JPH09234770A - Manufacture of mold for injection molding - Google Patents

Manufacture of mold for injection molding

Info

Publication number
JPH09234770A
JPH09234770A JP4476096A JP4476096A JPH09234770A JP H09234770 A JPH09234770 A JP H09234770A JP 4476096 A JP4476096 A JP 4476096A JP 4476096 A JP4476096 A JP 4476096A JP H09234770 A JPH09234770 A JP H09234770A
Authority
JP
Japan
Prior art keywords
core
inner core
diameter
outside
outer core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4476096A
Other languages
Japanese (ja)
Inventor
Masahiro Kobayashi
昌弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP4476096A priority Critical patent/JPH09234770A/en
Publication of JPH09234770A publication Critical patent/JPH09234770A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a complex core free from deterioration, heat strain, an oxide film, cracks, deformation, a defective fusion bond, etc., in the inner structure of a material due to welding and brazing by eliminating the welding and brazing of the end parts of engaging surfaces of inner and outer cores. SOLUTION: The inside diameter of an outside core 3 at a room temperature is formed to be smaller than the outside diameter of an inside core 2, and a groove 21 which forms a cooling medium channel 4 is formed on the engaging surface between the inside and outside cores 2, 3. Next, at least heating the outside core 3 or cooling the inside core 2 is carried out to make the inside diameter of the outside core 3 greater than the outside diameter of the inside core 2, and the inside core 2 is engaged with the outside core 3 to assemble a complex core 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多重壁を有する成
形品等の成形等に使用される射出成形用金型の製造方法
に関し、詳しくは内部コアと外部コアよりなる複合コア
の壁内に、冷媒流路が設けられた射出成形用金型を製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an injection molding die used for molding a molded article having multiple walls, and more particularly, to a method for producing a composite core having an inner core and an outer core. The present invention relates to a method for manufacturing an injection molding die provided with a coolant channel.

【0002】[0002]

【従来の技術】エアゾールのキャップや化粧品用ボトル
のキャップような二重壁を持つ成形品の成形において
は、二重壁を形成する複合コア部は肉厚が比較的薄くて
熱容量が小さく、且つ金型に注入された溶融樹脂で両面
から囲まれるので、この部分の温度が急激に上昇し、し
かも冷却されにくい。そのため当初はショット数が上が
らず、生産性が低いという問題があった。
2. Description of the Related Art In molding a molded product having a double wall such as an aerosol cap or a cosmetic bottle cap, the composite core portion forming the double wall has a relatively small thickness and a small heat capacity, and Since it is surrounded by the molten resin injected into the mold from both sides, the temperature of this portion rises rapidly and is difficult to cool. Therefore, there was a problem that the number of shots did not increase and productivity was low at the beginning.

【0003】そこで、複合コアの冷却速度を速めてショ
ット数を上げるべく、図5に示すような複合コアaを持
った金型が使用されるようになった。((株)プラスチ
ックス・エージ刊行「射出成形用金型」、同「金型設計
の基礎」参照)。この複合コアaは、内部コアbと外部
コアcがスキマバメされ(スキマができる状態のハメア
イを言う)、内部コアbの外面と外部コアcの内面の間
に冷却水などの冷媒を通すための冷媒流路dが設けられ
ている。
Therefore, in order to increase the cooling rate of the composite core and increase the number of shots, a mold having a composite core a as shown in FIG. 5 has been used. (See "Molds for Injection Molding" and "Basics of Mold Design" published by Plastics Age Co., Ltd.). This composite core a is designed to allow a coolant such as cooling water to pass between the outer surface of the inner core b and the inner surface of the outer core c, with the inner core b and the outer core c being narrowed (referred to as a blind eye). A coolant channel d is provided.

【0004】更に、内部コアbの内側には先端部が径小
に形成されたセンタコアeが嵌められ、固定側型板fと
複合コアa及びセンタコアeの先端部によってキャビテ
ィgが形成される。
Further, a center core e having a small diameter tip is fitted inside the inner core b, and a cavity g is formed by the fixed side template f, the composite core a and the tip of the center core e.

【0005】図6は図5に示す複合コアa内の冷媒流路
dの系統図で、冷媒は冷媒入口j1から供給され、複合
コアaを冷却した後、冷媒出口j2 から排出される。ま
た、センタコアeには長い空洞状の冷却タンクhが形成
され、冷却タンクh内は仕切板iによって仕切られてい
て、冷媒入口k1 から供給された冷媒は冷却タンクhの
仕切板iの片側に入り、仕切板iの先端をまわって反対
側を通過後、冷媒入口k2 から排出される。この間に冷
媒はセンタコアeを冷却する。このようにして、キャビ
ティgに注入された溶融樹脂は速やかに冷却されるの
で、ショット数が増加する。
FIG. 6 is a system diagram of the refrigerant flow path d in the composite core a shown in FIG. 5, in which the refrigerant is supplied from the refrigerant inlet j 1 , cools the composite core a, and then is discharged from the refrigerant outlet j 2. . Further, a long hollow cooling tank h is formed in the center core e, the inside of the cooling tank h is partitioned by a partition plate i, and the refrigerant supplied from the refrigerant inlet k 1 is on one side of the partition plate i of the cooling tank h. After passing through the tip of the partition plate i and passing on the opposite side, it is discharged from the refrigerant inlet k 2 . During this time, the refrigerant cools the center core e. In this way, the molten resin injected into the cavity g is quickly cooled, so that the number of shots increases.

【0006】[0006]

【発明が解決しようとする課題】ところで、図5に示す
従来の金型においては、内部コアbと外部コアcがスキ
マバメされているので、そのスキマから冷媒が漏れない
ようにするため、内部コアbと外部コアcのはめあわせ
面の端部には、m、nのように環状に溶接あるいはろう
付けが施されている。しかしながら、溶接された部分は
局部的に鋼の溶融温度以上に加熱されるために、変形や
材料の内部組織の変質、熱歪みによるクラック等が発生
することがあった。また、溶接による酸化膜や溶接の部
分からもクラックが発生して、金型の変形を生じること
があった。また、ろう付けは金型の本体部と材料が異な
るため一体に融着せず、従ってろう付け部の強度が弱
い。その上線膨張係数も異なるので、材料の界面から離
れることがあった。
By the way, in the conventional mold shown in FIG. 5, the inner core b and the outer core c are narrowed. Therefore, in order to prevent the refrigerant from leaking from the gap, the inner core b is prevented. The ends of the fitting surfaces of b and the outer core c are annularly welded or brazed like m and n. However, since the welded portion is locally heated above the melting temperature of steel, deformation, alteration of the internal structure of the material, cracks due to thermal strain, etc. may occur. In addition, cracks may also be generated from the oxide film or the welded portion due to welding, which may cause deformation of the mold. In addition, since the material of the brazing is different from that of the main body of the mold, they are not fused together, and the strength of the brazing is weak. In addition, since the linear expansion coefficient is different, the material sometimes separates from the material interface.

【0007】本発明は、上記のような従来技術の問題点
に鑑みてなされたものであって、内部コアと外部コアよ
りなり、且つ内・外部コアのはめあわせ面に冷媒流路が
形成された複合コアを有する射出成形用金型の製造方法
であって、内・外部コアのはめあわせ面端部の溶接ある
いはろう付けをなくして、溶接やろう付けによる材料の
内部組織の変質、熱歪み、酸化膜、クラック、変形、融
着不良等の発生を防止するようにした射出成形用金型の
製造方法を提供することを目的とする。
The present invention has been made in view of the problems of the prior art as described above, and is composed of an inner core and an outer core, and a refrigerant passage is formed on a mating surface of the inner and outer cores. A method for manufacturing an injection molding die having a composite core, which eliminates welding or brazing at the ends of the fitting surfaces of the inner and outer cores, and changes in the internal structure of the material due to welding or brazing, thermal strain It is an object of the present invention to provide a method for manufacturing an injection molding die that prevents the occurrence of oxide films, cracks, deformation, defective fusion, and the like.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、内部コアと外部コアよりなる複合コア
の壁内に冷媒流路を有する射出成形用金型の製造方法で
あって、常温における外部コアの内径を内部コアの外径
より小に形成するとともに、内部コアと外部コアのはめ
あわせ面に冷媒流路を形成する溝を刻設し、次いで外部
コアの加熱または内部コアの冷却の少なくとも一方を行
って外部コアの内径を内部コアの外径より大とした後、
内部コアと外部コアをはめあわせて複合コアを組み立て
ることを特徴とする。
In order to achieve the above object, the present invention is a method of manufacturing an injection molding die having a refrigerant channel in the wall of a composite core composed of an inner core and an outer core. The inner diameter of the outer core at room temperature is smaller than the outer diameter of the inner core, and a groove is formed in the mating surface of the inner core and the outer core to form a refrigerant flow path. After performing at least one of the cooling of the core to make the inner diameter of the outer core larger than the outer diameter of the inner core,
The feature is that a composite core is assembled by fitting the inner core and the outer core together.

【0009】本発明において、常温における外部コアの
内径と内部コアの外径は、内部コアと外部コアの材質、
外部コアの加熱温度または内部コアの冷却温度、要求さ
れる漏れ耐圧等によって決められるが、詳細については
実施例で後述する。
In the present invention, the inner diameter of the outer core and the outer diameter of the inner core at room temperature are the materials of the inner core and the outer core,
The temperature is determined by the heating temperature of the outer core or the cooling temperature of the inner core, the required leak pressure resistance, etc., but details will be described later in Examples.

【0010】冷媒流路を形成する溝は、内部コア側のみ
に刻設しても、外部コア側のみに刻設しても、あるいは
両方に刻設してもよい。また溝を刻設する手段として
は、旋盤、フライス盤等による機械切削、放電加工、及
びこれらの組合わせなどが挙げられる。
The groove forming the coolant channel may be engraved only on the inner core side, on the outer core side, or on both. Examples of means for engraving the groove include mechanical cutting with a lathe, a milling machine, electric discharge machining, and a combination thereof.

【0011】本発明は、いわゆるシマリバメ(常にシメ
シロができるハメアイ:JIS B0401「寸法公差
およびハメアイ」参照)により組み立てる方法であり、
外部コアを加熱・膨張させてはめあわせる、内部コアを
冷却・収縮させてはめあわせる、あるいはその両方を行
うようにしてもよい。
The present invention is a method of assembling by so-called shivering (refer to JIS B0401 "Dimensional tolerance and hameai").
The outer core may be heated and expanded for fitting, the inner core may be cooled and contracted for fitting, or both.

【0012】外部コアを加熱する方法としては、オーブ
ン、油槽、バーナー、電熱加熱等を用いる方法が挙げら
れる。また内部コアを冷却する方法としては、通常の冷
蔵庫あるいは冷凍庫、ドライアイス、液化窒素等を用い
る方法が挙げられる。
As a method for heating the outer core, a method using an oven, an oil tank, a burner, electric heating or the like can be mentioned. As a method of cooling the inner core, a method of using an ordinary refrigerator or freezer, dry ice, liquefied nitrogen and the like can be mentioned.

【0013】(作用)常温における外部コアの内径を内
部コアの外径より小に形成し、次いで外部コアを加熱す
ることによって膨張させるか、または内部コアを冷却す
ることによって収縮させ、もしくはその両方を行うこと
によって、外部コアの内径を内部コアの外径より大とす
るこができる。
(Operation) The inner diameter of the outer core is formed to be smaller than the outer diameter of the inner core at room temperature, and then the outer core is heated to expand, or the inner core is cooled to contract, or both. By doing so, the inner diameter of the outer core can be made larger than the outer diameter of the inner core.

【0014】この状態で内部コアに外部コアをはめあわ
せ、次いでそのまま常温まで冷却すると、外部コアの内
径が内部コアの外径より小さい状態に復元しようとし
て、外部コアの内面と内部コアの外面の間に接触応力が
生じ、この接触応力によって外部コアと内部コアの間に
高い水密性が得られる。
When the outer core is fitted to the inner core in this state and then cooled to room temperature as it is, an attempt is made to restore the inner diameter of the outer core to be smaller than the outer diameter of the inner core. Contact stress is generated between them, and this contact stress provides high water tightness between the outer core and the inner core.

【0015】また、内部コアと外部コアのはめあわせ面
に溝を刻設しておいて、内部コアと外部コアをはめあわ
せして組み立てることによって、内部コアと外部コアよ
りなる複合コアの壁内に冷媒流路を容易に形成すること
ができる。
In addition, a groove is formed in the fitting surfaces of the inner core and the outer core, and the inner core and the outer core are fitted and assembled to each other, so that the inside of the wall of the composite core including the inner core and the outer core is assembled. It is possible to easily form the refrigerant flow path.

【0016】本発明では溶接やろう付けをしないので、
材料が局部的に高温に加熱されることがなく、そのため
に内部組織の変質、熱歪み、酸化膜、クラック、変形、
融着不良等が発生しにくい。
Since no welding or brazing is performed in the present invention,
The material is not locally heated to a high temperature, which results in internal texture alteration, thermal strain, oxide film, cracks, deformation,
Less likely to cause fusion defects.

【0017】[0017]

【発明の実施の形態】以下、本発明を、外部コアを加熱
するとともに内部コアを冷却して、エアゾール容器のキ
ャップ成形用金型を製造する例について説明する。図1
は上記金型の複合コアの軸に沿った部分断面図である。
複合コア1は内部コア2の外面と外部コア3の内面をは
めあわせ面として内部コア2と外部コア3がはめあわさ
れている。しかるに、図1に示す複合コア1には、内部
コア2と外部コア3のはめあわせ面の端部に図4に示す
従来の複合コアaのような溶接あるいはろう付けが施さ
れていない。そして、内部コア2の外面には溝21が刻
設され(図2参照)、外部コア3の内面は溝が刻設され
ないままであって、内部コア2と外部コア3をはめあわ
せることによって内部コア2と外部コア3の間に冷媒流
路が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described with reference to an example of manufacturing a cap molding die for an aerosol container by heating an outer core and cooling the inner core. FIG.
FIG. 3 is a partial cross-sectional view of the composite core of the mold along the axis.
In the composite core 1, the outer surface of the inner core 2 and the inner surface of the outer core 3 are fitted to each other, and the inner core 2 and the outer core 3 are fitted to each other. However, the composite core 1 shown in FIG. 1 is not welded or brazed to the ends of the mating surfaces of the inner core 2 and the outer core 3 as in the conventional composite core a shown in FIG. A groove 21 is engraved on the outer surface of the inner core 2 (see FIG. 2), and a groove 21 is left unengraved on the inner surface of the outer core 3 so that the inner core 2 and the outer core 3 are fitted to each other. A coolant channel is formed between the core 2 and the outer core 3.

【0018】内部コア2の内側には更にセンタコア5が
はめあわされ、固定側型板6と複合コア1及びセンタコ
ア5の先端部によってキャビティ7が形成される。ま
た、センタコア5には長円筒状の冷却タンク8が形成さ
れ、冷却タンク8内は仕切板9によって仕切られてい
て、冷媒入口101から供給された冷媒は冷却タンク8
の仕切板9の片側に入り、仕切板9をまわって冷媒入口
102から排出され、この間に冷媒によってセンタコア
5が冷却される構造である。
A center core 5 is further fitted inside the inner core 2, and a cavity 7 is formed by the fixed side mold plate 6, the composite core 1 and the tip of the center core 5. Further, a long cylindrical cooling tank 8 is formed in the center core 5, the inside of the cooling tank 8 is partitioned by a partition plate 9, and the refrigerant supplied from the refrigerant inlet 101 is cooled by the cooling tank 8.
The partition plate 9 enters one side of the partition plate 9 and is discharged around the partition plate 9 from the refrigerant inlet 102, during which the center core 5 is cooled by the refrigerant.

【0019】本発明における複合コアの製造は次の工程
で行う。 旋盤で外部コア3の内径Dを内部コア2の外径dより
小さく形成する。それぞれの具体的な寸法は、外部コア
3及び内部コア2の材質、外部コア3の加熱温度、内部
コア2の冷却温度、複合コア1に要求される耐圧力等に
応じて切削加工する。なお、はめあわせ作業を容易に行
う目的で、必要に応じ外部コア3の内面及び内部コア2
の外面を研磨加工する。 内部コア2の外面に冷媒流路4を形成するための溝2
1を刻設する。(図2参照。なお、の工程をの前に
行ってもよい。) 外部コア3の加熱あるいは内部コアの冷却、あるいは
それら両方を行う。 外部コア3及び内部コア2を所定の温度に安定させた
後、内部コア2を外部コア3の内面にハメ込む。 外部コア3及び内部コア2を常温になるまで放置す
る。内部コア2と外部コア3のはめあわせ面の端部の溶
接あるいはろう付けは行わない。
The composite core of the present invention is manufactured in the following steps. The inner diameter D of the outer core 3 is formed smaller than the outer diameter d of the inner core 2 by a lathe. The specific size of each is cut according to the material of the outer core 3 and the inner core 2, the heating temperature of the outer core 3, the cooling temperature of the inner core 2, the withstand pressure required for the composite core 1, and the like. In addition, for the purpose of facilitating the fitting work, the inner surface of the outer core 3 and the inner core 2 may be as necessary.
The outer surface of is polished. Grooves 2 for forming a coolant flow path 4 on the outer surface of the inner core 2.
Engrave 1. (See FIG. 2. The step of may be performed before.) The outer core 3 is heated, the inner core is cooled, or both of them are performed. After stabilizing the outer core 3 and the inner core 2 at a predetermined temperature, the inner core 2 is fitted into the inner surface of the outer core 3. The outer core 3 and the inner core 2 are left to stand until the temperature reaches room temperature. The ends of the mating surfaces of the inner core 2 and the outer core 3 are not welded or brazed.

【0020】(実施例)はめあわせ面の直径30mm、厚
さが各々3mmの、図1に示すような内部コア2と外部コ
ア3よりなる複合コア1を有するエアゾール容器のキャ
ップ成形用金型を製造した。
(Example) A cap molding die for an aerosol container having a composite core 1 having an inner core 2 and an outer core 3 as shown in FIG. 1 and having a fitting surface of 30 mm in diameter and 3 mm in thickness, respectively. Manufactured.

【0021】まず、上記における外部コア3及び内部
コア2の切削寸法について、図3及び図4をを参照して
説明する。外部コアを加熱し且つ内部コアを冷却して、
内部コアと外部コアをはめあわせする場合、はめあわせ
の時点で最小内径D2minの外部コアに最大外径d2max
内部コアが挿入可能であるためには、図3に示すよう
に、D2min≧d2max ・・・・ (1)であり、且つ完成後に
水が漏れないためのシメシロを持たせるためには、常温
における外部コア3内径D1max及び内部コアの外径d
1minは、図4に示すように、D1max<d1min ・・・・
(2)であることが必要である。
First, the cutting dimensions of the outer core 3 and the inner core 2 will be described with reference to FIGS. 3 and 4. Heating the outer core and cooling the inner core,
If you match fit an inner core and an outer core, for the inner core of the maximum outer diameter d 2max outside the core of the minimum inner diameter D 2min at the time of mating can be inserted, as shown in FIG. 3, D 2min ≧ d 2max ··· (1), and in order to have a crimp for preventing water from leaking after completion, the inner diameter D 1max of the outer core 3 and the outer diameter d of the inner core at room temperature
As shown in FIG. 4, 1 min is D 1max <d 1min ...
It is necessary to be (2).

【0022】そこで、JIS B 0401(寸法公差
およびハメアイ)に穴基準ハメアイのH7/h6 で示される
等級に従うと、外部コアの内径の許容差は、30mmに対
し+0.021mm、−0mm(従ってD2max=30.02
1mm、D2min=30.000mm)、内部コアとの最大ス
キマは0.034mm、最小スキマは0mmとなり、内部コ
アの外径は、d2max=30.000mm、d2min=30.
021−0.034=29.987mmとなって、D2min
=d2maxで上記(1)を満足する。
Therefore, according to JIS B 0401 (Dimensional tolerance and hame eye), the hole reference hame eye has a grade of H7 / h6, the tolerance of the inner diameter of the outer core is +0.021 mm, -0 mm (30 mm) for 30 mm. 2max = 30.02
1mm, D 2min = 30.000mm), the maximum gap is 0.034 mm, the minimum gap is 0mm next internal core, the outer diameter of the inner core, d 2max = 30.000mm, d 2min = 30.
Become a 021-0.034 = 29.987mm, D 2min
The above condition (1) is satisfied at = d 2max .

【0023】次に、外部コアをオーブンで150℃に加
熱し、内部コアをドライアイスで−75℃に冷却した
後、直ちにはめあわせを行う。それでもなお、はめあわ
せ作業中に外部コアは120℃まで温度が下降し、内部
コア2は−50℃まで温度が上昇するものとする。内部
コア及び外部コアは鋼製(線膨張係数:12×10-6
とし、はめあわせ時の温度120℃から常温までの外部
コアの内径寸法変化量ΔDを求めると、 ΔD=30×12×10-6×(20−120)=−0.036mm ・・・・(3) 即ち収縮となる。同様にして、はめあわせ時の温度−5
0℃から常温までの内部コアの外径寸法変化量Δdを求
めると、 Δd=30×12×10-6×{20−(−50)}=0.025mm・・・・(4) 即ち膨張となる。また、シメシロは、 最大シメシロ 2δmax =−0.036−(0.025)=−0.061mm、 最小シメシロ 2δmin =−0.061−(−0.034(最大スキマ) =−0.027mmとなる。 以上より、常温における外部コアの最大内径D1max、最
小内径D1min、及び内部コアの最大外径d1max、最小内
径d1minは、 D1max=D2max−ΔD=30.021−0.036=29.985mm、 D1min=D2min−ΔD=30.000−0.036=29.964mm、 d1max=d2max+Δd=30.000+0.025=30.025mm、 d1min=d2min+Δd=29.987+0.025=30.012mm、 となるように切削する。
Next, the outer core is heated to 150 ° C. in an oven, the inner core is cooled to −75 ° C. with dry ice, and then immediately fitted. Nevertheless, it is assumed that the temperature of the outer core drops to 120 ° C. and the temperature of the inner core 2 rises to −50 ° C. during the fitting operation. The inner core and outer core are made of steel (coefficient of linear expansion: 12 × 10 -6 ).
Then, when the inner diameter dimensional variation ΔD of the outer core from the fitting temperature 120 ° C. to room temperature is calculated, ΔD = 30 × 12 × 10 −6 × (20−120) = − 0.036 mm 3) That is, contraction occurs. Similarly, the temperature at the time of fitting -5
Calculating the outer diameter dimensional variation Δd of the inner core from 0 ° C to room temperature, Δd = 30 × 12 × 10 −6 × {20 − (− 50)} = 0.025 mm ··· (4) That is, expansion Becomes In addition, the maximum simeiro 2δ max = -0.036- (0.025) = -0.061 mm, the minimum simeiro 2δ min = -0.061-(-0.034 (maximum gap) = -0.027 mm From the above, the maximum inner diameter D 1max , the minimum inner diameter D 1min of the outer core, and the maximum outer diameter d 1max and the minimum inner diameter d 1min of the inner core at room temperature are: D 1max = D 2max −ΔD = 30.021-0 .036 = 29.985mm, D 1min = D 2min -ΔD = 30.000-0.036 = 29.964mm, d 1max = d 2max + Δd = 30.000 + 0.025 = 30.025mm, d 1min = d 2min + Δd = 29.987 + 0.025 = 30.12 mm, and cut.

【0024】また、最大シメシロ2δmax 及び最小シメ
シロ2δmin は、 2δmax =〔ΔD−Δd〕−最小隙間=0.061−0=0.061mm、 2δmin =〔ΔD−Δd〕−最大隙間=0.061−0.034=0.027 mmとなる。
Further, the maximum shiroiro 2δ max and the minimum shiroiro 2δ min are as follows: 2δ max = [ΔD-Δd] -minimum gap = 0.061-0 = 0.061 mm, 2δ min = [ΔD-Δd] -maximum gap = 0.061-0.034 = 0.027 mm.

【0025】また、内部コアと外部コアの間の水密性を
評価する目安として、シマリバメ二重円筒における接触
面(はめあわせ面)に生ずる接触応力を求めた。計算は
内部コアを内筒、外部コアを外筒として、下記の数1
(「機械設計便覧」:木内 石著、日刊工業新聞社発
行)によって行った。
As a standard for evaluating the watertightness between the inner core and the outer core, the contact stress generated on the contact surface (fitting surface) in the double-barreled double cylinder was determined. The calculation is performed using the inner cylinder as the inner cylinder and the outer core as the outer cylinder.
("Mechanical Design Handbook": Ishiki Kiuchi, published by Nikkan Kogyo Shimbun).

【0026】[0026]

【数1】 [Equation 1]

【0027】なお、数1中の記号は、 pm :接触面(はめあわせ面)に生ずる接触応力 (kgf/c
m2) p1 :内筒の内圧 (kgf/cm2)、 p2 :外筒の外圧 (kgf/c
m2)、E1 :内筒の縦弾性係数(kgf/mm2)、 E2 :外筒の
縦弾性係数(kgf/mm2)、m1 :内筒のポアッソン数、 m
2 :外筒のポアッソン数、2r1:はめあわせ前の内筒の
内径 (mm) 、 2r2:はめあわせ前の外筒の外径 (mm) 、
2r3:はめあわせ前の内筒の外径 (mm) 、2δ:シメシ
ロ(mm) 、を示す。
The symbol in Equation 1 is p m : contact stress (kgf / c) generated on the contact surface (fitting surface)
m 2 ) p 1 : Inner cylinder inner pressure (kgf / cm 2 ), p 2 : Outer cylinder outer pressure (kgf / c)
m 2 ), E 1 : Inner cylinder longitudinal elastic modulus (kgf / mm 2 ), E 2 : Outer cylinder longitudinal elastic modulus (kgf / mm 2 ), m 1 : Inner cylinder Poisson's number, m
2 : Poisson number of outer cylinder, 2r 1 : Inner diameter of inner cylinder before fitting (mm), 2r 2 : Outer diameter of outer cylinder before fitting (mm),
2r 3 : Indicates the outer diameter (mm) of the inner cylinder before fitting, and 2δ is the interference (mm).

【0028】ここで、p1=p2=0、 E1 = E2 =2×1
4 kgf/mm2 、 2r1=24mm、2r2=36mm、 2r3=3
0mm、 2δmax =0.061mm、 2δmin =0.027
mm、m1= m2 =3、として、最大シメシロ2δmax のと
きの接触応力 pm max 、及び最小シメシロ2δmin のと
きの接触応力 pm min を求めると、 pm max =4.03kgf/mm2 (=403kgf/cm2 )、 pm min =1.78kgf/mm2 (=178kgf/cm2 )、 となって、最小シメシロのときでも高い接触応力が得ら
れることが分かる。
Here, p 1 = p 2 = 0, E 1 = E 2 = 2 × 1
0 4 kgf / mm 2 , 2r 1 = 24 mm, 2r 2 = 36 mm, 2r 3 = 3
0 mm, 2δ max = 0.061 mm, 2δ min = 0.027
mm, m 1 = m 2 = 3, as, contact stress p m max at the maximum Interference 2.delta. max, and when obtaining the contact stress p m min when the minimum Interference 2δ min, p m max = 4.03kgf / mm 2 (= 403 kgf / cm 2 ), p m min = 1.78 kgf / mm 2 (= 178 kgf / cm 2 ), and it can be seen that high contact stress can be obtained even at the minimum interference.

【0029】また、実際に冷媒流路に10kgf/cm2 の静
水圧をかけて複合コアの漏水試験を行った結果、漏れは
全く観察されなかった。
Further, as a result of actually conducting a water leak test of the composite core by applying a hydrostatic pressure of 10 kgf / cm 2 to the refrigerant channel, no leak was observed at all.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、シマリバメによって外部コアの内面と内部コ
アの外面の間に高い接触応力が生じ、この接触応力によ
って複合コアは高い水密性が得られる。従って、材料の
内部組織の変質や腐食、酸化膜、熱歪み、クラック、及
びそれらに起因する冷媒の漏れなどの発生しやすい溶接
やろう付けをする必要がなく、安価で信頼性の高い射出
成形用金型が得られる。
As is apparent from the above description, according to the present invention, a high contact stress is generated between the inner surface of the outer core and the outer surface of the inner core due to the interference fit, and the contact stress causes the composite core to have high watertightness. Is obtained. Therefore, there is no need to perform welding or brazing that is likely to cause deterioration or corrosion of the internal structure of the material, oxide film, thermal strain, cracks, and leakage of refrigerant due to them, and inexpensive and highly reliable injection molding A mold is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によって製造された射出成形用金型の一
例を示す主要部の縦断面図。
FIG. 1 is a longitudinal sectional view of a main part showing an example of an injection molding die manufactured according to the present invention.

【図2】図1に示す射出成形用金型の内部コアの側面
図。
FIG. 2 is a side view of an inner core of the injection molding die shown in FIG.

【図3】はめあわせ時における外部コアと内部コアの寸
法関係を示す模式図。
FIG. 3 is a schematic diagram showing a dimensional relationship between an outer core and an inner core during fitting.

【図4】切削加工時(常温)における外部コアと内部コ
アの寸法関係を示す模式図。
FIG. 4 is a schematic diagram showing a dimensional relationship between an outer core and an inner core during cutting (normal temperature).

【図5】従来技術によって製造された射出成形用金型の
一例を示す主要部の部分縦断面図。
FIG. 5 is a partial vertical cross-sectional view of a main part showing an example of an injection molding die manufactured by a conventional technique.

【図6】図4に示す射出成形用金型の冷媒流路の系統
図。
FIG. 6 is a system diagram of a coolant flow path of the injection molding die shown in FIG.

【符号の説明】 1 複合コア 2 内部コア 21 溝 3 外部コア 4 冷媒流路[Explanation of reference numerals] 1 composite core 2 inner core 21 groove 3 outer core 4 refrigerant flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部コアと外部コアよりなる複合コアの
壁内に冷媒流路を有する射出成形用金型の製造方法であ
って、常温における外部コアの内径を内部コアの外径よ
り小に形成するとともに、内部コアと外部コアのはめあ
わせ面に冷媒流路を形成する溝を刻設し、次いで外部コ
アの加熱または内部コアの冷却の少なくとも一方を行っ
て外部コアの内径を内部コアの外径より大とした後、内
部コアと外部コアをはめあわせて複合コアを組み立てる
ことを特徴とする射出成形用金型の製造方法。
1. A method of manufacturing an injection-molding die having a coolant passage in a wall of a composite core including an inner core and an outer core, wherein an inner diameter of the outer core at room temperature is smaller than an outer diameter of the inner core. Along with the formation of the inner core and the outer core, a groove is formed in the fitting surface of the inner core to form a refrigerant flow path, and then at least one of heating the outer core and cooling the inner core is performed to set the inner diameter of the outer core to that of the inner core. A method for manufacturing an injection-molding die, comprising assembling a composite core by fitting an inner core and an outer core together after making the outer diameter larger.
JP4476096A 1996-03-01 1996-03-01 Manufacture of mold for injection molding Pending JPH09234770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4476096A JPH09234770A (en) 1996-03-01 1996-03-01 Manufacture of mold for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4476096A JPH09234770A (en) 1996-03-01 1996-03-01 Manufacture of mold for injection molding

Publications (1)

Publication Number Publication Date
JPH09234770A true JPH09234770A (en) 1997-09-09

Family

ID=12700390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4476096A Pending JPH09234770A (en) 1996-03-01 1996-03-01 Manufacture of mold for injection molding

Country Status (1)

Country Link
JP (1) JPH09234770A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099526A1 (en) * 1999-10-13 2001-05-16 GEFIT S.p.A. Mould for the production of plastic caps for bottles
JP2002531296A (en) * 1998-12-07 2002-09-24 ジョブスト、アルリッチ、ジェラート Cooling core for injection molding with ribbed cap
JP2002537143A (en) * 1999-02-17 2002-11-05 ジョブスト、アルリッチ、ジェラート Cooling cavity insert for injection molding
WO2007028702A1 (en) * 2005-09-07 2007-03-15 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Moulds for moulding objects made of plastics and a method for producing a mould element
JP2007112040A (en) * 2005-10-21 2007-05-10 Fujifilm Corp Mold and molding method
KR20200143769A (en) * 2019-06-17 2020-12-28 고려기술주식회사 Injection molding machine for dust cap
KR20210029930A (en) * 2019-09-09 2021-03-17 이춘성 Double pipe injection core chiller

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531296A (en) * 1998-12-07 2002-09-24 ジョブスト、アルリッチ、ジェラート Cooling core for injection molding with ribbed cap
JP2002537143A (en) * 1999-02-17 2002-11-05 ジョブスト、アルリッチ、ジェラート Cooling cavity insert for injection molding
EP1099526A1 (en) * 1999-10-13 2001-05-16 GEFIT S.p.A. Mould for the production of plastic caps for bottles
WO2007028702A1 (en) * 2005-09-07 2007-03-15 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Moulds for moulding objects made of plastics and a method for producing a mould element
EP2263845A3 (en) * 2005-09-07 2011-03-23 SACMI Cooperativa Meccanici Imola Società Cooperativa A method for producing a mould element.
US8038434B2 (en) 2005-09-07 2011-10-18 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Moulds for moulding objects made of plastics and a method for producing a mould element
JP2012106501A (en) * 2005-09-07 2012-06-07 Sacmi Cooperativa Meccanici Imola Soc Cooperativa Method for producing mould element
US8501067B2 (en) 2005-09-07 2013-08-06 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Method for producing a mould element
JP2007112040A (en) * 2005-10-21 2007-05-10 Fujifilm Corp Mold and molding method
KR20200143769A (en) * 2019-06-17 2020-12-28 고려기술주식회사 Injection molding machine for dust cap
KR20210029930A (en) * 2019-09-09 2021-03-17 이춘성 Double pipe injection core chiller

Similar Documents

Publication Publication Date Title
US3660192A (en) Method of making sealing ring with resilient core
US6422857B2 (en) Injection gate insulating and cooling apparatus
JPH09234770A (en) Manufacture of mold for injection molding
JP2009195914A (en) Method for producing molding die, and molding die
CN110394439A (en) Method for the cylinder liner of internal combustion engine and for manufacturing cylinder liner
JPS61209719A (en) Port-hole die
JP2849349B2 (en) Electrofusion joint, method of manufacturing the same, and mold for injection molding
US3118225A (en) Method of casting
KR102151919B1 (en) Manufacturing method of hot forming mold for center pillar trim
JPS60181208A (en) Manufacture of multi-shaft cylinder for plastic molding machine
JPH02178B2 (en)
JP2000042717A (en) Die with built-in pipe for adjusting temperature
JP5424083B2 (en) Mold for molding
KR101510961B1 (en) An injection sleeve regenerating for die casting and An regenerating method of injection sleeve for die casting
KR102714188B1 (en) Method of manufacturing bellows by injection molding of PFA resin
JP5012454B2 (en) Method for machining parting surface of molding apparatus
JP3340172B2 (en) Manufacturing method of electrofusion joint
JPH071513A (en) Injection mold
JPH0480389A (en) Production of bellows
JPH03284910A (en) Manufacture of mold
JPH0562573B2 (en)
JPH0925848A (en) Cylinder block of engine and its manufacture
JPH0336020B2 (en)
CN117621504A (en) Sealing method for air reservoir
JPH10193452A (en) Manufacture of resin reducer