JP3015863B2 - Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter - Google Patents
Variable impedance element, variable impedance current limiter, and variable impedance superconducting converterInfo
- Publication number
- JP3015863B2 JP3015863B2 JP8036847A JP3684796A JP3015863B2 JP 3015863 B2 JP3015863 B2 JP 3015863B2 JP 8036847 A JP8036847 A JP 8036847A JP 3684796 A JP3684796 A JP 3684796A JP 3015863 B2 JP3015863 B2 JP 3015863B2
- Authority
- JP
- Japan
- Prior art keywords
- yoke
- variable impedance
- superconductor
- main coil
- cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002887 superconductor Substances 0.000 claims description 48
- 230000005291 magnetic effect Effects 0.000 claims description 39
- 238000004804 winding Methods 0.000 claims description 22
- 239000003990 capacitor Substances 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 10
- 230000004907 flux Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000005292 diamagnetic effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、超電導体に磁場発生部
により超電導・常電導の相変化を与えることによりスイ
ッチング動作を行わせることできるインピーダンス可変
型要素器と、これを用いたインピーダンス可変型限流器
ならびに高温超電導材料の電力応用として有望視されて
いる直流超電導送電ケーブル用の直流/交流電力変換に
用いるインピーダンス可変型超電導変換装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable impedance element capable of performing a switching operation by giving a superconductor / normal conduction phase change to a superconductor by a magnetic field generator, and a variable impedance element using the same. The present invention relates to a variable impedance type superconducting converter used for DC / AC power conversion for a DC superconducting power transmission cable, which is promising as a power application of a current limiter and a high-temperature superconducting material.
【0002】[0002]
【従来の技術】大電流の限流器や直流を交流に変換した
り、限流する手段には電力用半導体変換器を利用するの
が一般的である。2. Description of the Related Art In general, a power semiconductor converter is used as a current limiting device having a large current or a means for converting a direct current to an alternating current or for limiting a current.
【0003】[0003]
【発明が解決しようとする課題】超電導体は直流的に電
気抵抗がゼロであるが、交流で使用すると交流損失が発
生する。この損失は商用周波数である50,60Hzの
動作では大きな値になり、膨大な液体窒素とか極低温H
eガス等の冷却寒冷を使ってケーブルを冷却しなければ
ならない。これが交流超電導送電ケーブル実用化の大き
なネックとなっている。仮にケーブル電流を直流にすれ
ば超電導体からの交流損失が全く無いため超電導の特性
を最大限有効に利用できることが分かっている。しか
し、現在の電力系統は全て交流動作しているため直流を
交流に変換しなければならない。そして、現在の電力用
半導体式変換器では常温で動作するため、極低温に冷却
されたケーブルを常温まで引き出す必要があり熱的に大
きな損失が生じる。また、半導体変換器で生じる損失も
膨大であるため、全体の効率は大幅に低下する。このた
め直流超電導送電は実用化できないとされてきた。これ
を解決するには極低温で効率良く直流電流を交流電流に
変換できる装置の開発が不可欠となる。Although the superconductor has zero DC electrical resistance, AC loss occurs when used in AC. This loss becomes a large value in the operation at the commercial frequency of 50 or 60 Hz, and the loss is extremely large.
The cable must be cooled using cooling refrigeration such as e-gas. This is a major bottleneck in the practical application of AC superconducting power transmission cables. It has been found that if the cable current is changed to DC, there is no AC loss from the superconductor, so that the superconducting characteristics can be used most effectively. However, since all current power systems operate on alternating current, direct current must be converted to alternating current. Since the current power semiconductor type converter operates at room temperature, it is necessary to pull out a cable cooled to an extremely low temperature to room temperature, which causes a large thermal loss. In addition, the loss caused by the semiconductor converter is enormous, so that the overall efficiency is greatly reduced. For this reason, it has been considered that DC superconducting power transmission cannot be put to practical use. To solve this, it is essential to develop a device that can efficiently convert DC current to AC current at extremely low temperatures.
【0004】そこで、本発明は、従来の半導体変換器で
は不可能であった電力変換の極低温動作を可能とし、効
率の良い直流超電導送電ケーブルの実現を可能とするイ
ンピーダンス可変型要素器およびインピーダンス可変型
限流器ならびにインピーダンス可変型超電導変換装置を
提供することを目的とする。[0004] Therefore, the present invention provides a variable impedance element unit and an impedance variable element which enable cryogenic operation of power conversion, which is impossible with a conventional semiconductor converter, and which realizes an efficient DC superconducting power transmission cable. It is an object of the present invention to provide a variable current limiter and a variable impedance superconducting converter.
【0005】[0005]
【課題を解決するための手段】本発明にかかるインピー
ダンス可変型要素器は、閉磁路を構成するヨークと、こ
のヨーク上に巻回した筒状超電導体と、この筒状超電導
体上に絶縁膜を介した巻回した主コイルと、前記筒状超
電導体に超電導・常電導相変化を与え、前記主コイルの
インピーダンスを小,大に切換える磁場発生部とを具備
したものである。The variable impedance element according to the present invention comprises a yoke constituting a closed magnetic circuit, a cylindrical superconductor wound on the yoke, and an insulating film on the cylindrical superconductor. And a magnetic field generating section for giving a superconducting / normal conducting phase change to the cylindrical superconductor and switching the impedance of the main coil between small and large.
【0006】また、本発明にかかるインピーダンス可変
型限流器は、閉磁路を構成するヨークと、このヨーク上
に巻回した筒状超電導体と、この筒状超電導体上に絶縁
膜を介した巻回した主コイルと、前記筒状超電導体に超
電導・常電導相変化を与え、前記主コイルのインピーダ
ンスを小,大に切換える磁場発生部と、さらに前記主コ
イルと直列に接続された1次巻線と、誘導した電流を前
記磁場発生部に供給する2次巻線とからなる変流器とを
備えたものである。Further, the variable impedance type current limiting device according to the present invention comprises a yoke constituting a closed magnetic circuit, a cylindrical superconductor wound on the yoke, and an insulating film interposed on the cylindrical superconductor. A wound main coil, a magnetic field generating unit for giving a superconducting / normal conducting phase change to the cylindrical superconductor and switching the impedance of the main coil between small and large, and a primary coil connected in series with the main coil. And a current transformer comprising a winding and a secondary winding for supplying the induced current to the magnetic field generating unit.
【0007】さらに、本発明にかかるインピーダンス可
変型超電導変換装置は、閉磁路を構成するヨークと、こ
のヨーク上に巻回した筒状超電導体と、この筒状超電導
体上に絶縁膜を介して巻回した主コイルと、前記超電導
・常電導相変化を与え、前記主コイルのインピーダンス
を小,大に切換える磁場発生部とを備えたインピーダン
ス可変型要素器を2個それぞれの主コイルを直列に接続
し、この直列に接続された主コイルの一端を直流電源の
一極に他端を負荷の一端に接続し、この負荷の他端を前
記直流電源の他極に接続し、前記2個のインピーダンス
可変型要素器の接続点と前記直流電源の他極との間にコ
ンデンサを接続するとともに、超電導・常電導相変化を
前記2個のインピーダンス可変型要素器の筒状超電導体
に交互に与える磁場発生手段を備えたものである。Further, in the variable impedance superconducting converter according to the present invention, a yoke constituting a closed magnetic circuit, a cylindrical superconductor wound on the yoke, and an insulating film on the cylindrical superconductor are provided. Two variable impedance element devices each having a wound main coil and a magnetic field generating unit for giving the superconducting / normal conducting phase change and switching the impedance of the main coil between small and large are connected in series with each of the two main coils. Connected, one end of the main coil connected in series is connected to one pole of the DC power supply, the other end is connected to one end of the load, the other end of the load is connected to the other pole of the DC power supply, the two A capacitor is connected between the connection point of the variable impedance element and the other pole of the DC power supply, and a superconducting / normal conduction phase change is alternately applied to the cylindrical superconductors of the two variable impedance element. Magnetic Those having a generator.
【0008】また、コンデンサに代えて合成トランスを
用いたものである。Further, a synthesis transformer is used in place of the capacitor.
【0009】さらに、それぞれのインピーダンス可変型
要素器の磁場発生部は、前記閉磁路を構成するヨークか
ら分岐させた補助ヨーク上に制御用コイルが巻回されて
なり、この制御用コイルへの通電により磁場を発生する
ものである。Further, the magnetic field generating section of each of the variable impedance element devices has a control coil wound on an auxiliary yoke branched from a yoke constituting the closed magnetic circuit, and the control coil is energized. Generates a magnetic field.
【0010】[0010]
【作用】本発明のインピーダンス可変型要素器において
は、磁場発生部に通電して磁場を発生させると、筒状超
電導体が超電導状態から常電導状態に相変化し、主コイ
ルのインピーダンスを急増させ、スイッチングが行われ
る。In the variable impedance element of the present invention, when a magnetic field is generated by energizing the magnetic field generating section, the cylindrical superconductor changes its phase from the superconducting state to the normal conducting state, and the impedance of the main coil rapidly increases. , Switching is performed.
【0011】また、本発明のインピーダンス可変型限流
器においては、主コイルに大電流が流れると変流器の2
次巻線に電流が誘起され、これが補助コイルに流れて磁
場発生部から磁場が発生し、インピーダンス可変型要素
器のインピーダンスが急増し、限流を行う。Further, in the variable impedance type current limiting device of the present invention, when a large current flows through the main coil, the current transformer 2
A current is induced in the next winding, which flows through the auxiliary coil, and a magnetic field is generated from the magnetic field generating unit, so that the impedance of the variable impedance element device rapidly increases and the current is limited.
【0012】本発明のインピーダンス可変型超電導変換
装置においては、柱状の鉄製ヨークを筒状超電導体で覆
い、その上を筒状の電気絶縁材料で覆い、その上に主コ
イルを巻き、この主コイルと筒状超電導体とシリーズに
接続して回路インピーダンスを与え、外部磁場発生手段
の補助コイルの通電の制御で筒状超電導体の超電導特性
を制御することで、主コイルと筒状超電導体のシリーズ
回路が作り出すインピーダンスを変化できるインピーダ
ンス可変型要素器を2個用意し、各々のインピーダンス
可変型要素器の制御磁場を交互に発生させて、インピー
ダンス可変型要素器のインピーダンスを交互に変化させ
インピーダンス可変型要素器を流れる直流電流に交互変
化を与え、2つのインピーダンス可変型要素器とコンデ
ンサとを組み合わせるか、もしくは合成トランスで変動
電流を合成することにより、直流電流を交流電流に変換
させるものである。In the variable impedance superconducting converter according to the present invention, the columnar iron yoke is covered with a cylindrical superconductor, the upper part is covered with a cylindrical electric insulating material, and the main coil is wound thereon. The series of the main coil and the cylindrical superconductor by controlling the superconducting characteristics of the cylindrical superconductor by controlling the energization of the auxiliary coil of the external magnetic field generating means by connecting to the series with the cylindrical superconductor and giving the circuit impedance. Two variable impedance element devices that can change the impedance created by the circuit are prepared, and the control magnetic field of each variable impedance element device is generated alternately, and the impedance of the variable impedance element device is alternately changed to change the impedance. Alternates the DC current flowing through the element unit and combines two variable impedance element units and a capacitor. Luke, or by combining the varying current in the synthesis transformer, is intended to convert direct current to alternating current.
【0013】[0013]
【実施例】図1,図2は、本発明にかかるインピーダン
ス可変型要素器の一実施例の構成を示す正面図と平面図
である。図1において、10はインピーダンス可変型要
素器(以下、単に要素器と称する。)で、その中央部分
を拡大したものが図3である。1 and 2 are a front view and a plan view showing the configuration of an embodiment of a variable impedance element according to the present invention. In FIG. 1, reference numeral 10 denotes a variable impedance element (hereinafter, simply referred to as an element), and FIG. 3 is an enlarged view of a central portion thereof.
【0014】図1〜3に示すように、要素器10は、閉
磁路を構成するヨークの一部である中央ヨーク11の周
囲を円筒状,角筒状等の筒状超電導体12で覆い、その
上を絶縁膜13で被覆し、さらにその上に主コイル14
を巻く構造である。主コイル14と筒状超電導体12と
はシリーズ接続される。15,16は外囲ヨークで、中
央ヨーク11とともに閉磁路を構成している。17は補
助ヨークで、中央ヨーク11と直交する方向に両側の外
囲ヨーク15からそれぞれ分岐して設けられ、その上に
制御用コイル18が巻回され、補助ヨーク17と制御用
コイル18とで磁場発生部19が構成されている。な
お、磁場発生部19には制御用コイル18への通電を制
御する制御手段が設けられるが図示は省略してある。As shown in FIGS. 1 to 3, the element device 10 covers a central yoke 11 which is a part of a yoke constituting a closed magnetic circuit with a cylindrical superconductor 12 such as a cylindrical or rectangular tube. The upper part is covered with an insulating film 13 and the main coil 14
Is wound around. The main coil 14 and the cylindrical superconductor 12 are connected in series. Reference numerals 15 and 16 denote surrounding yokes, which together with the central yoke 11 constitute a closed magnetic circuit. Reference numeral 17 denotes an auxiliary yoke, which is provided in a direction orthogonal to the center yoke 11 from the surrounding yokes 15 on both sides thereof, and a control coil 18 is wound thereon. The auxiliary yoke 17 and the control coil 18 The magnetic field generator 19 is configured. The magnetic field generator 19 is provided with control means for controlling the energization of the control coil 18, but is not shown.
【0015】さて、要素器10の等価インピーダンスZ
は図4のようにインダクタンスLと超電導体が作る抵抗
Rで構成されることになる。筒状超電導体12が超電導
状態の時は、抵抗Rはゼロで、超電導体の特性である反
磁性特性により主コイル14の作る磁束は中央ヨーク1
1に届かないため、主コイル14のインダクタンスLは
空芯コイルと同じであり非常に小さな値になり、要素器
10のインピーダンスZ(jwL+R)は非常に小さな
値になる。しかし、図1〜3に示した制御用コイル18
に電流を流し筒状超電導体12の超電導状態を破壊する
と、筒状超電導体12は電気抵抗Rを示し、主コイル1
4の作る磁束は筒状超電導体12の反磁性特性が失われ
ているので、中心の中央ヨーク11に届き大きなインダ
クタンスLが発生し、要素器10のインピーダンスZは
非常に大きな値になる。このことは、制御用コイル18
で筒状超電導体12の特性を制御することで要素器10
のインピーダンスZの値を大幅に変え得ること、即ち、
一種のスイッチング動作ができることを意味する。Now, the equivalent impedance Z of the element 10
Is composed of an inductance L and a resistance R formed by a superconductor as shown in FIG. When the cylindrical superconductor 12 is in the superconducting state, the resistance R is zero, and the magnetic flux generated by the main coil 14 due to the diamagnetic property which is a characteristic of the superconductor is generated by the central yoke 1.
Since it does not reach 1, the inductance L of the main coil 14 is the same as the air-core coil and has a very small value, and the impedance Z (jwL + R) of the element device 10 has a very small value. However, the control coil 18 shown in FIGS.
When the superconducting state of the cylindrical superconductor 12 is destroyed by applying a current to the
Since the magnetic flux created by 4 loses the diamagnetic property of the cylindrical superconductor 12, it reaches the central central yoke 11 to generate a large inductance L, and the impedance Z of the element 10 becomes a very large value. This means that the control coil 18
The characteristics of the cylindrical superconductor 12 are controlled by the
Can greatly change the value of the impedance Z of
This means that a kind of switching operation can be performed.
【0016】図5は、本発明にかかるインピーダンス可
変型限流器の一実施例の構成を示す図である。本実施例
は図1〜3に示した要素器10を用いて構成したもので
ある。図5において、図1〜3と同じ符号は同じ部分を
示し、20はインピーダンス可変型限流器(以下、単に
限流器という)で、21は変流器で、1次巻線22,2
次巻線23およびヨーク24からなり、1次巻線22は
主コイル14と直列に接続され、2次巻線23は、その
両端が制御用コイル18の両端に接続されている。FIG. 5 is a diagram showing the configuration of one embodiment of the variable impedance type current limiting device according to the present invention. This embodiment is configured by using the element device 10 shown in FIGS. 5, the same reference numerals as those in FIGS. 1 to 3 denote the same parts, reference numeral 20 denotes a variable impedance current limiter (hereinafter, simply referred to as a current limiter), reference numeral 21 denotes a current transformer, and primary windings 22, 2.
The primary winding 22 is connected in series with the main coil 14, and both ends of the secondary winding 23 are connected to both ends of the control coil 18.
【0017】限流器20の基本原理は、限流器20を流
れる電流が小さい時には、筒状超電導体12の磁気遮蔽
効果により磁束は中央ヨーク11に届かず主コイル14
のインピーダンスは小さい。しかし、故障電流が流れる
と、主コイル14の発生する磁束は中央ヨーク11に届
くようになり、インピーダンスが急激に大きくなって流
れる電流を制御する。本発明では要素器10の制御用コ
イル18を使用しているので、1次巻線22と2次巻線
23の結合係数を可変とすることで限流特性を自由に制
御できる。また、補助ヨーク17があるので、磁束が集
中し筒状超電導体12の超電導特性を速やかに破壊する
ので、応答性が優れている。なお、主コイル14と直列
にスイッチを設けてこれを開とすることで迅速な復旧が
できる。The basic principle of the current limiter 20 is that when the current flowing through the current limiter 20 is small, the magnetic flux does not reach the central yoke 11 due to the magnetic shielding effect of the cylindrical superconductor 12 and the main coil 14
Has a small impedance. However, when a fault current flows, the magnetic flux generated by the main coil 14 reaches the central yoke 11, and the impedance is rapidly increased to control the flowing current. In the present invention, since the control coil 18 of the element device 10 is used, the current limiting characteristic can be freely controlled by making the coupling coefficient between the primary winding 22 and the secondary winding 23 variable. Further, since the auxiliary yoke 17 is provided, the magnetic flux is concentrated and the superconducting characteristics of the cylindrical superconductor 12 are quickly destroyed, so that the responsiveness is excellent. A quick recovery can be achieved by providing a switch in series with the main coil 14 and opening the switch.
【0018】図6は、本発明にかかるインピーダンス可
変型超電導変換装置(インバータ)の一実施例の基本回
路図であり、30はインピーダンス可変型超電導変換装
置で、コンデンサを使った場合の直流から交流を得るも
のである。10A,10Bは要素器であり、18A,1
8Bは制御用コイル、31はコンデンサ、40は負荷を
示し、その他は図1,2と同じである。FIG. 6 is a basic circuit diagram of one embodiment of a variable impedance superconducting converter (inverter) according to the present invention. Reference numeral 30 denotes a variable impedance superconducting converter, which converts from DC to AC when a capacitor is used. Is what you get. 10A and 10B are element devices, and 18A and 1
8B is a control coil, 31 is a capacitor, 40 is a load, and the others are the same as in FIGS.
【0019】図7は、図6に示したインピーダンス可変
型超電導インバータの等価回路であり、図8は、制御用
コイル18A,18Bに流す電流のタイミングと、それ
によって生じる要素器10のインピーダンス変化を示し
たものである。図7において、図1と同じものには同一
符号を付してあり、φA ,φB は制御用コイル18A,
18Bに流れる電流を示す。FIG. 7 shows an equivalent circuit of the variable impedance superconducting inverter shown in FIG. 6, and FIG. 8 shows the timing of the current flowing through the control coils 18A and 18B and the change in impedance of the element 10 caused by the timing. It is shown. 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and φ A and φ B are control coils 18A,
18B shows the current flowing through 18B.
【0020】図7の動作を図8のタイミングチャートを
用いて説明する。図8に示す時刻t0 〜t1 までは、制
御用コイル18Bの電流φB が通電中であり要素器10
BのインピーダンスZB が大きく、インピーダンスZA
は小さな値になる。これは電源(ad側)Eからコンデ
ンサ31に向かって充電電流が流れる(図7中の実線)
ことを意味する。しかしこの時、インピーダンスZB は
非常に大きいのでコンデンサ31から負荷40への電流
は極めて小さい。時刻t1 〜t2 においては、ZA が非
常に大きくZB が小さくなるので、コンデンサ31に蓄
えられた電荷は負荷40に向かって流れ(図7中の破
線)、電源Eからコンデンサ31への充電電流は殆ど流
れなくなる。これを繰り返すことにより、負荷40には
図9に示す変動電圧が現われ直流電流を交流電流に変換
できる。The operation of FIG. 7 will be described with reference to the timing chart of FIG. Until time t 0 ~t 1 shown in FIG. 8, the current phi B of the control coil 18B is being energized element 10
B has a large impedance Z B and an impedance Z A
Is a small value. This is because a charging current flows from the power supply (ad side) E toward the capacitor 31 (solid line in FIG. 7).
Means that. However, at this time, the impedance Z B is current so large from the capacitor 31 to the load 40 is extremely small. Between times t 1 and t 2 , Z A is very large and Z B is small, so the charge stored in capacitor 31 flows toward load 40 (dashed line in FIG. 7), and Charging current hardly flows. By repeating this, the fluctuating voltage shown in FIG. 9 appears on the load 40, and the DC current can be converted to the AC current.
【0021】図10は、本発明にかかるインピーダンス
可変型超電導変換装置の他の実施例を示す基本回路図で
あり、図6の実施例のコンデンサ31に代えて合成トラ
ンス32を用いるものである。FIG. 10 is a basic circuit diagram showing another embodiment of the variable impedance superconducting converter according to the present invention, in which a combining transformer 32 is used in place of the capacitor 31 in the embodiment of FIG.
【0022】図10において、33A,33Bは直列接
続された1次巻線、33Cは2次巻線、34はヨークを
示し、35は中間タップで、1次巻線33Aと33Bの
接続点に結線される。その他は図6と同じである。In FIG. 10, 33A and 33B are primary windings connected in series, 33C is a secondary winding, 34 is a yoke, and 35 is an intermediate tap at a connection point between the primary windings 33A and 33B. Connected. Others are the same as FIG.
【0023】次に動作について述べる。制御電流ICl
がオンの時は、要素器10Aの筒状超電導体12が壊
れ、磁束が中央ヨーク11に届くので、その主コイル1
4のインピーダンスが大きくなり電流は流れにくくな
る。一方、要素器10Bのインピーダンスは低い。その
結果、合成トランス32にはI2 の電流が流れる。逆に
制御電流IC2がオンの時は要素器10Bのインピーダ
ンスが大きいため合成トランス32には電流I1 が流れ
るようになる。電流I1 とI2 の方向が逆向きなので合
成トランス32内の磁束は交互に変化し、2次巻線33
Cには交流電力が得られる。Next, the operation will be described. Control current ICl
Is on, the cylindrical superconductor 12 of the element 10A is broken, and the magnetic flux reaches the central yoke 11, so that the main coil 1
4 becomes large and the current hardly flows. On the other hand, the impedance of the element 10B is low. As a result, a current of I 2 flows through the synthesis transformer 32. Conversely to the control current IC2 is flowing current I 1 for the synthesis transformer 32 for the on the large impedance element unit 10B. Since the directions of the currents I 1 and I 2 are opposite, the magnetic flux in the composite transformer 32 changes alternately and the secondary winding 33
AC power is obtained at C.
【0024】[0024]
【発明の効果】以上説明したように、本発明にかかる要
素器は、磁場発生部を設けて、これで発生させた磁場に
より筒状超電導体に超電導・常電導の相変化を与えイン
ピーダンス制御を行うので、スイッチングを行わせるこ
とができる。As described above, the element device according to the present invention is provided with a magnetic field generating section, and the magnetic field generated by the magnetic field generating section gives the cylindrical superconductor a phase change of superconductivity / normal conduction to control the impedance. Therefore, switching can be performed.
【0025】また、本発明にかかる限流器は上記要素器
を用いて構成したので限流特性を変化でき、かつ応答速
度を速めることができる。Further, since the current limiting device according to the present invention is configured using the above-described element devices, the current limiting characteristics can be changed and the response speed can be increased.
【0026】さらに、本発明にかかるインピーダンス可
変型超電導変換装置は、超電導体の反磁性特性を磁場発
生手段で制御することで要素器のインピーダンスを制御
し、2つの要素器のインピーダンス変化を利用して、超
電導現象が現われる極低温環境下で直流から交流に変換
することを可能としている。また、使用するコンデンサ
(電解液型以外)、または合成トランスは極低温状態に
しても何ら障害無く動作するので、全回路を極低温環境
下に設置することが可能である。超電導が得意とする直
流の電力系統を常温で動作する通常の交流電力系統に接
続する場合、常温から極低温環境下に電流を導入するた
めにパワーリードと呼ばれる冷却された電流リードが必
要であるとともに、電力用半導体変換素子が必要であ
る。このような構成を取ると、パワーリードから大きな
熱侵入を伴うとともに、半導体変換器の損失も膨大であ
るため、全体系の効率を著しく低下させてしまう。本発
明を利用すれば半導体変換器のような抵抗損失が殆ど無
い上に、極低温環境下で動作できるため効率を大幅に改
善でき、超電導を使った直流電力機器を実現できるよう
になる。Further, in the variable impedance superconducting converter according to the present invention, the impedance of the element is controlled by controlling the diamagnetic characteristics of the superconductor by the magnetic field generating means, and the impedance change of the two elements is utilized. Thus, it is possible to convert DC to AC in a cryogenic environment where superconductivity occurs. In addition, since the used capacitors (other than the electrolytic solution type) or the synthetic transformer operate without any trouble even in a very low temperature state, it is possible to install all circuits in a very low temperature environment. When connecting a DC power system that superconductivity is good at to a normal AC power system that operates at room temperature, a cooled current lead called a power lead is necessary to introduce current from room temperature to cryogenic environment. In addition, a power semiconductor conversion element is required. With such a configuration, a large amount of heat enters from the power lead, and the loss of the semiconductor converter is enormous, so that the efficiency of the entire system is significantly reduced. If the present invention is used, there is almost no resistance loss unlike a semiconductor converter, and since it can be operated in a cryogenic environment, the efficiency can be greatly improved and a DC power device using superconductivity can be realized.
【図1】本発明にかかる要素器の構成を示す正面図であ
る。FIG. 1 is a front view showing a configuration of an element device according to the present invention.
【図2】図1の実施例の平面図である。FIG. 2 is a plan view of the embodiment of FIG.
【図3】要素器の基本構成部分の詳細図である。FIG. 3 is a detailed view of the basic components of the element device.
【図4】図1,図2の実施例のインピーダンス可変型要
素器の等価回路図である。FIG. 4 is an equivalent circuit diagram of the variable impedance element of the embodiment shown in FIGS. 1 and 2;
【図5】本発明にかかる限流器の一実施例の構成を示す
図である。FIG. 5 is a diagram showing a configuration of one embodiment of a current limiter according to the present invention.
【図6】本発明にかかるインピーダンス可変型超電導変
換装置の一実施例の構成を示す図である。FIG. 6 is a diagram showing a configuration of one embodiment of a variable impedance superconducting converter according to the present invention.
【図7】図6の実施例の等価回路図である。FIG. 7 is an equivalent circuit diagram of the embodiment of FIG.
【図8】図6の実施例における制御用コイルの通電タイ
ミングと要素器のインピーダンス変化の様子を示した図
である。FIG. 8 is a diagram showing a state of energization timing of a control coil and a change in impedance of an element device in the embodiment of FIG. 6;
【図9】図6の実施例における変換後の出力波形を示し
た図である。FIG. 9 is a diagram showing an output waveform after conversion in the embodiment of FIG. 6;
【図10】本発明にかかるインピーダンス可変型超電導
変換装置の他の実施例の構成を示す回路図である。FIG. 10 is a circuit diagram showing the configuration of another embodiment of the variable impedance superconducting converter according to the present invention.
10 インピーダンス可変型要素器 10A インピーダンス可変型要素器 10B インピーダンス可変型要素器 11 中央ヨーク 12 筒状超電導体 13 絶縁膜 14 主コイル 15 外囲ヨーク 16 外囲ヨーク 17 補助ヨーク 18 制御用コイル 19 磁場発生部 20 インピーダンス可変型限流器 21 変流器 22 1次巻線 23 2次巻線 24 ヨーク 30 インピーダンス可変型超電導変換装置 31 コンデンサ 32 合成トランス 33A 1次巻線 33B 1次巻線 33C 2次巻線 34 ヨーク 35 中間タップ 40 負荷 DESCRIPTION OF SYMBOLS 10 Variable impedance element device 10A Variable impedance element device 10B Variable impedance element device 11 Central yoke 12 Cylindrical superconductor 13 Insulating film 14 Main coil 15 Surrounding yoke 16 Surrounding yoke 17 Auxiliary yoke 18 Control coil 19 Magnetic field generation Unit 20 Variable impedance current limiter 21 Current transformer 22 Primary winding 23 Secondary winding 24 Yoke 30 Impedance variable superconducting converter 31 Capacitor 32 Synthetic transformer 33A Primary winding 33B Primary winding 33C Secondary winding Wire 34 Yoke 35 Middle tap 40 Load
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H02H 3/08 ZAA H01F 5/08 ZAAZ (56)参考文献 特開 平2−105402(JP,A) 特開 平1−160065(JP,A) 特開 昭64−8827(JP,A) 特開 昭51−118057(JP,A) 特開 平1−99479(JP,A) 特開 平4−112620(JP,A) 特開 平1−110021(JP,A) 特開 平1−164231(JP,A) 特開 平1−217902(JP,A) 特開 平4−368422(JP,A) 特開 昭64−50484(JP,A) 特公 昭42−727(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H02H 9/02 H01F 6/06 H01H 33/00 H01L 39/20 H02H 3/08 H02M 7/00 H02M 3/00 ──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 7 Identification symbol FI H02H 3/08 ZAA H01F 5/08 ZAAZ (56) References JP-A-2-105402 (JP, A) JP-A-1-160065 JP-A-64-827 (JP, A) JP-A-51-118057 (JP, A) JP-A-1-99479 (JP, A) JP-A-4-112620 (JP, A) Japanese Patent Laid-Open No. 1-10021 (JP, A) Japanese Patent Laid-Open No. 1-164231 (JP, A) Japanese Patent Laid-Open No. 1-217902 (JP, A) Japanese Patent Laid-Open No. 4-368422 (JP, A) Japanese Patent Laid-Open No. 50484/1984 JP, A) JP 42-727 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) H02H 9/02 H01F 6/06 H01H 33/00 H01L 39/20 H02H 3 / 08 H02M 7/00 H02M 3/00
Claims (4)
ヨ−クと、 前記中央ヨ−クの周囲を筒状に覆う筒状超電導体と、 前記筒状超電導体の上に絶縁膜を介して巻回され、前記
筒状超電導体と直列接続された主コイルと、 前記中央ヨ−クとともに閉磁路を構成する外囲ヨ−ク
と、 前記中央ヨ−クに垂直方向に前記外囲ヨ−クから分岐し
た補助ヨ−クと、 前記補助ヨ−クの上に巻回された制御用コイルとを備
え、 前記制御用コイルに電流を流さない場合、前記筒状超電
導体が超伝導状態にあり、前記筒状超電導体の電気抵抗
がほぼゼロとなり、かつ、前記主コイルには小さなイン
ダクタンスが発生し、一方、前記制御用コイルに電流を
流した場合、前記筒状超電導体の超伝導状態が破壊さ
れ、前記筒状超電導体の電気抵抗が比較的大きくなり、
かつ、前記主コイルには大きなインダクタンスが発生す
るように、前記制御コイルにより前記主コイルに流れる
電流を制御するようにしたインピ−ダンス可変型要素
器。A central yoke which is a part of a yoke constituting a closed magnetic circuit; a cylindrical superconductor which covers the periphery of the central yoke in a cylindrical shape; A main coil wound through an insulating film and connected in series with the cylindrical superconductor; an outer yoke that forms a closed magnetic circuit together with the center yoke; and a direction perpendicular to the center yoke. An auxiliary yoke branched from the surrounding yoke; and a control coil wound on the auxiliary yoke, wherein when no current flows through the control coil, the cylindrical superconductor is provided. Is in a superconducting state, the electric resistance of the cylindrical superconductor becomes substantially zero, and a small inductance is generated in the main coil. On the other hand, when a current flows through the control coil, the cylindrical superconducting The superconducting state of the body is destroyed, and the electric resistance of the cylindrical superconductor becomes relatively large. ,
In addition, the variable impedance element device in which the control coil controls a current flowing through the main coil so that a large inductance is generated in the main coil.
ヨ−クと、 前記中央ヨ−クの周囲を筒状に覆う筒状超電導体と、 前記筒状超電導体の上に絶縁膜を介して巻回され、前記
筒状超電導体と直列接続された主コイルと、 前記中央ヨ−クとともに閉磁路を構成する外囲ヨ−ク
と、 前記中央ヨ−クに垂直方向に前記外囲ヨ−クから分岐し
た補助ヨ−クと、 前記補助ヨ−クの上に巻回された制御用コイルと、 前記主コイルと直列に接続された1次巻線と、両端が前
記制御用コイルの両端に接続された2次巻線とを有する
変流器とを備え、 前記主コイルに過電流が流れない場合、前記筒状超電導
体が超伝導状態にあり、前記筒状超電導体の電気抵抗が
ほぼゼロとなり、かつ、前記主コイルには小さなインダ
クタンスが発生し、一方、前記主コイルに過電流が流れ
た場合、前記筒状超電導体の超伝導状態が破壊され、前
記筒状超電導体の電気抵抗が比較的大きくなり、かつ、
前記主コイルには大きなインダクタンスが発生するよう
に、前記変流器及び前記制御コイルにより前記主コイル
に流れる電流を制御するようにしたインピ−ダンス可変
型限流器。2. A central yoke which is a part of a yoke constituting a closed magnetic circuit; a cylindrical superconductor which covers the periphery of the central yoke in a cylindrical shape; A main coil wound through an insulating film and connected in series with the cylindrical superconductor; an outer yoke that forms a closed magnetic circuit together with the center yoke; and a direction perpendicular to the center yoke. An auxiliary yoke branched from the surrounding yoke; a control coil wound on the auxiliary yoke; a primary winding connected in series with the main coil; A current transformer having a secondary winding connected to both ends of the control coil; and when no overcurrent flows through the main coil, the tubular superconductor is in a superconducting state, and the tubular superconductor is in a superconducting state. The electric resistance of the body becomes almost zero, and a small inductance is generated in the main coil, while the main coil has a small inductance. When an overcurrent flows through the tubular superconductor, the superconducting state of the tubular superconductor is destroyed, the electrical resistance of the tubular superconductor becomes relatively large, and
An impedance variable current limiter wherein the current flowing through the main coil is controlled by the current transformer and the control coil so that a large inductance is generated in the main coil.
素器を2個備え、 それぞれの前記インピ−ダンス可変型要素器の前記主コ
イル及び前記筒状超電導体を直列に接続し、この直列に
接続された回路の一端を直流電源の一極に及び他端を負
荷の一端に接続し、 前記負荷の他端を前記直流電源の他極に接続し、前記2
個のインピ−ダンス可変型要素器の接続点と前記直流電
源の他極との間にコンデンサを接続し、 超電導、常電導相変化を2個の前記インピ−ダンス可変
型要素器の前記筒状超電導体に交互に各々の前記制御コ
イルにより与えて前記負荷に交流電力を供給することを
特徴とするインピ−ダンス可変型超電導変換装置。3. The apparatus according to claim 1, further comprising two variable impedance elements, wherein said main coil and said tubular superconductor of each of said variable impedance elements are connected in series. One end of a circuit connected in series is connected to one pole of a DC power supply, and the other end is connected to one end of a load. The other end of the load is connected to the other pole of the DC power supply.
A capacitor is connected between the connection point of the two variable impedance element devices and the other pole of the DC power supply, and the superconducting and normal conduction phase change is performed by the two cylindrical variable impedance element devices. A variable impedance superconducting converter, wherein alternating current is supplied to the load by alternately applying the control coils to the superconductor.
素器を2個備え、 それぞれの前記インピ−ダンス可変型要素器の前記主コ
イル及び前記筒状超電導体を合成トランスの1次巻線を
介在させて直列に接続し、該直列に接続された2個の前記インピ−ダンス可変型要
素器の両端部と、前記合成トランスの1次巻線の中間タ
ップとの間に直流電源を接続 し、 超電導・常電導相変化を2個の前記インピ−ダンス可変
型要素器の前記筒状超電導体に交互に各々の前記制御コ
イルにより与えて、前記合成トランスの2次巻線に所定
の交流電源を得ることを特徴とするインピ−ダンス可変
型超電導変換装置。4. A primary winding of a composite transformer, comprising two variable impedance elements according to claim 1, wherein the main coil and the cylindrical superconductor of each of the variable impedance elements are combined. Connected in series with a wire interposed therebetween, and the two impedance-variable type elements connected in series.
Both ends of the element and an intermediate tag between the primary windings of the composite transformer
A DC power supply is connected between the control coil and the control coil, and the superconducting / normal conducting phase change is alternately applied to the cylindrical superconductors of the two impedance variable element devices by the respective control coils, and the synthesis is performed. A variable impedance superconducting converter characterized in that a predetermined AC power source is obtained from a secondary winding of a transformer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8036847A JP3015863B2 (en) | 1996-02-23 | 1996-02-23 | Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8036847A JP3015863B2 (en) | 1996-02-23 | 1996-02-23 | Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09233693A JPH09233693A (en) | 1997-09-05 |
JP3015863B2 true JP3015863B2 (en) | 2000-03-06 |
Family
ID=12481163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8036847A Expired - Lifetime JP3015863B2 (en) | 1996-02-23 | 1996-02-23 | Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3015863B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4528958B2 (en) * | 2003-10-10 | 2010-08-25 | 独立行政法人産業技術総合研究所 | Superconducting inverter |
CN103414176B (en) * | 2013-07-30 | 2016-01-20 | 江苏多维科技有限公司 | A kind of magnetic resistance current limiter |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51118057A (en) * | 1975-04-10 | 1976-10-16 | Sanyo Electric Co Ltd | Power source device |
JPS648827A (en) * | 1987-06-30 | 1989-01-12 | Mitsubishi Electric Corp | Switching device between superconduction and normal conduction |
JPH0199479A (en) * | 1987-10-12 | 1989-04-18 | Nec Corp | Dc-ac converter |
JPH01160065A (en) * | 1987-12-16 | 1989-06-22 | Fujitsu Ltd | Switching element |
CH677549A5 (en) * | 1988-08-02 | 1991-05-31 | Asea Brown Boveri |
-
1996
- 1996-02-23 JP JP8036847A patent/JP3015863B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09233693A (en) | 1997-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8351167B2 (en) | Fault current limiters (FCL) with the cores saturated by superconducting coils | |
KR101293416B1 (en) | Cryogenic exciter | |
US20120154966A1 (en) | Fault current limiters (fcl) with the cores saturated by non-superconducting coils | |
CA2042215A1 (en) | Superconductive switch for conduction cooled superconductive magnet | |
JPH0368618B2 (en) | ||
JP2006504254A (en) | Superconducting current limiting device | |
JP3015863B2 (en) | Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter | |
US20240077554A1 (en) | Conduction Cooled Cryogenic Current Source with a High-Temperature Superconducting Filter | |
US3440456A (en) | Commutating arrangement for electric machines with superconducting armature coils | |
WO2012137245A1 (en) | Power conversion device | |
US20240313775A1 (en) | High-temperature superconducting switches and rectifiers | |
JP2004510346A (en) | Low AC loss superconducting coil | |
Homer et al. | A thermally switched flux pump | |
JPH0648661B2 (en) | Flux control type superconducting rectifier | |
JP2573725B2 (en) | Instantaneous power failure protection device using superconducting switch | |
US4104716A (en) | Saturable magnetic device for regulating commutating or converting an electric current from AC to DC or vice versa | |
KR102395914B1 (en) | Non-Rotation Type Alternating Current Generator Capable of Increasing Output Power According to Increase of Units | |
JP2001275249A (en) | Three-phase current limiting apparatus | |
CN116803235A (en) | High temperature superconducting switch and rectifier | |
RU2150761C1 (en) | Current and voltage converter | |
KR20020091322A (en) | Heater triggered type high temperature superconducting power supply | |
Gecer et al. | Switching and decoupling effects in a single-phase transformer using extra DC current | |
Shevchenko et al. | New 50 Hz superconducting power supply for a 2 kA DC magnet | |
KR20210122375A (en) | Non-Rotation Type Alternating Current Generator | |
JPH01281510A (en) | High magnetic field generating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |