JPH09233693A - Impedance variable type component, and impedance variable type current limiter, and impedance variable type superconductive converter - Google Patents

Impedance variable type component, and impedance variable type current limiter, and impedance variable type superconductive converter

Info

Publication number
JPH09233693A
JPH09233693A JP8036847A JP3684796A JPH09233693A JP H09233693 A JPH09233693 A JP H09233693A JP 8036847 A JP8036847 A JP 8036847A JP 3684796 A JP3684796 A JP 3684796A JP H09233693 A JPH09233693 A JP H09233693A
Authority
JP
Japan
Prior art keywords
impedance
magnetic field
yoke
main coil
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8036847A
Other languages
Japanese (ja)
Other versions
JP3015863B2 (en
Inventor
Noriji Tamada
紀治 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8036847A priority Critical patent/JP3015863B2/en
Publication of JPH09233693A publication Critical patent/JPH09233693A/en
Application granted granted Critical
Publication of JP3015863B2 publication Critical patent/JP3015863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a converter which enables the power conversion operation at ultralow temperature. SOLUTION: When a current is applied to a control coil 18B, the impedance ZB of a component 10B becomes extremely large. On the other hand, if a current is not applied to the control coil 18A, the impedance ZA becomes small. Accordingly, charge is performed from a power source E to a capacitor 31, but due to the large impedance ZB, the current is not applied to load 40. Next, a current is applied to the control coil 18A and a current is not applied to the control coil 18B, whereupon the charge of the capacitor 31 flows to the load 40, passing through the component 10B. This operation is performed alternately, and AC power is supplied to the load 40 from a DC power source E.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導体に磁場発生部
により超電導・常電導の相変化を与えることによりスイ
ッチング動作を行わせることできるインピーダンス可変
型要素器と、これを用いたインピーダンス可変型限流器
ならびに高温超電導材料の電力応用として有望視されて
いる直流超電導送電ケーブル用の直流/交流電力変換に
用いるインピーダンス可変型超電導変換装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impedance variable type element device capable of performing a switching operation by giving a phase change of superconducting / normal conducting to a superconductor by a magnetic field generating section, and an impedance variable type device using the same. The present invention relates to a variable impedance type superconducting converter used for DC / AC power conversion for a DC superconducting power transmission cable, which is promising as an electric power application of a current limiting device and a high temperature superconducting material.

【0002】[0002]

【従来の技術】大電流の限流器や直流を交流に変換した
り、限流する手段には電力用半導体変換器を利用するの
が一般的である。
2. Description of the Related Art Generally, a power semiconductor converter is used as a high-current limiter or as a means for converting direct current into alternating current or for limiting current.

【0003】[0003]

【発明が解決しようとする課題】超電導体は直流的に電
気抵抗がゼロであるが、交流で使用すると交流損失が発
生する。この損失は商用周波数である50,60Hzの
動作では大きな値になり、膨大な液体窒素とか極低温H
eガス等の冷却寒冷を使ってケーブルを冷却しなければ
ならない。これが交流超電導送電ケーブル実用化の大き
なネックとなっている。仮にケーブル電流を直流にすれ
ば超電導体からの交流損失が全く無いため超電導の特性
を最大限有効に利用できることが分かっている。しか
し、現在の電力系統は全て交流動作しているため直流を
交流に変換しなければならない。そして、現在の電力用
半導体式変換器では常温で動作するため、極低温に冷却
されたケーブルを常温まで引き出す必要があり熱的に大
きな損失が生じる。また、半導体変換器で生じる損失も
膨大であるため、全体の効率は大幅に低下する。このた
め直流超電導送電は実用化できないとされてきた。これ
を解決するには極低温で効率良く直流電流を交流電流に
変換できる装置の開発が不可欠となる。
The superconductor has zero electric resistance in terms of direct current, but when used in alternating current, alternating current loss occurs. This loss becomes a large value at the operation of 50 and 60 Hz which is a commercial frequency, and a huge amount of liquid nitrogen or cryogenic H
The cable must be cooled using cooling cold such as e-gas. This is a major obstacle to the practical application of AC superconducting power transmission cables. It is known that if the cable current is changed to DC, there is no AC loss from the superconductor and the characteristics of superconductivity can be utilized to the maximum extent. However, since all current power systems operate in alternating current, direct current must be converted to alternating current. Since the current power semiconductor converter operates at room temperature, it is necessary to pull out the cable cooled to an extremely low temperature to room temperature, which causes a large thermal loss. Further, since the loss generated in the semiconductor converter is enormous, the overall efficiency is significantly reduced. For this reason, it has been considered that DC superconducting power transmission cannot be put to practical use. In order to solve this, it is essential to develop a device that can efficiently convert DC current into AC current at cryogenic temperatures.

【0004】そこで、本発明は、従来の半導体変換器で
は不可能であった電力変換の極低温動作を可能とし、効
率の良い直流超電導送電ケーブルの実現を可能とするイ
ンピーダンス可変型要素器およびインピーダンス可変型
限流器ならびにインピーダンス可変型超電導変換装置を
提供することを目的とする。
Therefore, the present invention enables a cryogenic operation of power conversion, which was impossible with the conventional semiconductor converter, and realizes an efficient DC superconducting power transmission cable. It is an object to provide a variable current limiter and a variable impedance superconducting converter.

【0005】[0005]

【課題を解決するための手段】本発明にかかるインピー
ダンス可変型要素器は、閉磁路を構成するヨークと、こ
のヨーク上に巻回した筒状超電導体と、この筒状超電導
体上に絶縁膜を介した巻回した主コイルと、前記筒状超
電導体に超電導・常電導相変化を与え、前記主コイルの
インピーダンスを小,大に切換える磁場発生部とを具備
したものである。
The variable impedance element device according to the present invention comprises a yoke forming a closed magnetic circuit, a cylindrical superconductor wound on the yoke, and an insulating film on the cylindrical superconductor. And a magnetic field generator for changing the impedance of the main coil between small and large by giving a superconducting / normal conducting phase change to the tubular superconductor.

【0006】また、本発明にかかるインピーダンス可変
型限流器は、閉磁路を構成するヨークと、このヨーク上
に巻回した筒状超電導体と、この筒状超電導体上に絶縁
膜を介した巻回した主コイルと、前記筒状超電導体に超
電導・常電導相変化を与え、前記主コイルのインピーダ
ンスを小,大に切換える磁場発生部と、さらに前記主コ
イルと直列に接続された1次巻線と、誘導した電流を前
記磁場発生部に供給する2次巻線とからなる変流器とを
備えたものである。
In the variable impedance type fault current limiter according to the present invention, a yoke forming a closed magnetic circuit, a cylindrical superconductor wound on the yoke, and an insulating film interposed on the cylindrical superconductor. A wound main coil, a magnetic field generating unit that changes the impedance of the main coil between small and large by giving a superconducting / normal conducting phase change to the tubular superconductor, and a primary connected in series with the main coil. The current transformer includes a winding and a secondary winding that supplies the induced current to the magnetic field generation unit.

【0007】さらに、本発明にかかるインピーダンス可
変型超電導変換装置は、閉磁路を構成するヨークと、こ
のヨーク上に巻回した筒状超電導体と、この筒状超電導
体上に絶縁膜を介して巻回した主コイルと、前記超電導
・常電導相変化を与え、前記主コイルのインピーダンス
を小,大に切換える磁場発生部とを備えたインピーダン
ス可変型要素器を2個それぞれの主コイルを直列に接続
し、この直列に接続された主コイルの一端を直流電源の
一極に他端を負荷の一端に接続し、この負荷の他端を前
記直流電源の他極に接続し、前記2個のインピーダンス
可変型要素器の接続点と前記直流電源の他極との間にコ
ンデンサを接続するとともに、超電導・常電導相変化を
前記2個のインピーダンス可変型要素器の筒状超電導体
に交互に与える磁場発生手段を備えたものである。
Further, in the variable impedance superconducting converter according to the present invention, a yoke forming a closed magnetic path, a cylindrical superconductor wound on the yoke, and an insulating film on the cylindrical superconductor are interposed. Two variable impedance element units each including a wound main coil and a magnetic field generating unit for switching the impedance of the main coil between small and large by applying the superconducting / normal conducting phase change One end of the main coil connected in series is connected to one pole of the DC power supply, the other end is connected to one end of the load, and the other end of the load is connected to the other pole of the DC power supply. A capacitor is connected between the connection point of the variable impedance element and the other pole of the DC power source, and superconducting / normal conducting phase changes are alternately applied to the cylindrical superconductors of the two variable impedance elements. Porcelain Those having a generator.

【0008】また、コンデンサに代えて合成トランスを
用いたものである。
Further, a synthetic transformer is used instead of the capacitor.

【0009】さらに、それぞれのインピーダンス可変型
要素器の磁場発生部は、前記閉磁路を構成するヨークか
ら分岐させた補助ヨーク上に制御用コイルが巻回されて
なり、この制御用コイルへの通電により磁場を発生する
ものである。
Further, in the magnetic field generator of each variable impedance element, a control coil is wound around an auxiliary yoke branched from the yoke forming the closed magnetic path, and the control coil is energized. To generate a magnetic field.

【0010】[0010]

【作用】本発明のインピーダンス可変型要素器において
は、磁場発生部に通電して磁場を発生させると、筒状超
電導体が超電導状態から常電導状態に相変化し、主コイ
ルのインピーダンスを急増させ、スイッチングが行われ
る。
In the variable impedance element device of the present invention, when the magnetic field is energized to generate a magnetic field, the cylindrical superconductor changes its phase from the superconducting state to the normal conducting state, and the impedance of the main coil rapidly increases. , Switching is performed.

【0011】また、本発明のインピーダンス可変型限流
器においては、主コイルに大電流が流れると変流器の2
次巻線に電流が誘起され、これが補助コイルに流れて磁
場発生部から磁場が発生し、インピーダンス可変型要素
器のインピーダンスが急増し、限流を行う。
Further, in the variable impedance type current limiter of the present invention, when a large current flows through the main coil, the
A current is induced in the next winding, which flows into the auxiliary coil to generate a magnetic field from the magnetic field generation unit, and the impedance of the variable impedance element rapidly increases, thereby limiting the current.

【0012】本発明のインピーダンス可変型超電導変換
装置においては、柱状の鉄製ヨークを筒状超電導体で覆
い、その上を筒状の電気絶縁材料で覆い、その上に主コ
イルを巻き、この主コイルと筒状超電導体とシリーズに
接続して回路インピーダンスを与え、外部磁場発生手段
の補助コイルの通電の制御で筒状超電導体の超電導特性
を制御することで、主コイルと筒状超電導体のシリーズ
回路が作り出すインピーダンスを変化できるインピーダ
ンス可変型要素器を2個用意し、各々のインピーダンス
可変型要素器の制御磁場を交互に発生させて、インピー
ダンス可変型要素器のインピーダンスを交互に変化させ
インピーダンス可変型要素器を流れる直流電流に交互変
化を与え、2つのインピーダンス可変型要素器とコンデ
ンサとを組み合わせるか、もしくは合成トランスで変動
電流を合成することにより、直流電流を交流電流に変換
させるものである。
In the variable impedance type superconducting converter of the present invention, a columnar iron yoke is covered with a cylindrical superconductor, a cylindrical electric insulating material is covered thereover, and a main coil is wound on the cylindrical superconducting material. A series of main coil and tubular superconductor by controlling the superconducting characteristics of the tubular superconductor by controlling the energization of the auxiliary coil of the external magnetic field generator by connecting the Two impedance variable type element units that can change the impedance created by the circuit are prepared, and the control magnetic field of each impedance variable type element unit is alternately generated to alternately change the impedance of the variable impedance type element unit. Alternates the direct current flowing through the element unit and combines two variable impedance element units and capacitors Luke, or by combining the varying current in the synthesis transformer, is intended to convert direct current to alternating current.

【0013】[0013]

【実施例】図1,図2は、本発明にかかるインピーダン
ス可変型要素器の一実施例の構成を示す正面図と平面図
である。図1において、10はインピーダンス可変型要
素器(以下、単に要素器と称する。)で、その中央部分
を拡大したものが図3である。
1 and 2 are a front view and a plan view showing the configuration of an embodiment of the variable impedance element according to the present invention. In FIG. 1, reference numeral 10 is a variable impedance type element unit (hereinafter, simply referred to as an element unit), and FIG. 3 is an enlarged central portion thereof.

【0014】図1〜3に示すように、要素器10は、閉
磁路を構成するヨークの一部である中央ヨーク11の周
囲を円筒状,角筒状等の筒状超電導体12で覆い、その
上を絶縁膜13で被覆し、さらにその上に主コイル14
を巻く構造である。主コイル14と筒状超電導体12と
はシリーズ接続される。15,16は外囲ヨークで、中
央ヨーク11とともに閉磁路を構成している。17は補
助ヨークで、中央ヨーク11と直交する方向に両側の外
囲ヨーク15からそれぞれ分岐して設けられ、その上に
制御用コイル18が巻回され、補助ヨーク17と制御用
コイル18とで磁場発生部19が構成されている。な
お、磁場発生部19には制御用コイル18への通電を制
御する制御手段が設けられるが図示は省略してある。
As shown in FIGS. 1 to 3, the element unit 10 covers a central yoke 11, which is a part of a yoke forming a closed magnetic circuit, with a cylindrical superconductor 12 having a cylindrical shape or a rectangular tube shape. An insulating film 13 is coated on the main coil 14 and
It is a structure that winds. The main coil 14 and the cylindrical superconductor 12 are connected in series. Reference numerals 15 and 16 are outer yokes that form a closed magnetic circuit together with the central yoke 11. Reference numeral 17 denotes an auxiliary yoke, which is provided so as to be branched from the outer yokes 15 on both sides in a direction orthogonal to the central yoke 11, and a control coil 18 is wound on the auxiliary yoke 17, and the auxiliary yoke 17 and the control coil 18 are provided. The magnetic field generator 19 is configured. The magnetic field generator 19 is provided with a control means for controlling the energization of the control coil 18, but the illustration is omitted.

【0015】さて、要素器10の等価インピーダンスZ
は図4のようにインダクタンスLと超電導体が作る抵抗
Rで構成されることになる。筒状超電導体12が超電導
状態の時は、抵抗Rはゼロで、超電導体の特性である反
磁性特性により主コイル14の作る磁束は中央ヨーク1
1に届かないため、主コイル14のインダクタンスLは
空芯コイルと同じであり非常に小さな値になり、要素器
10のインピーダンスZ(jwL+R)は非常に小さな
値になる。しかし、図1〜3に示した制御用コイル18
に電流を流し筒状超電導体12の超電導状態を破壊する
と、筒状超電導体12は電気抵抗Rを示し、主コイル1
4の作る磁束は筒状超電導体12の反磁性特性が失われ
ているので、中心の中央ヨーク11に届き大きなインダ
クタンスLが発生し、要素器10のインピーダンスZは
非常に大きな値になる。このことは、制御用コイル18
で筒状超電導体12の特性を制御することで要素器10
のインピーダンスZの値を大幅に変え得ること、即ち、
一種のスイッチング動作ができることを意味する。
Now, the equivalent impedance Z of the element unit 10
Is composed of an inductance L and a resistance R formed by a superconductor as shown in FIG. When the tubular superconductor 12 is in the superconducting state, the resistance R is zero, and the magnetic flux generated by the main coil 14 due to the diamagnetic characteristic of the superconductor is the central yoke 1.
Since it does not reach 1, the inductance L of the main coil 14 is the same as that of the air-core coil and has a very small value, and the impedance Z (jwL + R) of the element unit 10 has a very small value. However, the control coil 18 shown in FIGS.
When the superconducting state of the tubular superconductor 12 is destroyed by applying a current to the tubular superconductor 12, the tubular superconductor 12 exhibits an electric resistance R and the main coil 1
Since the magnetic flux created by 4 loses the diamagnetic property of the cylindrical superconductor 12, it reaches the central yoke 11 at the center and a large inductance L is generated, and the impedance Z of the element unit 10 becomes a very large value. This means that the control coil 18
By controlling the characteristics of the cylindrical superconductor 12 with the
That the value of the impedance Z of can be changed significantly, that is,
This means that a kind of switching operation can be performed.

【0016】図5は、本発明にかかるインピーダンス可
変型限流器の一実施例の構成を示す図である。本実施例
は図1〜3に示した要素器10を用いて構成したもので
ある。図5において、図1〜3と同じ符号は同じ部分を
示し、20はインピーダンス可変型限流器(以下、単に
限流器という)で、21は変流器で、1次巻線22,2
次巻線23およびヨーク24からなり、1次巻線22は
主コイル14と直列に接続され、2次巻線23は、その
両端が制御用コイル18の両端に接続されている。
FIG. 5 is a diagram showing the configuration of an embodiment of the variable impedance type current limiting device according to the present invention. This embodiment is constructed by using the element unit 10 shown in FIGS. 5, the same symbols as those in FIGS. 1 to 3 indicate the same parts, 20 is an impedance variable current limiter (hereinafter, simply referred to as current limiter), 21 is a current transformer, and primary windings 22 and 2 are shown.
The secondary winding 23 is composed of a secondary winding 23 and a yoke 24. The primary winding 22 is connected in series with the main coil 14, and the secondary winding 23 is connected at both ends thereof to both ends of the control coil 18.

【0017】限流器20の基本原理は、限流器20を流
れる電流が小さい時には、筒状超電導体12の磁気遮蔽
効果により磁束は中央ヨーク11に届かず主コイル14
のインピーダンスは小さい。しかし、故障電流が流れる
と、主コイル14の発生する磁束は中央ヨーク11に届
くようになり、インピーダンスが急激に大きくなって流
れる電流を制御する。本発明では要素器10の制御用コ
イル18を使用しているので、1次巻線22と2次巻線
23の結合係数を可変とすることで限流特性を自由に制
御できる。また、補助ヨーク17があるので、磁束が集
中し筒状超電導体12の超電導特性を速やかに破壊する
ので、応答性が優れている。なお、主コイル14と直列
にスイッチを設けてこれを開とすることで迅速な復旧が
できる。
The basic principle of the fault current limiter 20 is that when the current flowing through the fault current limiter 20 is small, the magnetic flux does not reach the central yoke 11 due to the magnetic shielding effect of the tubular superconductor 12 and the main coil 14 does not move.
Has a low impedance. However, when a fault current flows, the magnetic flux generated by the main coil 14 reaches the central yoke 11, and the impedance suddenly increases to control the flowing current. Since the control coil 18 of the element unit 10 is used in the present invention, the current limiting characteristics can be freely controlled by making the coupling coefficient of the primary winding 22 and the secondary winding 23 variable. Further, since the auxiliary yoke 17 is provided, the magnetic flux is concentrated and the superconducting characteristics of the tubular superconductor 12 are rapidly destroyed, so that the responsiveness is excellent. It should be noted that a switch can be provided in series with the main coil 14 and the switch can be opened for quick recovery.

【0018】図6は、本発明にかかるインピーダンス可
変型超電導変換装置(インバータ)の一実施例の基本回
路図であり、30はインピーダンス可変型超電導変換装
置で、コンデンサを使った場合の直流から交流を得るも
のである。10A,10Bは要素器であり、18A,1
8Bは制御用コイル、31はコンデンサ、40は負荷を
示し、その他は図1,2と同じである。
FIG. 6 is a basic circuit diagram of an embodiment of a variable impedance type superconducting converter (inverter) according to the present invention. Reference numeral 30 denotes a variable impedance type superconducting converter, which is a direct current to an alternating current when a capacitor is used. Is what you get. 10A and 10B are element units, and 18A and 1
8B is a control coil, 31 is a capacitor, 40 is a load, and others are the same as in FIGS.

【0019】図7は、図6に示したインピーダンス可変
型超電導インバータの等価回路であり、図8は、制御用
コイル18A,18Bに流す電流のタイミングと、それ
によって生じる要素器10のインピーダンス変化を示し
たものである。図7において、図1と同じものには同一
符号を付してあり、φA ,φB は制御用コイル18A,
18Bに流れる電流を示す。
FIG. 7 is an equivalent circuit of the variable impedance type superconducting inverter shown in FIG. 6, and FIG. 8 shows the timing of the current flowing through the control coils 18A and 18B and the impedance change of the element unit 10 caused thereby. It is shown. 7, the same components as those in FIG. 1 are designated by the same reference numerals, and φ A and φ B are control coils 18A,
The current flowing through 18B is shown.

【0020】図7の動作を図8のタイミングチャートを
用いて説明する。図8に示す時刻t0 〜t1 までは、制
御用コイル18Bの電流φB が通電中であり要素器10
BのインピーダンスZB が大きく、インピーダンスZA
は小さな値になる。これは電源(ad側)Eからコンデ
ンサ31に向かって充電電流が流れる(図7中の実線)
ことを意味する。しかしこの時、インピーダンスZB
非常に大きいのでコンデンサ31から負荷40への電流
は極めて小さい。時刻t1 〜t2 においては、ZA が非
常に大きくZB が小さくなるので、コンデンサ31に蓄
えられた電荷は負荷40に向かって流れ(図7中の破
線)、電源Eからコンデンサ31への充電電流は殆ど流
れなくなる。これを繰り返すことにより、負荷40には
図9に示す変動電圧が現われ直流電流を交流電流に変換
できる。
The operation of FIG. 7 will be described with reference to the timing chart of FIG. From time t 0 to time t 1 shown in FIG. 8, the current φ B of the control coil 18B is being energized and the element unit 10
The impedance Z B of B is large, and the impedance Z A
Becomes a small value. This is because the charging current flows from the power supply (ad side) E to the capacitor 31 (solid line in FIG. 7).
Means that. However, at this time, the impedance Z B is so large that the current from the capacitor 31 to the load 40 is extremely small. At time t 1 ~t 2, since Z A is very large Z B decreases, the charge stored in the capacitor 31 flows toward the load 40 (broken line in FIG. 7), from the power source E to the capacitor 31 Almost no charging current flows. By repeating this, the fluctuating voltage shown in FIG. 9 appears in the load 40, and the direct current can be converted into the alternating current.

【0021】図10は、本発明にかかるインピーダンス
可変型超電導変換装置の他の実施例を示す基本回路図で
あり、図6の実施例のコンデンサ31に代えて合成トラ
ンス32を用いるものである。
FIG. 10 is a basic circuit diagram showing another embodiment of the variable impedance type superconducting converter according to the present invention, in which a synthetic transformer 32 is used instead of the capacitor 31 of the embodiment of FIG.

【0022】図10において、33A,33Bは直列接
続された1次巻線、33Cは2次巻線、34はヨークを
示し、35は中間タップで、1次巻線33Aと33Bの
接続点に結線される。その他は図6と同じである。
In FIG. 10, 33A and 33B are primary windings connected in series, 33C is a secondary winding, 34 is a yoke, and 35 is an intermediate tap at the connection point between the primary windings 33A and 33B. Wired. Others are the same as in FIG.

【0023】次に動作について述べる。制御電流ICl
がオンの時は、要素器10Aの筒状超電導体12が壊
れ、磁束が中央ヨーク11に届くので、その主コイル1
4のインピーダンスが大きくなり電流は流れにくくな
る。一方、要素器10Bのインピーダンスは低い。その
結果、合成トランス32にはI2 の電流が流れる。逆に
制御電流IC2がオンの時は要素器10Bのインピーダ
ンスが大きいため合成トランス32には電流I1 が流れ
るようになる。電流I1 とI2 の方向が逆向きなので合
成トランス32内の磁束は交互に変化し、2次巻線33
Cには交流電力が得られる。
Next, the operation will be described. Control current ICl
When is on, the cylindrical superconductor 12 of the element unit 10A is broken and the magnetic flux reaches the central yoke 11, so that the main coil 1
The impedance of 4 becomes large and it becomes difficult for current to flow. On the other hand, the impedance of the element unit 10B is low. As a result, the current I 2 flows through the synthetic transformer 32. Conversely, when the control current IC2 is on, the impedance of the element unit 10B is large, so that the current I 1 flows through the composite transformer 32. Since the directions of the currents I 1 and I 2 are opposite, the magnetic flux in the composite transformer 32 changes alternately, and the secondary winding 33
AC power can be obtained at C.

【0024】[0024]

【発明の効果】以上説明したように、本発明にかかる要
素器は、磁場発生部を設けて、これで発生させた磁場に
より筒状超電導体に超電導・常電導の相変化を与えイン
ピーダンス制御を行うので、スイッチングを行わせるこ
とができる。
As described above, the element device according to the present invention is provided with the magnetic field generator, and the magnetic field generated by this causes a phase change of superconducting / normal conducting to the cylindrical superconductor to control impedance. Since it does, switching can be performed.

【0025】また、本発明にかかる限流器は上記要素器
を用いて構成したので限流特性を変化でき、かつ応答速
度を速めることができる。
Further, since the current limiting device according to the present invention is constructed by using the above-mentioned element devices, the current limiting characteristics can be changed and the response speed can be increased.

【0026】さらに、本発明にかかるインピーダンス可
変型超電導変換装置は、超電導体の反磁性特性を磁場発
生手段で制御することで要素器のインピーダンスを制御
し、2つの要素器のインピーダンス変化を利用して、超
電導現象が現われる極低温環境下で直流から交流に変換
することを可能としている。また、使用するコンデンサ
(電解液型以外)、または合成トランスは極低温状態に
しても何ら障害無く動作するので、全回路を極低温環境
下に設置することが可能である。超電導が得意とする直
流の電力系統を常温で動作する通常の交流電力系統に接
続する場合、常温から極低温環境下に電流を導入するた
めにパワーリードと呼ばれる冷却された電流リードが必
要であるとともに、電力用半導体変換素子が必要であ
る。このような構成を取ると、パワーリードから大きな
熱侵入を伴うとともに、半導体変換器の損失も膨大であ
るため、全体系の効率を著しく低下させてしまう。本発
明を利用すれば半導体変換器のような抵抗損失が殆ど無
い上に、極低温環境下で動作できるため効率を大幅に改
善でき、超電導を使った直流電力機器を実現できるよう
になる。
Further, the variable impedance superconducting converter according to the present invention controls the impedance of the element unit by controlling the diamagnetic characteristic of the superconductor by the magnetic field generating means, and utilizes the impedance change of the two element units. Therefore, it is possible to convert from direct current to alternating current in a cryogenic environment where a superconducting phenomenon appears. Further, since the capacitor (other than the electrolytic solution type) or the synthetic transformer to be used operates without any trouble even in an extremely low temperature state, it is possible to install the entire circuit in an extremely low temperature environment. When connecting a DC power system, which is good at superconductivity, to a normal AC power system that operates at room temperature, a cooled current lead called a power lead is required to introduce current from room temperature to a cryogenic environment. At the same time, a power semiconductor conversion element is required. With such a configuration, a large amount of heat is introduced from the power lead, and the loss of the semiconductor converter is enormous, so that the efficiency of the entire system is significantly reduced. If the present invention is utilized, there is almost no resistance loss as in a semiconductor converter, and since it can operate in a cryogenic environment, efficiency can be greatly improved and a DC power device using superconductivity can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる要素器の構成を示す正面図であ
る。
FIG. 1 is a front view showing a configuration of an element device according to the present invention.

【図2】図1の実施例の平面図である。FIG. 2 is a plan view of the embodiment of FIG.

【図3】要素器の基本構成部分の詳細図である。FIG. 3 is a detailed view of a basic component part of the element device.

【図4】図1,図2の実施例のインピーダンス可変型要
素器の等価回路図である。
FIG. 4 is an equivalent circuit diagram of the variable impedance element of the embodiment of FIGS.

【図5】本発明にかかる限流器の一実施例の構成を示す
図である。
FIG. 5 is a diagram showing a configuration of an embodiment of a current limiting device according to the present invention.

【図6】本発明にかかるインピーダンス可変型超電導変
換装置の一実施例の構成を示す図である。
FIG. 6 is a diagram showing the configuration of an embodiment of a variable impedance superconducting converter according to the present invention.

【図7】図6の実施例の等価回路図である。FIG. 7 is an equivalent circuit diagram of the embodiment of FIG.

【図8】図6の実施例における制御用コイルの通電タイ
ミングと要素器のインピーダンス変化の様子を示した図
である。
FIG. 8 is a diagram showing the energization timing of the control coil and the impedance change of the element unit in the embodiment of FIG. 6;

【図9】図6の実施例における変換後の出力波形を示し
た図である。
9 is a diagram showing an output waveform after conversion in the embodiment of FIG.

【図10】本発明にかかるインピーダンス可変型超電導
変換装置の他の実施例の構成を示す回路図である。
FIG. 10 is a circuit diagram showing a configuration of another embodiment of the variable impedance type superconducting converter according to the present invention.

【符号の説明】[Explanation of symbols]

10 インピーダンス可変型要素器 10A インピーダンス可変型要素器 10B インピーダンス可変型要素器 11 中央ヨーク 12 筒状超電導体 13 絶縁膜 14 主コイル 15 外囲ヨーク 16 外囲ヨーク 17 補助ヨーク 18 制御用コイル 19 磁場発生部 20 インピーダンス可変型限流器 21 変流器 22 1次巻線 23 2次巻線 24 ヨーク 30 インピーダンス可変型超電導変換装置 31 コンデンサ 32 合成トランス 33A 1次巻線 33B 1次巻線 33C 2次巻線 34 ヨーク 35 中間タップ 40 負荷 10 Impedance variable type element device 10A Impedance variable type element device 10B Impedance variable type element device 11 Central yoke 12 Cylindrical superconductor 13 Insulating film 14 Main coil 15 Outer yoke 16 Outer yoke 17 Auxiliary yoke 18 Control coil 19 Magnetic field generation Part 20 Impedance variable type current limiter 21 Current transformer 22 Primary winding 23 Secondary winding 24 Yoke 30 Impedance variable type superconducting converter 31 Capacitor 32 Composite transformer 33A Primary winding 33B Primary winding 33C Secondary winding Wire 34 Yoke 35 Middle tap 40 Load

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 閉磁路を構成するヨークと、このヨーク
上に巻回した筒状超電導体と、この筒状超電導体上に絶
縁膜を介して巻回した主コイルと、前記筒状超電導体に
超電導・常電導相変化を与え、前記主コイルのインピー
ダンスを小,大に切換える磁場発生部とを具備したこと
を特徴とするインピーダンス可変型要素器。
1. A yoke forming a closed magnetic circuit, a tubular superconductor wound on the yoke, a main coil wound on the tubular superconductor via an insulating film, and the tubular superconductor. 2. A variable impedance element device, comprising: a magnetic field generator for switching the impedance of the main coil between small and large by applying a superconducting / normal conducting phase change to the main coil.
【請求項2】 磁場発生部は、前記閉磁路を構成するヨ
ークから分岐させた補助ヨーク上に制御用コイルが巻回
されてなり、この制御用コイルへの通電により磁場を発
生するものである請求項1に記載のインピーダンス可変
型要素器。
2. The magnetic field generation unit comprises a control coil wound around an auxiliary yoke branched from a yoke forming the closed magnetic circuit, and a magnetic field is generated by energizing the control coil. The variable impedance element according to claim 1.
【請求項3】 閉磁路を構成するヨークと、このヨーク
上に巻回した筒状超電導体と、この筒状超電導体上に絶
縁膜を介して巻回した主コイルと、前記筒状超電導体に
超電導・常電導相変化を与え、前記主コイルのインピー
ダンスを小,大に切換える磁場発生部と、さらに前記主
コイルと直列に接続された1次巻線と、誘導した電流を
前記磁場発生部に供給する2次巻線とからなる変流器と
を備えたことを特徴とするインピーダンス可変型限流
器。
3. A yoke forming a closed magnetic circuit, a tubular superconductor wound on the yoke, a main coil wound on the tubular superconductor via an insulating film, and the tubular superconductor. A magnetic field generator that changes the impedance of the main coil between small and large by applying a superconducting / normal conductive phase change to the main coil; An impedance variable current limiter, comprising:
【請求項4】 磁場発生部は、前記閉磁路を構成するヨ
ークから分岐させた補助ヨーク上に制御用コイルが巻回
されてなり、この制御用コイルへの通電により磁場を発
生するものである請求項3に記載のインピーダンス可変
型限流器。
4. The magnetic field generating section comprises a control coil wound around an auxiliary yoke branched from a yoke forming the closed magnetic path, and a magnetic field is generated by energizing the control coil. The variable impedance type fault current limiter according to claim 3.
【請求項5】 閉磁路を構成するヨークと、このヨーク
上に巻回した筒状超電導体と、この筒状超電導体上に絶
縁膜を介して巻回した主コイルと、前記超電導・常電導
相変化を与え、前記主コイルのインピーダンスを小,大
に切換える磁場発生部とを備えたインピーダンス可変型
要素器を2個それぞれの主コイルを直列に接続し、この
直列に接続された主コイルの一端を直流電源の一極に他
端を負荷の一端に接続し、この負荷の他端を前記直流電
源の他極に接続し、前記2個のインピーダンス可変型要
素器の接続点と前記直流電源の他極との間にコンデンサ
を接続するとともに、超電導・常電導相変化を前記2個
のインピーダンス可変型要素器の筒状超電導体に交互に
前記両磁場発生部から与える制御部を備えて前記負荷に
交流電力を供給することを特徴とするインピーダンス可
変型超電導変換装置。
5. A yoke forming a closed magnetic circuit, a tubular superconductor wound on the yoke, a main coil wound on the tubular superconductor via an insulating film, and the superconducting / normal conducting Two variable impedance type element units each of which is provided with a magnetic field generating unit that gives a phase change and switches the impedance of the main coil between small and large are connected in series, and the main coils connected in series are connected to each other. One end of the DC power supply is connected to one end of the load, the other end is connected to the other end of the DC power supply, and the other end of the DC power supply is connected to the connection point of the two variable impedance element units and the DC power supply. A capacitor is connected between the other pole and a control unit that alternately applies a superconducting / normal conducting phase change to the cylindrical superconductors of the two variable impedance element units from the magnetic field generating units. Supply AC power to the load An impedance variable type superconducting converter characterized by the following.
【請求項6】 閉磁路を構成するヨークと、このヨーク
上に巻回した筒状超電導体と、この筒状超電導体上に絶
縁膜を介して巻回した主コイルと、前記超電導・常電導
相変化を与え、前記主コイルのインピーダンスを小,大
に切換える磁場発生部とを備えたインピーダンス可変型
要素器を2個それぞれの主コイルを合成トランスの1次
巻線を介在させて直列に接続し、この1次巻線の中間タ
ップと主コイルの端部間に直流電源を接続し、超電導・
常電導相変化を前記2個のインピーダンス可変型要素器
の筒状超電導体に交互に前記両磁場発生部から与える制
御部を備えて、前記合成トランスの2次巻線に所定の交
流電源を得ることを特徴とするインピーダンス可変型超
電導変換装置。
6. A yoke forming a closed magnetic circuit, a tubular superconductor wound on the yoke, a main coil wound on the tubular superconductor via an insulating film, and the superconducting / normal conducting Two variable impedance element units each of which has a magnetic field generating unit for giving a phase change and switching the impedance of the main coil between small and large are connected in series with each main coil with a primary winding of a composite transformer interposed. Then, connect a DC power supply between the center tap of this primary winding and the end of the main coil, and
A control unit for alternately applying a normal conduction phase change to the cylindrical superconductors of the two variable impedance element units from the magnetic field generation units is provided, and a predetermined AC power source is obtained in the secondary winding of the composite transformer. An impedance variable type superconducting converter characterized by the following.
【請求項7】 磁場発生部は、前記閉磁路を構成するヨ
ークから分岐させた補助ヨーク上に制御用コイルが巻回
されてなり、この制御用コイルへの通電により磁場を発
生するものである請求項5または6に記載のインピーダ
ンス可変型超電導変換装置。
7. The magnetic field generator is configured such that a control coil is wound around an auxiliary yoke branched from a yoke forming the closed magnetic path, and a magnetic field is generated by energizing the control coil. The variable impedance superconducting converter according to claim 5.
JP8036847A 1996-02-23 1996-02-23 Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter Expired - Lifetime JP3015863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8036847A JP3015863B2 (en) 1996-02-23 1996-02-23 Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8036847A JP3015863B2 (en) 1996-02-23 1996-02-23 Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter

Publications (2)

Publication Number Publication Date
JPH09233693A true JPH09233693A (en) 1997-09-05
JP3015863B2 JP3015863B2 (en) 2000-03-06

Family

ID=12481163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8036847A Expired - Lifetime JP3015863B2 (en) 1996-02-23 1996-02-23 Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter

Country Status (1)

Country Link
JP (1) JP3015863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116921A (en) * 2003-10-10 2005-04-28 National Institute Of Advanced Industrial & Technology Superconducting switching element and superconducting inverter
JP2016535574A (en) * 2013-07-30 2016-11-10 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Magnetoresistive current limiter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118057A (en) * 1975-04-10 1976-10-16 Sanyo Electric Co Ltd Power source device
JPS648827A (en) * 1987-06-30 1989-01-12 Mitsubishi Electric Corp Switching device between superconduction and normal conduction
JPH0199479A (en) * 1987-10-12 1989-04-18 Nec Corp Dc-ac converter
JPH01160065A (en) * 1987-12-16 1989-06-22 Fujitsu Ltd Switching element
JPH02105402A (en) * 1988-08-02 1990-04-18 Asea Brown Boveri Ag Ac induction current limiter using superconducting properties of ceramic high temperature super conductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118057A (en) * 1975-04-10 1976-10-16 Sanyo Electric Co Ltd Power source device
JPS648827A (en) * 1987-06-30 1989-01-12 Mitsubishi Electric Corp Switching device between superconduction and normal conduction
JPH0199479A (en) * 1987-10-12 1989-04-18 Nec Corp Dc-ac converter
JPH01160065A (en) * 1987-12-16 1989-06-22 Fujitsu Ltd Switching element
JPH02105402A (en) * 1988-08-02 1990-04-18 Asea Brown Boveri Ag Ac induction current limiter using superconducting properties of ceramic high temperature super conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116921A (en) * 2003-10-10 2005-04-28 National Institute Of Advanced Industrial & Technology Superconducting switching element and superconducting inverter
JP4528958B2 (en) * 2003-10-10 2010-08-25 独立行政法人産業技術総合研究所 Superconducting inverter
JP2016535574A (en) * 2013-07-30 2016-11-10 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Magnetoresistive current limiter

Also Published As

Publication number Publication date
JP3015863B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
KR100662754B1 (en) Resistive type superconducting fault current limiter
US8351167B2 (en) Fault current limiters (FCL) with the cores saturated by superconducting coils
US20120154966A1 (en) Fault current limiters (fcl) with the cores saturated by non-superconducting coils
US20020018327A1 (en) Multi-winding fault-current limiter coil with flux shaper and cooling for use in an electrical power transmission/distribution application
KR100717351B1 (en) Fault current limiters having superconducting bypass reactor for simultaneous quench
JPH0368618B2 (en)
Mcfee Applications of superconductivity to the generation and distribution of electric power
Tixador et al. Hybrid superconducting AC fault current limiter principle and previous studies
Aly et al. Comparison between resistive and inductive superconducting fault current limiters for fault current limiting
KR20110090931A (en) Fault current superconductive limiter
US3356924A (en) Cryogenic pumped rectifier systems
JP3015863B2 (en) Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter
JP2024506532A (en) High temperature superconducting electrical switches and rectifiers
Mulder et al. Development of a thermally switched superconducting rectifier for 100 kA
US3440456A (en) Commutating arrangement for electric machines with superconducting armature coils
JP4528958B2 (en) Superconducting inverter
Homer et al. A thermally switched flux pump
JP2023500071A (en) superconducting switch
Okada et al. Fabrication and test of superconducting air-core autotransformer
JPH0648661B2 (en) Flux control type superconducting rectifier
US20240077554A1 (en) Conduction Cooled Cryogenic Current Source with a High-Temperature Superconducting Filter
Yamamoto et al. Development of 50 Hz disc-type superconducting coil
KR20020091322A (en) Heater triggered type high temperature superconducting power supply
CN116803235A (en) High temperature superconducting switch and rectifier
Rice et al. Current-Sharing Behaviour of Single-Phase HTS Transformers With Stacked-Tape Cables

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term