JPH09235287A - Metal complex and formation of metal thin film - Google Patents

Metal complex and formation of metal thin film

Info

Publication number
JPH09235287A
JPH09235287A JP4476496A JP4476496A JPH09235287A JP H09235287 A JPH09235287 A JP H09235287A JP 4476496 A JP4476496 A JP 4476496A JP 4476496 A JP4476496 A JP 4476496A JP H09235287 A JPH09235287 A JP H09235287A
Authority
JP
Japan
Prior art keywords
thin film
metal
forming
metal complex
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4476496A
Other languages
Japanese (ja)
Other versions
JP3384228B2 (en
Inventor
Atsushi Sai
篤 齋
Masamitsu Sato
正光 佐藤
Katsumi Ogi
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP04476496A priority Critical patent/JP3384228B2/en
Publication of JPH09235287A publication Critical patent/JPH09235287A/en
Application granted granted Critical
Publication of JP3384228B2 publication Critical patent/JP3384228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a new metal complex consisting of a specific (cyclopentadlenyl) (dimethylcyclooctadiene) complex, large in a film-forming speed, hardly leaving evaporation resides, and useful as a vacuum deposition raw material for forming metal thin films for semiconductor devices, etc. SOLUTION: A new metal complex represented by formula I (R is a 1-4C alkyl, H; M is Cu, Ag, Co, Ru, Rh, Pt) or formula II. The metal complex is large in a film-forming speed, hardly leaves evaporation residues, is low in a final evaporation temperature, and is useful as a vacuum deposition raw material capable of easily and efficiently forming various kinds of thin metal films used as wiring materials for semiconductor devices, etc. The new metal complex is obtained by putting deaerated anhydrous tetrahydrofuran and a metal hallde (e.g. copper chloride) into a dry reactor purged with nitrogen gas, dropwisely adding dimethylcyclooctadiene, etc., cooled to 0 deg.C into the reactor, vigorously stirring the mixture for a night, dropwisely adding cyclopentadienyl sodium, etc., at -30 deg.C to the reaction solution, returning the reaction solution to room temperature, stirring at the room temperature for 30min, hydrolyzlng the reaction product and subsequently extracting the metal complex.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は新規金属錯体及びそ
れを用いた蒸着法による金属薄膜の形成方法に関する。
TECHNICAL FIELD The present invention relates to a novel metal complex and a method for forming a metal thin film by vapor deposition using the same.

【0002】[0002]

【従来の技術及び先行技術】従来、半導体装置のコンタ
クト及び配線等の各種銀薄膜をMOCVD法により形成
するに際して用いられる蒸着原料としては、各種の有機
銀化合物が提供されている。
2. Description of the Related Art Conventionally, various organic silver compounds have been provided as vapor deposition raw materials used when forming various silver thin films such as contacts and wirings of semiconductor devices by MOCVD.

【0003】例えば、特願平7−114578号では、
従来の有機銀化合物よりも熱安定性及び揮発性に優れる
ものとして、下記構造式で表される銀錯体が提案されて
いる。
For example, in Japanese Patent Application No. 7-114578,
A silver complex represented by the following structural formula has been proposed as being superior in thermal stability and volatility to conventional organic silver compounds.

【0004】[0004]

【化2】 Embedded image

【0005】このような蒸着原料を用いてMOCVD法
により銀薄膜を形成するには、例えば、図1の概略説明
図に示す如く、反応炉7内に設けたヒーター6上に基板
5を置き、一方、この反応炉7と連接して設けた加熱炉
3内で、気化容器2内の上記銀錯体からなる蒸着原料1
を気化させ、得られた蒸気を配管4から導入されるAr
等のキャリアガスで反応炉7内に送給して拡散させ、加
熱基板5上に銀を析出させる。なお、図中、8は真空引
配管である。この方法は熱分解型MOCVD法と称され
る。
To form a silver thin film by the MOCVD method using such a vapor deposition material, for example, as shown in the schematic explanatory view of FIG. 1, the substrate 5 is placed on a heater 6 provided in a reaction furnace 7, On the other hand, in the heating furnace 3 provided so as to be connected to the reaction furnace 7, the vapor deposition material 1 made of the above silver complex in the vaporization container 2
Vaporized, and the resulting vapor is introduced through the pipe 4 as Ar.
A carrier gas such as the above is fed into the reaction furnace 7 to be diffused, and silver is deposited on the heating substrate 5. In the drawing, reference numeral 8 denotes a vacuum pipe. This method is called a thermal decomposition type MOCVD method.

【0006】[0006]

【発明が解決しようとする課題】熱分解型MOCVD法
の蒸着原料の要求特性としては、 成膜速度が大きい。 気化残留物が残り難い。 蒸発終了温度が低い。 などが挙げられ、これらの特性のより一層の改善が望ま
れている。
The film deposition rate is high as a required characteristic of the vapor deposition material for the thermal decomposition type MOCVD method. It is difficult for vaporized residue to remain. Evaporation end temperature is low. And the like, and further improvement of these characteristics is desired.

【0007】本発明は上記従来の実情に鑑みてなされた
ものであって、成膜速度が大きく、気化残留物が残り難
く、蒸発終了温度が低い金属錯体及びこのような金属錯
体を用いた金属薄膜形成方法を提供することを目的とす
る。
The present invention has been made in view of the above conventional circumstances, and it is a metal complex having a high film formation rate, hardly leaving a vaporization residue, and a low evaporation end temperature, and a metal using such a metal complex. An object is to provide a thin film forming method.

【0008】[0008]

【課題を解決するための手段】本発明の金属錯体は、下
記一般式又はで表されるものである。
MEANS FOR SOLVING THE PROBLEMS The metal complex of the present invention is represented by the following general formula or.

【0009】[0009]

【化3】 Embedded image

【0010】本発明の金属薄膜形成方法は、上記本発明
の金属錯体を用い、この金属錯体を分解させることによ
り反応炉中に配置された基板上に金属薄膜を堆積させる
ものである。
The metal thin film forming method of the present invention uses the above metal complex of the present invention and decomposes the metal complex to deposit a metal thin film on a substrate placed in a reaction furnace.

【0011】本発明の金属薄膜形成方法において、反応
炉中への原料供給は、該金属錯体を直接気化させ、キャ
リアガスと共に導入する方法、又は、該金属錯体を有機
溶媒に溶解した溶液を気化させ、キャリアガスと共に導
入する方法により行うことができる。なお、有機溶媒と
しては、脂肪族炭化水素、或いは、トリエチレンテトラ
ミン,テトラエチレンペンタミン,エチレンジアミン,
ジエチレントリアミン等のアミン系有機溶媒を用いるこ
とができる。
In the method for forming a metal thin film of the present invention, the raw material is supplied into the reaction furnace by directly vaporizing the metal complex and introducing it together with a carrier gas, or by vaporizing a solution of the metal complex in an organic solvent. And a method of introducing the carrier gas together with the carrier gas. The organic solvent may be aliphatic hydrocarbon, triethylenetetramine, tetraethylenepentamine, ethylenediamine,
An amine organic solvent such as diethylenetriamine can be used.

【0012】また、反応炉での金属錯体の分解は熱分解
のみならず光照射の下で光励起分解する方がより低温で
高純度かつ高効率の膜形成が可能となり好ましい。ま
た、その分解温度は200℃以下であることが好まし
い。
Further, the decomposition of the metal complex in the reaction furnace is preferably performed not only by thermal decomposition but also by photoexcited decomposition under light irradiation because a highly pure and highly efficient film can be formed at a lower temperature. The decomposition temperature is preferably 200 ° C or lower.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0014】本発明の金属錯体は、前記一般式で表され
る(シクロペンタジエニル)(ジメチルシクロオクタジ
エン)錯体である。この金属錯体は、後掲の実施例1に
示す如く、錯体を形成する金属のハロゲン化物とジメチ
ルシクロオクタジエンとシクロペンタジエニル(又は炭
素数1〜4のアルキルシクロペンタジエニル)ナトリウ
ム等のシクロペンタジエニル金属化合物とを溶媒中で反
応させることにより合成することができる。
The metal complex of the present invention is a (cyclopentadienyl) (dimethylcyclooctadiene) complex represented by the above general formula. As shown in Example 1 below, this metal complex is obtained by using a metal halide forming a complex, dimethylcyclooctadiene, cyclopentadienyl (or alkylcyclopentadienyl) sodium having 1 to 4 carbon atoms, or the like. It can be synthesized by reacting with a cyclopentadienyl metal compound in a solvent.

【0015】なお、ジメチルシクロオクタジエンには、
メチル基の位置により、1,5−ジメチルシクロオクタ
ジエンと、1,6−ジメチルシクロオクタジエンの2つ
の異性体がある。1,5−ジメチルシクロオクタジエン
を用いた場合には、前記一般式の錯体が得られ、1,
6−ジメチルシクロオクタジエンを用いた場合には、前
記一般式の錯体が得られる。
Dimethylcyclooctadiene contains
There are two isomers, 1,5-dimethylcyclooctadiene and 1,6-dimethylcyclooctadiene, depending on the position of the methyl group. When 1,5-dimethylcyclooctadiene is used, the complex of the above general formula is obtained,
When 6-dimethylcyclooctadiene is used, the complex of the above general formula is obtained.

【0016】本発明においては、1,5−ジメチルシク
ロオクタジエンを単独で用いて前記一般式の錯体を合
成して用いても良く、また、1,6−ジメチルシクロオ
クタジエンを単独で用いて前記一般式の錯体を合成し
て用いても良い。また、これら1,5−ジメチルシクロ
オクタジエンと1,6−ジメチルシクロオクタジエンと
の混合物を用い、前記一般式の錯体と前記一般式の
錯体との異性体混合物を合成して、本発明の金属薄膜形
成に用いても良い。この場合、錯体の異性体混合比には
特に制限はなく、任意の割合とすることができる。
In the present invention, 1,5-dimethylcyclooctadiene may be used alone to synthesize the complex of the above general formula, and 1,6-dimethylcyclooctadiene may be used alone. You may synthesize | combine and use the complex of the said general formula. Further, a mixture of these 1,5-dimethylcyclooctadiene and 1,6-dimethylcyclooctadiene is used to synthesize an isomer mixture of the complex of the general formula and the complex of the general formula to obtain the compound of the present invention. It may be used for forming a metal thin film. In this case, the isomer mixing ratio of the complex is not particularly limited and can be set to any ratio.

【0017】本発明の金属薄膜形成方法は、このような
金属錯体を用いて、従来と同様の操作で熱分解型MOC
VD法等のMOCVD法により、金属薄膜を形成するこ
とができる上に、光励起分解型MOCVD法により、一
層有利に金属薄膜を形成することができる。
The method for forming a metal thin film of the present invention uses such a metal complex and operates in the same manner as in the prior art to produce a thermal decomposition type MOC.
The metal thin film can be formed by the MOCVD method such as the VD method, and the metal thin film can be formed more advantageously by the photoexcitation decomposition MOCVD method.

【0018】本発明による金属薄膜形成方法において、
反応炉中への原料、即ち、金属錯体の供給は、該金属錯
体を直接気化させ、キャリアガスと共に導入する方法、
又は、該金属錯体を有機溶媒に溶解した溶液を気化さ
せ、キャリアガスと共に導入する方法により行うことが
できる。なお、有機溶媒としては、ヘキサン、ヘプタン
等の炭素数5〜7の脂肪族炭化水素、或いは、トリエチ
レンテトラミン,テトラエチレンペンタミン,エチレン
ジアミン,ジエチレントリアミン等のアミン系有機溶媒
を用いることができ、金属錯体の濃度は70〜80重量
%程度となるように溶解するのが好ましい。
In the metal thin film forming method according to the present invention,
The raw material, that is, the supply of the metal complex into the reaction furnace, is a method of directly vaporizing the metal complex and introducing it together with a carrier gas,
Alternatively, it can be carried out by a method of vaporizing a solution in which the metal complex is dissolved in an organic solvent and introducing the solution together with a carrier gas. As the organic solvent, an aliphatic hydrocarbon having 5 to 7 carbon atoms such as hexane and heptane, or an amine-based organic solvent such as triethylenetetramine, tetraethylenepentamine, ethylenediamine and diethylenetriamine can be used. It is preferable that the complex is dissolved so that the concentration thereof is about 70 to 80% by weight.

【0019】また、反応炉での金属錯体の分解は光励起
分解である方がより好ましく、例えば、反応炉内へ10
〜200mJ/cm2 ,20Hz程度の光を照射するこ
とにより光励起分解させるのが好ましい。
The decomposition of the metal complex in the reaction furnace is more preferably photoexcited decomposition.
It is preferable to perform photoexcitation decomposition by irradiating with light of about 200 mJ / cm 2 , 20 Hz.

【0020】また、金属錯体の分解温度、即ち、反応炉
内の基板温度は200℃以下、特に100〜150℃と
するのが、成膜効率の面で好ましい。
The decomposition temperature of the metal complex, that is, the substrate temperature in the reaction furnace is preferably 200 ° C. or lower, particularly 100 to 150 ° C. from the viewpoint of film forming efficiency.

【0021】[0021]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0022】実施例1:金属錯体の合成 下記方法により、本発明の金属錯体を製造した。Example 1 Synthesis of Metal Complex The metal complex of the present invention was produced by the following method.

【0023】なお、金属ハロゲン化物としては、塩化銅
(I):8.0g,塩化銀:5.0g,塩化コバルト:
10.2g,塩化ルテニウム:5.0g,塩化ロジウ
ム:5.0g、又は、塩化白金:5.0gを用いた。
As the metal halide, copper (I) chloride: 8.0 g, silver chloride: 5.0 g, cobalt chloride:
10.2 g, ruthenium chloride: 5.0 g, rhodium chloride: 5.0 g, or platinum chloride: 5.0 g was used.

【0024】また、ジメチルシクロオクタジエンとして
は、市販の1,5−ジメチルシクロオクタジエンと1,
6−ジメチルシクロオクタジエンとの混合物を用いた。
この異性体混合物の混合割合は、1,5−ジメチルシク
ロオクタジエン70%、1,6−ジメチルシクロオクタ
ジエン30%である。
As dimethylcyclooctadiene, commercially available 1,5-dimethylcyclooctadiene and 1,5-dimethylcyclooctadiene
A mixture with 6-dimethylcyclooctadiene was used.
The mixing ratio of this isomer mixture is 70% 1,5-dimethylcyclooctadiene and 30% 1,6-dimethylcyclooctadiene.

【0025】(合成例1)乾燥、窒素置換した三ツ口フ
ラスコに窒素ガスにより脱気した無水テトラヒドロフラ
ン500ml及び金属ハロゲン化物を入れ0℃に冷却し
た。これに、滴下ロートよりジメチルシクロオクタジエ
ン(DMCOD)を金属ハロゲン化物に対して等量滴下
し、激しく1晩撹拌した。次いで、−30℃にて金属ハ
ロゲン化物に対して等量分のシクロペンタジエニルナト
リウムを20分かけて滴下した後、室温に戻し、30分
撹拌した。その後、溶媒と同量の飽和塩化アンモニウム
水溶液を加えて加水分解した。反応溶液は二層に分離し
た。上層の有機層をヘキサンで抽出し、一方、下層の水
溶液層を100mlのヘキサンで2回抽出し、先の有機
層と併せた。抽出液を無水硫酸ナトリウムで乾燥後、5
0℃で減圧濃縮した後、残留する油状物を再結晶精製す
ることにより、室温で表1に示す状態の下記(化4)で
表される(シクロペンタジエニル)(ジメチルシクロオ
クタジエン)M(以下「CpMDMCOD」(M=C
u,Ag,Co,Ru,Rh,Pt)と略記する。)異
性体混合物を得た(融点は表1に示す。)。
(Synthesis Example 1) 500 ml of anhydrous tetrahydrofuran degassed with nitrogen gas and a metal halide were placed in a three-necked flask which had been dried and purged with nitrogen, and cooled to 0 ° C. Dimethylcyclooctadiene (DMCOD) was added dropwise to the metal halide in an equal amount from a dropping funnel, and the mixture was vigorously stirred overnight. Then, at -30 ° C, an equivalent amount of cyclopentadienyl sodium was added dropwise to the metal halide over 20 minutes, then returned to room temperature and stirred for 30 minutes. Then, the same amount of saturated ammonium chloride aqueous solution as the solvent was added for hydrolysis. The reaction solution was separated into two layers. The upper organic layer was extracted with hexane, while the lower aqueous layer was extracted twice with 100 ml of hexane and combined with the previous organic layer. After drying the extract over anhydrous sodium sulfate, 5
After concentration under reduced pressure at 0 ° C., the residual oily substance is purified by recrystallization to give (cyclopentadienyl) (dimethylcyclooctadiene) M represented by the following (Chemical Formula 4) in the state shown in Table 1 at room temperature. (Hereinafter, "CpMDMCOD" (M = C
u, Ag, Co, Ru, Rh, Pt). ) A mixture of isomers was obtained (melting points shown in Table 1).

【0026】[0026]

【化4】 Embedded image

【0027】(合成例2)シクロペンタジエニルナトリ
ウムの代りにモノメチルシクロペンタジエニルナトリウ
ムを用いたこと以外は合成例1と同様にして室温で表2
に示す状態の下記(化5)で表される(モノメチルシク
ロペンタジエニル)(ジメチルシクロオクタジエン)M
(以下「MeCpMDMCOD」(M=Cu,Ag,C
o,Ru,Rh,Pt)と略記する。)異性体混合物を
得た(融点は表2に示す。)。
(Synthesis Example 2) The same procedure as in Synthesis Example 1 was repeated except that monomethylcyclopentadienyl sodium was used instead of cyclopentadienyl sodium.
(Monomethylcyclopentadienyl) (dimethylcyclooctadiene) M represented by the following (Chemical Formula 5) in the state shown in
(Hereinafter “MeCpMDMCOD” (M = Cu, Ag, C
o, Ru, Rh, Pt). ) A mixture of isomers was obtained (melting points shown in Table 2).

【0028】[0028]

【化5】 Embedded image

【0029】(合成例3)シクロペンタジエニルナトリ
ウムの代りにモノエチルシクロペンタジエニルナトリウ
ムを用いたこと以外は合成例1と同様にして室温で表3
に示す状態の下記(化6)で表される(モノエチルシク
ロペンタジエニル)(ジメチルシクロオクタジエン)M
(以下「EtCpMDMCOD」(M=Cu,Ag,C
o,Ru,Rh,Pt)と略記する。)異性体混合物を
得た(融点は表3に示す。)。
(Synthesis Example 3) The same procedure as in Synthesis Example 1 was repeated except that monoethylcyclopentadienyl sodium was used in place of cyclopentadienyl sodium.
(Monoethylcyclopentadienyl) (dimethylcyclooctadiene) M represented by the following (Chemical Formula 6) in the state shown in
(Hereinafter “EtCpMDMCOD” (M = Cu, Ag, C
o, Ru, Rh, Pt). ) A mixture of isomers was obtained (melting points shown in Table 3).

【0030】[0030]

【化6】 [Chemical 6]

【0031】(合成例4)シクロペンタジエニルナトリ
ウムの代りにモノプロピルシクロペンタジエニルナトリ
ウムを用いたこと以外は合成例1と同様にして室温で表
4に示す状態の下記(化7)で表される(モノプロピル
シクロペンタジエニル)(ジメチルシクロオクタジエ
ン)M(以下「PrCpMDMCOD」(M=Cu,A
g,Co,Ru,Rh,Pt)と略記する。)異性体混
合物を得た(融点は表4に示す。)。
(Synthesis Example 4) In the same manner as in Synthesis Example 1, except that monopropylcyclopentadienyl sodium was used in place of cyclopentadienyl sodium, the following (Chemical Formula 7) in the state shown in Table 4 at room temperature was used. Represented (monopropylcyclopentadienyl) (dimethylcyclooctadiene) M (hereinafter "PrCpMDMCOD" (M = Cu, A
g, Co, Ru, Rh, Pt). ) A mixture of isomers was obtained (melting points shown in Table 4).

【0032】[0032]

【化7】 Embedded image

【0033】(合成例5)シクロペンタジエニルナトリ
ウムの代りにモノブチルシクロペンタジエニルナトリウ
ムを用いたこと以外は合成例1と同様にして室温で表5
に示す状態の下記(化8)で表される(モノブチルシク
ロペンタジエニル)(ジメチルシクロオクタジエン)M
(以下「BuCpMDMCOD」(M=Cu,Ag,C
o,Ru,Rh,Pt)と略記する。)異性体混合物を
得た(融点は表5に示す。)。
(Synthesis Example 5) Table 5 at room temperature in the same manner as in Synthesis Example 1 except that monobutylcyclopentadienyl sodium was used in place of cyclopentadienyl sodium.
(Monobutylcyclopentadienyl) (dimethylcyclooctadiene) M represented by the following (Chemical Formula 8) in the state shown in
(Hereinafter “BuCpMDMCOD” (M = Cu, Ag, C
o, Ru, Rh, Pt). ) A mixture of isomers was obtained (melting points shown in Table 5).

【0034】[0034]

【化8】 Embedded image

【0035】合成例1〜5で得られた金属錯体の同定は
主元素分析及びC,H同時元素分析により行い、結果を
各々表1〜5に示した。
The metal complexes obtained in Synthesis Examples 1 to 5 were identified by main elemental analysis and C, H simultaneous elemental analysis, and the results are shown in Tables 1 to 5, respectively.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】なお、比較の目的で従来Cu,Ag,C
o,Ru,Rh,Ptの熱分解MOCVD法の蒸着原料
として知られている下記の化合物を合成して比較試験に
用いた。
For comparison purposes, conventional Cu, Ag, C
The following compounds, which are known as vapor deposition materials for the thermal decomposition MOCVD method of o, Ru, Rh, and Pt, were synthesized and used for comparative tests.

【0042】Cu錯体:下記 [化9] (ただし、M=C
u)で表される銅錯体(比較金属錯体I) Ag錯体:下記 [化9] (ただし、M=Ag)で表され
る銀錯体(比較金属錯体II) Co錯体:下記 [化10] (ただし、M=Co)で表さ
れるコバルト錯体(比較金属錯体III ) Ru錯体:下記 [化10] (ただし、M=Ru)で表さ
れるルテニウム錯体(比較金属錯体IV) Rh錯体:下記 [化11] (ただし、M=Rh)で表さ
れるロジウム錯体(比較金属錯体V) Pt錯体:下記 [化12] (ただし、M=Pt。1,5
−ジメチルシクロオクタジエンと1,6−ジメチルシク
ロオクタジエンとの異性体混合比は実施例1の場合と同
様)で表される白金錯体(比較金属錯体VI)
Cu complex: The following [Chemical formula 9] (where M = C
u) Copper complex represented by (comparative metal complex I) Ag complex: [Chemical formula 9] below (wherein M = Ag) (complex metal complex II) Co complex represented by: [Chemical formula 10] However, a cobalt complex represented by M = Co (comparative metal complex III) Ru complex: [Chemical Formula 10] (where M = Ru) a ruthenium complex (comparative metal complex IV) Rh complex: Chemical formula 11] (where M = Rh) Rhodium complex (comparative metal complex V) Pt complex: Chemical formula 12 below (where M = Pt. 1,5
-Dimethylcyclooctadiene and 1,6-dimethylcyclooctadiene isomer mixing ratio is the same as in Example 1) Platinum complex represented by (Comparative Metal Complex VI)

【0043】[0043]

【化9】 Embedded image

【0044】[0044]

【化10】 Embedded image

【0045】[0045]

【化11】 Embedded image

【0046】[0046]

【化12】 Embedded image

【0047】実施例2:気化特性の評価 実施例1で合成した本発明に係る金属錯体及び比較金属
錯体I〜VIを用いて、気化特性を評価する目的で、熱重
量(TG)曲線(昇温速度10℃/min,窒素雰囲
気)を図2〜7に示した。
Example 2: Evaluation of vaporization characteristics Using the metal complex according to the present invention synthesized in Example 1 and comparative metal complexes I to VI, for the purpose of evaluating vaporization characteristics, a thermogravimetric (TG) curve ( The temperature rate of 10 ° C./min, nitrogen atmosphere) is shown in FIGS.

【0048】なお、図2〜7において、I〜VIは、各々
比較金属錯体I〜VIを示し、HはCpMDMCODを、
MeはMeCpMDMCODを、EtはEtCpMDM
CODを、PrはPrCpMDMCODを、BuはBu
CpMDMCODを示す。
2 to 7, I to VI represent comparative metal complexes I to VI, H represents CpMDMCOD,
Me is MeCpMDMCOD, Et is EtCpMDM
COD, Pr for PrCpMDMCOD, Bu for Bu
CpMDMCOD is shown.

【0049】図2〜6より、本発明の金属錯体は、いず
れも比較金属錯体I〜VIに比べて、低温にて完全に気化
させることができ、気化終了温度が低く、残留物が残り
難いことがわかる。
2 to 6, each of the metal complexes of the present invention can be completely vaporized at a lower temperature than the comparative metal complexes I to VI, the vaporization end temperature is low, and the residue hardly remains. I understand.

【0050】実施例3:金属薄膜の形成 実施例1で合成した本発明に係る金属錯体及び比較金属
錯体I〜VIを用いて、図1に示す装置により熱分解CV
D法により下記条件にて金属薄膜の形成を行い、10分
毎の膜厚を測定し、結果を表6〜11に示した。なお、
膜厚は、膜の断面SEM像から測定した。
Example 3 Formation of Metal Thin Film Using the metal complex according to the present invention synthesized in Example 1 and comparative metal complexes I to VI, pyrolysis CV was carried out by the apparatus shown in FIG.
A metal thin film was formed by the method D under the following conditions, and the film thickness was measured every 10 minutes. The results are shown in Tables 6 to 11. In addition,
The film thickness was measured from a cross-sectional SEM image of the film.

【0051】表6〜11には、実施例2におけるTG気
化残存量及び気化開始温度を併記した。
In Tables 6 to 11, the residual amount of TG vaporization and the vaporization starting temperature in Example 2 are shown together.

【0052】基板;25mm角のSi基板上にTiN
((シクロペンタジエニル)(ジメチルシクロオクタジ
エン)錯体及び先願1の銅錯体の場合)又はTi(その
他の場合)を100nmの厚さにスパッタ法により蒸着
した基板 基板温度;250℃(ただし、CpPtDMCOD,M
eCpPtDMCOD,従来金属錯体VIの場合は200
℃) 気化温度;各表に示す 圧力;2torr キャリアガスの流量;100ccmのH
Substrate: TiN on a 25 mm square Si substrate
((Cyclopentadienyl) (dimethylcyclooctadiene) complex and the copper complex of the prior application 1) or Ti (other cases) substrate deposited by sputtering to a thickness of 100 nm Substrate temperature: 250 ° C (however , CpPtDMCOD, M
eCpPtDMCOD, 200 for conventional metal complex VI
° C) Vaporization temperature; pressure shown in each table; 2 torr carrier gas flow rate; 100 ccm of H 2

【0053】[0053]

【表6】 [Table 6]

【0054】[0054]

【表7】 [Table 7]

【0055】[0055]

【表8】 [Table 8]

【0056】[0056]

【表9】 [Table 9]

【0057】[0057]

【表10】 [Table 10]

【0058】[0058]

【表11】 [Table 11]

【0059】表6〜11より、本発明の金属錯体は、い
ずれも比較金属錯体に比べて成膜速度が大きいことがわ
かる。
It can be seen from Tables 6 to 11 that all the metal complexes of the present invention have a higher film formation rate than the comparative metal complex.

【0060】実施例4:金属薄膜の形成 表12に示す本発明の金属錯体を用いて薄膜の形成を行
い、各々最良の条件で50μmの薄膜を形成し、その際
の原料供給の定量性と膜形成の利用率を下記基準で評価
し、結果を表12に示した。
Example 4: Formation of metal thin film A thin film was formed by using the metal complex of the present invention shown in Table 12, and a thin film of 50 μm was formed under the best conditions. The utilization rate of film formation was evaluated according to the following criteria, and the results are shown in Table 12.

【0061】供給定量性指数:反応炉の部分に冷却トラ
ップをおいて液化回収し、一定時間気化させた錯体重量
を100として回収重量%を求め、この値を従来例を1
00とした指数で比較した。
Supply quantitative property index: Liquefied and recovered by placing a cooling trap in the reactor part, and the recovered weight% was calculated with the weight of the complex vaporized for a certain period of time as 100.
The comparison was made with an index of 00.

【0062】利用率指数:気化させた錯体中の金属重量
を100として基体上の薄膜の堆積重量%を求め、この
値を従来例を100とした指数で比較した。
Utilization index: The deposition weight% of the thin film on the substrate was determined with the weight of the metal in the vaporized complex being 100, and this value was compared with the conventional example as an index.

【0063】なお、溶媒に金属錯体を溶解する場合、金
属錯体濃度が70〜80重量%となるように溶解させ
た。また、光照射にはエキシマレーザー(XeCl)3
08nmの光を用いた。
When the metal complex was dissolved in the solvent, it was dissolved so that the concentration of the metal complex was 70 to 80% by weight. Excimer laser (XeCl) 3 is used for light irradiation.
Light of 08 nm was used.

【0064】表12より、次のことが明らかである。即
ち、金属錯体は、直接気化しても溶媒を用いて溶解させ
て気化させても良いが、いずれの場合でも、光の照射に
より光励起分解させるのが好ましい。溶媒に溶解させる
場合、溶媒としてはヘキサン、ヘプタン等の脂肪族炭化
水素やアミンを用いることができる。また、分解濃度は
200℃以下であることが好ましい。
From Table 12, the following is clear. That is, the metal complex may be directly vaporized or may be dissolved by using a solvent to be vaporized, but in any case, it is preferably photoexcited and decomposed by irradiation with light. When dissolved in a solvent, an aliphatic hydrocarbon such as hexane or heptane or an amine can be used as the solvent. Further, the decomposition concentration is preferably 200 ° C. or lower.

【0065】[0065]

【表12】 [Table 12]

【0066】[0066]

【発明の効果】以上詳述した通り、本発明の金属錯体
は、成膜速度が大きく、気化残留物が残り難く、蒸発終
了温度が低いものであるため、このような金属錯体を用
いる本発明の金属薄膜形成方法によれば、半導体装置の
配線材料等として有用な各種金属薄膜を容易かつ効率的
に形成することができる。
As described in detail above, the metal complex of the present invention has a high film-forming rate, is less likely to leave a vaporization residue, and has a low evaporation end temperature. According to the method for forming a metal thin film, various metal thin films useful as wiring materials for semiconductor devices can be easily and efficiently formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱分解型MOCVD法を説明する装置の概略断
面図である。
FIG. 1 is a schematic sectional view of an apparatus for explaining a thermal decomposition type MOCVD method.

【図2】銅錯体の熱重量曲線を示すグラフである。FIG. 2 is a graph showing a thermogravimetric curve of a copper complex.

【図3】銀錯体の熱重量曲線を示すグラフである。FIG. 3 is a graph showing a thermogravimetric curve of a silver complex.

【図4】コバルト錯体の熱重量曲線を示すグラフであ
る。
FIG. 4 is a graph showing a thermogravimetric curve of a cobalt complex.

【図5】ルテニウム錯体の熱重量曲線を示すグラフであ
る。
FIG. 5 is a graph showing a thermogravimetric curve of a ruthenium complex.

【図6】ロジウム錯体の熱重量曲線を示すグラフであ
る。
FIG. 6 is a graph showing a thermogravimetric curve of a rhodium complex.

【図7】白金錯体の熱重量曲線を示すグラフである。FIG. 7 is a graph showing a thermogravimetric curve of a platinum complex.

【符号の説明】[Explanation of symbols]

1 蒸着原料 2 気化容器 3 加熱炉 4 キャリアガス導入配管 5 基板 6 ヒーター 7 反応炉 8 真空引配管 DESCRIPTION OF SYMBOLS 1 Deposition raw material 2 Vaporization container 3 Heating furnace 4 Carrier gas introduction piping 5 Substrate 6 Heater 7 Reactor 8 Vacuum piping

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07F 15/06 C07F 15/06 17/00 17/00 17/02 17/02 C23C 16/18 C23C 16/18 H01L 21/285 H01L 21/285 C 301 301Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C07F 15/06 C07F 15/06 17/00 17/00 17/02 17/02 C23C 16/18 C23C 16/18 H01L 21/285 H01L 21/285 C 301 301Z

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式又はで表される金属錯
体。 【化1】
1. A metal complex represented by the following general formula or: Embedded image
【請求項2】 金属薄膜形成用金属錯体を分解させるこ
とにより反応炉中に配置された基板上に金属薄膜を堆積
させる金属薄膜形成方法において、該金属錯体が請求項
1の金属錯体であることを特徴とする金属薄膜形成方
法。
2. A metal thin film forming method comprising depositing a metal thin film on a substrate arranged in a reaction furnace by decomposing a metal complex for forming a metal thin film, wherein the metal complex is the metal complex according to claim 1. And a method of forming a metal thin film.
【請求項3】 請求項2の方法において、反応炉中への
原料供給が、金属薄膜形成用金属錯体を直接気化させ、
キャリアガスと共に導入する方法であることを特徴とす
る金属薄膜形成方法。
3. The method according to claim 2, wherein the supply of the raw material into the reaction furnace directly vaporizes the metal complex for forming a metal thin film,
A method for forming a metal thin film, which is a method of introducing the metal thin film together with a carrier gas.
【請求項4】 請求項2の方法において、反応炉中への
原料供給が、金属薄膜形成用金属錯体を有機溶媒に溶解
した溶液を気化させ、キャリアガスと共に導入する方法
であることを特徴とする金属薄膜形成方法。
4. The method according to claim 2, wherein the raw material is supplied into the reaction furnace by vaporizing a solution of a metal complex for forming a metal thin film in an organic solvent and introducing the solution together with a carrier gas. Method for forming metal thin film.
【請求項5】 請求項2ないし4のいずれか1項の方法
において、反応炉中での金属薄膜形成用金属錯体の分解
が光励起分解であることを特徴とする金属薄膜形成方
法。
5. The method for forming a metal thin film according to claim 2, wherein the decomposition of the metal complex for forming a metal thin film in the reaction furnace is photoexcitation decomposition.
【請求項6】 請求項2ないし5のいずれか1項の方法
において、反応炉中での金属薄膜形成用金属錯体の分解
温度が200℃以下であることを特徴とする金属薄膜形
成方法。
6. The method for forming a metal thin film according to claim 2, wherein a decomposition temperature of the metal complex for forming a metal thin film in a reaction furnace is 200 ° C. or lower.
【請求項7】 請求項4の方法において、金属薄膜形成
用金属錯体を溶解する有機溶媒が、脂肪族炭化水素であ
ることを特徴とする金属薄膜形成方法。
7. The method of claim 4, wherein the organic solvent that dissolves the metal complex for forming a metal thin film is an aliphatic hydrocarbon.
【請求項8】 請求項4の方法において、金属薄膜形成
用金属錯体を溶解する有機溶媒が、アミン系溶媒である
ことを特徴とする金属薄膜形成方法。
8. The method for forming a metal thin film according to claim 4, wherein the organic solvent that dissolves the metal complex for forming a metal thin film is an amine solvent.
【請求項9】 請求項8の方法において、金属薄膜形成
用金属錯体を溶解するアミン系有機溶媒が、トリエチレ
ンテトラミン,テトラエチレンペンタミン,エチレンジ
アミン及びジエチレントリアミンよりなる群から選ばれ
る1種又は2種以上であることを特徴とする金属薄膜形
成方法。
9. The method according to claim 8, wherein the amine-based organic solvent dissolving the metal complex for forming a metal thin film is one or two selected from the group consisting of triethylenetetramine, tetraethylenepentamine, ethylenediamine and diethylenetriamine. The above is the method for forming a metal thin film.
JP04476496A 1996-03-01 1996-03-01 Metal complex and metal thin film forming method Expired - Fee Related JP3384228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04476496A JP3384228B2 (en) 1996-03-01 1996-03-01 Metal complex and metal thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04476496A JP3384228B2 (en) 1996-03-01 1996-03-01 Metal complex and metal thin film forming method

Publications (2)

Publication Number Publication Date
JPH09235287A true JPH09235287A (en) 1997-09-09
JP3384228B2 JP3384228B2 (en) 2003-03-10

Family

ID=12700496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04476496A Expired - Fee Related JP3384228B2 (en) 1996-03-01 1996-03-01 Metal complex and metal thin film forming method

Country Status (1)

Country Link
JP (1) JP3384228B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512297B2 (en) 1998-05-07 2003-01-28 Mitsubishi Denki Kabushiki Kaisha CVD source material for forming an electrode, and electrode and wiring film for capacitor formed therefrom
WO2008142652A1 (en) * 2007-05-21 2008-11-27 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude New metal precursors for semiconductor applications
WO2009094262A1 (en) * 2008-01-24 2009-07-30 Praxair Technology, Inc. Organometallic compounds, processes and methods of use
CN101503429A (en) * 2008-01-24 2009-08-12 普莱克斯技术有限公司 Organometallic compounds, processes for the preparation thereof and methods of use thereof
JP2010513467A (en) * 2006-12-22 2010-04-30 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for depositing ruthenium-containing films
US8372473B2 (en) 2007-05-21 2013-02-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cobalt precursors for semiconductor applications
WO2015190420A1 (en) * 2014-06-09 2015-12-17 東ソー株式会社 Cobalt complex and method for producing same, and cobalt-containing thin-film and method for producing same
JP2016166166A (en) * 2014-06-09 2016-09-15 東ソー株式会社 Cobalt complex and method for producing the same, cobalt-containing thin film and method for producing the same
JP2016183114A (en) * 2015-03-25 2016-10-20 東ソー株式会社 Cobalt complex and method for producing the same, and cobalt-containing thin film and method for producing the same
JP2016222547A (en) * 2015-05-27 2016-12-28 東ソー株式会社 Cobalt complex and manufacturing method therefor, cobalt-containing thin film and manufacturing method therefor
WO2017104619A1 (en) * 2015-12-16 2017-06-22 東ソー株式会社 Substituted cyclopentadienyl cobalt complex and method for production thereof, and cobalt-containing thin film and method for production thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512297B2 (en) 1998-05-07 2003-01-28 Mitsubishi Denki Kabushiki Kaisha CVD source material for forming an electrode, and electrode and wiring film for capacitor formed therefrom
US8557339B2 (en) 2006-12-22 2013-10-15 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for the deposition of a Ruthenium containing film
JP2010513467A (en) * 2006-12-22 2010-04-30 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for depositing ruthenium-containing films
US20130065395A1 (en) * 2007-05-21 2013-03-14 L'Air Liquide, Societe Anonyme pour I'Etude et I"exploitation des Procedes Georges Claude New metal precursors for semiconductor applications
WO2008142652A1 (en) * 2007-05-21 2008-11-27 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude New metal precursors for semiconductor applications
KR101502185B1 (en) * 2007-05-21 2015-03-12 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 New metal precursors for semiconductor applications
JP2010528182A (en) * 2007-05-21 2010-08-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード New metal precursors for semiconductor applications
US20110207324A1 (en) * 2007-05-21 2011-08-25 Dussarart Christian New metal precursors for semiconductor applications
US8329583B2 (en) * 2007-05-21 2012-12-11 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal precursors for semiconductor applications
US8372473B2 (en) 2007-05-21 2013-02-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cobalt precursors for semiconductor applications
CN101781336A (en) * 2008-01-24 2010-07-21 普莱克斯技术有限公司 Organometallic compounds, processes and methods of use
CN101503429A (en) * 2008-01-24 2009-08-12 普莱克斯技术有限公司 Organometallic compounds, processes for the preparation thereof and methods of use thereof
WO2009094262A1 (en) * 2008-01-24 2009-07-30 Praxair Technology, Inc. Organometallic compounds, processes and methods of use
WO2015190420A1 (en) * 2014-06-09 2015-12-17 東ソー株式会社 Cobalt complex and method for producing same, and cobalt-containing thin-film and method for producing same
JP2016166166A (en) * 2014-06-09 2016-09-15 東ソー株式会社 Cobalt complex and method for producing the same, cobalt-containing thin film and method for producing the same
JP2016183114A (en) * 2015-03-25 2016-10-20 東ソー株式会社 Cobalt complex and method for producing the same, and cobalt-containing thin film and method for producing the same
JP2016222547A (en) * 2015-05-27 2016-12-28 東ソー株式会社 Cobalt complex and manufacturing method therefor, cobalt-containing thin film and manufacturing method therefor
WO2017104619A1 (en) * 2015-12-16 2017-06-22 東ソー株式会社 Substituted cyclopentadienyl cobalt complex and method for production thereof, and cobalt-containing thin film and method for production thereof
CN108473521A (en) * 2015-12-16 2018-08-31 东曹株式会社 Substituted cyclopentadienyl cobalt complex and its manufacturing method, containing cobalt thin film and preparation method thereof
US10336782B2 (en) 2015-12-16 2019-07-02 Sagami Chemical Research Institute Substituted cyclopentadienyl cobalt complex and method for production thereof, and cobalt-containing thin film and method for production thereof
TWI701254B (en) * 2015-12-16 2020-08-11 日商東曹股份有限公司 Substituted cyclopentadiene cobalt complex and its manufacturing method, and manufacturing method of cobalt-containing film

Also Published As

Publication number Publication date
JP3384228B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JP2001504159A (en) Platinum source composition for chemical vapor deposition of platinum
JP3384228B2 (en) Metal complex and metal thin film forming method
CN111727272B (en) Method for producing metal-containing films
Hierso et al. Platinum, palladium and rhodium complexes as volatile precursors for depositing materials
JP2006516031A (en) Chemical vapor deposition precursors for the deposition of tantalum-based materials
JP5053543B2 (en) Tantalum compound, production method thereof, tantalum-containing thin film, and formation method thereof
WO2013051670A1 (en) Cobalt-film-forming method, cobalt-film-forming material, and novel compound
TW201734255A (en) Process for the generation of metallic films
JP2003306472A (en) Raw material compound for cvd, and method for chemical vapor-phase deposition of thin film of ruthenium or ruthenium compound
Park et al. Synthesis of Cu (II) aminoalkoxide complexes and their unusual thermolysis to Cu (0)
US6538147B1 (en) Organocopper precursors for chemical vapor deposition
JP2003342732A (en) Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
KR19990012189A (en) New Amadoido Allan Precursor for Aluminum Chemical Vapor Deposition
JP2009280865A (en) Method for producing copper-containing film
JPWO2009081797A1 (en) Nickel-containing film forming material and manufacturing method thereof
KR101159073B1 (en) New metal-organic precursor material and fabrication method of metal thin film using the same
JP4512248B2 (en) Method for producing bis (alkylcyclopentadienyl) ruthenium and method for chemical vapor deposition of bis (alkylcyclopentadienyl) ruthenium and ruthenium thin film or ruthenium compound thin film produced by the method
JP2003292495A (en) Copper complex and method for producing copper- containing thin film using the same
JP3379315B2 (en) Raw materials for forming platinum thin films by metal organic chemical vapor deposition
JP2003335740A (en) Tantalum complex and solution raw material containing the complex and used for organic metal chemical vapor deposition method and tantalum-containing thin film formed from the same
KR100704464B1 (en) Copper aminoalkoxide complexes, preparation method thereof and process for the formation of copper thin film using the same
CN115873043A (en) Preparation method of bis (2,4-dimethyl-1,3-pentadiene) ruthenium compound
JP3931965B2 (en) Solution raw material for metal organic chemical vapor deposition containing β-diketonate complex of copper (II) and method for producing copper thin film using the same
JP2003257889A (en) SOLUTION MATERIAL FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION CONTAINING beta-DIKETONATE COMPLEX OF COPPER (II) AND COPPER THIN FILM FORMED USING THE SAME
JP2003268546A (en) Titanium complex-containing solution raw material for organometallic chemical vapor deposition method and titanium-containing thin film produced by using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees