JPH0923598A - Magnet embedding type motor - Google Patents

Magnet embedding type motor

Info

Publication number
JPH0923598A
JPH0923598A JP7167213A JP16721395A JPH0923598A JP H0923598 A JPH0923598 A JP H0923598A JP 7167213 A JP7167213 A JP 7167213A JP 16721395 A JP16721395 A JP 16721395A JP H0923598 A JPH0923598 A JP H0923598A
Authority
JP
Japan
Prior art keywords
magnet
rotor
pole
magnetic flux
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7167213A
Other languages
Japanese (ja)
Other versions
JP3428234B2 (en
Inventor
Kazunari Narasaki
和成 楢崎
Yukio Honda
幸夫 本田
Hiroshi Murakami
浩 村上
Yoshinari Asano
能成 浅野
Tomokuni Iijima
友邦 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16721395A priority Critical patent/JP3428234B2/en
Publication of JPH0923598A publication Critical patent/JPH0923598A/en
Application granted granted Critical
Publication of JP3428234B2 publication Critical patent/JP3428234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high efficiency motor having improved orthogonality between magnetic flux and current by forming one-pole magnet arranged at the inside of rotor with an arcuated first magnet and a second magnet of different shape and separated from the first magnet. SOLUTION: A magnet inserting hole 104 is provided on a rotor iron core 102 and a first magnet 106 and a second magnet 108 are inserted thereto. Here, the first magnet 106 is arranged near the surface of the rotor cylinder 103. The magnetic flux permeability of the magnet is rather smaller than that of the rotor. The first magnet 106 or the rotor is formed in the normal or inverse arc. A stator 112 is provided in these rotors and to the entire circumference of the rotor. A 3-phase coil is wound to a slot 114 of the stator 112. Thereby, the generation of magnetic flux caused by the current can be reduced, the orthogonality between total magnetic flux and total current can be improved and a torque for the unit current is increased to realize a small sized motor assuring high efficiency and high output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリラクタンストルクを利
用し小型高出力、高効率を実現する磁石埋込形モータに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnet-embedded motor that utilizes reluctance torque to realize a small size, high output, and high efficiency.

【0002】[0002]

【従来の技術】近年、モータを搭載する機器の小型高出
力化、また省エネルギーの観点から、搭載されるモータ
も同様に小型高出力化、高効率化を図る事が望まれてい
る。
2. Description of the Related Art In recent years, from the viewpoint of miniaturization and high power output of equipment in which a motor is mounted, and energy saving, it is desired that the mounted motor also be small and high power and highly efficient.

【0003】永久磁石を用いたモータの小型高出力化、
高効率化は、磁石によるトルク成分であるマグネットト
ルクを有効に活用すると共に、回転子鉄心内部に磁石を
配し、回転子鉄心の磁気抵抗(リラクタンス)の大小に
よるリラクタンストルク成分を積極的に活用することに
より実現できる。
[0003] Smaller and higher output motors using permanent magnets,
For higher efficiency, the magnet torque, which is the torque component of the magnet, is effectively used, and the magnet is placed inside the rotor core to positively utilize the reluctance torque component depending on the magnitude of the magnetic resistance (reluctance) of the rotor core. It can be realized by doing.

【0004】以下、従来の磁石埋込形モータについて図
15を参照しながら説明する。図15において、552
は回転子鉄心、553は回転子円筒部表面、554は回
転子鉄心の磁石挿入穴、556は第1の磁石、558は
第2の磁石、560は軸穴、562は固定子、564は
固定子巻線を挿入するスロット(実際の巻線は省略)、
570はq軸磁束通路、580はd軸磁束通路である。
またd軸とq軸方向を図15に示す。磁石の極性N、S
は固定子112側のみを示す。
A conventional magnet-embedded motor will be described below with reference to FIG. In FIG. 15, 552
Is a rotor core, 553 is a rotor cylindrical surface, 554 is a magnet insertion hole of the rotor core, 556 is a first magnet, 558 is a second magnet, 560 is a shaft hole, 562 is a stator, 564 is fixed Slot for inserting the child winding (the actual winding is omitted),
570 is a q-axis magnetic flux passage and 580 is a d-axis magnetic flux passage.
The d-axis and q-axis directions are shown in FIG. Magnet polarity N, S
Shows only the stator 112 side.

【0005】以上のように構成された従来の磁石埋込形
モータについて、詳細に構成を説明すると共にその動作
について説明する。
The structure of the conventional magnet-embedded motor having the above-described structure will be described in detail and its operation will be described.

【0006】回転子鉄心552は0.5mm程度の珪素
鋼板を積層して作られている。回転子円筒部表面553
は固定子562に対面している回転子の円筒形状した外
形を表す。そして回転子鉄心552は第1の磁石55
6、第2の磁石558を挿入するための磁石挿入穴55
4があけられている。そして磁石挿入穴554には図1
5に示すように第1の磁石556と第2の磁石558が
挿入されている(特にことわりがない場合は挿入穴に磁
石は隙間なく入っている事とする)。また珪素鋼板の中
央に軸を通すための軸穴560が設けられている。ここ
で、図15の形状は逆円弧形状に磁石が2層に配置され
ており、2層逆円弧形状という事とする。これらの回転
子に対し、固定子562は回転子と半径方向全周に0.
5mm程度のギャップを保ち固定されており、回転子は
回転自在である。ここで固定子562には3相の巻線5
64(図示せず)が巻かれおり各相の巻線562に電流
を流す事により回転界磁を作成し、回転子は回転界磁に
同期して回転する。
The rotor core 552 is made by laminating silicon steel plates of about 0.5 mm. Rotor cylindrical surface 553
Represents the cylindrical outer shape of the rotor facing the stator 562. The rotor core 552 is the first magnet 55.
6, magnet insertion hole 55 for inserting the second magnet 558
4 has been opened. The magnet insertion hole 554 is shown in FIG.
As shown in FIG. 5, the first magnet 556 and the second magnet 558 are inserted (unless otherwise specified, the magnets are inserted in the insertion hole without a gap). A shaft hole 560 for passing a shaft is provided in the center of the silicon steel plate. Here, the shape of FIG. 15 is a two-layer reverse circular arc shape in which magnets are arranged in two layers in a reverse circular arc shape. In contrast to these rotors, the stator 562 has a radius of 0.
It is fixed with a gap of about 5 mm, and the rotor is rotatable. Here, the stator 562 has three-phase windings 5
64 (not shown) is wound and a rotating field is created by passing an electric current through the winding 562 of each phase, and the rotor rotates in synchronization with the rotating field.

【0007】図15において、d軸は磁石による磁束の
方向を、q軸はそれと直交した方向にとる。そこでq軸
方向に電流(q軸電流iq)を加えることにより磁石磁
束によるマグネットトルクTmが発生する(一般的な動
作)。
In FIG. 15, the d-axis is the direction of the magnetic flux by the magnet, and the q-axis is the direction orthogonal to it. Then, by applying a current (q-axis current iq) in the q-axis direction, a magnet torque Tm is generated by the magnet magnetic flux (general operation).

【0008】ここで、図15に回転子ではq軸、d軸電
流を流した時の磁束の通路であるq軸磁束通路570と
d軸磁束通路580を示す。q軸磁束通路570は第1
の磁石556と第2の磁石558の間を主として通る。
即ち回転子鉄心552のみを通るのに対し、d軸磁束通
路580は回転子鉄心552よりも透磁率の悪い磁石に
より磁束の通過が妨げらる事が理解できる。そこで、回
転子鉄心552のq軸とd軸の磁束の通り易さの差によ
ってリラクタンストルクTrが発生する。q軸、d軸の
磁束の通り易さはモータ定数であるインダクタンスL
q、Ldを用いて表される。即ち図15ではLq>Ldとな
っている。(数1)にトルク式を示す。
FIG. 15 shows a q-axis magnetic flux passage 570 and a d-axis magnetic flux passage 580 which are magnetic flux passages when a q-axis current and a d-axis current flow in the rotor. The q-axis magnetic flux passage 570 is the first
It mainly passes between the second magnet 558 and the second magnet 556.
That is, it can be understood that the d-axis magnetic flux passage 580 is blocked only by the rotor core 552, while the d-axis magnetic flux passage 580 is blocked by a magnet having a magnetic permeability lower than that of the rotor core 552. Therefore, the reluctance torque Tr is generated due to the difference in the ease of passage of the q-axis and d-axis magnetic flux of the rotor core 552. The ease with which the q-axis and d-axis magnetic flux pass is the inductance L that is the motor constant.
It is expressed using q and Ld. That is, in FIG. 15, Lq> Ld. The torque formula is shown in (Equation 1).

【0009】[0009]

【数1】 [Equation 1]

【0010】ここで、ψ:磁石の鎖交磁束、Ld,Lq:
d,q軸インダクタンス、id,iq:d,q軸固定子電流
である。(数1)で第1項は磁石の磁束を利用したマグ
ネットトルクTm、第2項はリラクタンストルクTrを示
す。iqは従来の表面磁石型モータのトルク電流を示
す。また、上式で逆突極モータでリラクタンストルクT
rを発生させるためidは負の値を与える。idの負の値
は電流位相を進める方向である。
Where ψ: interlinkage magnetic flux of the magnet, Ld, Lq:
d, q axis inductance, id, iq: d, q axis stator current. In (Equation 1), the first term represents the magnet torque Tm using the magnetic flux of the magnet, and the second term represents the reluctance torque Tr. iq represents the torque current of the conventional surface magnet type motor. In addition, the reluctance torque T can be
id produces a negative value to generate r. A negative value of id is in the direction of advancing the current phase.

【0011】ここで、id,iqをベクトル加算した総合
電流をIとおくと、id,iqは(数2)となる。
Here, letting I be the total current obtained by vector addition of id and iq, id and iq are given by (Equation 2).

【0012】[0012]

【数2】 [Equation 2]

【0013】ここで、θは電流位相進み量を示す。(数
2)を(数1)に代入すると(数3)が得られる。
Here, θ represents the amount of current phase advance. By substituting (Equation 2) into (Equation 1), (Equation 3) is obtained.

【0014】[0014]

【数3】 (Equation 3)

【0015】ここで、(数3)より得られる電流位相進
み量とマグネットトルクTm、リラクタンストルクTr、
総合トルク(Tm+Tr)との関係を図16に示す。
Here, the amount of current phase advance, the magnet torque Tm, and the reluctance torque Tr obtained from (Equation 3),
FIG. 16 shows the relationship with the total torque (Tm + Tr).

【0016】図16では電流位相が30度進んだ場合に
総合トルクは最大トルクが得られている。このように電
流位相を最適な位相に制御する事により、Tm以上の総
合トルクを得る事ができ小型高出力化を図れる事とな
る。
In FIG. 16, the maximum total torque is obtained when the current phase advances by 30 degrees. By controlling the current phase to the optimum phase in this way, it is possible to obtain a total torque of Tm or more and to achieve a compact size and high output.

【0017】同一電流で最大トルクを得る電流位相θt
は(数3)を電流位相θで偏微分し零とおく事により
(数4)で得られる。
Current phase θt for obtaining maximum torque with the same current
Is obtained by (Equation 4) by partially differentiating (Equation 3) with the current phase θ and setting it to zero.

【0018】[0018]

【数4】 (Equation 4)

【0019】[0019]

【発明が解決しようとする課題】従来の磁石埋込形モー
タにおいては、逆円弧形状に磁石を配し、リラクタンス
トルクを得るためにLqを大きく設計すれば良いと考え
られていた。しかし、Lq、(Ld−Lq)を大きくする
に従ってと磁束とトルクとの直交関係が悪くなる。その
ため効率向上率が悪くなるという課題を有していた。
In the conventional magnet-embedded motor, it was considered that magnets should be arranged in a reverse circular arc shape and Lq should be designed large in order to obtain reluctance torque. However, as Lq and (Ld-Lq) are increased, the orthogonal relationship between the magnetic flux and the torque becomes worse. Therefore, there is a problem that the efficiency improvement rate is deteriorated.

【0020】この事を図を用いて説明する。磁束と電流
との関係を図17に示す。ここで総合磁束Φはφ、Lq
iq、Ldid、総合電流Iはid、iqから構成される。
図17において総合磁束Φと総合電流Iとは60度程度
の位相となっている。しかしФとIは90度の位相で最
も効率よく発生した磁束をトルク化できる事となる。即
ちトルクは(数5)で与えられる。
This will be described with reference to the drawings. FIG. 17 shows the relationship between the magnetic flux and the current. Where the total magnetic flux Φ is φ, Lq
iq and Ldid, and the total current I is composed of id and iq.
In FIG. 17, the total magnetic flux Φ and the total current I have a phase of about 60 degrees. However, Φ and I can turn the magnetic flux generated most efficiently in the phase of 90 degrees into torque. That is, the torque is given by (Equation 5).

【0021】[0021]

【数5】 (Equation 5)

【0022】即ち、電流と磁束との直交関係が悪くなる
と印加電流に対しトルクが有効に発生できないため駆動
効率の悪いモータとなる。
That is, if the orthogonal relationship between the current and the magnetic flux deteriorates, torque cannot be effectively generated with respect to the applied current, resulting in a motor with poor drive efficiency.

【0023】さらに、最大トルクを得るため電流位相進
みを行うと位相進みの分、図18に示すようにTmは減
少するという本質的な課題があった。
Further, when the current phase advance is performed to obtain the maximum torque, there is an essential problem that the phase advance leads to a decrease in Tm as shown in FIG.

【0024】[0024]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の磁石埋込形モータは回転子鉄心と、回転子
の内部に配置した1極分の磁石が回転子円筒部表面の形
状に沿った円弧形状の第1の磁石と、第1の磁石とは分
離しており異なる形状の第2の磁石とを備えたものであ
る。
In order to solve the above problems, in the magnet-embedded motor of the present invention, the rotor core and the magnet for one pole arranged inside the rotor are on the surface of the rotor cylindrical portion. An arc-shaped first magnet that follows the shape and a second magnet that is separated from the first magnet and has a different shape are provided.

【0025】本発明による更に他の磁石埋込形モータ
は、第1の磁石の1極分の磁石が回転子円筒部表面近傍
から回転子円筒部表面近傍まで配置した略長方形形状を
備えたものである。
Still another magnet-embedded motor according to the present invention has a substantially rectangular shape in which a magnet for one pole of the first magnet is arranged from the vicinity of the surface of the rotor cylindrical portion to the vicinity of the surface of the rotor cylindrical portion. Is.

【0026】本発明による更に他の磁石埋込形モータ、
各々1極分の回転子鉄心が回転子の回転方向の逆側部分
に空隙や切り欠きや磁石に対して大きい磁石挿入穴の少
なくとも1つを設けたものである。
Still another magnet embedded motor according to the present invention,
Each one-pole rotor core is provided with at least one of a gap, a notch, and a magnet insertion hole large with respect to the magnet in a portion opposite to the rotation direction of the rotor.

【0027】[0027]

【作用】本発明は上記した構成によって、回転子円筒部
表面近傍に回転子鉄心に比べ磁束透磁率が小さい第1の
磁石を配置(正円弧形状)する事により、id電流によ
る磁束の発生量は減少する。即ちインダクタンスLdは
減少する。インダクタンスLdを小さくする事により磁
束と電流との直交性は改善され高効率モータとなる。
According to the present invention, the amount of magnetic flux generated by id current is increased by arranging the first magnet having a smaller magnetic flux permeability than the rotor core near the surface of the rotor cylindrical portion (regular arc shape). Decreases. That is, the inductance Ld decreases. By reducing the inductance Ld, the orthogonality between the magnetic flux and the current is improved, and a high-efficiency motor is obtained.

【0028】また、回転子の内部に回転子円筒部表面近
傍から回転子円筒部表面近傍まで配置した略長方形形状
の磁石を配置する事により、作成が簡単で低価格の磁石
を用いてインダクタンスLdを小さくし高効率なモータ
となる。
Further, by arranging a magnet having a substantially rectangular shape arranged from the vicinity of the surface of the rotor cylindrical portion to the vicinity of the surface of the rotor cylindrical portion inside the rotor, the inductance Ld can be formed by using a low-cost magnet which is easy to prepare. To make the motor highly efficient.

【0029】さらに、各々1極分の磁束が発生する回転
子鉄心の回転子の回転方向の逆側部分に空隙や切り欠き
を設ける事により、マグネットの磁束は回転子の回転方
向側が強くなる。この事は電流位相進みを考慮すると電
流と磁石磁束による誘起電圧の符号が異なり負のトルク
Tmを発生させる場合の磁束を減少させ、かわりに電流
と磁束が同符号の正のトルクTmを発生させる場合の磁
束を増加させる事となり、電流位相進みによるトルクT
m減少分を抑え総合トルクを大きくさせ高効率なモータ
となる。
Further, by providing a gap or a notch in a portion of the rotor core on the side opposite to the rotating direction of the rotor where magnetic flux for one pole is generated, the magnetic flux of the magnet becomes stronger on the rotating direction side of the rotor. This means that when the current phase advance is taken into consideration, the sign of the induced voltage due to the current and the magnetic flux of the magnet is different, and the magnetic flux when the negative torque Tm is generated is reduced, and instead, the positive torque Tm of the same sign is generated between the current and the magnetic flux. In the case of increasing the magnetic flux, the torque T due to the current phase lead
A highly efficient motor that suppresses the decrease in m and increases the total torque.

【0030】[0030]

【実施例】以下本発明の磁石埋込形モータの実施例につ
いて図面を参照しながら説明する。
Embodiments of the magnet-embedded motor of the present invention will be described below with reference to the drawings.

【0031】第1の実施例では、回転子の内部に回転子
円筒部表面の形状に沿って円弧形状の磁石を配置する事
によりインダクタンスLdを小さくし高効率なモータに
するものである。
In the first embodiment, the arc-shaped magnet is arranged inside the rotor along the shape of the surface of the rotor cylindrical portion to reduce the inductance Ld and make the motor highly efficient.

【0032】図1は本発明の第1の実施例にあたる磁石
埋込形モータの断面図である。図1において、102は
回転子鉄心、103は回転子円筒部表面、104は回転
子鉄心の磁石挿入穴、106は第1の磁石、108は第
2の磁石、110は軸穴、112は固定子、114は固
定子巻線を挿入するスロット(実際の巻線は省略)であ
る。N、Sは固定子112側の磁石の極性のみを表す。
FIG. 1 is a sectional view of a magnet-embedded motor according to a first embodiment of the present invention. In FIG. 1, 102 is a rotor core, 103 is a rotor cylindrical surface, 104 is a rotor core magnet insertion hole, 106 is a first magnet, 108 is a second magnet, 110 is a shaft hole, and 112 is fixed. The child 114 is a slot into which the stator winding is inserted (the actual winding is omitted). N and S represent only the polarity of the magnet on the stator 112 side.

【0033】図1は従来例に対し、第1の磁石106の
形状と、それに伴って回転子鉄心102と磁石挿入穴1
04が異なる。ここで、回転子構成に関しては従来例と
同じ所は簡単に述べる。
FIG. 1 shows the shape of the first magnet 106 and the rotor core 102 and the magnet insertion hole 1 in accordance with the shape of the first magnet 106 in comparison with the conventional example.
04 is different. Here, regarding the rotor configuration, the same points as in the conventional example will be briefly described.

【0034】回転子鉄心102は外形が円形に打ち抜か
れた珪素鋼板を積層して作られている。そのため、回転
子円筒部表面103は円筒形状を示す。そして回転子鉄
心102は第1の磁石106、第2の磁石108を挿入
するための磁石挿入穴104が設けられている。そして
磁石挿入穴には図1に示すように第1の磁石106と第
2の磁石108が挿入されている。ここで、第1の磁石
106は回転子円筒部表面近傍に配置される。磁石は回
転子鉄心に比べ磁束透磁率が小さい。また珪素鋼板の中
央に軸穴110が設けられている。
The rotor core 102 is made by laminating silicon steel plates punched in a circular outer shape. Therefore, the rotor cylindrical surface 103 has a cylindrical shape. The rotor core 102 is provided with a magnet insertion hole 104 for inserting the first magnet 106 and the second magnet 108. The first magnet 106 and the second magnet 108 are inserted into the magnet insertion hole as shown in FIG. Here, the first magnet 106 is arranged near the surface of the rotor cylindrical portion. The magnet has a smaller magnetic flux permeability than the rotor core. A shaft hole 110 is provided in the center of the silicon steel plate.

【0035】ここで、図1の第1の磁石106あるいは
回転子の形状を正逆円弧形状という事とする。これらの
回転子に対し、また回転子と全周に固定子112が存在
する。固定子112の固定子巻線を挿入するスロット1
14にはu、v、wの3相の巻線が巻回されている。巻
線に電流を流す事により回転界磁を作成し、回転子は回
転界磁に同期して回転する。
Here, the shape of the first magnet 106 or the rotor of FIG. 1 will be referred to as a regular arc shape. There is a stator 112 for these rotors and around the rotor. Slot 1 for inserting the stator winding of the stator 112
Three-phase windings of u, v, and w are wound around 14. A rotating field is created by passing an electric current through the winding, and the rotor rotates in synchronization with the rotating field.

【0036】図1の構成の回転子を有するモータの特性
を図2、図3を用いて説明する。図2(a)は第1の実
施例において固定子巻線にid電流を流した場合の磁束
線図である。磁束はインダクタンスLと電流に比例す
る。そこで、磁束が少ないとインダクタンスが小さい事
を意味する。図2(b)は第1の実施例においてにiq
電流を流した場合の磁束線図を示す。図2(a)と比較
すればidを流すよりもiqを流す場合の方が磁束が多く
発生している事が理解できる。即ち、従来例で述べたよ
うにLd<Lqであり、(数1)よりTrを発生する。
The characteristics of the motor having the rotor configured as shown in FIG. 1 will be described with reference to FIGS. FIG. 2A is a magnetic flux diagram when an id current is passed through the stator winding in the first embodiment. The magnetic flux is proportional to the inductance L and the current. Therefore, a small magnetic flux means a small inductance. FIG. 2B shows the case of iq in the first embodiment.
The magnetic flux diagram when an electric current is sent is shown. It can be understood from the comparison with FIG. 2A that more magnetic flux is generated when iq is passed than when id is passed. That is, as described in the conventional example, Ld <Lq, and Tr is generated from (Equation 1).

【0037】次に従来の第1の磁石と第2の磁石が両方
とも凸部が回転軸側に向いた円弧形状(2層逆円弧形
状)である場合のid、iqを与えた場合の磁束線図を図
3(a)、(b)に示す。図2(a)の磁束が図3
(a)の磁束よりすくなくなり、第1の実施例のインダ
クタンスLdが従来例より小さくなっている事が分か
る。また第1の磁石と第2の磁石との隙間を保つ事によ
りLqの大きさは保たれる。そのため図2、図3ともイ
ンダクタンスの差(LdーLq)の値は同じであり、リラ
クタンストルクは同様に有効に活用できる。
Next, in both the first magnet and the second magnet of the related art, the magnetic fluxes when id and iq are given in the case where the convex portion has an arc shape (two-layer reverse arc shape) in which the convex portion faces the rotation axis side. The diagrams are shown in FIGS. 3 (a) and 3 (b). The magnetic flux of FIG.
It can be seen that the magnetic flux is less than the magnetic flux in (a), and the inductance Ld of the first embodiment is smaller than that of the conventional example. Further, the size of Lq is maintained by maintaining the gap between the first magnet and the second magnet. Therefore, the values of the difference in inductance (Ld-Lq) are the same in FIGS. 2 and 3, and the reluctance torque can be effectively utilized similarly.

【0038】ここで、図4にインダクタンスLd変化と
電流,磁束間の角度との関係を示す。即ち、(数4)よ
りインダクタンスの差(Ld−Lq)を一定に保ったまま
インダクタンスLdが大の場合(図4a)とLdが小の場
合(図4b)(Ld=0の極端な例)を計算した総合電
流Iの位相θtと総合磁束Φとの角度βを求めた結果を
図4に示す。
FIG. 4 shows the relationship between the change in the inductance Ld and the angle between the current and the magnetic flux. That is, from (Equation 4), the inductance difference (Ld-Lq) is kept constant and the inductance Ld is large (FIG. 4a) and Ld is small (FIG. 4b) (Ld = 0 extreme example). FIG. 4 shows the result of the calculation of the angle β between the phase θt of the total current I and the total magnetic flux Φ.

【0039】即ちインダクタンスLdを小さくする事に
より電流と磁束との直交性は良くなり効率向上が可能と
なる。
That is, by reducing the inductance Ld, the orthogonality between the current and the magnetic flux is improved and the efficiency can be improved.

【0040】さらに、図5、図6、図7に同様に正円弧
形状の磁石を設けた他の回転子の構造を示す(固定子は
同様であるため省略)。図5は第2の磁石109がラジ
アル方向に配置した略長方形形状である。磁極は固定子
112側を判断できない場合はN、Sの両方を記す。図
6は第2の磁石111の個数を減らした構成である。図
7は第1の磁石107の円周側の磁石側面がq軸磁束通
路の確保のため2つの側面の延長線が回転軸中心の内側
で交わる構成である。全てにおいて同様にインダクタン
スLdを小さくでき高効率化を図れる事は言うまでもな
い。
Further, FIG. 5, FIG. 6 and FIG. 7 show the structure of another rotor similarly provided with a magnet having a regular arc shape (the stator is the same and therefore omitted). FIG. 5 shows a substantially rectangular shape in which the second magnet 109 is arranged in the radial direction. When the magnetic pole cannot determine the stator 112 side, both N and S are marked. FIG. 6 shows a configuration in which the number of second magnets 111 is reduced. FIG. 7 shows a configuration in which the magnet side surface on the circumferential side of the first magnet 107 intersects the extension lines of the two side surfaces inside the rotation axis center in order to secure the q-axis magnetic flux passage. It is needless to say that the inductance Ld can be similarly reduced in all cases to achieve high efficiency.

【0041】ここで、図1、図5、図6、図7及び後述
の図14において、第1の磁石の固定子側は薄い回転子
鉄心104に覆われていても、磁石表面がそのまま固定
子に対面してもどちらでも良い事は言うまでもない。
Here, in FIG. 1, FIG. 5, FIG. 6, FIG. 7 and FIG. 14 described later, even if the stator side of the first magnet is covered with the thin rotor core 104, the magnet surface is fixed as it is. It goes without saying that it does not matter whether the child faces the child.

【0042】次に本発明の第2の実施例の磁石埋込形モ
ータについて説明する。第2の実施例では、回転子の内
部に回転子円筒部表面近傍から回転子円筒部表面近傍ま
で配置した略長方形形状の磁石を配置する事により、作
成が簡単で低価格の磁石を用いてインダクタンスLdを
小さく高効率なモータにするものである。
Next, a magnet-embedded motor according to a second embodiment of the present invention will be described. In the second embodiment, by arranging a magnet having a substantially rectangular shape arranged from the vicinity of the surface of the rotor cylindrical portion to the vicinity of the surface of the rotor cylindrical portion inside the rotor, it is possible to use a low-cost magnet that is easy to create. The inductance Ld is small and the motor is highly efficient.

【0043】図8は本発明の第2の実施例にあたる磁石
埋込形モータの断面図である。図8において、202は
回転子鉄心、103は回転子円筒部表面、204は回転
子鉄心の磁石挿入穴、206は第1の磁石、108は第
2の磁石、110は軸穴である。固定子112、固定子
巻線を挿入するスロット114の図は省略した。
FIG. 8 is a sectional view of a magnet-embedded motor according to a second embodiment of the present invention. In FIG. 8, 202 is a rotor iron core, 103 is a rotor cylindrical surface, 204 is a rotor iron magnet insertion hole, 206 is a first magnet, 108 is a second magnet, and 110 is a shaft hole. Illustrations of the stator 112 and the slot 114 for inserting the stator winding are omitted.

【0044】第1の実施例に対し第2の実施例は第1の
磁石206の形状と、形状変化に伴って回転子鉄心20
2、磁石挿入穴204が異なっている。
In contrast to the first embodiment, the second embodiment has the shape of the first magnet 206 and the rotor core 20 according to the shape change.
2. The magnet insertion holes 204 are different.

【0045】図8の構成の回転子は第1の実施例で述べ
たのと同様の考え方によりインダクタンスLdを小さく
し効率向上が可能である。しかし図8に示すように第1
の磁石206の回転子鉄心円筒部外形側に第1の実施例
に比べて厚い回転子鉄心がある。そのため第1の実施例
ほどインダクタンスLdは小さくならないが従来例の図
15に対してインダクタンスLdを十分小さくする事が
可能である。また第1の磁石206は図8のAに示すよ
うに回転中心側の磁石角部がインダクタンスLq磁束通
路の確保のため面取りによりカットされている。
In the rotor having the structure shown in FIG. 8, it is possible to improve the efficiency by reducing the inductance Ld according to the same idea as described in the first embodiment. However, as shown in FIG.
A rotor core thicker than that in the first embodiment is provided on the outer side of the rotor core cylindrical portion of the magnet 206 of FIG. Therefore, although the inductance Ld does not become smaller than that of the first embodiment, it is possible to make the inductance Ld sufficiently smaller than that of the conventional example shown in FIG. Further, as shown in A of FIG. 8, the first magnet 206 is chamfered at the magnet corner portion on the rotation center side in order to secure the inductance Lq magnetic flux passage.

【0046】第2の実施例は第1の磁石206の断面が
略長方形のため作成しやすく、後加工の工数が少なくて
磁石作成費が安い磁石を用いて効率向上が可能である。
In the second embodiment, since the cross section of the first magnet 206 is substantially rectangular, it is easy to produce, and the efficiency can be improved by using a magnet that requires a small number of post-processing steps and is low in magnet production cost.

【0047】図8のAに示すカットの形状ははR形状等
でも良い。次に本発明の第3の実施例の磁石埋込形モー
タについて説明する。
The shape of the cut shown in FIG. 8A may be an R shape or the like. Next, a magnet embedded type motor according to a third embodiment of the present invention will be described.

【0048】第3の実施例では、1極分の回転子鉄心が
回転子の回転方向の逆側に切り欠きを備え磁束方向を変
更する事により電流位相進み制御を行った場合のマグネ
ットトルクの減少を抑え高効率のモータを実現するもの
である。
In the third embodiment, the rotor iron core for one pole is provided with a notch on the side opposite to the rotating direction of the rotor and the magnetic flux direction is changed to change the magnetic phase advance control of the magnet torque. It is intended to realize a highly efficient motor that suppresses the decrease.

【0049】図9は本発明の第3の実施例にあたる磁石
埋込形モータの断面図である。図9において、302は
回転子鉄心、304は回転子鉄心の磁石挿入穴、306
は磁石、110は軸穴、316は切り欠きである。
FIG. 9 is a sectional view of a magnet-embedded motor according to a third embodiment of the present invention. In FIG. 9, 302 is a rotor iron core, 304 is a magnet insertion hole of the rotor iron core, 306
Is a magnet, 110 is a shaft hole, and 316 is a notch.

【0050】本実施例では図1に示す第1の実施例の第
2の磁石108、第2の磁石108を挿入するための磁
石挿入穴104をなくして切り欠き316を付加してい
る。固定子112、固定子巻線を挿入するスロット11
4の図は省略した。
In this embodiment, the second magnet 108 of the first embodiment shown in FIG. 1 and the magnet insertion hole 104 for inserting the second magnet 108 are eliminated and a notch 316 is added. Stator 112, slot 11 for inserting stator winding
4 is omitted.

【0051】切り欠き316は軸方向に回転子鉄心30
2を貫通している。その効果を図10〜図14を用いて
説明する。
The notch 316 is formed in the axial direction of the rotor core 30.
2 through. The effect will be described with reference to FIGS.

【0052】図10に電流進みがない場合の各々1相分
の電流、磁石磁束による誘起電圧波形とトルクを示す。
図10〜図12の縦軸は適当な数値を与え大きさの目安
を示す。トルクは見やすくするため、トルク=2×電流
×誘起電圧で求めた値を表示している。電流位相進みが
ないため電流と誘起電圧の符号が同じであり1相分のト
ルクが負を示す所がない。図10の1相分のTmを発生
している場合は、図23において電流位相進みが0度に
対応しTmは最大である。ここで、モータの発生するト
ルクは例えば固定子に3相の電流を流す場合には120
度ずつ位相のずれた3つのトルクを加算すれば得られ
る。
FIG. 10 shows the current for one phase, the waveform of the induced voltage due to the magnetic flux of the magnet, and the torque when there is no current advance.
The vertical axis in each of FIGS. 10 to 12 gives an appropriate numerical value to indicate the size standard. In order to make the torque easy to see, the value calculated by torque = 2 × current × induced voltage is displayed. Since there is no current phase advance, the signs of the current and the induced voltage are the same, and there is no place where the torque for one phase shows a negative value. When the Tm for one phase in FIG. 10 is generated, the current phase lead corresponds to 0 degree in FIG. 23, and Tm is the maximum. Here, the torque generated by the motor is, for example, 120 when three-phase current is passed through the stator.
It can be obtained by adding three torques whose phases are shifted by degrees.

【0053】図11は従来例における1相分の位相進み
電流、磁石磁束による誘起電圧波形とトルクを示す。図
11では30度電流位相を進めている。電流位相を進め
ると図11に示すように、誘起電圧波形と電流との位相
がずれて電流位相が進んだ分だけ負のトルクが発生する
事になりマグネットトルクの減少の原因となる。図11
のトルクを発生している場合のTmの減少分を図23に
示す。
FIG. 11 shows the phase lead current for one phase and the induced voltage waveform and torque due to the magnetic flux of the magnet in the conventional example. In FIG. 11, the current phase is advanced by 30 degrees. When the current phase is advanced, as shown in FIG. 11, the induced voltage waveform and the current are out of phase with each other, and a negative torque is generated as much as the current phase advances, which causes a decrease in magnet torque. FIG.
FIG. 23 shows the amount of decrease in Tm when the torque is generated.

【0054】従来に対し図9のように切り欠き316を
設ける事で負のトルクを発生させる部分で磁石の磁束を
減少させる。図13に30度位相進みの正弦波電流を加
える場合の電流が同符号である180度区間の電流印加
位置及び切り欠きによる磁石磁束の方向の変化を示す。
また、図12は第3の実施例における1相分の位相進み
電流、磁石磁束による誘起電圧波形とトルクを示す。
(誘起電圧波形は厳密にはこのようにはならず歪んだ波
形となるがその働きを理解するのには図12で十分と考
える。)図12と図13に示すように負のトルクを発生
させる磁束を減少させる。またその分の磁束は正のトル
クを発生させる所に行き、正のトルクを発生させるのに
寄与する磁束を増大させ正のトルクを増大させる。
By providing the notch 316 as shown in FIG. 9 as compared with the conventional case, the magnetic flux of the magnet is reduced in the portion where the negative torque is generated. FIG. 13 shows a change in the direction of the magnetic flux of the magnet due to the current application position and the notch in the 180 ° section in which the current has the same sign when a sine wave current with a 30 ° phase lead is applied.
Further, FIG. 12 shows the phase lead current for one phase and the induced voltage waveform and torque due to the magnet flux in the third embodiment.
(Strictly speaking, the waveform of the induced voltage is not such a waveform, but is a distorted waveform, but Fig. 12 is sufficient to understand its function.) As shown in Figs. 12 and 13, a negative torque is generated. To reduce the magnetic flux. Further, the corresponding magnetic flux goes to a place where a positive torque is generated, and the magnetic flux that contributes to the generation of the positive torque is increased to increase the positive torque.

【0055】図14に電流位相とトルクを示す。即ち負
のトルクは減少させ、正のトルクは増大し、図23に示
したTmの減少分が少なくなるため、総合トルクが増加
する事となる(厳密には,リラクタンストルクは従来に
対して小さくなる。)。
FIG. 14 shows the current phase and torque. That is, the negative torque is decreased, the positive torque is increased, and the decrease amount of Tm shown in FIG. 23 is reduced, so that the total torque is increased (strictly speaking, the reluctance torque is smaller than the conventional one). Become.).

【0056】このように電流位相を進めてもTmがあま
り減少せず同一電流に対するトルク発生量が増加する事
になり、小型高効率を実現可能となる。
As described above, even if the current phase is advanced, Tm does not decrease so much and the torque generation amount for the same current increases, so that small size and high efficiency can be realized.

【0057】また、図15に各1極の回転方向の逆側の
回転子円筒部表面に空隙318を設けた場合の6極の磁
極、磁石306を減少した場合の回転子を示す。図16
に空隙318の場合と空隙318を鉄心に変えた(空隙
がない)場合のシミュレーションによる総合トルク結果
を示す。空隙318により総合トルクが増加する事が明
かであり、同様の効果を得る事は言うまでもない。
Further, FIG. 15 shows a magnetic pole of 6 poles when a gap 318 is provided on the surface of the rotor cylindrical portion on the opposite side of the rotation direction of each 1 pole, and a rotor when the magnet 306 is reduced. FIG.
The total torque results by simulation in the case of the air gap 318 and in the case of changing the air gap 318 to an iron core (there is no air gap) are shown in FIG. It is clear that the air gap 318 increases the total torque, and it goes without saying that the same effect is obtained.

【0058】次に本発明の第3の実施例における他の回
転子構造を図17〜18に示す。図17に回転子鉄心表
面の40%程度まで切り欠きを大きくした図を示す。ま
た図18は磁極の端部ほど切り欠き量を多くしているた
めエアーギャップ(磁気抵抗)は端部ほど大きくなって
おり、磁極中心に向けて誘起電圧が大きくなる。ちなみ
に図9に示す切り欠きの1極分の回転子鉄心表面に対す
る割合は9%程度である。即ち,通常は3%〜15%程
度で良いと考える。しかし40〜60程度の大きい位相
進みでよく駆動する場合は切り欠きが45%程度までは
効果があると考えられる。
Next, another rotor structure according to the third embodiment of the present invention is shown in FIGS. FIG. 17 shows a diagram in which the notch is enlarged to about 40% of the rotor core surface. Further, in FIG. 18, since the notch amount is increased toward the end of the magnetic pole, the air gap (magnetic resistance) is increased toward the end, and the induced voltage increases toward the center of the magnetic pole. By the way, the ratio of the notch shown in FIG. 9 for one pole to the rotor core surface is about 9%. That is, it is normally considered to be about 3% to 15%. However, when it is driven well with a large phase lead of about 40 to 60, it is considered that the notch is effective up to about 45%.

【0059】さらに、図18は第1の実施例と第3の実
施例を供に採用した場合の図である。図17は各1極の
回転方向の逆側の磁石挿入穴305の形状を磁石形状に
対し大きくした。さらに第1の磁石106と第2の磁石
108の2層の磁石において磁石間のq軸の磁束通路を
確保するために第1の磁石107が磁極中心から回転方
向へ移動させている。この事により、第1の実施例と第
3の実施例の相乗した効果が得られる。
Further, FIG. 18 is a diagram when the first and third embodiments are employed together. In FIG. 17, the shape of the magnet insertion hole 305 on the opposite side of the rotation direction of each one pole is made larger than the magnet shape. Further, in the two-layer magnets of the first magnet 106 and the second magnet 108, the first magnet 107 is moved in the rotation direction from the magnetic pole center in order to secure the q-axis magnetic flux passage between the magnets. As a result, the synergistic effect of the first and third embodiments can be obtained.

【0060】また図18は1極分に相当する回転子鉄心
の両端部に切り欠き317を備えた場合である。図18
では磁石による誘起電圧が図12に示す場合よりさらに
中央部(電流位相が90度付近)が大きくなり,端部
(電流位相が0〜30度付近)は切り欠きにより小さく
なる。この構造は,駆動電流位相進みが小さく(30度
以内)リラクタンストルクの利用が少ない場合に特に有
効である。磁石による誘起電圧の位相と電流位相のズレ
が小さいため、電流の大きい部分で誘起電圧を大きくす
る事によって同様に同一電流に対するトルク発生量が増
加する事になり、小型高効率を実現可能となる。
FIG. 18 shows a case where the rotor core corresponding to one pole is provided with notches 317 at both ends. FIG.
In the case of the induced voltage by the magnet, the central portion (current phase is around 90 degrees) is larger than that in the case shown in FIG. 12, and the end portion (current phase is around 0 to 30 degrees) is smaller due to the notch. This structure is particularly effective when the drive current phase lead is small (within 30 degrees) and the reluctance torque is little used. Since the difference between the phase of the induced voltage and the current phase due to the magnet is small, increasing the induced voltage in the part where the current is large will also increase the amount of torque generated for the same current, making it possible to realize small size and high efficiency. .

【0061】第3の実施例は回転方向が時計回りか反時
計回りに片寄っている場合や、一方の回転方向のみに効
率が重視される場合に有効である。
The third embodiment is effective when the rotation direction is biased clockwise or counterclockwise, or when efficiency is emphasized only in one rotation direction.

【0062】ここで正弦波駆動について述べたが矩形波
駆動においても同様の効果が得られる事は言うまでもな
い。また、固定子の相数が変化しても同様の効果を得
る。
Although the sine wave driving has been described here, it goes without saying that the same effect can be obtained in the rectangular wave driving. Further, the same effect can be obtained even if the number of phases of the stator changes.

【0063】さらに磁石厚が厚いよりも磁束密度の高い
磁石を用い磁石厚が薄い方が空隙等が磁石によりさえぎ
られる事がないため磁石の磁束変更するための切り欠き
の効果がよりよく現れる。
Further, a magnet having a higher magnetic flux density than a thick magnet is used, and the thinner the magnet is, the better the effect of the notch for changing the magnetic flux of the magnet appears because the air gap is not blocked by the magnet.

【0064】1極に対し、磁石が1層、2層のみならず
さらに多層においても効果が有る事は言うまでもない。
It is needless to say that the magnet is effective not only in one layer and two layers but also in multiple layers for one pole.

【0065】[0065]

【発明の効果】本発明は回転子の内部に配置した1極分
の磁石が回転子円筒部表面の形状に沿った円弧形状の第
1の磁石と、第1の磁石とは分離しており異なる形状の
第2の磁石とを備える事により、id電流による磁束の
発生量を減少させる事となる。そのため総合磁束と総合
電流との直交性は改善され、単位電流に対するトルクが
増加して高効率化、小型高出力のモータが実現できる。
According to the present invention, the magnet for one pole arranged inside the rotor is separated from the first magnet and the first magnet, which are arcuate in shape along the shape of the rotor cylindrical surface. By providing the second magnets having different shapes, the amount of magnetic flux generated by the id current can be reduced. Therefore, the orthogonality between the total magnetic flux and the total current is improved, the torque per unit current is increased, and high efficiency, small size and high output motor can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例にあたる磁石埋込形モー
タの断面図
FIG. 1 is a sectional view of a magnet-embedded motor according to a first embodiment of the present invention.

【図2】本発明の第1の実施例において固定子巻線に電
流を流した場合の磁束線図
FIG. 2 is a magnetic flux diagram when a current is applied to the stator winding in the first embodiment of the present invention.

【図3】従来例の2層逆円弧形状において固定子巻線に
電流を流した場合の磁束線図
FIG. 3 is a magnetic flux diagram when a current is applied to a stator winding in a conventional two-layer reverse arc shape.

【図4】Ldと電流,磁束間の角度との関係を示す図FIG. 4 is a diagram showing the relationship between Ld and the angle between current and magnetic flux.

【図5】本発明の第1の実施例における他の回転子構造
を示す図
FIG. 5 is a diagram showing another rotor structure in the first embodiment of the present invention.

【図6】本発明の第1の実施例における他の回転子構造
を示す図
FIG. 6 is a diagram showing another rotor structure according to the first embodiment of the present invention.

【図7】本発明の第1の実施例における他の回転子構造
を示す図
FIG. 7 is a diagram showing another rotor structure in the first embodiment of the present invention.

【図8】本発明の第2の実施例にあたる磁石埋込形モー
タの断面図
FIG. 8 is a sectional view of a magnet-embedded motor according to a second embodiment of the present invention.

【図9】本発明の第3の実施例にあたる磁石埋込形モー
タの断面図
FIG. 9 is a sectional view of an embedded magnet type motor according to a third embodiment of the present invention.

【図10】1相分の電流、磁石磁束による誘起電圧波形
とトルクを示す図
FIG. 10 is a diagram showing an induced voltage waveform and torque due to a current for one phase, a magnetic flux of a magnet.

【図11】1相分の電流、磁石磁束による誘起電圧波形
とトルクを示す図
FIG. 11 is a diagram showing an induced voltage waveform and torque due to a current for one phase and a magnetic flux of a magnet.

【図12】1相分の電流、磁石磁束による誘起電圧波形
とトルクを示す図
FIG. 12 is a diagram showing an induced voltage waveform and torque due to a current for one phase and a magnetic flux of a magnet.

【図13】本発明の第3の実施例の回転子と正弦波電流
の印加位置と磁石磁束を示す図
FIG. 13 is a diagram showing a rotor of a third embodiment of the present invention, an application position of a sine wave current, and a magnet magnetic flux.

【図14】本発明の第3の実施例における電流位相進み
量とTm、Tr、Tm+Trとの関係を示す図
FIG. 14 is a diagram showing the relationship between the amount of current phase advance and Tm, Tr, and Tm + Tr in the third embodiment of the present invention.

【図15】本発明の第3の実施例における他の回転子構
造とそのシミュレーション結果を示す図
FIG. 15 is a diagram showing another rotor structure and its simulation result in the third embodiment of the present invention.

【図16】本発明の第3の実施例における他の回転子構
造とそのシミュレーション結果を示す図
FIG. 16 is a diagram showing another rotor structure and its simulation result in the third embodiment of the present invention.

【図17】本発明の第3の実施例における他の回転子構
造を示す図
FIG. 17 is a diagram showing another rotor structure according to the third embodiment of the present invention.

【図18】本発明の第3の実施例における他の回転子構
造を示す図
FIG. 18 is a diagram showing another rotor structure according to the third embodiment of the present invention.

【図19】本発明の第3の実施例における他の回転子構
造を示す図
FIG. 19 is a diagram showing another rotor structure according to the third embodiment of the present invention.

【図20】従来例における磁石埋込形モータの断面図FIG. 20 is a sectional view of a magnet-embedded motor in a conventional example.

【図21】従来例における電流位相進み量とTm、Tr、
Tm+Trとの関係を示す図
FIG. 21 is a current phase lead amount and Tm, Tr, and
Diagram showing the relationship with Tm + Tr

【図22】総合電流と総合磁束との関係を示す図FIG. 22 is a diagram showing a relationship between total current and total magnetic flux.

【図23】従来例における最大トルク電流位相とTmの
減少分との関係を示す図
FIG. 23 is a diagram showing the relationship between the maximum torque current phase and the amount of decrease in Tm in the conventional example.

【符号の説明】[Explanation of symbols]

106 第1の磁石 108 第2の磁石 104 磁石挿入穴 316 切り欠き 318 空隙 106 1st magnet 108 2nd magnet 104 Magnet insertion hole 316 Notch 318 Air gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 能成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 飯島 友邦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinari Asano 1006 Kadoma, Kadoma City, Osaka Prefecture, Matsushita Electric Industrial Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】回転子鉄心の内部に複数個の永久磁石を有
する磁石埋込形モータにおいて、固定子鉄心に巻線が巻
回された固定子と、回転子鉄心と、一部あるいはその全
てを前記回転子の内部に配置した1極分の磁石が回転子
円筒部表面の形状に沿った円弧形状の第1の磁石と、前
記第1の磁石とは分離しており異なる形状の第2の磁石
とからなることを特徴とする磁石埋込形モータ。
1. A magnet-embedded motor having a plurality of permanent magnets inside a rotor core, a stator having a winding wound around the stator core, a rotor core, and a part or all of the stator core. A magnet for one pole disposed inside the rotor has an arc-shaped first magnet that follows the shape of the rotor cylindrical portion surface and a second magnet that is separated from the first magnet and has a different shape. An embedded magnet type motor, which is composed of a magnet.
【請求項2】第2の磁石の凸部が回転軸側に向いた円弧
形状であることを特徴とする請求項1記載の磁石埋込形
モータ。
2. The magnet-embedded motor according to claim 1, wherein the convex portion of the second magnet has an arcuate shape facing the rotary shaft side.
【請求項3】第2の磁石がラジアル方向に配置した略長
方形形状であることを特徴とする請求項1記載の磁石埋
込形モータ。
3. The magnet-embedded motor according to claim 1, wherein the second magnet has a substantially rectangular shape arranged in the radial direction.
【請求項4】回転子鉄心の内部に複数個の永久磁石を有
する磁石埋込形モータにおいて、固定子鉄心に巻線が巻
回された固定子と、回転子鉄心と、前記回転子の内部に
配置した1極分の磁石が回転子円筒部表面近傍から回転
子円筒部表面近傍まで配置した略長方形形状の第1の磁
石と、前記第1の磁石とは分離しており異なる形状の第
2の磁石とからなることを特徴とする磁石埋込形モー
タ。
4. A magnet-embedded motor having a plurality of permanent magnets inside a rotor core, the stator having a winding wound around the stator core, the rotor core, and the inside of the rotor. The magnet for one pole disposed in the first magnet having a substantially rectangular shape arranged from the vicinity of the surface of the rotor cylindrical portion to the vicinity of the surface of the rotor cylindrical portion is separated from the first magnet and has a different shape. A magnet-embedded motor comprising two magnets.
【請求項5】第1の磁石の円周側の磁石側面が磁束通路
の確保のため前記2つの側面の延長線が回転軸中心の内
側で交わることを特徴とする請求項1または4記載の磁
石埋込形モータ。
5. A magnet side surface on the circumferential side of the first magnet has an extension line of the two side surfaces intersecting with each other inside the center of the rotation axis in order to secure a magnetic flux passage. Magnet embedded motor.
【請求項6】第1の磁石の回転中心側の磁石角部が磁束
通路の確保のため面取り等によりカットされていること
を特徴とする請求項1または4記載の磁石埋込形モー
タ。
6. The magnet-embedded motor according to claim 1, wherein a corner portion of the magnet on the rotation center side of the first magnet is cut by chamfering or the like to secure a magnetic flux passage.
【請求項7】回転子鉄心の内部に複数個の永久磁石を有
する磁石埋込形モータにおいて、固定子鉄心に巻線が巻
回された固定子と、回転子鉄心と、一部あるいはその全
てを前記回転子の内部に配置した磁石とを備え、各々1
極分の前記回転子鉄心が前記極の端部近傍から前記極の
中心に向けて空隙や切り欠きや磁石に対して大きい磁石
挿入穴の少なくとも1つを設けることを特徴とする磁石
埋込形モータ。
7. A magnet-embedded motor having a plurality of permanent magnets inside a rotor core, a stator having a winding wound around the stator core, a rotor core, and a part or all of the rotor core. And a magnet disposed inside the rotor,
A magnet-embedded type in which the rotor core of the pole is provided with at least one of a gap, a notch, and a large magnet insertion hole for a magnet from the vicinity of the end of the pole toward the center of the pole. motor.
【請求項8】各々1極分の前記回転子鉄心が前記回転子
の回転方向の逆側部分に空隙や切り欠きや磁石に対して
大きい磁石挿入穴の少なくとも1つを設けることを特徴
とする請求項7記載の磁石埋込形モータ。
8. The rotor core for each one pole is provided with at least one of a gap, a notch, and a magnet insertion hole large with respect to a magnet in a portion opposite to the rotation direction of the rotor. The magnet-embedded motor according to claim 7.
【請求項9】各々1極分の前記回転子鉄心が前記回転子
の回転方向の逆側部分の前記極の端部近傍から前記極の
中心に向けて端部ほど磁気抵抗が大きくなるよう空隙や
切り欠きや磁石に対して大きい磁石挿入穴の少なくとも
1つを設けることを特徴とする請求項7記載の磁石埋込
形モータ。
9. An air gap such that the rotor core for each one pole has a magnetic resistance that increases toward the center of the pole from the vicinity of the end of the pole on the side opposite to the rotation direction of the rotor. 8. The magnet-embedded motor according to claim 7, wherein at least one large magnet insertion hole is provided for the notch, the notch, and the magnet.
【請求項10】各々1極分の回転子鉄心が磁束が前記回
転子の回転方向の逆側部分の円筒部鉄心表面に前記1極
分の回転子鉄心表面の3%〜45%程度の切り欠きを設
けることを特徴とする請求項7記載の磁石埋込形モー
タ。
10. A rotor core for one pole each has a magnetic flux cut on the surface of the cylindrical core portion on the side opposite to the rotation direction of the rotor by about 3% to 45% of the surface of the rotor core for one pole. The magnet embedded motor according to claim 7, wherein a notch is provided.
【請求項11】回転子鉄心に設けた第2の磁石の磁石挿
入穴の回転子の回転方向の逆側部分が磁石形状に対して
大きいことを特徴とする請求項7記載の磁石埋込形モー
タ。
11. The magnet-embedded type according to claim 7, wherein a portion of the magnet insertion hole of the second magnet provided in the rotor core on the side opposite to the rotation direction of the rotor is larger than the magnet shape. motor.
【請求項12】第1の磁石が磁極中心から回転方向へ移
動したことを特徴とする請求項7記載の磁石埋込形モー
タ。
12. The magnet-embedded motor according to claim 7, wherein the first magnet is moved in the rotational direction from the center of the magnetic pole.
JP16721395A 1995-07-03 1995-07-03 Interior magnet type motor Expired - Fee Related JP3428234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16721395A JP3428234B2 (en) 1995-07-03 1995-07-03 Interior magnet type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16721395A JP3428234B2 (en) 1995-07-03 1995-07-03 Interior magnet type motor

Publications (2)

Publication Number Publication Date
JPH0923598A true JPH0923598A (en) 1997-01-21
JP3428234B2 JP3428234B2 (en) 2003-07-22

Family

ID=15845530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16721395A Expired - Fee Related JP3428234B2 (en) 1995-07-03 1995-07-03 Interior magnet type motor

Country Status (1)

Country Link
JP (1) JP3428234B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116084A (en) * 1998-09-29 2000-04-21 Toshiba Corp Permanent magnet reluctance rotating electric machine
EP1032115A2 (en) * 1999-02-22 2000-08-30 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
JP2003061280A (en) * 2001-08-10 2003-02-28 Yamaha Motor Co Ltd Rotor for motor
EP1361641A1 (en) * 2000-08-31 2003-11-12 Yamaha Hatsudoki Kabushiki Kaisha Permanent magnet rotor
EP1414130A2 (en) * 2002-10-26 2004-04-28 Lg Electronics Inc. Electric motor with a permanent magnet rotor
US6826824B2 (en) 2000-07-27 2004-12-07 Yamaha Hatsudoki Kabushiki Kaisha Embedded magnet type rotor and filling of the same
JP2006314152A (en) * 2005-05-06 2006-11-16 Nissan Motor Co Ltd Permanent-magnet motor
WO2007055775A2 (en) * 2005-10-31 2007-05-18 Caterpillar Inc. Rotary electric machine
JP2009044860A (en) * 2007-08-08 2009-02-26 Toyota Industries Corp Rotator, and rotary electric machine
JP2010233308A (en) * 2009-03-26 2010-10-14 Nissan Motor Co Ltd Synchronous motor
JP2012023904A (en) * 2010-07-15 2012-02-02 Toshiba Corp Permanent magnet type rotary electrical machinery
JP2013230080A (en) * 2012-03-30 2013-11-07 Tajiri Denki Seisakusho:Kk Embedded magnet synchronous rotary electric machine
JP2013251948A (en) * 2012-05-30 2013-12-12 Mitsubishi Electric Corp Permanent magnet embedded type electric motor
JP2018183011A (en) * 2017-04-21 2018-11-15 株式会社ミツバ Electric motor and brushless motor
JP2018183013A (en) * 2017-04-21 2018-11-15 株式会社ミツバ Synchronous motor and brushless motor
CN109617280A (en) * 2019-02-21 2019-04-12 珠海格力节能环保制冷技术研究中心有限公司 Rotor and motor
CN110212665A (en) * 2019-05-08 2019-09-06 江苏大学 A kind of method mixed rotor continuous pole permanent-magnet synchronous machine and reduce its torque pulsation
JP6725767B1 (en) * 2019-03-22 2020-07-22 三菱電機株式会社 Rotating electric machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126493A (en) 1964-03-24 Permanent magnet motor
JP3010986U (en) 1994-11-09 1995-05-09 日本理研株式会社 Power generator

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116084A (en) * 1998-09-29 2000-04-21 Toshiba Corp Permanent magnet reluctance rotating electric machine
EP1032115A2 (en) * 1999-02-22 2000-08-30 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
EP1032115A3 (en) * 1999-02-22 2002-04-17 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
EP1401083A3 (en) * 1999-02-22 2005-08-31 Kabushiki Kaisha Toshiba Permanent magnet and reluctance type rotating machine
US6826824B2 (en) 2000-07-27 2004-12-07 Yamaha Hatsudoki Kabushiki Kaisha Embedded magnet type rotor and filling of the same
EP1361641A1 (en) * 2000-08-31 2003-11-12 Yamaha Hatsudoki Kabushiki Kaisha Permanent magnet rotor
US6741003B2 (en) 2000-08-31 2004-05-25 Yamaha Hatsudoki Kabushiki Kaisa Permanent magnet rotor
JP4680442B2 (en) * 2001-08-10 2011-05-11 ヤマハ発動機株式会社 Motor rotor
JP2003061280A (en) * 2001-08-10 2003-02-28 Yamaha Motor Co Ltd Rotor for motor
EP1414130A2 (en) * 2002-10-26 2004-04-28 Lg Electronics Inc. Electric motor with a permanent magnet rotor
JP2006314152A (en) * 2005-05-06 2006-11-16 Nissan Motor Co Ltd Permanent-magnet motor
WO2007055775A2 (en) * 2005-10-31 2007-05-18 Caterpillar Inc. Rotary electric machine
WO2007055775A3 (en) * 2005-10-31 2007-07-05 Caterpillar Inc Rotary electric machine
JP2009044860A (en) * 2007-08-08 2009-02-26 Toyota Industries Corp Rotator, and rotary electric machine
JP2010233308A (en) * 2009-03-26 2010-10-14 Nissan Motor Co Ltd Synchronous motor
JP2012023904A (en) * 2010-07-15 2012-02-02 Toshiba Corp Permanent magnet type rotary electrical machinery
JP2013230080A (en) * 2012-03-30 2013-11-07 Tajiri Denki Seisakusho:Kk Embedded magnet synchronous rotary electric machine
JP2013251948A (en) * 2012-05-30 2013-12-12 Mitsubishi Electric Corp Permanent magnet embedded type electric motor
JP2018183011A (en) * 2017-04-21 2018-11-15 株式会社ミツバ Electric motor and brushless motor
JP2018183013A (en) * 2017-04-21 2018-11-15 株式会社ミツバ Synchronous motor and brushless motor
CN109617280A (en) * 2019-02-21 2019-04-12 珠海格力节能环保制冷技术研究中心有限公司 Rotor and motor
CN109617280B (en) * 2019-02-21 2023-10-27 珠海格力节能环保制冷技术研究中心有限公司 Motor rotor and motor
JP6725767B1 (en) * 2019-03-22 2020-07-22 三菱電機株式会社 Rotating electric machine
WO2020194390A1 (en) * 2019-03-22 2020-10-01 三菱電機株式会社 Rotating electric machine
CN113544942A (en) * 2019-03-22 2021-10-22 三菱电机株式会社 Rotating electrical machine
CN113544942B (en) * 2019-03-22 2023-09-29 三菱电机株式会社 Rotary electric machine
US11894726B2 (en) 2019-03-22 2024-02-06 Mitsubishi Electric Corporation Rotating electric machine
CN110212665A (en) * 2019-05-08 2019-09-06 江苏大学 A kind of method mixed rotor continuous pole permanent-magnet synchronous machine and reduce its torque pulsation
CN110212665B (en) * 2019-05-08 2021-10-12 江苏大学 Hybrid rotor continuous pole permanent magnet synchronous motor and method for reducing torque ripple thereof

Also Published As

Publication number Publication date
JP3428234B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
EP0746079B1 (en) Motor with built-in permanent magnets
JP3428234B2 (en) Interior magnet type motor
US7148597B2 (en) Permanent magnet rotating electric machine
US6940205B1 (en) Permanent magnet synchronous motor
JP3051340B2 (en) Synchronous motor
US6777842B2 (en) Doubly salient machine with permanent magnets in stator teeth
US6724114B2 (en) Doubly salient machine with angled permanent magnets in stator teeth
JPH11206049A (en) Permanent magnet motor
EP0923186B1 (en) Permanent magnet rotor type electric motor
JP2001037133A (en) Stator and motor
JPH1189197A (en) Permanent magnet synchronous motor
JP3605475B2 (en) Permanent magnet synchronous motor
JP2006166688A (en) Permanent magnet motor
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP2000197325A (en) Reluctance motor
JP2823817B2 (en) Permanent magnet embedded motor
US20210006112A1 (en) Rotary electric machine
JP2000253608A (en) Brushlfss motor
JP4091933B2 (en) Permanent magnet motor
JP2003088019A (en) Permanent-magnet motor
JP2004135375A (en) Rotor structure of coaxial motor
JPH0638475A (en) Permanent magnet rotary electric machine, controlling method therefor, controller and electric motor vehicle using the same
JPH09308198A (en) Permanent magnet motor
US7388309B2 (en) Magnetic circuit structure for rotary electric machine
JP3541343B2 (en) Rotor structure of synchronous machine, synchronous motor and synchronous generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees