JPH09231543A - Magnetic recording medium and magnetic recording device using the same - Google Patents

Magnetic recording medium and magnetic recording device using the same

Info

Publication number
JPH09231543A
JPH09231543A JP3801896A JP3801896A JPH09231543A JP H09231543 A JPH09231543 A JP H09231543A JP 3801896 A JP3801896 A JP 3801896A JP 3801896 A JP3801896 A JP 3801896A JP H09231543 A JPH09231543 A JP H09231543A
Authority
JP
Japan
Prior art keywords
magnetic
rare earth
earth element
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3801896A
Other languages
Japanese (ja)
Inventor
Kiwamu Tanahashi
究 棚橋
Yuzuru Hosoe
譲 細江
Kazusukatsu Igarashi
万壽和 五十嵐
Nobuyuki Inaba
信幸 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3801896A priority Critical patent/JPH09231543A/en
Publication of JPH09231543A publication Critical patent/JPH09231543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film magnetic recording medium which is suitable for high-density recording in which influences of thermal fluctuation are suppressed and the interaction among magnetic particles and the temp. coefft. of the coercive force are decreased, and to provide a magnetic recording device using this medium. SOLUTION: The magnetic layer 13 essentially composed of Co, Cu, a first rare earth element R and a second rare earth element M. The first rare earth element R is at least one element selected from Sm, Pr and Y and the second rare earth element is at least one element selected from Gd, Ho, Dy and Er. The density of Cu in the magnetic layer is 5-20at%, the density of the first rare earth element R is 11-22at%, and the density of the second rare earth element M is lower than the density of the first rare earth element R.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高密度磁気記録に
好適な磁気記録媒体及び磁気記憶装置に関する。
TECHNICAL FIELD The present invention relates to a magnetic recording medium and a magnetic storage device suitable for high density magnetic recording.

【0002】[0002]

【従来の技術】コンピュータの小型高速化にともない、
外部記憶装置である磁気ディスク装置の高密度化に対す
る要求が高まっている。現在、大容量磁気ディスク装置
で用いられる磁気記録媒体には、CoNiCr、CoC
rTa、CoCrPt等のCo合金スパッタ膜が用いら
れており、一平方インチあたり数百メガビットの高い記
録密度を実現している。しかし、記録ビットの微小化に
ともない、再生出力の低下及び媒体ノイズの増大が大き
な問題点となっている。再生出力の低下は、再生ヘッド
に高感度の磁気抵抗効果型ヘッドを用いることで解決可
能であるが、媒体ノイズの問題は媒体自体の特性を改良
する必要がある。
2. Description of the Related Art As computers become smaller and faster,
There is an increasing demand for higher density of magnetic disk devices, which are external storage devices. Currently, magnetic recording media used in large-capacity magnetic disk devices include CoNiCr and CoC.
A Co alloy sputtered film such as rTa or CoCrPt is used, and a high recording density of several hundred megabits per square inch is realized. However, with the miniaturization of recording bits, the reduction in reproduction output and the increase in medium noise have become serious problems. The reduction in reproduction output can be solved by using a high-sensitivity magnetoresistive head as the reproduction head, but the problem of medium noise requires improvement of the characteristics of the medium itself.

【0003】媒体ノイズを低減する方法としては、磁性
粒子を微細化し、かつ粒子間の相互作用を弱め、磁化反
転サイズを小さくする方法が検討されている。しかしな
がら、磁化反転サイズを小さくしすぎると磁化が熱的に
ゆらぎ、記録が不安定になる。このため磁性層としては
結晶磁気異方性の大きな材料を用い、熱揺らぎの影響を
小さくする必要がある。結晶磁気異方性の大きな材料と
しては、永久磁石に用いられているRECo5やRE2
17等が知られている。ここでREは軽希土類を表す。
これらの材料の結晶磁気異方性定数は、Co合金にくら
べ一桁程度大きく、磁化反転サイズを小さくしても熱揺
らぎの影響を小さくすることができる。
As a method of reducing the medium noise, a method of making the magnetic particles fine, weakening the interaction between the particles, and reducing the magnetization reversal size has been studied. However, if the magnetization reversal size is made too small, the magnetization thermally fluctuates, and the recording becomes unstable. Therefore, it is necessary to use a material having large crystal magnetic anisotropy for the magnetic layer to reduce the influence of thermal fluctuation. Materials having large crystal magnetic anisotropy include RECo 5 and RE 2 C used in permanent magnets.
o 17 etc. are known. Here, RE represents a light rare earth element.
The crystal magnetic anisotropy constants of these materials are about one digit larger than those of Co alloys, and the influence of thermal fluctuation can be reduced even if the magnetization reversal size is reduced.

【0004】こうした永久磁石材料を薄膜磁気記録媒体
に適用した試みとしては、Sm−Co合金を非磁性下地
層の上にスパッタ成膜したものがあり、3.6kOeの
高い保磁力を実現したもの〔IEEE Trans. Magn., 30(19
94)4038〕等が報告されている。
As an attempt to apply such a permanent magnet material to a thin film magnetic recording medium, there is one in which an Sm-Co alloy is sputter-deposited on a non-magnetic underlayer, and a high coercive force of 3.6 kOe is realized. 〔IEEE Trans. Magn., 30 (19
94) 4038] etc. have been reported.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、スパッ
タリング法で作製したSm−Co薄膜媒体は、高い保磁
力は得られているものの磁性粒子間の相互作用が強く、
媒体ノイズが大きいという問題がある。現行のCoCr
TaやCoCrPt薄膜媒体では、磁性粒子の粒界に非
磁性のCrを偏析させることにより粒子間の相互作用を
弱めているが、Sm−Co薄膜媒体は非常に微細な結晶
相もしくはアモルファス相から構成されており、磁性粒
子間には強い相互作用が働いている。また、Sm−Co
薄膜媒体の保磁力は温度を上げると大きく低下するた
め、Sm−Co薄膜媒体を用いた磁気記憶装置で高い信
頼性を得ることは難しい。
However, although the Sm-Co thin film medium produced by the sputtering method has a high coercive force, the interaction between the magnetic particles is strong,
There is a problem that the medium noise is large. Current CoCr
In a Ta or CoCrPt thin film medium, the interaction between particles is weakened by segregating non-magnetic Cr in the grain boundaries of magnetic particles, but the Sm-Co thin film medium is composed of a very fine crystalline phase or amorphous phase. Therefore, strong interaction is exerted between the magnetic particles. In addition, Sm-Co
Since the coercive force of the thin film medium decreases significantly with increasing temperature, it is difficult to obtain high reliability in a magnetic memory device using the Sm-Co thin film medium.

【0006】本発明は、上記の課題を解決するためにな
されたものである。より具体的には、熱揺らぎの影響を
受けにくく、かつ保磁力の温度変化の小さな高密度記録
に適した薄膜磁気記録媒体、及びそれを用いた磁気記憶
装置を提供することを目的とする。
The present invention has been made to solve the above problems. More specifically, it is an object of the present invention to provide a thin film magnetic recording medium that is less susceptible to thermal fluctuations and is suitable for high density recording with a small change in coercive force due to temperature, and a magnetic storage device using the same.

【0007】[0007]

【課題を解決するための手段】本発明の磁気記録媒体
は、図1に示すように基板11上に下地層12、磁性層
13、保護層14をスパッタリング法により順次形成す
る。ここで、下地層12は省略してもよい。磁性層はC
oとCuと希土類元素Rを主成分とする。希土類元素R
はSm,Pr,Yから選ばれる少なくとも一種の元素と
し、磁性層中のCuの濃度を5〜20at%、希土類元
素Rの濃度を11〜22at%とすることにより、磁性
粒子間の相互作用を低減することができる。これは磁性
層が、微視的に見るとCo含有量の異なる二相(Co含
有量が多い強磁性の相と、Co含有量の少ない非磁性も
しくは弱い磁性の相)に分離するためである。
In the magnetic recording medium of the present invention, as shown in FIG. 1, an underlayer 12, a magnetic layer 13 and a protective layer 14 are sequentially formed on a substrate 11 by a sputtering method. Here, the base layer 12 may be omitted. The magnetic layer is C
The main components are o, Cu, and the rare earth element R. Rare earth element R
Is at least one element selected from Sm, Pr, and Y, and the concentration of Cu in the magnetic layer is 5 to 20 at% and the concentration of the rare earth element R is 11 to 22 at% so that the interaction between the magnetic particles can be improved. It can be reduced. This is because the magnetic layer microscopically separates into two phases having different Co contents (a ferromagnetic phase having a large Co content and a nonmagnetic or weak magnetic phase having a small Co content). .

【0008】本発明者らは、粒子間相互作用の低減に有
効であるこうした相分離を促進させるため、種々の添加
元素を検討し、Cuの添加が非常に効果的であることを
実験的に明らかにした。Cuの添加により相分離が促進
する理由としては、CuがCoと希土類元素Rの両方と
それぞれ金属間化合物を形成する性質を持つためCo含
有量の異なる組成で自由エネルギーが極小を持つこと、
かつ融点が1083℃と比較的低いため原子の移動が容
易となること、が考えられる。Cuの濃度に関しては、
添加量を増すにともない飽和磁化が減少するため20a
t%以下とするのが好ましい。
The present inventors investigated various additive elements in order to promote such phase separation, which is effective in reducing the interaction between particles, and experimentally found that the addition of Cu is very effective. Revealed. The reason why the phase separation is promoted by the addition of Cu is that Cu has the property of forming an intermetallic compound with both Co and the rare earth element R, and therefore has a minimum free energy in a composition having a different Co content,
Moreover, it is considered that the melting point is relatively low at 1083 ° C., which facilitates the movement of atoms. Regarding the Cu concentration,
20a because the saturation magnetization decreases with increasing addition amount
It is preferably t% or less.

【0009】希土類元素Rは磁性層の結晶磁気異方性を
高めるうえで重要な元素であり、濃度を11〜22at
%の範囲にすることで、磁性層はRCo5(Cu)相と
2Co7(Cu)相、もしくはR2Co17(Cu)相と
2Co7(Cu)相との二相分離構造をとることができ
る。磁性層形成時の基板温度は、相分離を促進し、かつ
磁性粒子の過度な成長を抑えるため、200℃以上40
0℃未満とするのが好ましい。成膜後、赤外線ランプあ
るいはレーザーを用いて熱処理を行ない相分離を促進さ
せることも可能である。
The rare earth element R is an important element for enhancing the crystal magnetic anisotropy of the magnetic layer, and its concentration is 11 to 22 at.
%, The magnetic layer is separated into two phases of RCo 5 (Cu) phase and R 2 Co 7 (Cu) phase, or R 2 Co 17 (Cu) phase and R 2 Co 7 (Cu) phase. It can have a structure. The substrate temperature at the time of forming the magnetic layer is 200 ° C. or higher and 40 ° C. or higher in order to promote phase separation and suppress excessive growth of magnetic particles.
It is preferably below 0 ° C. After the film formation, it is also possible to perform a heat treatment using an infrared lamp or a laser to promote the phase separation.

【0010】また、磁性層の主成分をCoと第1の希土
類元素Rと第2の希土類元素Mとすると、本発明のもう
一つの課題である保磁力の温度係数を小さくすることが
できる。ここで、磁性層中の第1の希土類元素Rの濃度
は11〜22at%とする。第2の希土類元素Mは、G
d,Ho,Dy,Erから選ばれる少なくとも一種の元
素とし、その濃度を第1の希土類元素Rの濃度より低く
する。
When the main components of the magnetic layer are Co, the first rare earth element R and the second rare earth element M, the temperature coefficient of coercive force, which is another object of the present invention, can be reduced. Here, the concentration of the first rare earth element R in the magnetic layer is 11 to 22 at%. The second rare earth element M is G
At least one element selected from d, Ho, Dy, and Er is used, and the concentration thereof is lower than the concentration of the first rare earth element R.

【0011】Sm−Co薄膜媒体はキュリー点が低い
(例えば、SmCo5は724℃、Sm2Co17は647
℃)ため保磁力の温度変化が大きい。そこで本発明者ら
は、保磁力の温度係数を低減するため、種々の添加元素
を検討し、第2の希土類元素Mの添加が非常に効果的で
あることを実験的に明らかにした。第2の希土類元素M
の添加により保磁力の温度係数が低減する理由は、Tb
FeCo等の光磁気記録媒体にみられるような温度が補
償点に近づくことに伴う保磁力の増加効果が磁性層全体
の保磁力の低下を抑えるためと考えられる。なお第2の
希土類元素MのスピンはCoのスピンと反平行にカップ
リングし飽和磁化の低下を招くので、第2の希土類元素
Mの濃度は第1の希土類元素Rの濃度より低くするのが
好ましい。
The Sm-Co thin film medium has a low Curie point (for example, 724 ° C. for SmCo 5 and 647 for Sm 2 Co 17).
Therefore, the change in coercive force with temperature is large. Therefore, the present inventors examined various additive elements in order to reduce the temperature coefficient of coercive force, and experimentally revealed that the addition of the second rare earth element M is very effective. Second rare earth element M
The reason why the temperature coefficient of coercive force is decreased by adding
It is considered that the effect of increasing the coercive force as the temperature approaches the compensation point as seen in a magneto-optical recording medium such as FeCo suppresses the decrease in the coercive force of the entire magnetic layer. Since the spin of the second rare earth element M is coupled antiparallel to the spin of Co and causes a decrease in saturation magnetization, the concentration of the second rare earth element M should be lower than the concentration of the first rare earth element R. preferable.

【0012】さらに、磁性層の主成分をCoとCuと第
1の希土類元素Rと第2の希土類元素Mとし、磁性層中
のCuの濃度を5〜20at%、第1の希土類元素Rの
濃度を11〜22at%、第2の希土類元素Mの濃度を
第1の希土類元素Rの濃度より低くすることにより、粒
子間相互作用の低減及び保磁力の温度係数の低減という
二つの課題を同時に解決することができる。
Further, the main components of the magnetic layer are Co and Cu, the first rare earth element R and the second rare earth element M, the Cu concentration in the magnetic layer is 5 to 20 at%, and the first rare earth element R is By setting the concentration to be 11 to 22 at% and the concentration of the second rare earth element M to be lower than the concentration of the first rare earth element R, two problems of reduction of interaction between particles and reduction of temperature coefficient of coercive force are simultaneously achieved. Can be resolved.

【0013】下地層は磁性層の結晶配向性及び結晶粒径
を制御するために用いられ、材料としては磁性層の格子
定数に合わせてCr,Ti,V,Mo,Ta及びCr−
Ti,Cr−V,Cr−Mo,Cr−Ta等のCr合金
等から選択するのが好ましい。下地層の膜厚は、中心線
平均粗さRaを1nm以下とするために、100nm以
下とするのが好ましい。基板としては、ガラス基板、S
iO2基板、SiC基板、カーボン基板等を用いると、
基板加熱時及び成膜後の熱処理時に基板が変形しないた
め好ましい。ただし、基板加熱を300℃以下に抑え、
成膜後の熱処理を行なわない場合は表面にNi−P層が
形成されたAl−Mg合金基板を用いることができる。
The underlayer is used to control the crystal orientation and the crystal grain size of the magnetic layer, and the material is made of Cr, Ti, V, Mo, Ta and Cr-- depending on the lattice constant of the magnetic layer.
It is preferable to select from Cr alloys such as Ti, Cr-V, Cr-Mo, Cr-Ta and the like. The thickness of the underlayer is preferably 100 nm or less so that the centerline average roughness Ra is 1 nm or less. As the substrate, a glass substrate, S
If an iO 2 substrate, a SiC substrate, a carbon substrate, etc. are used,
It is preferable because the substrate does not deform during heating of the substrate and during heat treatment after film formation. However, the substrate heating is kept below 300 ° C,
When heat treatment after film formation is not performed, an Al-Mg alloy substrate having a Ni-P layer formed on its surface can be used.

【0014】本発明の磁気記録媒体において、磁性膜の
厚さtmagと記録時における磁気記録媒体に対する残留
磁束密度Brとの積(Br×tmag)を70Gμm以下
とし、さらに磁気ヘッドの相対的な走向方向に磁界を印
加して測定した保磁力を3kOe以上とすると、200
kFCI以上の高い線記録密度における十分な再生強度
を得ることができる。また、本発明による磁気記録媒体
と、それを記録方向に駆動する駆動部と、電磁誘導型の
記録部と磁気抵抗効果型の再生部を備える磁気ヘッド
と、磁気ヘッドを磁気記録媒体に対して相対運動させる
手段と、記録再生信号処理手段を用いて磁気記憶装置を
構成することにより、1平方インチ当たり3ギガビット
以上の記録密度を実現することができる。
In the magnetic recording medium of the present invention, the product (Br × t mag ) of the thickness t mag of the magnetic film and the residual magnetic flux density Br for the magnetic recording medium at the time of recording is set to 70 Gμm or less, and the relative magnetic head is used. If the coercive force measured by applying a magnetic field in various strike directions is 3 kOe or more, 200
It is possible to obtain a sufficient reproduction strength at a high linear recording density of kFCI or more. Further, a magnetic recording medium according to the present invention, a drive unit for driving the magnetic recording medium in the recording direction, a magnetic head having an electromagnetic induction type recording unit and a magnetoresistive effect reproducing unit, and a magnetic head for the magnetic recording medium. By configuring the magnetic storage device using the means for relative movement and the recording / reproducing signal processing means, it is possible to realize a recording density of 3 gigabits or more per square inch.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。 〔実施の形態1〕外径65mm、内径20mm、厚さ
0.4mmの表面にNiPが形成されたAl−Mg基板
の上に、厚さ50nmのCr下地層、厚さ25nmのC
83-XCuXSm17磁性層、10nmのカーボン保護層
をDCマグネトロンスパッタリング法により連続的に形
成した。成膜条件は、アルゴンガスの分圧は25mTo
rr、投入電力は1kW、基板温度は300℃とした。
磁性層中のCuの濃度Xは1at%から25at%の間
で変化させた。また、比較のためにCuを含まない(X
=0)ものも形成した。得られた磁気記録媒体の静磁気
特性は試料振動型磁力計VSMにより評価した。
Embodiments of the present invention will be described below in detail. [Embodiment 1] A Cr underlayer having a thickness of 50 nm and a C having a thickness of 25 nm are formed on an Al-Mg substrate having an outer diameter of 65 mm, an inner diameter of 20 mm and a thickness of 0.4 mm and having NiP formed on the surface.
A 83-X Cu X Sm 17 magnetic layer and a 10 nm carbon protective layer were continuously formed by a DC magnetron sputtering method. The film formation condition is that the partial pressure of argon gas is 25 mTo.
rr, input power was 1 kW, and substrate temperature was 300 ° C.
The Cu concentration X in the magnetic layer was changed from 1 at% to 25 at%. For comparison, Cu is not included (X
= 0) was also formed. The magnetostatic characteristics of the obtained magnetic recording medium were evaluated by a sample vibrating magnetometer VSM.

【0016】図2にCuの組成Xと、記録時における媒
体に対する磁気ヘッドの相対的な走向方向に磁界を印加
して測定した保磁力Hc及び飽和磁化Msの関係を示
す。Cuを含まない場合に比べ、Cuが僅かでも含まれ
ると保磁力Hcが増大する効果が認められる。保磁力H
cを3kOe以上とするには、Cuの濃度を5at%以
上とする必要がある。また、飽和磁化Msの値はCuの
添加とともに単調に低下する。記録再生特性を評価した
結果、Cuの濃度が5at%以上、20at%以下のと
きに、S/Nが高く特に良好な特性が得られた。磁性層
の組成がCo68Cu15Sm17の磁気記録媒体で、1平方
インチあたり3ギガビットの条件で磁気抵抗効果型ヘッ
ドを用いて記録再生したところ、媒体S/Nは5.2で
あった。
FIG. 2 shows the relationship between the Cu composition X, the coercive force Hc and the saturation magnetization Ms measured by applying a magnetic field in the direction of travel of the magnetic head relative to the medium during recording. As compared with the case where Cu is not contained, the effect that the coercive force Hc increases when Cu is contained even slightly is recognized. Coercive force H
In order to set c to 3 kOe or more, the Cu concentration needs to be 5 at% or more. Moreover, the value of the saturation magnetization Ms monotonously decreases with the addition of Cu. As a result of evaluating the recording / reproducing characteristics, when the Cu concentration was 5 at% or more and 20 at% or less, the S / N ratio was high and particularly good characteristics were obtained. When a magnetic recording medium having a magnetic layer composition of Co 68 Cu 15 Sm 17 was used for recording / reproducing with a magnetoresistive head under the condition of 3 gigabits per square inch, the medium S / N was 5.2. .

【0017】Cuの濃度が5at%未満、もしくは20
at%より大きい磁気記録媒体では、保磁力Hcが3k
Oe未満に低下するため、もしくは飽和磁化Msの低下
により再生出力が低下するため、1平方インチあたり3
ギガビットの条件で磁気抵抗効果型ヘッドを用いて記録
再生したときの媒体S/Nは3以下と低い値となった。
The Cu concentration is less than 5 at%, or 20
In a magnetic recording medium having a content higher than at%, the coercive force Hc is 3 k.
3 per 1 square inch because the reproduction output is decreased due to the decrease of less than Oe or the saturation magnetization Ms.
The medium S / N when recording and reproducing using a magnetoresistive head under a gigabit condition was a low value of 3 or less.

【0018】〔実施の形態2〕外径65mm、内径20
mm、厚さ0.4mmのNiPが表面に形成されたAl
−Mg基板の上に、厚さ50nmのCr下地層、厚さ2
5nmのCo83Sm9Gd8磁性層、厚さ10nmのカー
ボン保護層をDCマグネトロンスパッタリング法により
連続的に形成した。成膜条件は実施の形態1と同様であ
る。
[Embodiment 2] Outer diameter 65 mm, inner diameter 20
mm, Al with NiP of 0.4mm thickness formed on the surface
-A 50 nm thick Cr underlayer on a Mg substrate, thickness 2
A 5 nm Co 83 Sm 9 Gd 8 magnetic layer and a 10 nm thick carbon protective layer were successively formed by a DC magnetron sputtering method. The film forming conditions are the same as those in the first embodiment.

【0019】図3に、保磁力Hcを25℃から200℃
の温度範囲で測定した結果を示す。比較例1として、G
dを添加しないCo83Sm17磁性層の測定結果も併せて
示す。Co83Sm9Gd8磁性層ではCo83Sm17磁性層
に比べ、測定温度にともなう保磁力は減少量が小さいこ
とが分かる。また、磁性層の組成をCo81Sm9Gd10
としたところ、25℃での飽和磁化及び保磁力の値が大
きく低下し、磁気記録媒体としては適当でないことが分
かった。なお、GdをHo,Dy,Erで置き換えて
も、同様な結果が得られた。
FIG. 3 shows the coercive force Hc from 25 ° C. to 200 ° C.
The results measured in the temperature range of are shown. As Comparative Example 1, G
The measurement results of the Co 83 Sm 17 magnetic layer to which d is not added are also shown. It can be seen that the Co 83 Sm 9 Gd 8 magnetic layer has a smaller decrease in coercive force with the measurement temperature than the Co 83 Sm 17 magnetic layer. Further, the composition of the magnetic layer is set to Co 81 Sm 9 Gd 10
As a result, the values of the saturation magnetization and the coercive force at 25 ° C. greatly decreased, and it was found that the magnetic recording medium was not suitable. Similar results were obtained even when Gd was replaced with Ho, Dy, and Er.

【0020】〔実施の形態3〕外径65mm、内径20
mm、厚さ0.4mmのNiPが表面に形成されたAl
−Mg基板の上に、厚さ50nmのCr下地層、厚さ2
5nmのCo68Cu15Sm9Gd8磁性層、厚さ10nm
のカーボン保護層をDCマグネトロンスパッタリング法
により連続的に形成した。成膜条件は実施の形態1と同
様である。
[Embodiment 3] Outer diameter 65 mm, inner diameter 20
mm, Al with NiP of 0.4mm thickness formed on the surface
-A 50 nm thick Cr underlayer on a Mg substrate, thickness 2
5 nm Co 68 Cu 15 Sm 9 Gd 8 magnetic layer, thickness 10 nm
The carbon protective layer of 1 was continuously formed by the DC magnetron sputtering method. The film forming conditions are the same as those in the first embodiment.

【0021】図3に、保磁力Hcを25℃から200℃
の温度範囲で測定した結果を示す。Gdを添加しないC
68Cu15Sm17磁性層(実施の形態1)の測定結果も
併せて示す。Co68Cu15Sm9Gd8磁性層ではCo68
Cu15Sm17磁性層に比べ、測定温度にともなう保磁力
は減少量が小さいことが分かる。なお、GdをHo,D
y,Erで置き換えても、同様な結果が得られた。
FIG. 3 shows the coercive force Hc from 25 ° C. to 200 ° C.
The results measured in the temperature range of are shown. C without Gd
The measurement results of the o 68 Cu 15 Sm 17 magnetic layer (Embodiment 1) are also shown. Co 68 Cu 15 Sm 9 Gd 8 In the magnetic layer, Co 68
It can be seen that the amount of decrease in coercive force with the measurement temperature is smaller than that of the Cu 15 Sm 17 magnetic layer. Note that Gd is Ho, D
Similar results were obtained by substituting with y and Er.

【0022】〔実施の形態4〕本発明による磁気記憶装
置の平面模式図及び縦断面模式図を図4(a)及び図4
(b)に示す。この装置は、磁気記録媒体41と、これ
を回転駆動する駆動部42と、磁気ヘッド43及びその
駆動手段44と、磁気ヘッドの記録再生信号処理手段4
5を有してなる周知の構造の磁気記憶装置である。
[Embodiment 4] FIGS. 4A and 4 are a schematic plan view and a schematic vertical sectional view of a magnetic memory device according to the present invention.
(B). This apparatus comprises a magnetic recording medium 41, a drive unit 42 for rotationally driving the magnetic recording medium 41, a magnetic head 43 and a driving means 44 for the magnetic head, and a recording / reproducing signal processing means 4 for the magnetic head.
5 is a magnetic storage device having a well-known structure.

【0023】この磁気記憶装置に用いた磁気ヘッドの構
造の模式図を図5に示す。この磁気ヘッドは、基体57
の上に形成された記録用の電磁誘導型磁気ヘッドと再生
用の磁気抵抗効果型ヘッドを組み合わせた録再分離型ヘ
ッドである。磁気抵抗センサ51を下部シールド層52
と上部シールド記録磁極兼用層53で挟んだ部分が再生
ヘッドとして働き、コイル54を挟む上部シールド記録
兼用層53と上部記録磁極55が記録ヘッドとして働
く。磁気抵抗センサ51からの出力信号は電極パタン5
6を介して外部に取り出す。
A schematic view of the structure of the magnetic head used in this magnetic storage device is shown in FIG. This magnetic head has a base 57
This is a recording / reproducing separation type head in which an electromagnetic induction type magnetic head for recording and a magnetoresistive head for reproduction formed on the above are combined. The magnetoresistive sensor 51 is attached to the lower shield layer 52.
The portion sandwiched between the upper shield recording magnetic pole / layer 53 and the upper shield recording magnetic pole layer 53 functions as a reproducing head, and the upper shield recording / magnetic layer 53 and the upper recording magnetic pole 55 sandwiching the coil 54 function as a recording head. The output signal from the magnetoresistive sensor 51 is the electrode pattern 5
Take out to the outside via 6.

【0024】図6に磁気抵抗センサの縦断面構造を示
す。この磁気抵抗センサは、シールド層と磁気抵抗セン
サ間のギャップ層61の上に形成された強磁性材料の薄
膜磁気抵抗性導電層63と、この薄膜磁気抵抗性導電層
63を単磁区とするための反強磁性磁区制御層62と、
薄膜磁気抵抗性導電層63の感磁部64における薄膜磁
気抵抗性導電層63と反強磁性磁区制御層62の間の交
換相互作用を絶ち切るための非磁性層65と、感磁部6
4に対するバイアス磁界を発生できる手段として軟磁性
層もしくは永久磁石膜バイアス層67と、軟磁性層もし
くは永久磁石膜バイアス層67と薄膜磁気抵抗性導電層
63の間の電流分流比を調節するための高抵抗層66を
含む。
FIG. 6 shows a vertical sectional structure of the magnetoresistive sensor. This magnetoresistive sensor uses a thin film magnetoresistive conductive layer 63 of a ferromagnetic material formed on the gap layer 61 between the shield layer and the magnetoresistive sensor, and the thin film magnetoresistive conductive layer 63 as a single magnetic domain. An antiferromagnetic domain control layer 62 of
The nonmagnetic layer 65 for cutting off the exchange interaction between the thin film magnetoresistive conductive layer 63 and the antiferromagnetic domain control layer 62 in the magnetic sensitive portion 64 of the thin film magnetoresistive conductive layer 63, and the magnetic sensitive portion 6
4 for adjusting the current shunt ratio between the soft magnetic layer or the permanent magnet film bias layer 67 and the soft magnetic layer or the permanent magnet film bias layer 67 and the thin film magnetoresistive conductive layer 63 as a means capable of generating a bias magnetic field. A high resistance layer 66 is included.

【0025】磁気記録媒体としては、実施の形態1で述
べた保磁力Hcが3.2kOe、残留磁束密度・磁性層
膜厚積(Br×tmag)が70Gμmの媒体を用いた。
この磁気記憶装置を用い、ヘッド浮上量30nm、シー
ルド層間隔0.35μm以下、線記録密度230kFC
I、トラック密度13kTPIの条件で記録再生特性を
評価したところ4.5の装置S/Nが得られた。また、
磁気ヘッドへの入力信号を8−9符号変調処理を施すこ
とにより、1平方インチあたり3ギガビットの記録密度
で記録再生することができた。しかも、内周から外周ま
でのヘッドシーク試験5万回後のビットエラー数は10
ビット/面以下であり、MTBFで15万時間が達成で
きた。
As the magnetic recording medium, the medium having the coercive force Hc of 3.2 kOe and the residual magnetic flux density / magnetic layer thickness product (Br × t mag ) of 70 Gμm described in the first embodiment was used.
Using this magnetic storage device, the head flying height is 30 nm, the shield layer spacing is 0.35 μm or less, and the linear recording density is 230 kFC.
When the recording and reproducing characteristics were evaluated under the conditions of I and track density of 13 kTPI, a device S / N of 4.5 was obtained. Also,
By subjecting the input signal to the magnetic head to the 8-9 code modulation processing, recording / reproduction could be performed at a recording density of 3 gigabits per square inch. Moreover, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference is 10
Bits / plane or less, MTBF achieved 150,000 hours.

【0026】〔実施の形態5〕実施の形態4と同様な構
成を持つ磁気記憶装置において、磁気記録媒体として実
施の形態3に述べた保磁力Hcが3.2kOe、残留磁
束密度・磁性層膜厚積(Br×tmag)が70Gμmの
媒体を用いた。
[Fifth Embodiment] In a magnetic memory device having the same structure as that of the fourth embodiment, the coercive force Hc described in the third embodiment as a magnetic recording medium is 3.2 kOe, the residual magnetic flux density and the magnetic layer film. A medium having a thickness product (Br × t mag ) of 70 Gμm was used.

【0027】この磁気記憶装置を用い、ヘッド浮上量3
0nm、シールド層間隔0.35μm以下、線記録密度
230kFCI、トラック密度13kTPIの条件で記
録再生特性を評価したところ4.6の装置S/Nが得ら
れた。また、磁気ヘッドへの入力信号を8−9符号変調
処理を施すことにより、10℃から50℃の温度範囲に
おいて、1平方インチあたり3ギガビットの記録密度で
記録再生することができた。しかも、内周から外周まで
のヘッドシーク試験5万回後のビットエラー数は10ビ
ット/面以下であり、MTBFで15万時間が達成でき
た。
Using this magnetic storage device, the head flying height is 3
When the recording / reproducing characteristics were evaluated under the conditions of 0 nm, a shield layer spacing of 0.35 μm or less, a linear recording density of 230 kFCI, and a track density of 13 kTPI, a device S / N of 4.6 was obtained. Further, by subjecting the input signal to the magnetic head to 8-9 code modulation, recording and reproduction could be performed at a recording density of 3 gigabits per square inch in a temperature range of 10 ° C. to 50 ° C. Moreover, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 150,000 hours could be achieved with MTBF.

【0028】以上の実施の形態では、希土類元素Rとし
てSmを用いた例について述べたが、希土類元素Rとし
てPrやYを用いてもSmの場合と同様な効果が認めら
れた。さらに、磁性層の組成に、Cr,Ti,B,T
a,Pt等の元素を微量添加しても同様な効果が認めら
れた。
In the above embodiment, an example in which Sm is used as the rare earth element R has been described, but even if Pr or Y is used as the rare earth element R, the same effect as in the case of Sm is recognized. In addition, the composition of the magnetic layer should include Cr, Ti, B, and T.
Similar effects were observed when a trace amount of elements such as a and Pt were added.

【0029】[0029]

【発明の効果】本発明によれば、媒体S/Nを高くでき
るため、高感度の磁気抵抗効果型ヘッドを用いることに
より、1平方インチあたり3ギガビット以上の記録密度
で高いS/Nと低いエラーレートが得られ、15万時間
以上の平均故障間隔を実現できる小型で大容量の磁気記
憶装置を提供できる。
According to the present invention, since the medium S / N can be increased, by using a high-sensitivity magnetoresistive head, a high S / N is obtained at a recording density of 3 gigabits per square inch or more. It is possible to provide a small-sized and large-capacity magnetic storage device which can obtain an error rate and can realize an average failure interval of 150,000 hours or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気記録媒体の一例の縦断面構造
図。
FIG. 1 is a longitudinal sectional structural view of an example of a magnetic recording medium according to the present invention.

【図2】磁性層中のCu濃度と保磁力及び飽和磁化との
関係を示す図。
FIG. 2 is a diagram showing a relationship between Cu concentration in a magnetic layer and coercive force and saturation magnetization.

【図3】測定温度と保磁力との関係を示す図。FIG. 3 is a diagram showing the relationship between measured temperature and coercive force.

【図4】(a)は磁気記憶装置の平面模式図、(b)は
そのA−A’縦断面図。
FIG. 4A is a schematic plan view of a magnetic storage device, and FIG. 4B is a vertical sectional view taken along line AA ′.

【図5】磁気ヘッドの断面構造を示す立体模式図。FIG. 5 is a three-dimensional schematic diagram showing a cross-sectional structure of a magnetic head.

【図6】磁気ヘッドの磁気抵抗センサ部の立て断面構造
の模式図。
FIG. 6 is a schematic diagram of a vertical sectional structure of a magnetoresistive sensor portion of a magnetic head.

【符号の説明】[Explanation of symbols]

11…基板 12…下地層 13…磁性層 14…保護層 41…磁気記録媒体 42…磁気記録媒体駆動部 43…磁気ヘッド 44…磁気ヘッド駆動部 45…記録再生信号処理系 51…磁気抵抗センサ 52…下部シールド層 53…上部シールド記録磁極兼用層 54…コイル 55…上部記録磁極 56…導体層 57…基体 61…シールド層と磁気抵抗センサ間のギャップ層 62…反強磁性磁区制御層 63…薄膜磁気抵抗性導電層 64…薄膜磁気抵抗性導電層の感磁部 65…非磁性層 66…高抵抗層 67…軟磁性層もしくは永久磁石膜バイアス層 11 ... Substrate 12 ... Underlayer 13 ... Magnetic layer 14 ... Protective layer 41 ... Magnetic recording medium 42 ... Magnetic recording medium drive section 43 ... Magnetic head 44 ... Magnetic head drive section 45 ... Recording / reproducing signal processing system 51 ... Magnetoresistive sensor 52 ... lower shield layer 53 ... upper shield recording magnetic pole combined layer 54 ... coil 55 ... upper recording magnetic pole 56 ... conductor layer 57 ... substrate 61 ... gap layer between shield layer and magnetoresistive sensor 62 ... antiferromagnetic domain control layer 63 ... thin film Magnetoresistive conductive layer 64 ... Magnetic sensitive portion of thin film magnetoresistive conductive layer 65 ... Nonmagnetic layer 66 ... High resistance layer 67 ... Soft magnetic layer or permanent magnet film bias layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 信幸 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Inaba 1-280 Higashi Koigakubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に直接もしくは下地層を介して形
成された磁性層を有する磁気記録媒体において、前記磁
性層はCoとCuと希土類元素Rを主成分とし、前記希
土類元素RはSm,Pr,Yから選ばれる少なくとも一
種の元素よりなり、前記磁性層中のCuの濃度は5〜2
0at%、前記希土類元素Rの濃度は11〜22at%
であることを特徴とする磁気記録媒体。
1. A magnetic recording medium having a magnetic layer formed on a substrate directly or via an underlayer, wherein the magnetic layer contains Co, Cu, and a rare earth element R as main components, and the rare earth element R is Sm, The magnetic layer is composed of at least one element selected from Pr and Y, and the concentration of Cu in the magnetic layer is 5 to 2
0 at%, the concentration of the rare earth element R is 11 to 22 at%
A magnetic recording medium characterized by the following.
【請求項2】 基板上に直接もしくは下地層を介して形
成された磁性層を有する磁気記録媒体において、前記磁
性層はCoと第1の希土類元素Rと第2の希土類元素M
を主成分とし、前記第1の希土類元素RはSm,Pr,
Yから選ばれる少なくとも一種の元素よりなり、前記第
2の希土類元素MはGd,Ho,Dy,Erから選ばれ
る少なくとも一種の元素よりなり、前記磁性層中の前記
第1の希土類元素Rの濃度は11〜22at%であり、
前記第2の希土類元素Mの濃度は前記第1の希土類元素
Rの濃度より低いことを特徴とする磁気記録媒体。
2. A magnetic recording medium having a magnetic layer formed directly on a substrate or via an underlayer, wherein the magnetic layer comprises Co, a first rare earth element R, and a second rare earth element M.
And the first rare earth element R is Sm, Pr,
The second rare earth element M is made of at least one element selected from Y, the second rare earth element M is made of at least one element selected from Gd, Ho, Dy, and Er, and the concentration of the first rare earth element R in the magnetic layer is Is 11 to 22 at%,
The magnetic recording medium, wherein the concentration of the second rare earth element M is lower than the concentration of the first rare earth element R.
【請求項3】 基板上に直接もしくは下地層を介して形
成された磁性層を有する磁気記録媒体において、前記磁
性層はCoとCuと第1の希土類元素Rと第2の希土類
元素Mを主成分とし、前記第1の希土類元素RはSm,
Pr,Yから選ばれる少なくとも一種の元素よりなり、
前記第2の希土類元素MはGd,Ho,Dy,Erから
選ばれる少なくとも一種の元素よりなり、前記磁性層中
のCuの濃度は5〜20at%、前記第1の希土類元素
Rの濃度は11〜22at%であり、前記第2の希土類
元素Mの濃度は前記第1の希土類元素Rの濃度より低い
ことを特徴とする磁気記録媒体。
3. A magnetic recording medium having a magnetic layer formed on a substrate directly or via an underlayer, wherein the magnetic layer is mainly composed of Co, Cu, a first rare earth element R and a second rare earth element M. As a component, the first rare earth element R is Sm,
Consisting of at least one element selected from Pr and Y,
The second rare earth element M is composed of at least one element selected from Gd, Ho, Dy and Er, the concentration of Cu in the magnetic layer is 5 to 20 at%, and the concentration of the first rare earth element R is 11 The magnetic recording medium is characterized in that the concentration of the second rare earth element M is lower than the concentration of the first rare earth element R.
【請求項4】 磁気記録媒体と、これを記録方向に駆動
する駆動部と、記録部と再生部を備える磁気ヘッドと、
前記磁気ヘッドを前記磁気記録媒体に対して相対運動さ
せる手段と、記録再生信号処理手段とを有する磁気記憶
装置において、前記磁気ヘッドの再生部が磁気抵抗効果
型センサで構成され、かつ前記磁気記録媒体が請求項1
〜3のいずれか1項に記載の磁気記録媒体で構成されて
いることを特徴とする磁気記憶装置。
4. A magnetic recording medium, a drive unit for driving the magnetic recording medium in the recording direction, a magnetic head having a recording unit and a reproducing unit,
In a magnetic storage device having a means for moving the magnetic head relative to the magnetic recording medium and a recording / reproducing signal processing means, the reproducing portion of the magnetic head is composed of a magnetoresistive sensor, and the magnetic recording The medium is claim 1.
3. A magnetic storage device comprising the magnetic recording medium according to any one of items 1 to 3.
JP3801896A 1996-02-26 1996-02-26 Magnetic recording medium and magnetic recording device using the same Pending JPH09231543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3801896A JPH09231543A (en) 1996-02-26 1996-02-26 Magnetic recording medium and magnetic recording device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3801896A JPH09231543A (en) 1996-02-26 1996-02-26 Magnetic recording medium and magnetic recording device using the same

Publications (1)

Publication Number Publication Date
JPH09231543A true JPH09231543A (en) 1997-09-05

Family

ID=12513843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3801896A Pending JPH09231543A (en) 1996-02-26 1996-02-26 Magnetic recording medium and magnetic recording device using the same

Country Status (1)

Country Link
JP (1) JPH09231543A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026100A1 (en) * 1999-09-30 2001-04-12 Fujitsu Limited Magnetic recording medium and drive for the recording medium
KR100443027B1 (en) * 2000-09-28 2004-08-07 가부시끼가이샤 도시바 Magnetic recording device and design method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026100A1 (en) * 1999-09-30 2001-04-12 Fujitsu Limited Magnetic recording medium and drive for the recording medium
US6720075B2 (en) 1999-09-30 2004-04-13 Fujitsu Limited Magnetic recording medium and magnetic recording medium driver for the medium with N-type ferrimagnetic recording layer
KR100702020B1 (en) * 1999-09-30 2007-03-30 후지쯔 가부시끼가이샤 Magnetic recording medium and driver for the recording medium
KR100443027B1 (en) * 2000-09-28 2004-08-07 가부시끼가이샤 도시바 Magnetic recording device and design method thereof

Similar Documents

Publication Publication Date Title
US6635367B2 (en) Magnetic recording medium
US6834026B2 (en) Method for thermally-assisted recording on a magnetic recording disk
JP3448698B2 (en) Magnetic storage device and magnetic recording medium
JPH1079113A (en) In-plane magnetic recording medium and magnetic storage device utilizing the same
JP2817501B2 (en) Magnetic disk drive and magnetic head used therefor
JPH10233016A (en) Intra-surface magnetic recording medium and magnetic memory device formed by using the same
JP2001331920A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JP2002230733A (en) Perpendicular magnetic recording disk
JP3764833B2 (en) Magnetic recording medium and magnetic storage device
JPH09231543A (en) Magnetic recording medium and magnetic recording device using the same
JP3274615B2 (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JPH0660333A (en) Magneto-resistance effect head
JP3445537B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000020936A (en) Inp-lane magnetic recording medium and magnetic storage device using the same
JP2000315311A (en) Vertical magnetic recording medium and magnetic storage device
JPH10320740A (en) Magnetic storage device and intrasurface magnetic recording medium
JPH0845035A (en) Thin film magnetic head
Nagaoka et al. Magnetic and read/write performance of CoCrTaPt perpendicular media
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
JP3544832B2 (en) Magnetic recording / reproducing method and apparatus
JPH10135039A (en) Magnetic recording medium and magnetic storage device
JP2918199B2 (en) Magnetic recording medium and magnetic storage device
JPH08221715A (en) Magnetoresistance effect type magnetic head
WO1997011458A1 (en) Magnetoresistive head