurality of fins on the upstream side of the minimum gap between the heat exchanger and the blower, and the plurality of fins are provided on the downstream side, and the flow of the flow blown out from the blower is provided. Among them, a rectifying member having a ventilation port for decelerating a vertical component with the fin is provided. In the air conditioner according to the fourteenth aspect, the rectifying member may include: a member that approaches the blower from one end to the minimum gap portion with the minimum gap portion as a boundary; And a member moving away from the blower as it goes to the section. Further, an air conditioner according to a fifteenth invention includes a main body for housing a heat exchanger and a blower, and a decorative panel provided at a lower portion of the main body, and only one pair on both sides of the blower so as to sandwich the blower. Of the decorative panel, and the heat exchanger is arranged between the blower and the outlet.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

発明の実施の形態1.以下、一実施の形態の例を図に基
づいて説明する。図1は、第1の発明おける空気調和機
の一実施例における空気調和機の断面図である。図中、
天井14に埋設された本体2の内部には、送風機である
遠心送風機の羽根車1、この遠心送風機の羽根車1のま
わりに立設されたフィンチューブ型熱交換器3、網状の
整流部材4、熱交換器の下方には、熱交換器表面から流
れ出るドレン水を受け止めるドレンパン5、モータ6、
制御基盤を収納した電気品箱12等が配設されている。
この本体2の下部には、化粧パネル13が固定され、こ
の中央部付近に吸込み口20が形成され、この吸込口2
0の外側の四方には、吹出口10が形成されている。ま
た、本体は、本体固定フック21で、屋根裏より吊り下
げられた本体固定ボルト18、固定ナット19により吊
り下げ固定されている。運転時、モータ6により駆動さ
れた送風機の羽根車1により、太線矢印のように、室内
空気が吸込口20から吸込グリル7、フィルタ9を通
り、ベルマウス8に案内され送風機の羽根車1に吸込ま
れる。その後、送風機の羽根車1から吹き出された空気
は、冷媒の循環している熱交換器3を通ることにより、
加熱または冷却され吹出口10から室内へ吹き出し、空
調される。
Embodiment 1 of the Invention Hereinafter, an example of an embodiment will be described with reference to the drawings. FIG. 1 is a sectional view of an air conditioner in one embodiment of the air conditioner according to the first invention. In the figure,
Inside a main body 2 buried in a ceiling 14, an impeller 1 of a centrifugal blower as a blower, a fin tube type heat exchanger 3 erected around the impeller 1 of the centrifugal blower, a net-like rectifying member 4 , A drain pan 5, a motor 6, which receives drain water flowing out of the heat exchanger surface, below the heat exchanger.
An electric component box 12 containing a control board is provided.
A decorative panel 13 is fixed to a lower portion of the main body 2, and a suction port 20 is formed near the center thereof.
Outlets 10 are formed on the four sides outside the zero. Further, the main body is suspended and fixed by a main body fixing hook 21 and a main body fixing bolt 18 and a fixing nut 19 suspended from the attic. During operation, room air is guided by the bell mouth 8 through the suction grille 7 and the filter 9 through the suction grille 7 and the filter 9 by the impeller 1 of the blower driven by the motor 6 to the impeller 1 of the blower. Inhaled. Thereafter, the air blown out from the impeller 1 of the blower passes through the heat exchanger 3 in which the refrigerant is circulating,
The air is heated or cooled and blown out from the outlet 10 into the room to be air-conditioned.

【0018】図2は、図1の送風機の羽根車1の回転軸
に直交する平面で切断したときの断面図を示す。16
は、ドレンパンに溜まったドレン水を外部へ排水するた
めに用いるドレンポンプ、17は熱交換器の高さ方向の
各銅パイプに冷媒を分配するヘッダ、15は室外機と接
続するための配管を示す。また23は、送風機の羽根車
1の回転方向、点Aは熱交換器3と送風機の羽根車1と
の最小隙間、4は、送風機の羽根車1と熱交換器3の最
小隙間点A付近に、熱交換器3から送風機の羽根車方向
に凸となるように形成された整流部材、また、4aは、
整流部材4の前記最小隙間点Aより、送風機の羽根車1
から吹き出される空気の上流側の端面、4bは前記整流
部材4の前記最小隙間点Aより送風機の羽根車から吹き
出される空気の下流側の端面を示し、この2点で整流部
材4は熱交換器に近接、例えば密着している。
FIG. 2 is a sectional view taken along a plane perpendicular to the rotation axis of the impeller 1 of the blower of FIG. 16
Is a drain pump used for draining drain water collected in a drain pan to the outside, 17 is a header for distributing a refrigerant to each copper pipe in a height direction of the heat exchanger, and 15 is a pipe for connecting to an outdoor unit. Show. 23 is the rotation direction of the impeller 1 of the blower, point A is the minimum gap between the heat exchanger 3 and the impeller 1 of the blower, 4 is the vicinity of the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3. A rectifying member formed so as to be convex from the heat exchanger 3 in the direction of the impeller of the blower;
From the minimum clearance point A of the rectifying member 4, the impeller 1 of the blower
The upstream end face 4b of the air blown out from the air blower indicates the downstream end face of the air blown out from the impeller of the blower from the minimum gap point A of the rectifying member 4, and the rectifying member 4 heats the heat at these two points. Close to, for example, close to the exchanger.

【0019】図3は、図1、2における熱交換器3と送
風機の羽根車1との最小隙間点A付近を送風機側から見
た斜視図である。送風機の羽根車1と熱交換器3との最
小隙間点A付近に、熱交換器3から送風機方向に凸とな
るように形成された整流部材4のハンガー状の前記整流
部材の端部4a、4bで熱交換器3の銅パイプ22に掛
け固定され、熱交換器3に密着されている。図4は、図
3の整流部材4のみ取り出した図である。図中4a、4
bは、整流部材4を熱交換器3と密着させる際の整流部
材4の端部を示す。図5は、図2の要部の部分拡大図で
ある。
FIG. 3 is a perspective view of the vicinity of the minimum gap point A between the heat exchanger 3 and the impeller 1 of the blower in FIGS. In the vicinity of the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3, the end 4a of the hanger-shaped rectifying member of the rectifying member 4 formed so as to protrude from the heat exchanger 3 toward the fan. At 4b, it is hung and fixed on the copper pipe 22 of the heat exchanger 3, and is closely attached to the heat exchanger 3. FIG. 4 is a diagram in which only the rectifying member 4 of FIG. 3 is taken out. 4a, 4 in the figure
b shows the end of the rectifying member 4 when the rectifying member 4 is brought into close contact with the heat exchanger 3. FIG. 5 is a partially enlarged view of a main part of FIG.

【0020】このように構成された空気調和機におい
て、図5のように送風機の羽根車1と熱交換器3の最小
隙間点Aより送風機の羽根車1から吹き出された空気5
0の上流側、下流側の整流部材の端部4a、4bが熱交
換器3に密着し、かつ熱交換器3整流部材4との間に空
間があるため、送風機の羽根車1から吹き出された流れ
50の熱交換器のフィン3aと垂直方向成分50xが整
流部材4により減速され、熱交換器のフィン3a方向へ
偏向され通過するとともに、整流部材4を通過しなかっ
た流れ50bは、整流部材4でのコアンダー効果によっ
て、熱交換器のフィン3a方向に偏向され、熱交換器3
を通過する。これにより、図62の整流部材が無い時の
熱交換器のフィン3aに対し、吹出し流れ50が迎角を
もって流入することによる剥離渦24や、図6の前記整
流部材4の最小隙間点Aから上流側の端部4aが熱交換
器3に密着していない時のように、送風機の羽根車1か
ら吹き出された流れ50が整流部材4を通過せず熱交換
器のフィン3aと迎角をもっていることに生じる剥離渦
24、また図7の整流部材4の前記最小隙間点Aの下流
側の端部4bが熱交換器3に密着していない時のよう
に、送風機の羽根車1を吹き出された流れ50が、整流
部材4通過後、整流部材4の前記最小隙間点Aより下流
側の端部4b付近で発生する放出渦25の圧力が周囲よ
り低いため、この放出渦25の方向へ流れが誘導される
ことにより、熱交換器のフィン3aと迎角を持ち生じる
剥離渦24を無くせると同時に、この剥離渦24の圧力
変動により誘発される熱交換器のフィン3a間の干渉騒
音を無くすことができるため、本体から発生する耳障り
な騒音を低減できる。
In the air conditioner thus configured, as shown in FIG. 5, the air 5 blown out from the impeller 1 of the blower from the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3.
Since the ends 4a and 4b of the rectifying member on the upstream side and the downstream side of the rectifier 0 are in close contact with the heat exchanger 3 and there is a space between the rectifying member 4 and the heat exchanger 3, the air is blown out from the impeller 1 of the blower. The fins 3a of the heat exchanger 50 and the vertical component 50x of the flow 50 are decelerated by the rectifying member 4 and deflected in the direction of the fins 3a of the heat exchanger. Due to the Cander effect of the member 4, the heat exchanger 3 is deflected in the direction of the fin 3a of the heat exchanger.
Pass through. Thereby, the separation vortex 24 caused by the blowout flow 50 flowing at an angle of attack into the fins 3a of the heat exchanger when there is no rectifying member in FIG. 62 or the minimum gap point A of the rectifying member 4 in FIG. As when the upstream end 4a is not in close contact with the heat exchanger 3, the flow 50 blown out from the impeller 1 of the blower does not pass through the rectifying member 4 and has an angle of attack with the fin 3a of the heat exchanger. 7 and blows out the impeller 1 of the blower as when the end 4b of the rectifying member 4 on the downstream side of the minimum gap point A is not in close contact with the heat exchanger 3. After the flow 50 passes through the flow regulating member 4, the pressure of the discharge vortex 25 generated near the end 4 b downstream of the minimum gap point A of the flow rectification member 4 is lower than the surrounding pressure. By the flow being induced, the heat exchanger fins 3 At the same time, the interference noise between the fins 3a of the heat exchanger caused by the pressure fluctuation of the separation vortex 24 can be eliminated. Can be reduced.

【0021】図8は、本体の同一吹出し風量における、
1/3オクターブ分析結果による音圧レベルと周波数と
の関係を示したものである。破線で示す本発明のもの
は、実線で示す整流部材なしのものに対し、2〜5kH
zの騒音が大幅に低減している。なお上述の説明で、整
流部材4は熱交換器に密着している構成を説明したが、
この密着とは熱交換機のフィンの上端面が並ぶ線上に整
流部材が存在することが望ましいということであり、こ
の整流部材の端部がフィンに接触していても、フィンの
間にあってもよい。 更にフィンの上端面が並ぶ線上に
整流部材の端部が存在せず、例えば整流部材の厚み程度
の隙間があっても異常音を抑える効果が存在するし、更
に上流側と下流側のこの隙間が同一である必要もない。
要は異常音を抑えるのに必要なだけ、端部をフィン列に
近接すれば良い。 また熱交換器から送風機方向に凸と
なるように形成されたこの頂上部分が送風機の羽根車か
ら吹き出された空気の最小隙間より下流側に突出した構
成を説明したが、もし回転方向がどちらでも起こり得る
構造の空気調和機であれば、点Eは線OA上に設ければ
良いといえる。整流部材4は、樹脂や金属部材などで製
造することができる。またこの整流部材のの幅は必ずし
も熱交換器の幅と同じ必要はなく風の流れの強い箇所に
設置すれば耳障りな騒音を低減できる。
FIG. 8 is a graph showing the flow rate of air blown from the main body.
The relationship between the sound pressure level and the frequency based on the result of the 1/3 octave analysis is shown. The device of the present invention shown by the broken line is 2 to 5 kHz higher than that without the rectifying member shown by the solid line.
The noise of z is greatly reduced. In the above description, the configuration in which the rectifying member 4 is in close contact with the heat exchanger has been described.
This close contact means that it is desirable that the rectifying member exists on a line where the upper end surfaces of the fins of the heat exchanger are arranged. The end of the rectifying member may be in contact with the fins or may be between the fins. Furthermore, the end of the rectifying member does not exist on the line on which the upper end surfaces of the fins are arranged, and even if there is a gap, for example, about the thickness of the rectifying member, there is an effect of suppressing abnormal sound. Need not be identical.
In short, it is only necessary to bring the end portion close to the fin row as necessary to suppress the abnormal sound. Also described is a configuration in which the top portion formed so as to be convex in the direction of the blower from the heat exchanger projects downstream from the minimum gap of the air blown out from the impeller of the blower, but if the rotation direction is either In an air conditioner having a possible structure, it can be said that the point E may be provided on the line OA. The rectifying member 4 can be made of a resin, a metal member, or the like. Further, the width of the rectifying member does not necessarily have to be the same as the width of the heat exchanger, and if it is installed in a location where the flow of wind is strong, harsh noise can be reduced.

【0022】発明の実施の形態2.図9は、この発明の
別の実施の形態の例における空気調和機の発明実施の形
態1の図1に相当する図である。対応する符号は、同一
のものを示す。図10は、第1の発明の別の実施例にお
ける空気調和機の発明実施の形態1の図2に相当する図
である。対応する符号は、同一のものを示す。図9、1
0のように、熱交換器3が直線状であっても、最小隙間
付近に整流部材4を配設することにより、発明実施の形
態1と同様の効果を得ることができる。
Embodiment 2 of the Invention FIG. 9 is a diagram corresponding to FIG. 1 of the first embodiment of the air conditioner according to another embodiment of the present invention. Corresponding symbols indicate the same. FIG. 10 is a diagram corresponding to FIG. 2 of the first embodiment of the air conditioner according to another embodiment of the first invention. Corresponding symbols indicate the same. 9 and 1
Even if the heat exchanger 3 is linear as in 0, by arranging the rectifying member 4 near the minimum gap, the same effect as in the first embodiment can be obtained.

【0023】発明の実施の形態3.図11は、この発明
に係る空気調和機の他の実施の形態の例における空気調
和機の発明実施の形態1の図5に相当する要部の部分拡
大図である。送風機である遠心送風機の羽根車1の回転
軸中心を点O、フィンチューブ型熱交換器3と送風機の
羽根車1との最小隙間を点A、送風機の羽根車1外周部
と送風機の羽根車1の回転軸Oと前記最小隙間点Aを結
ぶ直線OAとの交点をP、点Aから送風機の羽根車1か
ら吹き出された空気50の上流側の整流部材の端部4a
が熱交換器3に密着する点をB、また下流側の整流部材
の端部4bが熱交換器3に密着する点をFとするとき、
前記整流部材の送風機の羽根車から吹き出された空気の
上流側の整流部材の端部と下流側の端部を結ぶ直線4a
−4b上から、点4aを中心に任意角度β°回転させた
任意長さの直線4a−Eと点E、4bを結ぶ直線E−4
bにより形成された整流部材4を示す。この整流部材4
を点B、Fで熱交換器3に密着させて配設している。ま
た図中、送風機の回転軸中心を点O、送風機の回転方向
を23、熱交換器3のアルミフィンを3a、熱交換器3
の銅パイプを22を示す。
Embodiment 3 of the Invention FIG. 11 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the air conditioner in another example of the air conditioner according to the present invention. The point O is at the center of the rotation axis of the impeller 1 of the centrifugal blower which is a blower, the point A is the minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower, the outer periphery of the impeller 1 of the blower and the impeller of the blower The intersection point of the rotation axis O and the straight line OA connecting the minimum gap point A is P, and the end 4a of the rectifying member on the upstream side of the air 50 blown out from the point A from the impeller 1 of the blower.
Let B be the point at which the end comes into contact with the heat exchanger 3, and F be the point at which the end 4b of the downstream rectifying member comes into contact with the heat exchanger 3.
Straight line 4a connecting the end of the upstream rectifying member and the downstream end of the air blown out from the impeller of the blower of the rectifying member.
-4b, a straight line E-4 connecting the straight line 4a-E of an arbitrary length rotated by an arbitrary angle β ° about the point 4a to the points E and 4b.
b shows the rectifying member 4 formed by b. This rectifying member 4
Are disposed in close contact with the heat exchanger 3 at points B and F. In the figure, the center of the rotation axis of the blower is point O, the rotation direction of the blower is 23, the aluminum fins of the heat exchanger 3 are 3a, and the heat exchanger 3 is
22 shows a copper pipe of the present invention.

【0024】このよう構成された空気調和機おいて、図
11のように送風機の羽根車1と熱交換器3の最小隙間
点Aより送風機の羽根車1から吹き出された空気50の
上流側、下流側の整流部材の端部4a、4bが熱交換器
3に密着し、かつ熱交換器3整流部材4との間に空間が
あるため、送風機の羽根車1から吹き出された流れ50
の熱交換器のフィン3aと垂直方向成分50xが整流部
材4の直線4a−E部分により減速され、熱交換器のフ
ィン3a方向へ偏向され通過するとともに、整流部材4
を通過しなかった流れ50bは、整流部材4の下流側の
直線E−Fでのコアンダー効果によって、熱交換器のフ
ィン3a方向に偏向され、熱交換器3を通過する。これ
により、図62の整流部材が無い時の熱交換器のフィン
3aに対し、吹出し流れ50が迎角をもって流入するこ
とによる剥離渦24を無くせると同時に、この剥離渦2
4の圧力変動により誘発される熱交換器のフィン3a間
の干渉騒音を無くすことができるため、本体から発生す
る耳障りな騒音を低減できる。図12は、本体の同一吹
出し風量における、1/3オクターブ分析結果による音
圧レベルと周波数との関係を示したものである。破線で
示す本発明のものは、実線で示す整流部材なしのものに
対し、2〜5kHzの騒音が大幅に低減している。
In the air conditioner constructed as described above, as shown in FIG. 11, the upstream side of the air 50 blown out from the impeller 1 of the blower from the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3. Since the ends 4a and 4b of the downstream rectifying member are in close contact with the heat exchanger 3 and there is a space between the rectifying member 4 and the heat exchanger 3, the flow 50 blown out from the impeller 1 of the blower is provided.
The fin 3a of the heat exchanger and the vertical component 50x are decelerated by the straight line 4a-E portion of the rectifying member 4 and deflected in the direction of the fin 3a of the heat exchanger.
Is deflected in the direction of the fins 3a of the heat exchanger due to the Coander effect at the straight line EF downstream of the rectifying member 4, and passes through the heat exchanger 3. This eliminates the separation vortex 24 caused by the blowing flow 50 flowing at an angle of attack to the fins 3a of the heat exchanger without the rectifying member in FIG.
Since the interference noise between the fins 3a of the heat exchanger caused by the pressure fluctuation of 4 can be eliminated, the unpleasant noise generated from the main body can be reduced. FIG. 12 shows the relationship between the sound pressure level and the frequency based on the result of the 1/3 octave analysis at the same blowing air volume of the main body. In the case of the present invention shown by the broken line, the noise at 2 to 5 kHz is significantly reduced as compared with the case without the rectifying member shown by the solid line.

【0025】なお、整流部材4の直線状4a−E部分と
はほぼ直線状の板材を使用するということで合って、凸
または凹の円弧形状を使用すると、風の流れがこの整流
板に沿ってしまうので、風の流れが沿わない範囲で直線
状であれば良いものである。
The straight line 4a-E of the rectifying member 4 matches with the fact that a substantially linear plate material is used. If a convex or concave arc shape is used, the flow of the wind will follow the rectifying plate. Therefore, it is sufficient that the air flow is linear as long as the wind does not flow.

【0026】発明の実施の形態4.図13は、この発明
に係る空気調和機の別の実施の形態の例における空気調
和機の発明実施の形態1の図5に相当する要部の部分拡
大図である。送風機である遠心送風機の羽根車1の回転
軸中心を点O、フィンチューブ型熱交換器3と送風機の
羽根車1との最小隙間を点A、送風機の羽根車1外周部
と送風機の羽根車1の回転軸Oと前記最小隙間点Aを結
ぶ直線OAとの交点をP、点Aから送風機の羽根車1か
ら吹き出された空気50の上流側の整流部材の端部4a
が熱交換器3に密着する点をB、また下流側の整流部材
の端部4bが熱交換器3に密着する点をFとするとき、
前記整流部材の送風機の羽根車から吹き出された空気の
熱交換器と送風機の羽根車との最小隙間点Aより上流側
の整流部材の端部と下流側の端部を結ぶ直線4a−4b
上から、点4aを中心にβ°回転させた任意長さの直線
4a−Eと、直線4a−Eに点Eで接しかつ点Fにおい
て熱交換器のフィン3aとの角度γが上流側に90°以
下の接線を有する円弧E−4bにより形成された整流部
材4を示す。この整流部材4を点B、Fで熱交換器3に
密着させて配設している。このように構成された空気調
和機において、発明実施の形態3.と同様の効果が得ら
れる。
Embodiment 4 of the Invention FIG. 13 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the air conditioner in another example of the air conditioner according to the present invention. The point O is at the center of the rotation axis of the impeller 1 of the centrifugal blower which is a blower, the point A is the minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower, the outer periphery of the impeller 1 of the blower and the impeller of the blower The intersection point of the rotation axis O and the straight line OA connecting the minimum gap point A is P, and the end 4a of the rectifying member on the upstream side of the air 50 blown out from the point A from the impeller 1 of the blower.
Let B be the point at which the end comes into contact with the heat exchanger 3, and F be the point at which the end 4b of the downstream rectifying member comes into contact with the heat exchanger 3.
A straight line 4a-4b connecting the end of the rectifying member upstream of the minimum gap point A between the heat exchanger for the air blown out from the impeller of the blower of the rectifying member and the impeller of the blower and the end on the downstream side.
From above, the angle γ between the straight line 4a-E of an arbitrary length rotated by β ° about the point 4a and the straight line 4a-E at the point E and the fin 3a of the heat exchanger at the point F at the point F is on the upstream side. The rectifying member 4 formed by an arc E-4b having a tangent of 90 ° or less is shown. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. Embodiment 3 of the air conditioner configured as described above. The same effect can be obtained.

【0027】発明実施の形態5.図14は、この発明に
係る空気調和機の他の実施の形態の例における発明実施
の形態1の図5に相当する要部の部分拡大図である。送
風機である遠心送風機の羽根車1の回転軸中心を点O、
フィンチューブ型熱交換器3と送風機の羽根車1との最
小隙間を点A、送風機の羽根車1外周部と送風機の羽根
車1の回転軸Oと前記最小隙間点Aを結ぶ直線OAとの
交点をP、点Aから送風機の羽根車1から吹き出された
空気50の上流側の整流部材の端部4aが熱交換器3に
密着する点をB、また下流側の整流部材の端部4bが熱
交換器3に密着する点をFとするとき、前記整流部材の
送風機の羽根車から吹き出された空気の上流側の整流部
材の端部と下流側の端部を結ぶ直線4a−4b上から、
点4aを中心に任意角度β°回転させた任意長さ直線4
a−Eと点E、4bを結ぶ直線E−4bにより形成され
た整流部材4を示す。この整流部材4を点B、Fで熱交
換器3に密着させて配設している。また図中、送風機の
回転軸中心を点O、送風機の回転方向を23、熱交換器
3のアルミフィンを3a、熱交換器3の銅パイプを22
を示す。
Embodiment 5 of the Invention FIG. 14 is a partially enlarged view of a main part corresponding to FIG. 5 of Embodiment 1 of the invention in another example of the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower which is the blower is a point O,
A point A represents the minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower, and a straight line OA connecting the outer peripheral portion of the impeller 1 of the blower, the rotation axis O of the impeller 1 of the blower, and the minimum gap point A. The intersection point is P, the end 4a of the upstream rectifying member of the air 50 blown out from the point A from the impeller 1 of the blower is B at the point where the end 4a of the rectifying member is in close contact with the heat exchanger 3, and the end 4b of the rectifying member on the downstream side. Let F be the point at which the airflow comes into close contact with the heat exchanger 3, on a straight line 4a-4b connecting the end of the upstream rectifying member and the downstream end of the air blown out from the impeller of the blower of the rectifying member. From
An arbitrary-length straight line 4 rotated by an arbitrary angle β ° about the point 4a
The rectifying member 4 formed by a straight line E-4b connecting aE and points E and 4b is shown. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. In the figure, the center of the rotation axis of the blower is point O, the rotation direction of the blower is 23, the aluminum fin of the heat exchanger 3 is 3a, and the copper pipe of the heat exchanger 3 is 22.
Is shown.

【0028】このよう構成された空気調和機おいて、図
14のように送風機の羽根車1と熱交換器3の最小隙間
点Aより送風機の羽根車1から吹き出された空気50の
上流側、下流側の整流部材の端部4a、4bが熱交換器
3に密着し、かつ熱交換器3整流部材4との間に空間が
あるため、送風機の羽根車1から吹き出された流れ50
の熱交換器のフィン3aと垂直方向成分50xが整流部
材4の直線4a−E部分により減速され、熱交換器のフ
ィン3a方向へ偏向され通過するとともに、整流部材4
を通過しなかった流れ50bは、整流部材4の下流側の
直線であるE−Fでのコアンダー効果によって、熱交換
器のフィン3a方向に偏向され、熱交換器3を通過す
る。これにより、図62の整流部材が無い時の熱交換器
のフィン3aに対し、吹出し流れ50が迎角をもって流
入することによる剥離渦24を無くせると同時に、この
剥離渦24の圧力変動により誘発される熱交換器のフィ
ン3a間の干渉騒音を無くすことができるため、本体か
ら発生する耳障りな騒音を低減できる。図15は、本体
の同一吹出し風量における、1/3オクターブ分析結果
による音圧レベルと周波数との関係を示したものであ
る。破線で示す本発明のものは、実線で示す整流部材な
しのものに対し、2〜5kHzの騒音が大幅に低減して
いる。
In the air conditioner configured as described above, as shown in FIG. 14, the upstream side of the air 50 blown out from the impeller 1 of the blower from the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3. Since the ends 4a and 4b of the downstream rectifying member are in close contact with the heat exchanger 3 and there is a space between the rectifying member 4 and the heat exchanger 3, the flow 50 blown out from the impeller 1 of the blower is provided.
The fin 3a of the heat exchanger and the vertical component 50x are decelerated by the straight line 4a-E portion of the rectifying member 4 and deflected in the direction of the fin 3a of the heat exchanger.
Is deflected in the direction of the fins 3 a of the heat exchanger by the Cander effect at EF, which is a straight line on the downstream side of the rectifying member 4, and passes through the heat exchanger 3. This eliminates the separation vortex 24 caused by the blowing flow 50 flowing at an angle of attack with respect to the fin 3a of the heat exchanger without the rectifying member in FIG. 62, and at the same time, induces the pressure fluctuation of the separation vortex 24. Since the interference noise between the fins 3a of the heat exchanger can be eliminated, the harsh noise generated from the main body can be reduced. FIG. 15 shows the relationship between the sound pressure level and the frequency based on the result of the 1/3 octave analysis at the same blowing air volume of the main body. In the case of the present invention shown by the broken line, the noise at 2 to 5 kHz is significantly reduced as compared with the case without the rectifying member shown by the solid line.

【0029】しかし、このように構成された空気調和機
において整流部材の形状を決定する際、前記整流部材4
の送風機の羽根車1から吹き出された空気50の前記最
小隙間点Aより上流側の整流部材の端部4aと下流側の
端部4bを結ぶ直線4a−4bの長さが、短すぎると効
果が無くなり、長すぎてもそれ以上効果が出なくなり、
逆に図16のように、送風機の羽根車1から吹き出され
る流れ50の圧力損失となる。また、前記整流部材4の
送風機の羽根車から吹き出された空気50の上流側の整
流部材の端部4aと下流側の端部4bを結ぶ直線4a−
4b上から、点4aを中心に任意角度β°回転させた直
線4a−Eの長さが長すぎて送風機の羽根車1から吹き
出される流れ50の圧力損失となり騒音悪化したり、短
すぎて熱交換器のフィン3aでの干渉音に効果が無くな
る。このため最適範囲が存在する。
However, when determining the shape of the rectifying member in the air conditioner thus configured, the rectifying member 4
If the length of the straight line 4a-4b connecting the end 4a of the rectifying member upstream of the minimum gap point A and the end 4b of the downstream of the minimum gap point A of the air 50 blown from the impeller 1 of the blower is too short, the effect is obtained. Is lost, even if it is too long, the effect will not come out anymore,
Conversely, as shown in FIG. 16, the pressure loss of the flow 50 blown out from the impeller 1 of the blower is obtained. Further, a straight line 4a- connecting the end 4a of the upstream rectifying member and the downstream end 4b of the air 50 blown out from the impeller of the blower of the rectifying member 4 is provided.
4b, the length of the straight line 4a-E rotated by an arbitrary angle β ° about the point 4a is too long, resulting in a pressure loss of the flow 50 blown out from the impeller 1 of the blower, resulting in noise deterioration or too short. The effect on the interference noise at the fins 3a of the heat exchanger is lost. Therefore, there is an optimum range.

【0030】図17は、整流部材4の上流側端部4aと
下流側の端部4bを結ぶ直線4a−4bの長さLと送風
機の羽根車の直径φDとの比L/Dを変更したときの、
図15の騒音値の1/3OCT分析結果における熱交換
器のフィン3a間の干渉騒音の発生周波数帯域である2
〜5kHz帯域の音圧レベルのうち、最も高い数値を示
す3.15kHz帯域での整流部材4あり、なしでの音
圧レベルの騒音低減量△SPL3.15k( 図中×印)
と、騒音値O.A.の比較△SPLOA( 図中○印)で
示している。図中L/D=0における△SPL3.15
kは整流部材なしのときの値である。
FIG. 17 shows the ratio L / D of the length L of a straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the flow regulating member 4 to the diameter φD of the impeller of the blower. Sometimes,
The frequency band 2 where the interference noise occurs between the fins 3a of the heat exchanger in the 1/3 OCT analysis result of the noise value in FIG.
Among the sound pressure levels in the ~ 5 kHz band, there is a rectifying member 4 in the 3.15 kHz band, which indicates the highest numerical value, and the noise reduction amount of the sound pressure level without and without SPL 3.15 k (marked in the figure)
And the noise value O. A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). △ SPL 3.15 at L / D = 0 in the figure
k is a value when there is no rectifying member.

【0031】また、図18は、前記整流部材4の上流側
直線部4a−Eの長さLMと直線4a−4bの長さLと
の比LM/Lを変更したときの図17に相当する1/3
OCT分析結果における熱交換器のフィン3a間の干渉
騒音の発生周波数帯域である2〜5kHz帯域の音圧レ
ベルのうち、最も高い数値を示す3.15kHz帯域で
の整流部材4あり、なしでの音圧レベルの騒音低減量△
SPL3.15k( 図中×印)と、騒音値O.A.の比
較△SPLOA( 図中○印)で示している。図中LM/
L=0における△SPL3.15kは整流部材なしのと
きの値である。図からわかるように、整流部材4の上流
側端部4aと下流側の端部4bを結ぶ直線4a−4bの
長さと送風機の羽根車1の直径φDとの比L/D=20
〜50%の間で、かつ直線4a−Eの長さが、直線4a
−4bの長さ以下、50%以上であれば、騒音値を悪化
させることなく熱交換器のフィン3a間での干渉騒音が
低減でき、かつ耳障りな音のしない空気調和機を得られ
る。
FIG. 18 corresponds to FIG. 17 when the ratio LM / L of the length LM of the upstream straight portion 4a-E of the straightening member 4 to the length L of the straight line 4a-4b is changed. 1/3
Of the sound pressure levels in the 2 to 5 kHz band, which is the frequency band of the interference noise between the fins 3 a of the heat exchanger in the OCT analysis results, the rectifying member 4 in the 3.15 kHz band showing the highest numerical value was used. Noise reduction of sound pressure level △
SPL 3.15k (x mark in the figure) and noise value O. A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). LM /
△ SPL 3.15k at L = 0 is a value when there is no rectifying member. As can be seen from the figure, the ratio L / D = 20 between the length of the straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the flow regulating member 4 to the diameter φD of the impeller 1 of the blower.
5050% and the length of the straight line 4a-E is
If the length is −4b or less and 50% or more, the interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the noise value, and an air conditioner without harsh sound can be obtained.

【0032】発明実施の形態6.図19は、この発明に
係る空気調和機の別の実施の形態の例における空気調和
機の発明実施の形態1の図5に相当する要部の部分拡大
図である。送風機である遠心送風機の羽根車1の回転軸
中心を点O、フィンチューブ型熱交換器3と送風機の羽
根車1との最小隙間を点A、送風機の羽根車1外周部と
送風機の羽根車1の回転軸Oと前記最小隙間点Aを結ぶ
直線OAとの交点をP、点Aから送風機の羽根車1から
吹き出された空気50の上流側の整流部材の端部4aが
熱交換器3に密着する点をB、また下流側の整流部材の
端部4bが熱交換器3に密着する点をFとするとき、前
記整流部材4の送風機の羽根車1から吹き出された空気
50の熱交換器3と送風機の羽根車1との最小隙間点A
より上流側の整流部材の端部4aと下流側の端部4bを
結ぶ直線4a−4b上から、点4aを中心に任意角度β
°回転させた任意長さの直線4a−Eと、直線4a−E
に点Eで接しかつ点Fにおいて熱交換器のフィン3aと
の角度γが上流側に90°以下の接線を有する円弧E−
4bにより形成された整流部材4を示す。この整流部材
4を点B、Fで熱交換器3に密着させて配設している。
Embodiment 6 of the Invention FIG. 19 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the air conditioner in another example of the air conditioner according to the present invention. The point O is at the center of the rotation axis of the impeller 1 of the centrifugal blower which is a blower, the point A is the minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower, the outer periphery of the impeller 1 of the blower and the impeller of the blower The point of intersection of the rotation axis O of the first rotation axis O and the straight line OA connecting the minimum clearance point A is P, and the end 4 a of the rectifying member on the upstream side of the air 50 blown out from the point A from the impeller 1 of the blower is connected to the heat exchanger 3. When the point at which the end 4b of the downstream rectifying member comes into close contact with the heat exchanger 3 is F, the heat of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 is referred to as F. Minimum gap point A between the exchanger 3 and the impeller 1 of the blower
From the straight line 4a-4b connecting the end 4a of the more upstream rectifying member and the end 4b on the downstream side, an arbitrary angle β around the point 4a
A straight line 4a-E rotated by an arbitrary length and a straight line 4a-E
At the point E and the angle γ with the fin 3a of the heat exchanger at the point F has a tangent line of 90 ° or less on the upstream side.
4B shows a rectifying member 4 formed by 4b. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F.

【0033】このように構成された空気調和機におい
て、発明実施の形態5.と同様の効果が得られる。しか
し、このように構成された空気調和機において整流部材
4の形状を決定する際、前記整流部材4の送風機の羽根
車1から吹き出された空気50の前記最小隙間点Aより
上流側の整流部材の端部4aと下流側の端部4bを結ぶ
直線4a−4bの長さが、短すぎると図20のように、
上流側で熱交換器のフィン3aでの剥離渦24が発生
し、効果が無くなり、長すぎてもそれ以上効果が出なく
なり、図21のように、送風機の羽根車1から吹き出さ
れる流れ50の圧力損失となり、騒音値が悪化する。ま
た、前記整流部材4の送風機の羽根車から吹き出された
空気50の上流側の整流部材の端部4aと下流側の端部
4bを結ぶ直線4a−4b上から、点4aを中心に任意
角度β°回転させた直線4a−Eの長さが長すぎて送風
機の羽根車1から吹き出される流れ50の圧力損失とな
り騒音悪化したり、短すぎて熱交換器のフィン3aでの
干渉音に効果が無くなる。そこで、最適範囲が存在す
る。
In the air conditioner thus configured, Embodiment 5 of the present invention will be described. The same effect can be obtained. However, when determining the shape of the rectifying member 4 in the air conditioner configured as described above, the rectifying member on the upstream side of the minimum gap point A of the air 50 blown from the impeller 1 of the blower of the rectifying member 4. If the length of a straight line 4a-4b connecting the end 4a and the downstream end 4b is too short, as shown in FIG.
Separation vortex 24 occurs at the fin 3a of the heat exchanger on the upstream side, and the effect is lost. If the length is too long, the effect is no longer obtained, and as shown in FIG. 21, the flow 50 blown out from the impeller 1 of the blower. Pressure loss, and the noise value deteriorates. An arbitrary angle around a point 4a from a straight line 4a-4b connecting an end 4a of the upstream rectifying member and an end 4b on the downstream side of the air 50 blown out from the impeller of the blower of the rectifying member 4. The length of the straight line 4a-E rotated by β ° is too long, resulting in pressure loss of the flow 50 blown out from the impeller 1 of the blower, resulting in noise deterioration or being too short to cause interference noise at the fins 3a of the heat exchanger. No effect. Thus, there is an optimal range.

【0034】図22は、整流部材4の上流側端部4aと
下流側の端部4bを結ぶ直線4a−4bの長さLと送風
機の羽根車の直径φDとの比L/Dを変更したときの、
図15のような騒音値の1/3OCT分析結果における
熱交換器フィン3a間の干渉騒音の発生周波数帯域であ
る2〜5kHz帯域の音圧レベルのうち、最も高い数値
を示す3.15kHz帯域での整流部材4あり、なしで
の音圧レベルの騒音低減量△SPL3.15k( 図中×
印)と、騒音値O.A.の比較△SPLOA(図中○
印)で示している。また、図23は、前記整流部材4の
上流側直線部4a−Eの長さLMと直線4a−4bの長
さLとの比LM/Lを変更したときの図17に相当する
1/3OCT分析結果における熱交換器のフィン3a間
の干渉騒音の発生周波数帯域である2〜5kHz帯域の
音圧レベルのうち最も数値の高い3.15kHZ帯域で
の整流部材4あり、なしでの音圧レベルの騒音低減量△
SPL3.15k( 図中×印)と、騒音値O.A.の比
較△SPLOA( 図中○印)で示している。図中LM/
L=0における△SPL3.15kは整流部材なしのと
きの値である。図からわかるように、整流部材4の上流
側端部4aと下流側の端部4bを結ぶ直線4a−4bの
長さと送風機の羽根車1の直径φDとの比L/D=20
〜50%の間で、かつ直線4a−Eの長さが、直線4a
−4bの長さ以下、50%以上であれば、騒音値を悪化
させることなく熱交換器のフィン3a間での干渉騒音が
低減でき、かつ耳障りな音のしない空気調和機を得られ
る。
FIG. 22 shows the ratio L / D of the length L of a straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the flow regulating member 4 to the diameter φD of the impeller of the blower. Sometimes,
Among the sound pressure levels in the 2 to 5 kHz band, which are the frequency bands of the interference noise generated between the heat exchanger fins 3a in the result of the 1/3 OCT analysis of the noise value as shown in FIG. Noise reduction amount of the sound pressure level without and with the rectifying member △ SPL 3.15k (× in the figure)
Mark) and the noise value O. A. Comparison of SPLOA (○ in the figure)
Mark). FIG. 23 shows 1/3 OCT corresponding to FIG. 17 when the ratio LM / L between the length LM of the upstream straight portion 4a-E and the length L of the straight line 4a-4b of the straightening member 4 is changed. The sound pressure level in the 3.15 kHz band, which is the highest numerical value among the sound pressure levels in the 2 to 5 kHz band which is the frequency band of the interference noise between the fins 3a of the heat exchanger in the analysis result, with and without the rectifying member 4 Noise reduction △
SPL 3.15k (x mark in the figure) and noise value O. A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). LM /
△ SPL 3.15k at L = 0 is a value when there is no rectifying member. As can be seen from the figure, the ratio L / D = 20 between the length of the straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the flow regulating member 4 to the diameter φD of the impeller 1 of the blower.
5050% and the length of the straight line 4a-E is
If the length is −4b or less and 50% or more, the interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the noise value, and an air conditioner without harsh sound can be obtained.

【0035】発明実施の形態7.図24は、この発明に
係る空気調和機の他の実施の形態の例における空気調和
機の発明実施の形態1の図5に相当する要部の部分拡大
図である。送風機である遠心送風機の羽根車1の回転軸
中心を点O、フィンチューブ型熱交換器3と送風機の羽
根車1との最小隙間を点A、送風機の羽根車1外周部と
送風機の羽根車1の回転軸Oと前記最小隙間点Aを結ぶ
直線OAとの交点をP、点Aから送風機の羽根車1から
吹き出された空気50の上流側の整流部材の端部4aが
熱交換器3に密着する点をB、また下流側の整流部材の
端部4bが熱交換器3に密着する点をFとするとき、前
記整流部材の送風機の羽根車から吹き出された空気の上
流側の整流部材の端部と下流側の端部を結ぶ直線4a−
4b上から、点4aを中心に任意角度β°回転させた任
意長さの直線4a−Eと点E、4bを結ぶ直線E−4b
により形成された整流部材4を示す。この整流部材4を
点B、Fで熱交換器3に密着させて配設している。また
図中、送風機の回転軸中心を点O、送風機の回転方向を
23、熱交換器3のアルミフィンを3a、熱交換器3の
銅パイプを22を示す。このよう構成された空気調和機
おいて、図24のように送風機の羽根車1と熱交換器3
の最小隙間点Aより送風機の羽根車1から吹き出された
空気50の上流側、下流側の整流部材の端部4a、4b
が熱交換器3に密着し、かつ熱交換器3整流部材4との
間に空間があるため、送風機の羽根車1から吹き出され
た流れ50の熱交換器のフィン3aと垂直方向成分50
xが整流部材4の直線4a−E部分により減速され、熱
交換器のフィン3a方向へ偏向され通過するとともに、
整流部材4を通過しなかった流れ50bは、整流部材4
の下流側の直線E−Fでのコアンダー効果によって、熱
交換器のフィン3a方向に偏向され、熱交換器3を通過
する。これにより、図62の整流部材が無い時の熱交換
器のフィン3aに対し、吹出し流れ50が迎角をもって
流入することによる剥離渦24を無くせると同時に、こ
の剥離渦24の圧力変動により誘発される熱交換器のフ
ィン3a間の干渉騒音を無くすことができるため、本体
から発生する耳障りな騒音を低減できる。図25は、本
体の同一吹出し風量における、1/3オクターブ分析結
果による音圧レベルと周波数との関係を示したものであ
る。破線で示す本発明のものは、実線で示す整流部材な
しのものに対し、2〜5kHzの騒音が大幅に低減して
いる。しかし、このように構成された空気調和機におい
て、整流部材4の送風機の羽根車1から吹き出された空
気50の上流側の整流部材の端部4aが熱交換器に密着
する点Bの位置が上流側すぎると、圧力損失になり、点
A上では、干渉音が低減しきれない。
Embodiment 7 of the Invention FIG. 24 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the air conditioner in another example of the air conditioner according to the present invention. The point O is at the center of the rotation axis of the impeller 1 of the centrifugal blower which is a blower, the point A is the minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower, the outer periphery of the impeller 1 of the blower and the impeller of the blower The point of intersection of the rotation axis O of the first rotation axis O and the straight line OA connecting the minimum clearance point A is P, and the end 4 a of the rectifying member on the upstream side of the air 50 blown out from the point A from the impeller 1 of the blower is connected to the heat exchanger 3. When the point at which the end 4b of the downstream rectifying member comes into contact with the heat exchanger 3 is F, and the point at which the end 4b of the downstream rectifying member comes into contact with the heat exchanger 3 is F, the upstream rectifying of the air blown out from the impeller of the blower of the rectifying member. Straight line 4a- connecting the end of the member and the end on the downstream side
4b, a straight line E-4b connecting the straight lines 4a-E of any length and the points E and 4b rotated by an arbitrary angle β ° around the point 4a.
5 shows the rectifying member 4 formed by: The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. In the figure, the center of the rotation axis of the blower is point O, the rotation direction of the blower is 23, the aluminum fin of the heat exchanger 3 is 3a, and the copper pipe of the heat exchanger 3 is 22. In the air conditioner thus configured, the impeller 1 of the blower and the heat exchanger 3 as shown in FIG.
End 4a, 4b of the rectifying member on the upstream side and downstream side of the air 50 blown out from the impeller 1 of the blower from the minimum gap point A of FIG.
Is close to the heat exchanger 3 and there is a space between the heat exchanger 3 and the rectifying member 4, so that the fins 3a of the heat exchanger and the vertical component 50 of the flow 50 blown out from the impeller 1 of the blower.
x is decelerated by the straight line 4a-E portion of the rectifying member 4, is deflected in the direction of the fin 3a of the heat exchanger, and passes therethrough.
The flow 50b that has not passed through the rectifying member 4 is
Is deflected in the direction of the fins 3 a of the heat exchanger and passes through the heat exchanger 3 by the Cone effect in the straight line EF on the downstream side of the heat exchanger. This eliminates the separation vortex 24 caused by the blowing flow 50 flowing at an angle of attack with respect to the fin 3a of the heat exchanger without the rectifying member in FIG. 62, and at the same time, induces the pressure fluctuation of the separation vortex 24. Since the interference noise between the fins 3a of the heat exchanger can be eliminated, the harsh noise generated from the main body can be reduced. FIG. 25 shows the relationship between the sound pressure level and the frequency based on the result of the 1/3 octave analysis at the same blowing air volume of the main body. In the case of the present invention shown by the broken line, the noise at 2 to 5 kHz is significantly reduced as compared with the case without the rectifying member shown by the solid line. However, in the air conditioner configured as described above, the position of the point B where the end 4a of the rectifying member on the upstream side of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 comes into close contact with the heat exchanger is determined. If it is too upstream, pressure loss will occur, and at point A, the interference sound cannot be reduced.

【0036】また、整流部材4の送風機の羽根車1から
吹き出された空気50の前記最小隙間点Aより上流側の
整流部材の端部4aと下流側の端部4bを結ぶ直線4a
−4bの長さが、短すぎると効果が無くなり、長すぎて
もそれ以上効果が出なくなり、逆に送風機の羽根車1か
ら吹き出される流れ50の圧力損失となる。そして、前
記整流部材4の送風機の羽根車から吹き出された空気5
0の上流側の整流部材の端部4aと下流側の端部4bを
結ぶ直線4a−4b上から、点4aを中心に任意角度β
°回転させた直線4a−Eの長さが長すぎて送風機の羽
根車1から吹き出される流れ50の圧力損失となり騒音
悪化したり、短すぎて熱交換器のフィン3aでの干渉音
に効果が無くなる。このため、点Bの位置を決めるAB
の距離、整流部材の上、下流端部を結ぶ直線4a−4b
の距離、および整流部材直線部4a−Eの長さに最適範
囲が存在する。図26は、前記点Bと最小隙間点Aの距
離ABの長さ範囲を、送風機の羽根車1と熱交換器の最
小隙間長さAPに対するABの長さの比率AB/APを
変更したときの、図25の騒音値の1/3OCT分析結
果における熱交換器フィン3a間の干渉騒音の発生周波
数帯域である2〜5kHz帯域の音圧レベルのうち最も
数値の高い3.15kHz帯域での整流部材4あり、な
しでの音圧レベルの騒音低減量△SPL3.15k( 図
中×印)、騒音値O.Aの騒音低減量△SPLO.A(
図中○印) で示している。図中●における△SPL3.
15kは整流部材なしのときの値である。
A straight line 4a connecting the end 4a of the rectifying member upstream of the minimum gap point A and the downstream end 4b of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4
If the length of -4b is too short, the effect is lost, and if it is too long, the effect is no longer obtained, and conversely, the pressure loss of the flow 50 blown out from the impeller 1 of the blower is caused. The air 5 blown out from the impeller of the blower of the rectifying member 4
0 from a straight line 4a-4b connecting the end 4a of the upstream rectifying member and the end 4b on the downstream side with an arbitrary angle β centered on the point 4a.
The rotated straight line 4a-E is too long to reduce the noise due to the pressure loss of the flow 50 blown out from the impeller 1 of the blower, or to be too short to effect interference noise at the fins 3a of the heat exchanger. Disappears. Therefore, AB that determines the position of point B
Distance, straight line 4a-4b connecting the upstream and downstream ends of the rectifying member
And the length of the straightening member straight portions 4a-E have an optimum range. FIG. 26 shows a case where the length range of the distance AB between the point B and the minimum gap point A is changed by changing the ratio AB / AP of the AB length to the minimum gap length AP between the impeller 1 of the blower and the heat exchanger. 25, the rectification in the 3.15 kHz band where the numerical value is the highest among the sound pressure levels in the 2 to 5 kHz band which is the frequency band of the interference noise between the heat exchanger fins 3a in the result of the 1/3 OCT analysis of the noise value in FIG. Noise reduction of sound pressure level with and without member 4 △ SPL 3.15 k (marked with x in the figure), noise value O. A noise reduction amount SPLO. A (
This is indicated by a circle in the figure). {SPL3.
15k is a value when there is no rectifying member.

【0037】図27は、整流部材4の上流側端部4aと
下流側の端部4bを結ぶ直線4a−4bの長さLと送風
機の羽根車の直径φDとの比L/Dを変更したときの、
図25の騒音値の1/3OCT分析結果における熱交換
器のフィン3a間の干渉騒音の発生周波数帯域である2
〜5kHz帯域の音圧レベルのうち、最も高い数値を示
す3.15kHz帯域での整流部材4あり、なしでの音
圧レベルの騒音低減量△SPL3.15k( 図中×印)
と、騒音値O.A.の比較△SPLOA( 図中○印)で
示している。図中L/D=0における△SPL3.15
kは整流部材なしのときの値である。また、図28は、
前記整流部材4の上流側直線部4a−Eの長さLMと直
線4a−4bの長さLとの比LM/Lを変更したときの
1/3OCT分析結果における熱交換器のフィン3a間
の干渉騒音の発生周波数帯域である2〜5kHz帯域の
音圧レべルのうち、最も高い数値を示す3.15kHz
帯域での整流部材4あり、なしでの音圧レベルの騒音低
減量△SPL3.15k( 図中×印)と、騒音値O.
A.の比較△SPLOA( 図中○印)で示している。図
中LM/L=0における△SPL3.15kは整流部材
なしのときの値である。図からわかるように、整流部材
上流部端部が、最小隙間より上流側に送風機の羽根車と
熱交換器の最小隙間長さの25〜90%で、かつ整流部
材4の上流側端部4aと下流側の端部4bを結ぶ直線4
a−4bの長さと送風機の羽根車1の直径φDとの比L
/D=20〜50%の間で、さらに直線4a−Eの長さ
が、直線4a−4bの長さ以下、50%以上であれば、
騒音値を悪化させることなく熱交換器のフィン3a間で
の干渉騒音が低減でき、かつ耳障りな音のしない空気調
和機を得られる。
FIG. 27 shows the ratio L / D of the length L of a straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the flow regulating member 4 to the diameter φD of the impeller of the blower. Sometimes,
The frequency band 2 where the interference noise occurs between the fins 3a of the heat exchanger in the result of the 1/3 OCT analysis of the noise value in FIG.
Among the sound pressure levels in the ~ 5 kHz band, there is a rectifying member 4 in the 3.15 kHz band, which indicates the highest numerical value, and the noise reduction amount of the sound pressure level without and without SPL 3.15 k (marked in the figure)
And the noise value O. A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). △ SPL 3.15 at L / D = 0 in the figure
k is a value when there is no rectifying member. Also, FIG.
1/3 OCT analysis results when the ratio LM / L between the length LM of the upstream straight portion 4a-E and the length L of the straight line 4a-4b of the straightening member 4 is changed between the fins 3a of the heat exchanger. 3.15 kHz indicating the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band in which the interference noise is generated.
The noise reduction amount of the sound pressure level without and with the rectifying member 4 in the band △ SPL 3.15k (marked with x in the figure) and the noise value O.
A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). In the drawing, △ SPL 3.15k at LM / L = 0 is a value when there is no rectifying member. As can be seen from the figure, the upstream end of the rectifying member is located at an upstream side of the minimum gap at 25 to 90% of the minimum gap length between the impeller of the blower and the heat exchanger, and the upstream end 4a of the rectifying member 4. Line 4 connecting the end 4b on the downstream side
a ratio L between the length of a-4b and the diameter φD of the impeller 1 of the blower
/ D = 20 to 50%, and if the length of the straight line 4a-E is less than or equal to the length of the straight line 4a-4b and 50% or more,
The interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the noise value, and an air conditioner without harsh sound can be obtained.

【0038】発明実施の形態8.図29は、この発明に
係る空気調和機における発明実施の形態1の図5に相当
する要部の部分拡大図である。送風機の羽根車1の回転
軸中心を点O、フィンチューブ型熱交換器3と送風機の
羽根車1との最小隙間を点A、送風機の羽根車1外周部
と送風機の羽根車1の回転軸Oと前記最小隙間点Aを結
ぶ直線OAとの交点をP、点Aから送風機の羽根車1か
ら吹き出された空気50の上流側の整流部材の端部4a
が熱交換器3に密着する点をB、また下流側の整流部材
の端部4bが熱交換器3に密着する点をFとするとき、
前記整流部材の送風機の羽根車から吹き出された空気の
上流側の整流部材の端部と下流側の端部を結ぶ直線4a
−4b上から、点4aを中心に任意角度β°回転させた
任意長さの直線4a−Eと点E、4bを結ぶ直線E−4
bにより形成された整流部材4を示す。この整流部材4
を点B、Fで熱交換器3に密着させて配設している。ま
た図中、送風機の回転軸中心を点O、送風機の回転方向
を23、熱交換器3のアルミフィンを3a、熱交換器3
の銅パイプを22を示す。
Embodiment 8 of the Invention FIG. 29 is a partially enlarged view of a main part corresponding to FIG. 5 of Embodiment 1 of the air conditioner according to the present invention. The point O is the center of the rotation axis of the impeller 1 of the blower, the point A is the minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower, and the rotation axis of the outer periphery of the impeller 1 of the blower and the impeller 1 of the blower. The point of intersection of O with the straight line OA connecting the minimum gap point A is P, and the end 4a of the rectifying member on the upstream side of the air 50 blown out from the point A from the impeller 1 of the blower.
Let B be the point at which the end comes into contact with the heat exchanger 3, and F be the point at which the end 4b of the downstream rectifying member comes into contact with the heat exchanger 3.
Straight line 4a connecting the end of the upstream rectifying member and the downstream end of the air blown out from the impeller of the blower of the rectifying member.
-4b, a straight line E-4 connecting the straight line 4a-E of an arbitrary length rotated by an arbitrary angle β ° about the point 4a to the points E and 4b.
b shows the rectifying member 4 formed by b. This rectifying member 4
Are disposed in close contact with the heat exchanger 3 at points B and F. In the figure, the center of the rotation axis of the blower is point O, the rotation direction of the blower is 23, the aluminum fins of the heat exchanger 3 are 3a, and the heat exchanger 3 is
22 shows a copper pipe of the present invention.

【0039】このよう構成された空気調和機おいて、図
29のように送風機の羽根車1と熱交換器3の最小隙間
点Aより送風機の羽根車1から吹き出された空気50の
上流側、下流側の整流部材の端部4a、4bが熱交換器
3に密着し、かつ熱交換器3整流部材4との間に空間が
あるため、送風機の羽根車1から吹き出された流れ50
の熱交換器のフィン3aと垂直方向成分50xが整流部
材4の直線4a−E部分により減速され、熱交換器のフ
ィン3a方向へ偏向され通過するとともに、整流部材4
を通過しなかった流れ50bは、整流部材4の下流側の
直線E−Fでのコアンダー効果によって、熱交換器のフ
ィン3a方向に偏向され、熱交換器3を通過する。これ
により、図62の整流部材が無い時の熱交換器のフィン
3aに対し、吹出し流れ50が迎角をもって流入するこ
とによる剥離渦24を無くせると同時に、この剥離渦2
4の圧力変動により誘発される熱交換器のフィン3a間
の干渉騒音を無くすことができるため、本体から発生す
る耳障りな騒音を低減できる。図30は、本体の同一吹
出し風量における、1/3オクターブ分析結果による音
圧レベルと周波数との関係を示したものである。破線で
示す本発明のものは、実線で示す整流部材なしのものに
対し、2〜5kHzの騒音が大幅に低減している。しか
し、このように構成された空気調和機において、整流部
材4の形状を決定する際の整流部材4の送風機の羽根車
1から吹き出された空気50の上流側の整流部材の端部
4aと下流側の端部4bを結ぶ直線4a−4b上から、
点4aを中心に直線4a−4bの長さ以下の直線4a−
Eを回転させるときの角度β°が、大きすぎると、図3
1のように送風機の羽根車の吹出し流れ50の圧力損失
を招くとともに、送風機の羽根車1に整流部材4表面で
の流れが圧力変動を与え、図32のようにNz音および
騒音値が悪化する。また小さすぎると、図33のように
整流部材4と熱交換器3の間に空間ができないため、送
風機の羽根車1から吹き出された流れ50を偏向でき
ず、熱交換器のフィン3aでの剥離渦24が生じ、干渉
音が発生してしまう。そのため、角度β°の最適範囲が
存在する。
In the air conditioner thus configured, as shown in FIG. 29, the upstream side of the air 50 blown out from the impeller 1 of the blower from the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3. Since the ends 4a and 4b of the downstream rectifying member are in close contact with the heat exchanger 3 and there is a space between the rectifying member 4 and the heat exchanger 3, the flow 50 blown out from the impeller 1 of the blower is provided.
The fin 3a of the heat exchanger and the vertical component 50x are decelerated by the straight line 4a-E portion of the rectifying member 4 and deflected in the direction of the fin 3a of the heat exchanger.
Is deflected in the direction of the fins 3a of the heat exchanger due to the Coander effect at the straight line EF downstream of the rectifying member 4, and passes through the heat exchanger 3. This eliminates the separation vortex 24 caused by the blowing flow 50 flowing at an angle of attack to the fins 3a of the heat exchanger without the rectifying member in FIG.
Since the interference noise between the fins 3a of the heat exchanger caused by the pressure fluctuation of 4 can be eliminated, the unpleasant noise generated from the main body can be reduced. FIG. 30 shows the relationship between the sound pressure level and the frequency based on the result of the 1/3 octave analysis at the same blowing air volume of the main body. In the case of the present invention shown by the broken line, the noise at 2 to 5 kHz is significantly reduced as compared with the case without the rectifying member shown by the solid line. However, in the air conditioner configured as described above, when determining the shape of the rectifying member 4, the end 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower of the rectifying member 4 and the downstream side. From the straight line 4a-4b connecting the side end portions 4b,
A straight line 4a- having a length equal to or less than the length of the straight line 4a-4b around the point 4a.
If the angle β ° when rotating E is too large, FIG.
As shown in FIG. 1, the pressure loss of the blowout flow 50 of the impeller of the blower causes a pressure loss, and the flow on the surface of the rectifying member 4 gives pressure fluctuation to the impeller 1 of the blower, and the Nz sound and the noise value deteriorate as shown in FIG. I do. If it is too small, there is no space between the rectifying member 4 and the heat exchanger 3 as shown in FIG. 33, so that the flow 50 blown out from the impeller 1 of the blower cannot be deflected and the fin 3a of the heat exchanger Separation vortices 24 are generated, and interference noise is generated. Therefore, there is an optimum range of the angle β °.

【0040】図34は、前記角度β°を変更したとき
の、図30の騒音値の1/3OCT分析結果における熱
交換器フィン3a間の干渉騒音の発生周波数帯域である
2〜5kHz帯域の音圧レベルのうち最も数値の高い
3.15kHz帯域での整流部材4あり、なしでの音圧
レベルの騒音低減量△SPL3.15k( 図中×印)
と、騒音値O.A.の比較△SPLOA( 図中○印)で
示している。図中●は、β°=0における△SPL3.
15kは整流部材なしのときの値である。図から分かる
ように、β°=3〜20°の間であれば、Nz音および
騒音値を悪化させることなく、熱交換器のフィン3a間
での干渉騒音が低減でき、かつ耳障りな音のしない空気
調和機を得られる。
FIG. 34 shows the sound in the frequency band of 2 to 5 kHz which is the frequency band in which the interference noise between the heat exchanger fins 3a is obtained in the result of the 1/3 OCT analysis of the noise value in FIG. 30 when the angle β ° is changed. Among the pressure levels, there is a rectifying member 4 in the 3.15 kHz band where the numerical value is the highest, and the noise reduction amount of the sound pressure level without and without SPL 3.15 k (marked in the figure)
And the noise value O. A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). In the figure, ● represents {SPL3.
15k is a value when there is no rectifying member. As can be seen from the figure, if β ° = 3 to 20 °, the interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the Nz sound and the noise value, and the noise is unpleasant. Not get an air conditioner.

【0041】発明実施の形態9.図35は、この発明に
係る空気調和機における発明実施の形態1の図5に相当
する要部の部分拡大図である。送風機である遠心送風機
の羽根車1の回転軸中心を点O、この回転方向を23、
フィンチューブ型熱交換器3と送風機の羽根車1との最
小隙間を点A、熱交換器3の銅パイプを22、送風機の
羽根車1外周部と送風機の羽根車1の回転軸Oと前記最
小隙間点Aを結ぶ直線OAとの交点をP、点Aから送風
機の羽根車1から吹き出された空気50の上流側の整流
部材の端部4aが熱交換器3に密着する点をB、また下
流側の整流部材の端部4bが熱交換器3に密着する点を
Fとするとき、前記整流部材の送風機の羽根車から吹き
出された空気の上流側の整流部材の端部と下流側の端部
を結ぶ直線4a−4b上から、点4aを中心に直線4a
−4bの長さ以下の直線を角度β°回転させた直線4a
−Eと直線4a−Eに点Eで接しかつ点Fにおいて熱交
換器のフィン3aとの角度γが上流側に90°以下の接
線を有する円弧E−4bにより形成された整流部材4を
示す。この整流部材4を点B、Fで熱交換器3に密着さ
せて配設している。このよう構成された空気調和機おい
て、図35のように送風機の羽根車1と熱交換器3の最
小隙間点Aより送風機の羽根車1から吹き出された空気
50の上流側、下流側の整流部材の端部4a、4bが熱
交換器3に密着し、かつ熱交換器3整流部材4との間に
空間があるため、送風機の羽根車1から吹き出された流
れ50の熱交換器のフィン3aと垂直方向成分50xが
整流部材4の直線4a−E部分により減速され、熱交換
器のフィン3a方向へ偏向され通過するとともに、整流
部材4を通過しなかった流れ50bは、整流部材4の下
流側の円弧E−4bでのコアンダー効果によって、熱交
換器のフィン3a方向に偏向され、熱交換器3を通過す
る。これにより、図62の整流部材が無い時の熱交換器
のフィン3aに対し、吹出し流れ50が迎角をもって流
入することによる剥離渦24を無くせると同時に、この
剥離渦24の圧力変動により誘発される熱交換器のフィ
ン3a間の干渉騒音を無くすことができるため、空気調
和機の本体2から聞こえる耳障りな騒音を低減できる。
Embodiment 9 of the Invention FIG. 35 is a partially enlarged view of a main part corresponding to FIG. 5 of Embodiment 1 of the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower which is the blower is a point O, and the rotation direction is 23,
The point A is the minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower, the copper pipe 22 of the heat exchanger 3, the outer periphery of the impeller 1 of the blower and the rotation axis O of the impeller 1 of the blower P is the intersection point with the straight line OA connecting the minimum gap point A, B is the point where the end 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower from the point A is in close contact with the heat exchanger 3. When the point at which the end 4b of the downstream rectifying member is in close contact with the heat exchanger 3 is F, the end of the upstream rectifying member of the air blown out from the impeller of the blower of the rectifying member and the downstream side From the straight line 4a-4b connecting the ends of
-4b, a straight line 4a obtained by rotating a straight line having a length equal to or less than the length by an angle β °
The rectifying member 4 is formed by an arc E-4b having a tangent line with the fin 3a of the heat exchanger at the point F at a point E which is tangent to the straight line 4a-E at a point E and at the point F. . The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. In the air conditioner configured as described above, as shown in FIG. 35, the upstream and downstream sides of the air 50 blown out from the impeller 1 of the blower from the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3. Since the ends 4a and 4b of the rectifying member are in close contact with the heat exchanger 3 and there is a space between the rectifying member 4 and the heat exchanger 3, the flow of the heat 50 blown out from the impeller 1 of the blower 1 The fin 3a and the vertical component 50x are decelerated by the straight line 4a-E portion of the rectifying member 4, and are deflected in the direction of the fin 3a of the heat exchanger and pass therethrough. Is deflected in the direction of the fins 3a of the heat exchanger and passes through the heat exchanger 3 by the Cander effect in the arc E-4b on the downstream side of. This eliminates the separation vortex 24 caused by the blowing flow 50 flowing at an angle of attack with respect to the fin 3a of the heat exchanger without the rectifying member in FIG. 62, and at the same time, induces the pressure fluctuation of the separation vortex 24. Since the interference noise between the fins 3a of the heat exchanger can be eliminated, the harsh noise heard from the main body 2 of the air conditioner can be reduced.

【0042】図36は、本体の同一吹出し風量におけ
る、1/3オクターブ分析結果による音圧レベルと周波
数との関係を示したものである。破線で示す本発明のも
のは、実線で示す整流部材なしのものに対し、2〜5k
Hzの騒音が大幅に低減している。しかし、このように
構成された空気調和機において、整流部材4の形状を決
定する際の整流部材4の送風機の羽根車1から吹き出さ
れた空気50の上流側の整流部材の端部4aと下流側の
端部4bを結ぶ直線4a−4b上から、点4aを中心に
直線4a−4bの長さ以下の直線4a−Eを回転させる
ときの角度β°が大きすぎると、送風機の羽根車1の吹
出し流れ50の圧力損失を招くとともに、送風機の羽根
車1に整流部材4表面での流れが圧力変動を与え、Nz
音および騒音値が悪化する。また小さすぎると、整流部
材4と熱交換器3の間に空間ができないため、送風機の
羽根車1から吹き出された流れ50を偏向できず、熱交
換器のフィン3aでの剥離渦24が生じ、干渉音が発生
してしまう。そのため、角度β°の最適範囲が存在す
る。図37は、前記角度β°を変更したときの、図35
の騒音値の1/3OCT分析結果における熱交換器フィ
ン3a間の干渉騒音の発生周波数帯域である2〜5kH
z帯域の音圧レベルのうち最も数値の高い3.15kH
z帯域での整流部材4あり、なしでの音圧レベルの騒音
低減量△SPL3.15k( 図中×印)と、騒音値O.
A.の比較△SPLOA( 図中○印)で示している。図
中●は、β°=0における△SPL3.15kは整流部
材なしのときの値である。図から分かるように、β°=
3〜20°の間であれば、Nz音および騒音値を悪化さ
せることなく、熱交換器のフィン3a間での干渉騒音が
低減でき、かつ耳障りな音のしない空気調和機を得られ
る。
FIG. 36 shows the relationship between the sound pressure level and the frequency based on the result of the 1/3 octave analysis at the same blowing air volume of the main body. The thing of the present invention shown by the broken line is 2 to 5 k
Hz noise is greatly reduced. However, in the air conditioner configured as described above, when determining the shape of the rectifying member 4, the end 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower of the rectifying member 4 and the downstream side. If the angle β ° when rotating the straight line 4a-E having a length equal to or less than the length of the straight line 4a-4b around the point 4a from the straight line 4a-4b connecting the side ends 4b is too large, the impeller 1 Pressure loss of the blowout flow 50 of the blower, and the flow on the surface of the rectifying member 4 gives pressure fluctuation to the impeller 1 of the blower, and Nz
The sound and noise values deteriorate. If it is too small, there is no space between the rectifying member 4 and the heat exchanger 3, so that the flow 50 blown from the impeller 1 of the blower cannot be deflected, and the separation vortex 24 occurs at the fins 3a of the heat exchanger. , Interference noise is generated. Therefore, there is an optimum range of the angle β °. FIG. 37 shows the state when the angle β ° is changed.
2 to 5 kHz, which is the frequency band in which the interference noise between the heat exchanger fins 3a in the 1/3 OCT analysis result of the noise value of
3.15 kHz, the highest numerical value among the sound pressure levels in the z band
The noise reduction amount of the sound pressure level with and without the rectifying member 4 in the z-band △ SPL 3.15k (marked by x in the figure) and the noise value O.
A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). In the figure, ● indicates a value when β ° = 0 and △ SPL 3.15k is a value without a rectifying member. As can be seen from the figure, β ° =
When the angle is in the range of 3 to 20 °, it is possible to reduce the interference noise between the fins 3a of the heat exchanger without deteriorating the Nz sound and the noise value, and to obtain an air conditioner free of harsh sound.

【0043】発明実施の形態10.図38は、この発明
に係る空気調和機における発明実施の形態1の図5に相
当する要部の部分拡大図である。送風機である遠心送風
機の羽根車1の回転軸中心を点O、この回転方向を2
3、フィンチューブ型熱交換器3と送風機の羽根車1と
の最小隙間を点A、熱交換器3の銅パイプを22、送風
機の羽根車1外周部と送風機の羽根車1の回転軸Oと前
記最小隙間点Aを結ぶ直線OAとの交点をP、点Aから
送風機の羽根車1から吹き出された空気50の上流側の
整流部材の端部4aが熱交換器3に密着する点をB、ま
た下流側の整流部材の端部4bが熱交換器3に密着する
点をFとするとき、前記整流部材の送風機の羽根車から
吹き出された空気の上流側の整流部材の端部と下流側の
端部を結ぶ直線4a−4b上から、点4aを中心に直線
4a−4bの長さ以下の直線を角度β°回転させた直線
4a−Eと直線4a−Eに点Eで接しかつ点Fにおいて
熱交換器のフィン3aとの角度γが上流側に90°以下
の接線を有する円弧E−4bにより形成された整流部材
4を示す。この整流部材4を点B、Fで熱交換器3に密
着させて配設している。このよう構成された空気調和機
おいて、図38のように送風機の羽根車1と熱交換器3
の最小隙間点Aより送風機の羽根車1から吹き出された
空気50の上流側、下流側の整流部材の端部4a、4b
が熱交換器3に密着し、かつ熱交換器3整流部材4との
間に空間があるため、送風機の羽根車1から吹き出され
た流れ50の熱交換器のフィン3aと垂直方向成分50
xが整流部材4の直線4a−E部分により減速され、熱
交換器のフィン3a方向へ偏向され通過するとともに、
整流部材4を通過しなかった流れ50bは、整流部材4
の下流側の円弧E−4bでのコアンダー効果によって、
熱交換器のフィン3a方向に偏向され、熱交換器3を通
過する。これにより、図62の整流部材が無い時の熱交
換器のフィン3aに対し、吹出し流れ50が迎角をもっ
て流入することによる剥離渦24を無くせると同時に、
この剥離渦24の圧力変動により誘発される熱交換器の
フィン3a間の干渉騒音を無くすことができるため、空
気調和機の本体2から聞こえる耳障りな騒音を低減でき
る。
Embodiment 10 of the Invention FIG. 38 is a partially enlarged view of a main part corresponding to FIG. 5 of the first embodiment of the air conditioner according to the present invention. The center of the rotation axis of the impeller 1 of the centrifugal blower, which is a blower, is a point O, and the rotation direction is 2 points.
3. The minimum gap between the fin tube type heat exchanger 3 and the impeller 1 of the blower is point A, the copper pipe of the heat exchanger 3 is 22, the outer periphery of the impeller 1 of the blower and the rotation axis O of the impeller 1 of the blower. P is the intersection of the straight line OA connecting the minimum gap point A with the end point 4a of the rectifying member on the upstream side of the air 50 blown from the impeller 1 of the blower from the point A. B, when the point at which the end 4b of the downstream rectifying member is in close contact with the heat exchanger 3 is F, the end of the upstream rectifying member of the air blown out from the impeller of the blower of the rectifying member is referred to as F. From a straight line 4a-4b connecting the downstream ends, a straight line having a length equal to or less than the length of the straight line 4a-4b centered on the point 4a is rotated by an angle β ° at a point E to the straight line 4a-E and the straight line 4a-E. And an arc having an angle γ with the fin 3a of the heat exchanger at the point F of 90 ° or less on the upstream side. Shows the straightening member 4 which is formed by -4b. The rectifying member 4 is disposed in close contact with the heat exchanger 3 at points B and F. In the air conditioner thus configured, the impeller 1 of the blower and the heat exchanger 3 as shown in FIG.
End 4a, 4b of the rectifying member on the upstream side and downstream side of the air 50 blown out from the impeller 1 of the blower from the minimum gap point A of FIG.
Is close to the heat exchanger 3 and there is a space between the heat exchanger 3 and the rectifying member 4, so that the fins 3a of the heat exchanger and the vertical component 50 of the flow 50 blown out from the impeller 1 of the blower.
x is decelerated by the straight line 4a-E portion of the rectifying member 4, is deflected in the direction of the fin 3a of the heat exchanger, and passes therethrough.
The flow 50b that has not passed through the rectifying member 4 is
Effect on the downstream arc E-4b by
It is deflected in the direction of the fins 3 a of the heat exchanger and passes through the heat exchanger 3. This eliminates the separation vortex 24 caused by the blowing flow 50 flowing at an angle of attack to the fins 3a of the heat exchanger without the rectifying member in FIG.
Since the interference noise between the fins 3a of the heat exchanger induced by the pressure fluctuation of the separation vortex 24 can be eliminated, the unpleasant noise heard from the main body 2 of the air conditioner can be reduced.

【0044】図39は、本体の同一吹出し風量におけ
る、1/3OCT分析結果による音圧レベルと周波数と
の関係を示したものである。破線で示す本発明のもの
は、実線で示す整流部材なしのものに対し、2〜5kH
zの騒音が大幅に低減している。しかし、このように構
成された空気調和機において、整流部材4の形状を決定
する際の前記直線4a−4bの長さが短すぎると、上流
側で熱交換器のフィン3aでの剥離渦24が発生し、効
果が無くなり、長すぎてもそれ以上効果が出なくなり、
送風機の羽根車1から吹き出される流れ50の圧力損失
となり、騒音値が悪化する。そして、直線4a−Eの長
さが長すぎて送風機の羽根車1から吹き出される流れ5
0の圧力損失となり騒音悪化したり、短すぎて熱交換器
のフィン3aでの干渉音に効果が無くなる。また角度β
°が大きすぎると、送風機の羽根車の吹出し流れ50の
圧力損失を招くとともに、送風機の羽根車1に整流部材
4表面での流れが圧力変動を与え、Nz音および騒音値
が悪化する。また小さすぎると、整流部材4と熱交換器
3の間に空間ができないため、送風機の羽根車1から吹
き出された流れ50を偏向できず、熱交換器のフィン3
aでの剥離渦24が生じ、干渉音が発生してしまう。さ
らに整流部材4の送風機の羽根車1から吹き出された空
気50の上流側の整流部材の端部4aが熱交換器に密着
する点Bの位置が上流側すぎると、圧力損失になり、点
A上では、干渉音が低減しきれない。そこで、各最適範
囲が存在する。図40は、整流部材4の上流側端部4a
と下流側の端部4bを結ぶ直線4a−4bの長さLと送
風機の羽根車の直径φDとの比L/Dを変更したとき
の、騒音値の1/3OCT分析結果における熱交換器の
フィン3a間の干渉騒音の発生周波数帯域である2〜5
kHz帯域の音圧レベルのうち最も数値の高い3.15
kHz帯域での整流部材4あり、なしでの音圧レベルの
騒音低減量△SPL3.15k( 図中×印)と、騒音値
O.A.の比較△SPLOA( 図中○印)で示してい
る。図中L/D=0における△SPL3.15kは整流
部材なしのときの値である。また、図41は、前記整流
部材4の上流側直線部4a−Eの長さLMと直線4a−
4bの長さLとの比LM/Lを変更したときの1/3O
CT分析結果における熱交換器のフィン3a間の干渉騒
音の発生周波数帯域である2〜5kHz帯域の音圧レベ
ルのうち最も数値の高い3.15kHz帯域での整流部
材4あり、なしでの音圧レベルの騒音低減量△SPL
3.15k( 図中×印)と、騒音値O.A.の比較△S
PLOA( 図中○印)で示している。図中L/D=0に
おける△SPL3.15kは整流部材なしのときの値で
ある。
FIG. 39 shows the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis at the same blowing air volume of the main body. The device of the present invention shown by the broken line is 2 to 5 kHz higher than that without the rectifying member shown by the solid line.
The noise of z is greatly reduced. However, in the air conditioner configured as described above, if the length of the straight line 4a-4b when determining the shape of the rectifying member 4 is too short, the separation vortex 24 in the fin 3a of the heat exchanger on the upstream side. Occurs, the effect is lost, even if it is too long, the effect will not be obtained anymore,
The pressure loss of the flow 50 blown out from the impeller 1 of the blower results in a reduction in noise value. And the flow 5 blown out from the impeller 1 of the blower because the length of the straight line 4a-E is too long.
A pressure loss of 0 causes noise deterioration, and the noise is too short, so that there is no effect on interference noise at the fins 3a of the heat exchanger. And the angle β
If the angle is too large, pressure loss of the blowout flow 50 of the impeller of the blower will be caused, and the flow on the surface of the rectifying member 4 will give pressure fluctuations to the impeller 1 of the blower, and the Nz sound and noise value will deteriorate. If it is too small, there will be no space between the rectifying member 4 and the heat exchanger 3, so that the flow 50 blown out from the impeller 1 of the blower cannot be deflected, and the fins 3 of the heat exchanger will not be deflected.
Separation vortex 24 at a occurs, and an interference sound is generated. Further, if the point B at which the end 4a of the rectifying member on the upstream side of the air 50 blown out from the impeller 1 of the blower of the rectifying member 4 comes into close contact with the heat exchanger is too upstream, a pressure loss occurs, and the point A Above, the interference sound cannot be completely reduced. Thus, each optimal range exists. FIG. 40 shows the upstream end 4 a of the flow regulating member 4.
When the ratio L / D of the length L of the straight line 4a-4b connecting the end portion 4b on the downstream side and the diameter φD of the impeller of the blower is changed, the heat exchanger in the 1/3 OCT analysis result of the noise value is changed. 2-5 which are the frequency bands in which the interference noise between the fins 3a occurs.
3.15, the highest numerical value among the sound pressure levels in the kHz band
The noise reduction amount of the sound pressure level with and without the rectifying member 4 in the kHz band △ SPL 3.15 k (marked with x in the figure) and the noise value O. A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). In the drawing, △ SPL 3.15k at L / D = 0 is a value when there is no rectifying member. FIG. 41 shows the length LM of the upstream straight portion 4a-E of the straightening member 4 and the straight line 4a-E.
1 / 3O when the ratio LM / L to the length L of 4b is changed
The sound pressure level with and without the rectifying member 4 in the 3.15 kHz band, which is the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band of the interference noise between the fins 3a of the heat exchanger in the CT analysis results. Level noise reduction △ SPL
3.15k (marked by x in the figure) and noise value O. A. Comparison of △ S
This is indicated by PLOA (marked with a circle in the figure). In the drawing, △ SPL 3.15k at L / D = 0 is a value when there is no rectifying member.

【0045】図42は、前記角度β°を変更したとき
の、騒音値の1/3OCT分析結果における熱交換器フ
ィン3a間の干渉騒音の発生周波数帯域である2〜5k
Hz帯域の音圧レベルのうち最も数値の高い3.15k
Hz帯域での整流部材4あり、なしでの音圧レベルの騒
音低減量△SPL3.15k(図中×印)と、騒音値
O.A.の比較△SPLOA( 図中○印)で示してい
る。図中●は、β°=0における△SPL3.15kは
整流部材なしのときの値である。図43は、前記点Bと
最小隙間点Aの距離ABの長さ範囲を、送風機の羽根車
1と熱交換器の最小隙間長さAPに対するABの長さの
比率AB/APを変更したときの、図39の騒音値の1
/3OCT分析結果における熱交換器フィン3a間の干
渉騒音の発生周波数帯域である2〜5kHz帯域の音圧
レベルのうち最も数値の高い3.15kHz帯域での整
流部材4あり、なしでの音圧レベルの騒音低減量△SP
L3.15k( 図中×印)、騒音値の低減量△SPL
O.A( 図中○印)で示している。図中●における△S
PL3.15k= 0は整流部材なしのときの値である。
図から分かるように、直線4a−4bの長さが送風機の
羽根車の直径の20〜50%、直線4a−Eの長さが直
線4a−4bの50%から100%、さらに角度β°が
3〜20°の間、かつ点Bの位置が最小隙間点Aより送
風機の羽根車の吹出し流れに対し上流側に、送風機の羽
根車と熱交換器の最小隙間距離APの25〜90%の間
の距離であれば、Nz音および騒音値を悪化させること
なく、熱交換器のフィン3a間での干渉騒音が低減で
き、かつ耳障りな音のしない空気調和機を得られる。
FIG. 42 shows a frequency band of interference noise between heat exchanger fins 3a in the result of 1/3 OCT analysis of the noise value when the angle β ° is changed.
3.15k, the highest numerical value among sound pressure levels in the Hz band
The noise reduction amount of the sound pressure level with and without the rectifying member 4 in the Hz band △ SPL 3.15k (marked with x in the figure) and the noise value O.P. A. The comparison is shown by △ SPLOA (indicated by a circle in the figure). In the figure, ● indicates a value when β ° = 0 and △ SPL 3.15k is a value without a rectifying member. FIG. 43 shows a case where the length range of the distance AB between the point B and the minimum gap point A is changed by changing the ratio AB / AP of the AB length to the minimum gap length AP between the impeller 1 of the blower and the heat exchanger. Of the noise value of FIG.
The sound pressure level with and without the rectifying member 4 in the 3.15 kHz band where the numerical value is the highest among the sound pressure levels in the 2 to 5 kHz band which is the frequency band of the interference noise between the heat exchanger fins 3a in the / 3 OCT analysis result Level noise reduction △ SP
L 3.15k (x mark in the figure), noise value reduction amount 低 減 SPL
O. This is indicated by A (indicated by a circle in the figure). △ S in ● in the figure
PL 3.15k = 0 is a value when there is no rectifying member.
As can be seen, the length of the straight line 4a-4b is 20-50% of the diameter of the impeller of the blower, the length of the straight line 4a-E is 50% to 100% of the straight line 4a-4b, and the angle β ° is Between 3 ° and 20 °, and the position of the point B is upstream of the minimum gap point A with respect to the blowout flow of the impeller of the blower, and is 25 to 90% of the minimum gap distance AP between the impeller of the blower and the heat exchanger. As long as the distance is between, the interference noise between the fins 3a of the heat exchanger can be reduced without deteriorating the Nz sound and the noise value, and an air conditioner without harsh sound can be obtained.

【0046】発明実施の形態11.図44はこの発明に
係る空気調和機における送風機の羽根車1と熱交換器3
の最小隙間点A付近に配設された網状部材でできている
整流部材の一実施例を示す。図のようにステンレスや亜
鉛等で錆防止を施された針金を格子状に張り合わせ、ま
たは編み込まれている。また、図45は、図44と異な
り編み込み型の網状部材の材質を示す。整流部材4がこ
のようなものであるため、図46のように、送風機の羽
根車1から吹き出された流れ50はの熱交換器のフィン
3aと垂直方向の流れ50xがこの整流部材で減速され
るとともに、熱交換器のフィン3aの方向へ偏向され
る。これにより、図47のように、熱交換器のフィン3
aで起きる干渉騒音が低減できる。 しかし、整流部材
の線径が太すぎると、図48の熱交換器と整流部材4の
間の拡大図のように、針金の後流渦26により、図49
のように2kHz付近の音が増大し、ジージーというよ
うな干渉音が発生する。逆に線径が細すぎると、整流部
材4の強度がなく、送風機の羽根車1から吹き出された
流れにたなびいてしまう。また、整流部材の開口率(=
(開口部ありでの全面積/開口部なしでの全面積)が大
きすぎると干渉音が消し切らず、小さすぎると整流部材
により送風機の羽根車の吹出し流れ50の圧力損失にな
る。そこで、整流部材の線径おいび開口率に最適範囲が
存在する。
Embodiment 11 of the Invention FIG. 44 shows an impeller 1 and a heat exchanger 3 of a blower in the air conditioner according to the present invention.
1 shows an embodiment of a rectifying member made of a net-like member disposed near the minimum gap point A of FIG. As shown in the figure, stainless steel, zinc, or other rust-preventive wires are stuck or woven in a grid pattern. FIG. 45 shows the material of the braided net-like member different from FIG. Since the rectifying member 4 is such a structure, as shown in FIG. 46, the flow 50 blown out from the impeller 1 of the blower is decelerated by the fin 3a of the heat exchanger and the flow 50x in the vertical direction by the rectifying member. At the same time, it is deflected in the direction of the fins 3a of the heat exchanger. As a result, as shown in FIG.
The interference noise occurring at a can be reduced. However, if the wire diameter of the rectifying member is too large, as shown in an enlarged view between the heat exchanger and the rectifying member 4 in FIG.
As described above, the sound around 2 kHz increases, and an interference sound such as a jig is generated. Conversely, if the wire diameter is too small, the rectifying member 4 has no strength and follows the flow blown out from the impeller 1 of the blower. In addition, the aperture ratio of the rectifying member (=
If (the total area without the opening / the total area without the opening) is too large, the interference sound cannot be completely eliminated, and if it is too small, the pressure loss of the blowout flow 50 of the impeller of the blower due to the rectifying member. Therefore, there is an optimum range in the wire diameter and the aperture ratio of the rectifying member.

【0047】図50は、網状の整流部材4の線径φdM
を変更したときの1/3OCT分析結果における熱交換
器のフィン3a間の干渉騒音の発生周波数帯域である2
〜5kHz帯域の音圧レベルのうち最も数値の高い3.
15kHz帯域での整流部材4あり、なしでの音圧レベ
ルの騒音低減量△SPL3.15k( 図中×印)と、図
50の2kHz帯域の干渉音の比較△SPL2k( 図中
○印)で示している。図51は、開口率Tを変更したと
きの1/3OCT分析結果における熱交換器のフィン3
a間の干渉騒音の発生周波数帯域である2〜5kHz帯
域の音圧レベルのうち最も数値の高い3.15kHz帯
域での整流部材4あり、なしでの音圧レベルの騒音低減
量△SPL3.15k( 図中×印)と、騒音値O.A.
の比較△SPLOA( 図中○印)で示している。図5
0、51から分かるように、線径φdMが熱交換器のフ
ィンピッチの1〜2倍で、かつ開口率が20〜40%で
あれば、騒音値を低減させ、熱交換器のフィン3a間で
の干渉騒音が低減でき、かつ耳障りな音のしない空気調
和機を得られる。
FIG. 50 shows a wire diameter φdM of the net-shaped rectifying member 4.
Is the frequency band in which the interference noise between the fins 3a of the heat exchanger in the 1/3 OCT analysis result when
2. The highest numerical value among the sound pressure levels in the band of 5 to 5 kHz.
Noise reduction of sound pressure level with and without the rectifying member 4 in the 15 kHz band △ SPL 3.15 k (x mark in the figure) and comparison of interference sound in the 2 kHz band in Fig. 50 △ SPL2k (○ mark in the figure) Is shown. FIG. 51 shows the fins 3 of the heat exchanger in the 1/3 OCT analysis result when the aperture ratio T was changed.
The rectifying member 4 in the 3.15 kHz band, which is the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band in which the interference noise occurs between "a" and "no noise reduction in the sound pressure level without SPL 3.15 k" (X in the figure) and the noise value O. A.
The comparison is shown by △ SPLOA (indicated by a circle in the figure). FIG.
As can be seen from 0 and 51, if the wire diameter φdM is 1 to 2 times the fin pitch of the heat exchanger and the opening ratio is 20 to 40%, the noise value is reduced, and the distance between the fins 3a of the heat exchanger is reduced. Therefore, it is possible to obtain an air conditioner that can reduce interference noise at the same time and does not generate harsh sound.

【0048】発明実施の形態12.図52はこの発明に
係る空気調和機における送風機の羽根車1と熱交換器3
の最小隙間点A付近に配設された網状部材でできている
整流部材の別実施例を示す。図のように、直線4a−E
の面について、網のピッチが異なっても線径φdMと開
口率Tが前記範囲φdM= フィンピッチの1〜2倍、T
=20〜40%の範囲であれば、同様な効果が得られ
る。
Embodiment 12 of the Invention FIG. 52 shows an impeller 1 and a heat exchanger 3 of a blower in the air conditioner according to the present invention.
Another embodiment of the rectifying member made of a net-like member disposed near the minimum gap point A is shown. As shown, straight lines 4a-E
In the plane of the above, the wire diameter φdM and the aperture ratio T are in the range φdM = 1-2 times the fin pitch, T
= 20 to 40%, the same effect can be obtained.

【0049】発明実施の形態13.図53は、この発明
に係る空気調和機における送風機の羽根車1と熱交換器
3の最小隙間点A付近に配設された穴あき板材でできて
いる整流部材の一実施例を示す。これは、板金または樹
脂性でできている。このような整流部材4により、図5
4のように、送風機の羽根車1から吹き出された流れ5
0はの熱交換器のフィン3aと垂直方向の流れ50xが
減速されるとともに、熱交換器のフィン3aの方向へ偏
向される。これにより、図55のように、熱交換器のフ
ィン3aで起きる2〜5kHz帯域での干渉騒音が低減
できる。 しかし、穴あき板材の穴径φdtが大きすぎ
ると、図56の熱交換器3と整流部材4の間の拡大図の
ように、穴により発生する噴流27により、2kHz帯
域で熱交換器のフィン3aから干渉騒音が発生する。ま
た、この整流部材の開口率(=(開口部ありでの全面積
/開口部なしでの全面積)が大きすぎると干渉音が消し
切らず、小さすぎると整流部材により送風機の羽根車の
吹出し流れ50の圧力損失となる。そのため、最適範囲
が存在する。
Embodiment 13 of the Invention FIG. 53 shows an embodiment of a rectifying member made of a perforated plate material disposed near the minimum gap point A between the impeller 1 of the blower and the heat exchanger 3 in the air conditioner according to the present invention. It is made of sheet metal or resin. With such a rectifying member 4, FIG.
4, the flow 5 blown out from the impeller 1 of the blower
The zeros are deflected in the direction of the heat exchanger fins 3a while the flow 50x in the vertical direction with the heat exchanger fins 3a is decelerated. As a result, as shown in FIG. 55, interference noise in the 2 to 5 kHz band generated in the fins 3a of the heat exchanger can be reduced. However, if the hole diameter φdt of the perforated plate is too large, the fins of the heat exchanger in the 2 kHz band are generated by the jet 27 generated by the holes as shown in the enlarged view between the heat exchanger 3 and the rectifying member 4 in FIG. Interference noise is generated from 3a. Also, if the opening ratio (= (total area with openings / total area without openings)) of this rectifying member is too large, the interference noise cannot be completely eliminated, and if it is too small, the rectifying member blows out the impeller of the blower. There will be a pressure drop in stream 50. Therefore, there is an optimal range.

【0050】図57は、熱交換器3のフィンピッチF.
Pと穴径φdtとの比F.P/φdtを変更したとき
の、図55における1/3OCT分析結果における熱交
換器のフィン3a間の干渉騒音の発生周波数帯域である
2〜5kHz帯域の音圧レベルのうち最も数値の高い
3.15kHz帯域での整流部材4あり、なしでの音圧
レベルの騒音低減量△SPL3.15k( 図中×印)
と、図55の2kHz帯域の干渉音の比較△SPL2k
( 図中▲印)、騒音値O.A.の比較△SPLOA(図
中○)で示している。図58は、開口率Tを変更したと
きの1/3OCT分析結果における熱交換器のフィン3
a間の干渉騒音の発生周波数帯域である2〜5kHz帯
域の音圧レベルのうち最も数値の高い3.15kHz帯
域での整流部材4あり、なしでの音圧レベルの騒音低減
量△SPL(図中×印)と、騒音値O.A.の比較△S
PLOA( 図中○印)で示している。図57、58から
分かるように、穴径φdtが熱交換器のフィンピッチの
0.3〜2倍で、かつ開口率が25〜40%であれば、
騒音値を低減させ、熱交換器のフィン3a間での干渉騒
音が低減でき、かつ耳障りな音のしない空気調和機を得
られる。
FIG. 57 shows the fin pitch of the heat exchanger 3.
F. Ratio between P and hole diameter φdt. When P / φdt is changed, the highest numerical value among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band in which the interference noise occurs between the fins 3 a of the heat exchanger in the result of the 1/3 OCT analysis in FIG. Noise reduction of sound pressure level with and without rectifying member 4 in 15 kHz band △ SPL 3.15 k (x mark in the figure)
And comparison of interference sound in 2 kHz band in FIG. 5555SPL2k
(▲ in the figure), the noise value O. A. △ SPLOA (○ in the figure). FIG. 58 shows fins 3 of the heat exchanger in the 1/3 OCT analysis result when the aperture ratio T was changed.
Among the sound pressure levels in the 2 to 5 kHz band, which is the frequency band in which the interference noise occurs between “a” and “3. Medium x mark) and noise level O. A. Comparison of △ S
This is indicated by PLOA (indicated by a circle in the figure). As can be seen from FIGS. 57 and 58, if the hole diameter φdt is 0.3 to 2 times the fin pitch of the heat exchanger and the aperture ratio is 25 to 40%,
The noise value can be reduced, the interference noise between the fins 3a of the heat exchanger can be reduced, and an air conditioner without harsh sound can be obtained.

【0051】発明実施の形態14.図59は、この発明
に係る空気調和機における送風機の羽根車1と熱交換器
3の最小隙間点A付近に配設された穴あき板材でできて
いる整流部材の別の実施例を示す。図中、穴空き部材を
用いた整流部材について、穴径が全て等しくなくても、
前記発明実施の形態13.の穴径の範囲である熱交換器
のフィンピッチF.Pの0.3〜2倍の範囲で、開口率
も前記範囲の25〜40%であれば、騒音値を低減さ
せ、熱交換器のフィン3a間での干渉騒音が低減でき、
かつ耳障りな音のしない空気調和機が得られる。
Embodiment 14 of the Invention FIG. 59 shows another embodiment of the rectifying member made of a perforated plate material disposed near the minimum gap point A between the impeller 1 and the heat exchanger 3 of the blower in the air conditioner according to the present invention. In the figure, for the rectifying member using the holed member, even if all the hole diameters are not equal,
Embodiment 13 of the Invention The fin pitch of the heat exchanger in the range of the hole diameter of F. If the aperture ratio is in the range of 0.3 to 2 times P and the aperture ratio is 25 to 40% of the above range, the noise value can be reduced, and the interference noise between the fins 3a of the heat exchanger can be reduced.
And an air conditioner without harsh sound is obtained.

【0052】[0052]

【発明の効果】第一の発明により、熱交換器と送風機と
の最小隙間付近に設けられた整流部材により、送風機か
らの吹出流が熱交換器のフィンに対し、迎角をもって流
入するために生じる干渉騒音を低減し、耳障りな音のし
ない空気調和機を得ることができる。
According to the first aspect of the present invention, the air flow from the blower flows into the fins of the heat exchanger at an angle of attack by the rectifying member provided near the minimum gap between the heat exchanger and the blower. The resulting interference noise can be reduced, and an air conditioner without harsh sound can be obtained.

【0053】第2および第3の発明により、特に最小隙
間から下流側の熱交換器のフィンに対し大きな迎角を持
つ送風機からの吹出流が熱交換器のフィンに対し効率よ
く流れると共に熱交換器への送風が、迎角をもって流入
するために生じる干渉騒音を低減し、耳障りな音のしな
い空気調和機を得ることができる。
According to the second and third aspects of the invention, in particular, the blowout flow from the blower having a large angle of attack with respect to the fins of the heat exchanger on the downstream side from the minimum gap efficiently flows through the fins of the heat exchanger and exchanges heat. It is possible to reduce interference noise caused by the air blown into the vessel at an angle of attack, and to obtain an air conditioner without harsh sound.

【0054】第4の発明により、整流部材を干渉騒音が
発生している領域をカバーするように最適な配置が可能
となり効果的に熱交換器のフィンに対し、迎角をもって
流入するために生じる干渉騒音を低減し、耳障りな音の
しない空気調和機を得ることができる。
According to the fourth aspect of the present invention, the rectifying member can be optimally arranged so as to cover the area where the interference noise is generated, and the rectifying member effectively flows into the fins of the heat exchanger at an angle of attack. Interference noise can be reduced, and an air conditioner without harsh sound can be obtained.

【0055】第5の発明により、整流部材の最適な配置
が可能となり風量、風圧を急激に変動することなく効果
的に熱交換器のフィンに対し、迎角をもって流入するた
めに生じる干渉騒音を低減し、耳障りな音のしない空気
調和機を得ることができる。
According to the fifth aspect of the present invention, it is possible to optimally arrange the rectifying member, and to reduce interference noise caused by flowing into the fins of the heat exchanger at an angle of attack effectively without suddenly changing the air volume and the air pressure. It is possible to obtain an air conditioner with reduced noise and no harsh sound.

【0056】第6の発明により、風圧を大幅に増やさず
にかつ急激に変動することなく効率の良い、耳障りな音
のしない空気調和機を得ることができる。
According to the sixth aspect of the present invention, it is possible to obtain an air conditioner that is efficient and does not generate harsh sound without greatly increasing the wind pressure and without abrupt fluctuation.

【0057】第7の発明により、送風機の風切り音(NZ
音)を上昇、かつ騒音値を悪化させることなく空気調和
機内風路に配設される送風機の羽根車から熱交換器へ送
風される空気が、熱交換器のフィンに対し、迎角をもっ
て流入するために生じる干渉騒音を低減し、耳障りな音
のしない空気調和機を得ることができる。
According to the seventh invention, the wind noise of the blower (NZ
The air blown from the impeller of the blower installed in the air path inside the air conditioner to the heat exchanger at an angle of attack into the fin of the heat exchanger without increasing the noise) and deteriorating the noise value Therefore, it is possible to obtain an air conditioner that does not generate harsh sound by reducing interference noise generated due to noise.

【0058】第8の発明により、整流部材を最適位置に
設けることにより、空気調和機を小型化でき、かつ、迎
角をもって流入するために生じる熱交換器のフィンでの
干渉騒音を低減し、耳障りな音のしない空気調和機を得
ることができる。
According to the eighth aspect of the present invention, by providing the rectifying member at the optimum position, the air conditioner can be miniaturized, and interference noise at the fins of the heat exchanger generated due to inflow at an angle of attack can be reduced. An air conditioner without harsh sound can be obtained.

【0059】第9の発明により、整流部材を最適位置に
設けることにより、空気調和機を小型化でき、かつ、迎
角をもって流入するために生じる熱交換器のフィンでの
干渉騒音を低減し、耳障りな音のしない空気調和機を得
ることができる。
According to the ninth aspect of the present invention, by providing the rectifying member at the optimum position, the air conditioner can be reduced in size, and interference noise at the fins of the heat exchanger generated due to inflow at an angle of attack can be reduced. An air conditioner without harsh sound can be obtained.

【0060】第10の発明により、小型化した空気調和
機に対し、風圧を増やさずに熱交換器のフィンでの干渉
騒音を低減し、耳障りな音のしない空気調和機を得るこ
とができる。
According to the tenth aspect, for a miniaturized air conditioner, interference noise at the fins of the heat exchanger can be reduced without increasing wind pressure, and an air conditioner without harsh sound can be obtained.

【0061】[0061]

【0062】第11の発明により、簡単な構造で熱交換
器のフィンでの干渉騒音を低減し、耳障りな音のしない
空気調和機を得ることができる。
According to the eleventh aspect, it is possible to obtain an air conditioner which has a simple structure, reduces interference noise at the fins of the heat exchanger, and does not cause harsh sound.

【0063】第12の発明により、効果的に熱交換器の
フィンでの干渉騒音を低減し、耳障りな音のしない空気
調和機を得ることができる。
According to the twelfth aspect, it is possible to effectively reduce the interference noise at the fins of the heat exchanger and obtain an air conditioner free from harsh sounds.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明に係る空気調和機の第一の実施の形
態の例における空気調和機の断面図。
FIG. 1 is a sectional view of an air conditioner according to a first embodiment of the air conditioner according to the present invention.

【図2】 図1の空気調和機の送風機の羽根車の回転軸
に直交する平面で切断したときの断面図。
FIG. 2 is a cross-sectional view of the air conditioner of FIG. 1 cut along a plane orthogonal to a rotation axis of an impeller of the blower.

【図3】 図1、2における熱交換器と送風機の羽根車
との最小隙間点付近を送風機側から見た斜視図。
FIG. 3 is a perspective view of the vicinity of a minimum gap point between the heat exchanger and the impeller of the blower in FIGS.

【図4】 図3の整流部材のみを取り出した図。FIG. 4 is a diagram showing only a rectifying member of FIG. 3;

【図5】 図2の要部の部分拡大図。FIG. 5 is a partially enlarged view of a main part of FIG. 2;

【図6】 整流部材の前記最小隙間より送風機の羽根車
の吹出し流れの上流側の端部4aが熱交換器に密着して
いないときの流れの様子を示す説明図。
FIG. 6 is an explanatory view showing the flow when the upstream end 4a of the blowout flow of the impeller of the blower from the minimum gap of the straightening member is not in close contact with the heat exchanger.

【図7】 整流部材の前記最小隙間より送風機の羽根車
の吹出し流れの下流側の端部4bが熱交換器に密着して
いないときの流れの様子を示す説明図。
FIG. 7 is an explanatory diagram showing a flow state when the downstream end 4b of the blowout flow of the impeller of the blower from the minimum gap of the rectifying member is not in close contact with the heat exchanger.

【図8】 この発明に係る空気調和機における、本体の
同一吹出し風量における1/3OCT分析結果による音
圧レベルと周波数の関係を示した図。
FIG. 8 is a diagram showing the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis at the same blowing air volume of the main body in the air conditioner according to the present invention.

【図9】 この発明に係る空気調和機の第二の実施の形
態の例における空気調和機の断面図。
FIG. 9 is a cross-sectional view of an air conditioner according to a second embodiment of the air conditioner according to the present invention.

【図10】 図9の空気調和機の送風機の羽根車の回転
軸に直交する平面で切断したときの断面図。
10 is a cross-sectional view taken along a plane orthogonal to the rotation axis of the impeller of the air conditioner blower of FIG.

【図11】 この発明に係る空気調和機の第三の実施の
形態の例における図5に相当する要部の部分拡大図。
FIG. 11 is a partially enlarged view of a main part corresponding to FIG. 5 in an example of the third embodiment of the air conditioner according to the present invention.

【図12】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 12 is a diagram showing the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis in the air conditioner according to the present invention at the same blowing air volume of the main body.

【図13】 この発明に係る空気調和機の第四の実施の
形態の例における空気調和機の要部の部分拡大図。
FIG. 13 is a partially enlarged view of a main part of an air conditioner according to a fourth embodiment of the air conditioner according to the present invention.

【図14】 この発明に係る空気調和機の第五の実施の
形態の例における空気調和機の要部の部分拡大図。
FIG. 14 is a partially enlarged view of a main part of an air conditioner according to a fifth embodiment of the air conditioner according to the present invention.

【図15】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 15 is a diagram showing the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis in the air conditioner according to the present invention at the same blowing air volume of the main body.

【図16】 この発明に係る空気調和機の要部の部分拡
大図。
FIG. 16 is a partially enlarged view of a main part of the air conditioner according to the present invention.

【図17】 この発明に係る空気調和機の整流部材の上
流側端部4aと下流側端部4bを結ぶ直線4a−4bの
長さLと送風機の羽根車の直径φDとの比率L/φDに
対する最も大きな数値を示す3.15kHz帯域での騒
音低減量 SPL3.15kおよび騒音値O.Aの低減
量△SPLOAの関係を示した図。
17 is a ratio L / φD of the length L of a straight line 4a-4b connecting the upstream end 4a and the downstream end 4b of the straightening member of the air conditioner according to the present invention to the diameter φD of the impeller of the blower. The noise reduction amount in the 3.15 kHz band showing the largest value with respect to SPL 3.15 k and the noise value O. The figure which showed the relationship of the reduction amount of A * SPLOA.

【図18】 整流部材の上流側直線部4a−Eの長さL
Mと整流部材上流、下流端部を結ぶ直線4a−4bの長
さLとの比LM/Lに対する最も大きな数値を示す3.
15kHz帯域での騒音低減量△SPL3.15kおよ
び騒音値O.Aの低減量△SPLOAの関係を示した
図。
FIG. 18 shows a length L of the upstream straight portion 4a-E of the rectifying member.
2. The largest numerical value with respect to the ratio LM / L between M and the length L of the straight line 4a-4b connecting the upstream and downstream ends of the straightening member.
Noise reduction in the 15 kHz band 帯 域 SPL 3.15 k and noise value O. The figure which showed the relationship of the reduction amount of A * SPLOA.

【図19】 この発明に係る空気調和機の第六の実施の
形態の例における要部の部分拡大図。
FIG. 19 is a partially enlarged view of a main part in an example of the sixth embodiment of the air conditioner according to the present invention.

【図20】 整流部材の上流端部、下流端部を結ぶ直線
4a−4bの長さが短すぎるときの流れの様子を示す要
部の部分拡大図。
FIG. 20 is a partially enlarged view of a main part showing a flow state when the length of a straight line 4a-4b connecting the upstream end portion and the downstream end portion of the straightening member is too short.

【図21】 整流部材の上流端部、下流端部を結ぶ直線
4a−4bの長さが長すぎるときの流れの様子を示す要
部の部分拡大図。
FIG. 21 is a partially enlarged view of a main part showing a flow state when the length of a straight line 4a-4b connecting the upstream end and the downstream end of the straightening member is too long.

【図22】 この発明に係る空気調和機における整流部
材の上流側端部4aと下流側端部4bを結ぶ直線4a−
4bの長さLと送風機の羽根車の直径φDとの比率L/
φDに対する最も大きな数値を示す3.15kHz帯域
での騒音低減量△SPL3.15kおよび騒音値O.A
の低減量△SPLOAの関係を示した図
FIG. 22 is a straight line 4a- connecting the upstream end 4a and the downstream end 4b of the straightening member in the air conditioner according to the present invention.
4b and the ratio L / L of the length L of the fan to the diameter φD of the impeller of the blower.
The noise reduction amount △ SPL 3.15k in the 3.15 kHz band showing the largest value for φD and the noise value O.D. A
Showing the relationship between the reduction amount of the △ SPLOA

【図23】 整流部材の上流側直線部4a−Eの長さL
Mと整流部材の上流側、下流側端部を結ぶ直線4a−4
bの長さLとの比LM/Lに対する1/3OCT分析の
3.15kHz帯域での騒音低減量△SPL3.15k
および騒音値O.A.の低減量△SPLO.Aとの関係
を示した図。
FIG. 23 shows the length L of the upstream straight portion 4a-E of the straightening member.
Straight line 4a-4 connecting M and the upstream and downstream ends of the flow regulating member
Noise reduction in the 3.15 kHz band of the 1/3 OCT analysis with respect to the ratio LM / L to the length L of bbSPL 3.15 k
And noise level O. A. Reduction amount of SPLO. The figure which showed the relationship with A.

【図24】 第4の発明に係る空気調和機の一実施例に
おける空気調和機の図5に相当する要部の部分拡大図。
FIG. 24 is a partially enlarged view of a main part corresponding to FIG. 5 of the air conditioner in one embodiment of the air conditioner according to the fourth invention;

【図25】 この発明に係る空気調和機の第七の実施の
形態の例における、本体の同一吹出し風量における1/
3OCT分析結果による音圧レベルと周波数の関係を示
した図。
FIG. 25 shows an example of the seventh embodiment of the air conditioner according to the present invention, wherein 1/100 of the same blowout air volume of the main body is provided.
The figure which showed the relationship between the sound pressure level and frequency based on the 3OCT analysis result.

【図26】 送風機の羽根車と熱交換器の最小隙間距離
APに対する、整流部材の上流側端部4aの熱交換器に
密着する点Bと最小隙間点A間の距離ABとの比を示す
AB/APに対する1/3OCT分析の3.15kHz
帯域での騒音低減量△SPL3.15kおよび騒音値
O.A.の低減量△SPLO.Aとの関係を示した図。
FIG. 26 shows the ratio of the distance AB between the point B of the upstream end 4a of the rectifying member and the minimum gap point A to the heat exchanger with respect to the minimum gap distance AP between the impeller of the blower and the heat exchanger. 3.15 kHz of 1/3 OCT analysis for AB / AP
Noise reduction in the band △ SPL 3.15k and noise value O. A. Reduction amount of SPLO. The figure which showed the relationship with A.

【図27】 この発明に係る空気調和機における整流部
材の上流側端部4aと下流側端部4bを結ぶ直線4a−
4bの長さLと送風機の羽根車の直径φDとの比率L/
φDに対する最も大きな数値を示す3.15kHz帯域
での騒音低減量△SPL3.15kおよび騒音値O.A
の低減量△SPLOAの関係を示した図。
FIG. 27 is a straight line 4a- connecting the upstream end 4a and the downstream end 4b of the straightening member in the air conditioner according to the present invention.
4b and the ratio L / L of the length L of the fan to the diameter φD of the impeller of the blower.
The noise reduction amount △ SPL 3.15k in the 3.15 kHz band showing the largest value for φD and the noise value O.D. A
FIG. 7 is a diagram showing a relationship between a reduction amount △ SPLOA of FIG.

【図28】 整流部材の上流側直線部4a−Eの長さL
Mと整流部材上流、下流端部を結ぶ直線4a−4bの長
さLとの比LM/Lに対する最も大きな数値を示す3.
15kHz帯域での騒音低減量△SPL3.15kおよ
び騒音値O.Aの低減量△SPLOAの関係を示した
図。
FIG. 28: Length L of the upstream straight portion 4a-E of the rectifying member
2. The largest numerical value with respect to the ratio LM / L between M and the length L of the straight line 4a-4b connecting the upstream and downstream ends of the straightening member.
Noise reduction in the 15 kHz band 帯 域 SPL 3.15 k and noise value O. The figure which showed the relationship of the reduction amount of A * SPLOA.

【図29】 この発明に係る空気調和機の第八の実施の
形態の例における空気調和機の要部の部分拡大図を示
す。
FIG. 29 is a partially enlarged view of a main part of an air conditioner according to an eighth embodiment of the air conditioner according to the present invention.

【図30】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 30 is a diagram showing the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis in the air conditioner according to the present invention at the same blowing air volume of the main body.

【図31】 回転角度β°が大きすぎる場合の流れの様
子を示した要部の部分拡大図。
FIG. 31 is a partially enlarged view of a main part showing a flow state when the rotation angle β ° is too large.

【図32】 回転角度β°が大きすぎる場合の周波数と
音圧レベルの関係を示した図。
FIG. 32 is a diagram showing the relationship between the frequency and the sound pressure level when the rotation angle β ° is too large.

【図33】 回転角度β°が小さすぎる場合の流れの様
子を示した要部の部分拡大図。
FIG. 33 is a partially enlarged view of a main part showing a flow state when the rotation angle β ° is too small.

【図34】 この発明に係る空気調和機における整流部
材の上流側直線部4a−Eの回転角度β°に対する最も
大きな数値を示す3.15kHz帯域での騒音低減量△
SPL3.15kおよび騒音値O.Aの低減量△SPL
OAの関係を示した図。
FIG. 34 shows a noise reduction amount in a 3.15 kHz band, which indicates the largest value with respect to the rotation angle β ° of the upstream straight portion 4a-E of the rectifying member in the air conditioner according to the present invention.
SPL 3.15k and noise level O.S. A reduction amountASPL
The figure which showed the relationship of OA.

【図35】 この発明に係る空気調和機の第九の実施の
形態の例における空気調和機の要部の部分拡大図を示
す。
FIG. 35 is a partially enlarged view of a main part of an air conditioner according to a ninth embodiment of the air conditioner according to the present invention.

【図36】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 36 is a diagram showing the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis in the air conditioner according to the present invention at the same blowing air volume of the main body.

【図37】 整流部材の上流側直線部4a−Eを整流部
材の上流、下流側端部4a−4b上から、上流側端部4
aを中心に回転させるときの角度β°に対する1/3O
CT分析の3.15kHz帯域での騒音低減量△SPL
3.15kおよび騒音値O.A.の低減量△SPLO.
Aとの関係を示した図。
37. The upstream straight portion 4a-E of the straightening member is moved from the upstream and downstream ends 4a-4b of the straightening member to the upstream end portion 4a.
1/3 O with respect to the angle β ° when rotating about a
Noise reduction in 3.15 kHz band of CT analysis △ SPL
3.15k and noise level O. A. Reduction amount of SPLO.
The figure which showed the relationship with A.

【図38】 この発明に係る空気調和機の第十の実施の
形態の例における空気調和機の要部の部分拡大図。
FIG. 38 is a partially enlarged view of a main part of an air conditioner according to a tenth embodiment of the air conditioner according to the present invention.

【図39】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 39 is a diagram showing the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis in the air conditioner according to the present invention at the same blowing air volume of the main body.

【図40】 この発明に係る空気調和機における整流部
材の上流側端部4aと下流側端部4bを結ぶ直線4a−
4bの長さLと送風機の羽根車の直径φDとの比率L/
φDに対する最も大きな数値を示す3.15kHz帯域
での騒音低減量△SPL3.15kおよび騒音値O.A
の低減量△SPLOAの関係を示した図。
FIG. 40 is a straight line 4a- connecting the upstream end 4a and the downstream end 4b of the straightening member in the air conditioner according to the present invention.
4b and the ratio L / L of the length L of the fan to the diameter φD of the impeller of the blower.
The noise reduction amount △ SPL 3.15k in the 3.15 kHz band showing the largest value for φD and the noise value O.D. A
FIG. 7 is a diagram showing a relationship between a reduction amount △ SPLOA of FIG.

【図41】 整流部材の上流側直線部4a−Eの長さL
Mと整流部材の上流側、下流側端部を結ぶ直線4a−4
bの長さLとの比LM/Lに対する1/3OCT分析の
3.15kHz帯域での騒音低減量△SPL3.15k
および騒音値O.A.の低減量△SPLO.Aとの関係
を示した図。
FIG. 41: Length L of the upstream straight portion 4a-E of the rectifying member
Straight line 4a-4 connecting M and the upstream and downstream ends of the flow regulating member
Noise reduction in the 3.15 kHz band of the 1/3 OCT analysis with respect to the ratio LM / L to the length L of bbSPL 3.15 k
And noise level O. A. Reduction amount of SPLO. The figure which showed the relationship with A.

【図42】 この発明に係る空気調和機における整流部
材の上流側直線部4a−Eの回転角度β°に対する最も
大きな数値を示す3.15kHz帯域での騒音低減量△
SPL3.15kおよび騒音値O.Aの低減量△SPL
OAの関係を示した図。
FIG. 42 shows a noise reduction amount in a 3.15 kHz band indicating the largest value with respect to the rotation angle β ° of the upstream straight portion 4a-E of the rectifying member in the air conditioner according to the present invention.
SPL 3.15k and noise level O.S. A reduction amountASPL
The figure which showed the relationship of OA.

【図43】 送風機の羽根車と熱交換器の最小隙間距離
APに対する、整流部材の上流側端部4aの熱交換器に
密着する点Bと最小隙間点A間の距離ABとの比を示す
AB/APに対する1/3OCT分析の3.15kHz
帯域での騒 音低減量△SPL3.15kおよび騒音値
O.A.の低減量△SPLO.Aとの関係を示した図。
FIG. 43 shows the ratio of the distance AB between the point B of the upstream end 4a of the rectifying member and the minimum gap point A to the heat exchanger with respect to the minimum gap distance AP between the impeller of the blower and the heat exchanger. 3.15 kHz of 1/3 OCT analysis for AB / AP
Noise reduction in band 帯 域 SPL 3.15k and noise level O. A. Reduction amount of SPLO. The figure which showed the relationship with A.

【図44】 この発明に係る空気調和機の第十一の実施
の形態の例における空気調和機に配設される整流部材の
例を示す図。
FIG. 44 is a view showing an example of a rectifying member provided in the air conditioner in the example of the eleventh embodiment of the air conditioner according to the present invention.

【図45】 この発明に係る空気調和機における空気調
和機に配設される整流部材の別の例を示す図。
FIG. 45 is a view showing another example of the rectifying member provided in the air conditioner in the air conditioner according to the present invention.

【図46】 この発明に係る空気調和機における空気調
和機の要部の部分拡大図。
FIG. 46 is a partially enlarged view of a main part of the air conditioner in the air conditioner according to the present invention.

【図47】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 47 is a diagram showing the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis in the air conditioner according to the present invention at the same blowing air volume of the main body.

【図48】 整流部材の線径が太すぎるときの熱交換器
と整流部材の間の拡大図。
FIG. 48 is an enlarged view between the heat exchanger and the rectifying member when the wire diameter of the rectifying member is too large.

【図49】 整流部材の線径が太すぎるときの騒音のス
ペクトルを示す。
FIG. 49 shows a noise spectrum when the wire diameter of the rectifying member is too large.

【図50】 この発明に係る空気調和機における整流部
材の、熱交換器のフィンピッチF.Pと整流部材の線径
φdMの比率F.P/φdMに対する最も大きな数値を
示す3.15kHz帯域での騒音低減量△SPL3.1
5Kおよび2kHz帯域での騒音低減量△SPL2kの
関係を示した図 。
50 is a fin pitch of a heat exchanger of a rectifying member in an air conditioner according to the present invention; FIG. P and the ratio of the wire diameter φdM of the rectifying member. Noise reduction in 3.15 kHz band showing the largest value for P / φdM △ SPL3.1
The figure which showed the relationship of the noise reduction amount △ SPL2k in 5K and 2kHz band.

【図51】 この発明に係る空気調和機における整流部
材の、開口率Tに対する最も大きな数値を示す3.15
kHz帯域での騒音低減量△SPL3.15kおよび騒
音値O.A.の騒音低減量△SPLOAの関係を示した
図。
FIG. 51 shows the largest numerical value with respect to the aperture ratio T of the flow regulating member in the air conditioner according to the present invention.
Noise reduction in the kHz band △ SPL 3.15k and noise value O.K. A. FIG. 7 is a diagram showing a relationship between noise reduction amounts △ SPLOA of FIG.

【図52】 この発明に係る空気調和機に配設された網
状の整流部材の別の実施の形態の例を示す図。
FIG. 52 is a view showing an example of another embodiment of the net-like rectifying member provided in the air conditioner according to the present invention.

【図53】 この発明に係る空気調和機の第十三の実施
の形態の例に配設された穴あき板材を用いた整流部材の
一実施例を示す図。
FIG. 53 is a view showing an example of a rectifying member using a perforated plate material provided in an example of the thirteenth embodiment of the air conditioner according to the present invention.

【図54】 この発明に係る空気調和機の図53の整流
部材による送風機の羽根車と熱交換器の最小隙間付近の
要部の部分拡大図。
54 is a partially enlarged view of a main part near a minimum gap between the impeller of the blower and the heat exchanger by the rectifying member of FIG. 53 of the air conditioner according to the present invention.

【図55】 この発明に係る空気調和機における、本体
の同一吹出し風量における1/3OCT分析結果による
音圧レベルと周波数の関係を示した図。
FIG. 55 is a view showing the relationship between the sound pressure level and the frequency based on the result of the 1/3 OCT analysis in the air conditioner according to the present invention at the same blowing air volume of the main body.

【図56】 穴空き部材を用いた整流部材の穴径が大き
すぎる場合の、整流部材と熱交換器の間の拡大図。
FIG. 56 is an enlarged view between the rectifying member and the heat exchanger when the hole diameter of the rectifying member using the perforated member is too large.

【図57】 この発明に係る空気調和機における穴あき
部材を用いた整流部材において、熱交換器のフィンピッ
チF.Pと穴空き部材の穴径φdtとの比F.P/φd
t に対する最も大きな数値を示す3.15kHz帯域
での騒音低減量△SPL3.15kおよび2kHz帯域
の騒音低減量△SPL2kの関係を示した図。
FIG. 57 is a rectifying member using a perforated member in the air conditioner according to the present invention, wherein the fin pitch of the heat exchanger is F.F. F. Ratio between P and hole diameter φdt of perforated member. P / φd
FIG. 9 is a diagram showing a relationship between a noise reduction amount in a 3.15 kHz band △ SPL 3.15 k and a noise reduction amount in a 2 kHz band △ SPL2 k showing the largest value for t.

【図58】 この発明に係る空気調和機における整流部
材の、開口率Tに対する最も大きな数値を示す3.15
kHz帯域での騒音低減量△SPL3.15kおよび騒
音値O.A.の騒音低減量△SPLOAの関係を示した
図。
FIG. 58 shows the largest numerical value with respect to the aperture ratio T of the flow regulating member in the air conditioner according to the present invention.
Noise reduction in the kHz band △ SPL 3.15k and noise value O.K. A. FIG. 7 is a diagram showing a relationship between noise reduction amounts △ SPLOA of FIG.

【図59】 この発明に係る空気調和機における整流部
材の別の実施例を示す図。
FIG. 59 is a view showing another embodiment of the flow regulating member in the air conditioner according to the present invention.

【図60】 従来の空気調和機の断面図。FIG. 60 is a sectional view of a conventional air conditioner.

【図61】 従来の空気調和機の送風機の羽根車の回転
軸に直交する平面で切断した断面図。
FIG. 61 is a cross-sectional view cut along a plane orthogonal to a rotation axis of an impeller of a blower of a conventional air conditioner.

【図62】 従来の空気調和機の要部の部分拡大図。FIG. 62 is a partially enlarged view of a main part of a conventional air conditioner.

【図63】 従来の空気調和機における1/3OCT分
析結果による音圧レベルと周波数の関係を示した図。
FIG. 63 is a view showing the relationship between sound pressure level and frequency based on the result of 1/3 OCT analysis in a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 送風機の羽根車、2 本体、3 フィンチューブ型
熱交換器、3a フィンチューブ熱交換器のアルミフィ
ン、4 整流部材、4a 送風機の羽根車1と熱交換器
3の最小隙間より送風機の羽根車から吹き出された流れ
より上流側の整流部材の端部、4b 送風機の羽根車1
と熱交換器3の最小隙間より送風機の羽根車から吹き出
された流れより下流側の整流部材の端部、5 ドレンパ
ン、6モータ、7 吸込みグリル、8 ベルマウス、9
フィルタ、10 本体吹出口、11 風向偏向ベー
ン、12 電気品箱、13 化粧パネル、14 天井、
15 配管、16 ドレン水排水用ポンプ、17 ヘッ
ダ、18 本体固定ボルト、19 本体固定ナット、2
0 本体吸込口、21 本体固定フック、22銅パイ
プ、23 送風機の羽根車の回転方向、24 熱交換器
のフィン3aで生じる剥離渦、25 整流部材4の送風
機の羽根車と熱交換器の最小隙間より下流側の端部4b
付近で生じる放出渦、26 整流部材の針金の後流渦、
27 整流部材の穴で生じる噴流、50 送風機の羽根
車から吹き出される空気
Reference Signs List 1 impeller of blower, 2 main body, 3 fin tube type heat exchanger, 3a aluminum fin of fin tube heat exchanger, 4 rectifying member, 4a impeller of blower from minimum clearance between impeller 1 of blower and heat exchanger 3 End of the rectifying member on the upstream side of the flow blown out of the blower, 4b impeller 1 of the blower
Of the rectifying member downstream of the flow blown from the impeller of the blower through the minimum gap between the heat exchanger 3 and the heat exchanger 3, 5 drain pans, 6 motors, 7 suction grills, 8 bellmouths, 9
Filter, 10 main body outlet, 11 wind direction deflection vane, 12 electrical parts box, 13 decorative panel, 14 ceiling,
15 Piping, 16 Drain water drainage pump, 17 Header, 18 Body fixing bolt, 19 Body fixing nut, 2
0 body suction port, 21 body fixing hook, 22 copper pipe, 23 direction of rotation of impeller of blower, 24 separation vortex generated in fin 3a of heat exchanger, 25 minimum of impeller and heat exchanger of blower of rectifying member 4 End 4b downstream of the gap
Discharge vortex generated in the vicinity, 26 wake vortex of wire of rectifying member,
27 Jet generated in the hole of the straightening member, 50 Air blown out from impeller of blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝比奈 学 東京都千代田区大手町二丁目6番2号 三菱電機エンジニアリング株式会社内 (56)参考文献 特開 平5−126351(JP,A) 特開 昭61−107019(JP,A) 特開 平2−143035(JP,A) 特開 平5−215354(JP,A) 実開 平4−74215(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 1/00 401 F24F 1/00 306 F24F 13/08 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Manabu Asahina 2-6-2 Otemachi, Chiyoda-ku, Tokyo Mitsubishi Electric Engineering Co., Ltd. (56) References JP 5-126351 (JP, A) JP 61-1007019 (JP, A) JP-A-2-14335 (JP, A) JP-A-5-215354 (JP, A) JP-A-4-74215 (JP, U) .Cl. 7 , DB name) F24F 1/00 401 F24F 1/00 306 F24F 13/08

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フィンを設けた熱交換器と、この熱交換
器のフィンに対し迎角をもって流入するような吹き出し
流を有する送風機とを備えた空気調和機において、熱交
換器と送風機との最小隙間付近に設けられ、前記熱交換
器から送風機方向に凸となるように形成され、この凸部
分で前記熱交換器から離れる板状部材であって、かつこ
の板状部材に通風口を有する整流部材を備え、この整流
部材は前記最小隙間付近より前記送風機から吹き出され
た空気の上流側および下流側に延長した部分に、熱交換
器に密着して配置された両側の端部を有することを特徴
とする空気調和機。
1. An air conditioner comprising a heat exchanger provided with fins, and a blower having a blow-off flow which flows into the fins of the heat exchanger at an angle of attack. A plate-shaped member that is provided near the minimum gap and is formed so as to be convex in the direction of the blower from the heat exchanger, and is a plate-shaped member that is separated from the heat exchanger at the protruding portion, and has an air vent in the plate-shaped member. A rectifying member is provided.
The member is blown out from the blower from near the minimum gap.
Heat exchange between the upstream and downstream
An air conditioner having both ends arranged in close contact with a vessel .
【請求項2】 整流部材の熱交換器から送風機方向に凸
となるように形成された頂上部分は、最小隙間より下流
側に突出させ、この整流部材の両側の端部は大きくとも
前記整流部材の厚み程度の隙間で熱交換器に密着させた
ことを特徴とする請求項1記載の空気調和機。
2. A rectifying member that projects from the heat exchanger toward the blower.
Is formed downstream of the minimum clearance.
Side of the rectifying member,
The rectifying member was brought into close contact with the heat exchanger with a gap about the thickness of the rectifying member.
The air conditioner according to claim 1, wherein:
【請求項3】 整流部材は、凸部の頂上部と、一方の端
部から前記頂上部にいくにしたがって送風機に近づく部
材と、前記頂上部から他方の端部にいくにしたがって前
記送風機から遠ざかる部材とを有することを特徴とする
請求項1または2記載の空気調和機。
3. The rectifying member includes a top portion of the convex portion and one end.
Part approaching the blower from the part to the top
From the top to the other end
Having a member moving away from the blower.
The air conditioner according to claim 1 or 2.
【請求項4】 整流部材の両側の端部の間の直線状の長
さが送風機の羽根車の直径の20〜50%であることを
特徴とする請求項1記載の空気調和機。
4. The air conditioner according to claim 1, wherein the linear length between both ends of the straightening member is 20 to 50% of the diameter of the impeller of the blower.
【請求項5】 整流部材の上流側の端部と熱交換器と送
風機との最小隙間で前記熱交換器の送風機側の面上の点
である最小隙間点との直線状の長さが、最小隙間長さの
25〜90%であることを特徴とする請求項1記載の空
気調和機。
5. The heat exchanger and the upstream end of the flow regulating member.
A point on the blower side surface of the heat exchanger at the minimum gap with the blower
The air conditioner according to claim 1, wherein a linear length from the minimum gap point is 25 to 90% of the minimum gap length.
【請求項6】 熱交換器から送風機方向に凸となるよう
に形成された凸部の上端は整流部材の上流側の端部を中
心にして両側端部を結ぶ直線を3〜20度回転した範囲
に設けたことを特徴とする請求項1記載の空気調和機。
6. The upper end of the projection formed so as to project from the heat exchanger in the direction of the blower rotates a straight line connecting both end portions around the upstream end portion of the rectifying member by 3 to 20 degrees. The air conditioner according to claim 1, wherein the air conditioner is provided in a range.
【請求項7】 本体内に送風機の羽根車と送風機の羽根
車の吹出し口側にフィンを設けた熱交換器を有する空気
調和機において、送風機の羽根車の回転軸中心を点O、
前記熱交換器と送風機の羽根車との最小隙間で前記熱交
換器の送風機側の面上の点をA,送風機の羽根車外周部
と送風機の羽根車の回転軸Oと前記最小隙間点Aを結ぶ
直線OAとの交点をP、点Aから送風機の羽根車から吹
き出された空気の上流側の整流部材の端部4aが熱交換
器に密着する点をB、また下流側の整流部材の端部4b
が熱交換器に密着する点をFとするとき、前記整流部材
の送風機の羽根車から吹き出された空気の上流側の整流
部材の端部と下流側の端部を結ぶ直線4a−4b上か
ら、点4aを中心に任意角度β°回転させた任意長さの
直線状4a−Eと、点Eと4bを結ぶ直線状または直線
4a−Eに点Eで接しかつ点Fにおいて熱交換器のフィ
ンとの角度が上流側に90°以下の接線を有する円弧状
E−4bと、により形成された整流部材を前記熱交換器
上の点B、Fに熱交換器に密着するように配設したこと
を特徴とする空気調和機。
7. An air conditioner having an impeller of a blower and a heat exchanger provided with fins on an outlet side of the impeller of the blower in the main body, wherein a center of a rotation axis of the impeller of the blower is O,
The point A on the surface of the heat exchanger on the fan side at the minimum gap between the heat exchanger and the impeller of the blower, the outer peripheral portion of the impeller of the blower and the rotation axis O of the impeller of the blower and the minimum gap point A The point of intersection with the straight line OA connecting P with the straight line OA, the point where the end 4a of the upstream rectifying member of the air blown out from the point A from the impeller of the blower comes into close contact with the heat exchanger is B, and the downstream rectifying member has End 4b
Let F be the point at which the airflow comes into close contact with the heat exchanger, from above a straight line 4a-4b connecting the end of the upstream rectifying member and the downstream end of the air blown out from the impeller of the blower of the rectifying member. A straight line 4a-E of an arbitrary length rotated by an arbitrary angle β ° about the point 4a and a straight line or a straight line 4a-E connecting the points E and 4b at the point E and the point F of the heat exchanger A rectifying member formed by an arc-shaped E-4b having a tangent of 90 ° or less on the upstream side with respect to the fin is disposed at points B and F on the heat exchanger so as to be in close contact with the heat exchanger. An air conditioner characterized by:
【請求項8】 羽根車から吹き出された空気の上流側の
整流部材の端部と下流側の端部を結ぶ長さが送風機の羽
根車の直径φDの20〜50%である直線4a−4b上
から、点4aを中心に直線4a−4bの長さ以下でかつ
50%以上の直線を任意角度β°回転させた直線状4a
−Eと、点E、4bを結ぶ直線状または直線4a−Eに
接しかつ点Fにおいて熱交換器のフィンとの角度が上流
側に90°以下の接線を有する円弧状E−4bと、によ
り形成された整流部材を前記熱交換器上の点B、Fに熱
交換器に密着するように配設したことを特徴とする請求
記載の空気調和機。
8. A straight line 4a-4b having a length connecting an end of the upstream rectifying member and an end of the downstream side of the air blown out from the impeller is 20 to 50% of a diameter φD of the impeller of the blower. From the top, a straight line 4a obtained by rotating a straight line having a length equal to or less than 50% and equal to or less than the length of the straight line 4a-4b around the point 4a by an arbitrary angle β °.
-E and an arc-shaped E-4b having a tangent to the straight line or the straight line 4a-E connecting the points E and 4b and having an angle with the fin of the heat exchanger at the point F of 90 ° or less on the upstream side at the point F. The air conditioner according to claim 7 , wherein the formed flow regulating member is disposed at points B and F on the heat exchanger so as to be in close contact with the heat exchanger.
【請求項9】 点Aから送風機の羽根車から吹き出され
た空気の上流側の整流部材の端部4aが前記最小隙間点
Aより上流側に送風機の羽根車と熱交換器の最小隙間距
離APの25〜90%の距離の熱交換器に密着する点を
B、また下流側の整流部材の端部4bが熱交換器に密着
する点をFとするとき、前記整流部材の送風機の羽根車
から吹き出された空気の上流側の整流部材の端部と下流
側の端部を結ぶ長さが送風機の羽根車の直径φDの20
〜50%である直線4a−4b上から、点4aを中心に
直線4a−4bの長さ以下でかつ50%以上の直線を任
意角度β°回転させた直線状4a−Eと、点E、4bを
結ぶ直線状または直線4a−Eに接しかつ点Fにおいて
熱交換器のフィンとの角度が上流側に90°以下の接線
を有する円弧状E−4bと、により形成された整流部材
を前記熱交換器上の点B、Fに熱交換器に密着するよう
に配設したことを特徴とする請求項記載の空気調和
機。
9. The end 4a of the rectifying member on the upstream side of the air blown from the impeller of the blower from the point A is located at the upstream side of the minimum gap point A at the minimum gap distance AP between the impeller of the blower and the heat exchanger. B is the point where the end 4b of the downstream rectifying member is in close contact with the heat exchanger, and B is the impeller of the blower of the rectifying member. The length connecting the end of the upstream rectifying member and the downstream end of the air blown out from the fan is 20 mm in diameter φD of the impeller of the blower.
A straight line 4a-E obtained by rotating a straight line having a length equal to or less than the length of the straight line 4a-4b and not less than 50% about the point 4a from the straight line 4a-4b, which is about 50%, by an arbitrary angle β °; A rectifying member formed by an arc-shaped E-4b tangent to a straight line or a straight line 4a-E connecting the fins 4b and having an angle of 90 ° or less on the upstream side with the fin of the heat exchanger at the point F. The air conditioner according to claim 7 , wherein the air conditioner is disposed at points B and F on the heat exchanger so as to be in close contact with the heat exchanger.
【請求項10】 整流部材の送風機の羽根車から吹き出
された空気の上流側の整流部材の端部と下流側の端部を
結ぶ直線4a−4b上から、点4aを中心に角度β°=
3〜20°回転させた任意長さの直線状4a−Eと、点
E、4bを結ぶ直線状または直線4a−Eに点Eで接し
かつ点Fにおいて熱交換器のフィンとの角度が上流側に
90°以下の接線を有する円弧状E−4bと、により形
成された整流部材を前記熱交換器上の点B、Fに熱交換
器に密着するように配設したことを特徴とする請求項
またはまたは記載の空気調和機。
10. An angle β ° = about a point 4a from a straight line 4a-4b connecting an end of a rectifying member on an upstream side and an end of a downstream side of air blown from an impeller of a blower of a rectifying member.
The angle between the straight line 4a-E of an arbitrary length rotated by 3 to 20 ° and the straight line or the straight line 4a-E connecting the points E and 4b at the point E and the angle with the fin of the heat exchanger at the point F is upstream A rectifying member formed by an arc-shaped E-4b having a tangent of 90 ° or less on its side is disposed at points B and F on the heat exchanger so as to be in close contact with the heat exchanger. Claim 7
Or the air conditioner of 8 or 9 .
【請求項11】 熱交換器と送風機の最小隙間付近に設
けられた整流部材に網状部材を用い、線径が熱交換器フ
ィンピッチの1〜2倍でかつ開口率=20〜40%であ
ることを特徴とする請求項1〜10のいずれかに記載の
空気調和機。
11. A net-like member is used as a rectifying member provided near the minimum gap between the heat exchanger and the blower, the wire diameter is 1 to 2 times the fin pitch of the heat exchanger, and the aperture ratio is 20 to 40%. The air conditioner according to any one of claims 1 to 10 , wherein:
【請求項12】 熱交換器と送風機の最小隙間付近に設
けられた整流部材に穴あき板材を用い、この穴径が熱交
換器のフィンピッチの0.3〜2倍でかつ開口率=25
〜40%であることを特徴とする請求項1〜10のいず
れかに記載の空気調和機。
12. A rectifying member provided near the minimum gap between the heat exchanger and the blower is made of a perforated plate, and the hole diameter is 0.3 to 2 times the fin pitch of the heat exchanger, and the opening ratio is 25.
The air conditioner according to any one of claims 1 to 10 , wherein the air conditioner is 40% to 40%.
【請求項13】 複数枚のフィンを設けた熱交換器と、
この熱交換器のフィンに対し迎角をもって流入するよう
な吹き出し流を有する送風機とを備えた空気調和機にお
いて、前記熱交換器と前記送風機との最小隙間の上流側
にて前記複数枚のフィンを跨ぎ、かつ下流側にて前記複
数枚のフィンを跨いで設けられ、前記送風機から吹き出
された流れのうち前記フィンとの垂直方向成分を減速す
通風口を有する整流部材を備えたことを特徴とする空
気調和機。
13. A heat exchanger provided with a plurality of fins,
An air conditioner including a blower having a blowout flow that flows into the fins of the heat exchanger at an angle of attack, wherein an upstream side of a minimum gap between the heat exchanger and the blower is provided.
Straddles the plurality of fins, and
An air conditioner, comprising: a rectifying member provided across a plurality of fins and having a ventilation port for reducing a component of a flow blown from the blower in a direction perpendicular to the fins.
【請求項14】 整流部材は、最小隙間部分を境に一方
の端部から前記最小隙間部分に行くにしたがって送風機
に近づく部材と、前記最小隙間部分から他方の端部に行
くにしたがって前記送風機から遠ざかる部材とを有する
ことを特徴とする請求項13記載の空気調和機。
14. The rectifying member may be one side of the minimum gap portion.
From the end of the fan to the minimum clearance
From the minimum clearance to the other end.
A member moving away from the blower
The air conditioner according to claim 13, wherein:
【請求項15】 熱交換器および送風機を収納する本体
と、前記本体の下部に設けられた化粧パネルとを備え、
前記送風機を挟むよう該送風機の両側に一対のみの化粧
パネルの吹出し口を形成し、前記送風機と吹出し口との
間に前記熱交換器を配置したことを特徴とする請求項1
3または14記載の空気調和機。
15. A body for housing a heat exchanger and a blower.
And a decorative panel provided at a lower portion of the main body,
Only one pair of makeup on both sides of the blower so as to sandwich the blower
Forming an outlet for the panel, and connecting the blower with the outlet
2. The heat exchanger according to claim 1, wherein the heat exchanger is disposed between the heat exchangers.
15. The air conditioner according to 3 or 14.
JP08039991A 1996-02-27 1996-02-27 Air conditioner Expired - Lifetime JP3138632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08039991A JP3138632B2 (en) 1996-02-27 1996-02-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08039991A JP3138632B2 (en) 1996-02-27 1996-02-27 Air conditioner

Publications (2)

Publication Number Publication Date
JPH09236276A JPH09236276A (en) 1997-09-09
JP3138632B2 true JP3138632B2 (en) 2001-02-26

Family

ID=12568410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08039991A Expired - Lifetime JP3138632B2 (en) 1996-02-27 1996-02-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP3138632B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182961A (en) * 1999-12-27 2001-07-06 Hitachi Ltd Air conditioner
JP2007113824A (en) * 2005-10-19 2007-05-10 Daikin Ind Ltd Air conditioner
JP2007187402A (en) * 2006-01-16 2007-07-26 Daikin Ind Ltd Air conditioner
JP2011012937A (en) * 2009-07-06 2011-01-20 Mitsubishi Heavy Ind Ltd Indoor unit for air conditioning
JP6135125B2 (en) * 2012-12-26 2017-05-31 ダイキン工業株式会社 Indoor unit
JP6186592B2 (en) * 2013-03-13 2017-08-30 パナソニックIpマネジメント株式会社 Ion generator
JP2015081692A (en) * 2013-10-21 2015-04-27 日立アプライアンス株式会社 Indoor unit of air conditioner

Also Published As

Publication number Publication date
JPH09236276A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
JP3268279B2 (en) Air conditioner
WO2009139422A1 (en) Centrifugal fan
EP1120571A1 (en) Fan guard of blower unit and air conditioner
CN110325745B (en) Propeller fan, blower, and air conditioner
JP3138632B2 (en) Air conditioner
JP6008993B2 (en) Air conditioner
EP1316760B1 (en) Decorative panel for air conditioning system, air outlet blow-off unit, and air conditioning system
JP2611595B2 (en) Air conditioner
JP3141663B2 (en) Indoor unit of air conditioner
JP3918111B2 (en) Air conditioner
JP4760950B2 (en) Recessed ceiling ventilation fan
JP2000304347A (en) Heat exchanging unit
JP4005016B2 (en) Air conditioner
JP3081480B2 (en) Air conditioner
JP3240907B2 (en) Heat exchange equipment
JP2000220859A (en) Air conditioner
JP3120959B2 (en) Blower
JP2002357194A (en) Cross-flow fan
JP3846468B2 (en) Turbo fan
JP3079639B2 (en) Air conditioner
JP2006038312A (en) Outdoor unit for air conditioner
JPH10176861A (en) Air-conditioner
JP3213594B2 (en) Heat exchange unit
JP2014005975A (en) Outdoor equipment for air conditioner
JP2910628B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term