JPH09230233A - Infrared wide-angle single lens, non-contact temperature measuring instrument and air conditioner - Google Patents

Infrared wide-angle single lens, non-contact temperature measuring instrument and air conditioner

Info

Publication number
JPH09230233A
JPH09230233A JP8037782A JP3778296A JPH09230233A JP H09230233 A JPH09230233 A JP H09230233A JP 8037782 A JP8037782 A JP 8037782A JP 3778296 A JP3778296 A JP 3778296A JP H09230233 A JPH09230233 A JP H09230233A
Authority
JP
Japan
Prior art keywords
angle
single lens
lens
infrared
image height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8037782A
Other languages
Japanese (ja)
Other versions
JP3441286B2 (en
Inventor
Yoshiharu Yamamoto
義春 山本
Tomonobu Yoshikawa
智延 吉川
Kazutake Boku
一武 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03778296A priority Critical patent/JP3441286B2/en
Publication of JPH09230233A publication Critical patent/JPH09230233A/en
Application granted granted Critical
Publication of JP3441286B2 publication Critical patent/JP3441286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an infrared wide-angle single lens excellent in image- formation characteristic and having nearly uniform peripheral light quantity ratio characteristic. SOLUTION: In this single lens 1; d0 is a surface distance between a diaphragm and the 1st surface of the lens, d1 is the center thickness of the lens, (n) is the refractive index of glass material in 10μm wavelength, (f) is a focal distance, (bf) is a back focus, ideal image height at a relative field angle of 0.7 in the case the maximum field angle of a half field angle 60deg is set as 1 is y07, the main light beam image height of an actual light beam is y7, the ideal image height at the maximum filed angle is y01, and the main light beam image height of the actual light beam is y1. In such a case, when the respective field angles Dist0.7 and Dist1.0 are defined by following expressions, the following conditions are satisfied. Dist0.7=(y7-y07)/y07, Dist1.0=(y1-y01)/y01, (1) 0.15<d0/f<0.3, (2) 0.45<(d0+d1/n)/f<0.65, (3) 1.3<(d0+d1/n+bf)/f<1.5, (4) -0.25<Dist0.7<-0.2, (5)-0.5<Dist1.0<-0.45, and (6) 0.7<bf/f<1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に室内の温度分
布状況などの検出を行なう非接触温度測定装置に用いら
れる赤外広角単レンズ等に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared wide-angle single lens or the like mainly used in a non-contact temperature measuring device for detecting a temperature distribution condition in a room.

【0002】[0002]

【従来の技術】従来、非接触温度測定装置には安価な単
一素子の赤外検出器が用いられ、画角の狭い赤外光学系
によって熱像は赤外検出器上に結像される。広い範囲を
観測する場合には、揺動ミラー等によって走査すること
で、2次元的な領域の温度分布の測定を行っていた。し
かしながら、構成が複雑で小型化、低コスト化が困難と
いう問題点があった。従来例としては、特開昭53−4
1279号公報がある。以下、図面を参照しながら、上
述した従来の非接触温度測定装置の一例について説明す
る。
2. Description of the Related Art Conventionally, an inexpensive single-element infrared detector is used in a non-contact temperature measuring device, and a thermal image is formed on the infrared detector by an infrared optical system having a narrow angle of view. . When observing a wide range, the temperature distribution in a two-dimensional area was measured by scanning with a swing mirror or the like. However, there is a problem that the structure is complicated and it is difficult to reduce the size and cost. As a conventional example, JP-A-53-4
There is 1279 publication. Hereinafter, an example of the above-described conventional non-contact temperature measuring device will be described with reference to the drawings.

【0003】図7は従来の非接触温度測定装置の構成図
を示すものである。非接触温度測定装置26は、一定速
度で回転するモータ13、モータの回転軸14、回転円
盤15、ピン16、走査用反射鏡17、支持軸18、連
結アーム19、測定対象物20、反射鏡21、22、赤
外線を断続する回転セクタ23、集光レンズ24、赤外
検出器25から構成されている。
FIG. 7 is a block diagram of a conventional non-contact temperature measuring device. The non-contact temperature measuring device 26 includes a motor 13 rotating at a constant speed, a rotary shaft 14 of the motor, a rotary disk 15, a pin 16, a reflecting mirror 17 for scanning, a supporting shaft 18, a connecting arm 19, an object to be measured 20, a reflecting mirror. 21, 22, a rotating sector 23 for connecting and disconnecting infrared rays, a condenser lens 24, and an infrared detector 25.

【0004】モータ13の回転運動は、連結アーム19
を介し、走査用反射鏡17に伝えられ、走査用反射鏡1
7は往復揺動運動をする。走査用反射鏡17の往復揺動
運動により走査された測定対象物20の各点から放射さ
れる赤外線は、反射鏡21、22で反射し、集光レンズ
24で集光され、赤外検出器25に送られる。赤外検出
器25の前面に設けられた回転セクタ23はモータ13
により回転し、走査反射鏡17の往復揺動運動の片道に
おいてのみ赤外線が透過するようにスリットが形成され
ている。
The rotational movement of the motor 13 is generated by the connecting arm 19
Is transmitted to the scanning reflecting mirror 17 via the
7 makes a reciprocating rocking motion. Infrared rays emitted from each point of the measuring object 20 scanned by the reciprocating swing movement of the scanning reflecting mirror 17 are reflected by the reflecting mirrors 21 and 22, and are collected by the condenser lens 24, and the infrared detector is provided. Sent to 25. The rotating sector 23 provided on the front surface of the infrared detector 25 is a motor 13
The slit is formed so that infrared rays can be transmitted only in one way of the reciprocating swing movement of the scanning reflecting mirror 17.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、低コスト化と小型化は困難であり機器
への搭載組み込みは大きな制約があった。近年、安価な
アレイ状あるいは2次元状の赤外検出器の研究が進み、
これに用いる光学系では2次元の領域を1度に検出器上
に結像する赤外広角レンズの従来例として特開平6−9
4991号公報がある。しかしながら、半画角が35d
egと小さく観察範囲が狭かった。
However, with the above-mentioned structure, it is difficult to reduce the cost and the size, and there is a great limitation in mounting and incorporating the device. In recent years, research on inexpensive array-type or two-dimensional infrared detectors has progressed,
In the optical system used for this, as a conventional example of an infrared wide-angle lens for forming an image of a two-dimensional area on a detector at a time, Japanese Patent Laid-Open No. 6-9
There is a 4991 publication. However, the half angle of view is 35d
It was as small as eg and the observation range was narrow.

【0006】本発明は、上記従来の検出器の課題に鑑
み、単レンズでありながら半画角60degを有し結像
領域全域において良好な結像特性を実現しつつ、周辺光
量比の変化幅が最大でも20%程度である赤外広角単レ
ンズ等を提供することを目的とするものである。
In view of the above-mentioned problems of the conventional detector, the present invention has a half-angle of view of 60 deg even though it is a single lens and realizes a good image forming characteristic in the entire image forming area, and at the same time, the variation width of the peripheral light amount ratio is increased. It is an object of the present invention to provide an infrared wide-angle single lens or the like having a maximum of about 20%.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の赤外広角単レンズは、物体側に絞りを有す
る両凸レンズであって、d0を絞りからレンズ第1面ま
での距離、d1をレンズ中心厚、bfをバックフォーカ
ス、nを波長10μmにおける硝材の屈折率、fを焦点
距離をするとき、 (1)0.15<d0/f<0.3 (2)0.45<(d0+d1/n)/f<0.65 (3)1.3<(d0+d1/n+bf)/f<1.5 なる条件を満足する構成を備えたものである。
In order to solve the above problems, the infrared wide-angle single lens of the present invention is a biconvex lens having a stop on the object side, and d0 is the distance from the stop to the first lens surface. , D1 is the lens center thickness, bf is the back focus, n is the refractive index of the glass material at a wavelength of 10 μm, and f is the focal length, (1) 0.15 <d0 / f <0.3 (2) 0.45 <(D0 + d1 / n) / f <0.65 (3) 1.3 <(d0 + d1 / n + bf) / f <1.5 is provided.

【0008】望ましくは、半画角60degの最大画角
を1としたときの相対画角0.7における歪曲収差をD
ist0.7、最大画角における歪曲収差をDist
1.0とするとき、 (4)−0.25<Dist0.7<−0.2 (5)−0.5<Dist1.0<−0.45 なる条件を満足する構成を備えたものである。ただし、
Dist0.7は、半画角60degを1としたときの
相対画角0.7における理想像高をy07、実光線の主
光線像高をy7、同様に最大画角における理想像高をy
01、実光線の主光線像高をy1としたとき、次の式で
定義する歪曲収差である。
Desirably, the distortion aberration at a relative angle of view of 0.7 when the maximum angle of view of a half angle of view of 60 deg is 1 is D
dist0.7, the distortion at the maximum angle of view Dist
When it is set to 1.0, (4) -0.25 <Dist0.7 <-0.2 (5) -0.5 <Dist1.0 <-0.45 is there. However,
Dist0.7 is y07 when the half angle of view is 60 deg and the ideal image height is 0.7 at the relative angle of view of 0.7, the principal ray image height of the real ray is y7, and the ideal image height at the maximum angle of view is y.
When 01 and the principal ray image height of the real ray are y1, the distortion is defined by the following equation.

【0009】 Dist0.7=(y7−y07)/y07 Dist1.0=(y1−y01)/y01 さらに望ましくは、bfをバックフォーカスとしたと
き、 (6)0.7<bf/f<1 なる条件を満足する構成を備えたものである。
Dist0.7 = (y7−y07) / y07 Dist1.0 = (y1−y01) / y01 More preferably, when bf is the back focus, (6) 0.7 <bf / f <1. It has a configuration that satisfies the conditions.

【0010】本発明は上記した構成によって、適度な負
の歪曲収差を発生させ、これにより、周辺光量比の均一
化を図るものであり、単レンズでありながら半画角60
degの結像領域全域において、良好な結像特性を実現
しつつ、周辺光量比の変化幅が20%程度の優れた性能
を満たす赤外広角単レンズを提供することを可能として
いる。特に、周辺光量比が略均一であるために、赤外検
出器を構成する1次元のアレイ状、あるいは2次元状に
配列された複数の赤外検出画素に、測定対象物の温度分
布と同一分布で赤外線を集光することができる。これに
より、赤外検出器の出力を光学系の周辺光量比特性で補
正する必要がなく、画像の周辺部まで高いS/N比を得
ることができる。さらに加えて、結像の中心から周辺部
まで良好な結像特性と均一な周辺光量比特性のため、本
発明にかかる赤外広角単レンズと赤外検出器の光軸合わ
せに多少のディセンタが生じても測定に誤差が発生し難
く、組立調整が容易となる。
According to the present invention, with the above-described structure, an appropriate negative distortion aberration is generated, whereby the peripheral light amount ratio is made uniform, and the half field angle 60 is achieved even though it is a single lens.
It is possible to provide an infrared wide-angle single lens that achieves excellent image forming characteristics over the entire image area of deg, and that has an excellent performance with a variation range of the peripheral light amount ratio of about 20%. In particular, since the peripheral light amount ratio is substantially uniform, the temperature distribution of the measurement target is the same in the one-dimensional array or the two-dimensionally arranged infrared detection pixels forming the infrared detector. Infrared rays can be collected by the distribution. As a result, it is not necessary to correct the output of the infrared detector with the peripheral light amount ratio characteristic of the optical system, and a high S / N ratio can be obtained even in the peripheral portion of the image. In addition, because of good imaging characteristics and uniform peripheral light amount ratio characteristics from the center of the image to the peripheral portion, some decentering may occur in the optical axis alignment of the infrared wide-angle single lens and the infrared detector according to the present invention. Even if it occurs, an error is unlikely to occur in the measurement, and the assembly and adjustment are easy.

【0011】これらの優れた光学特性を得るために、本
発明になる赤外広角単レンズは上記各条件を満足する構
成となっている。
In order to obtain these excellent optical characteristics, the infrared wide-angle single lens according to the present invention is constructed so as to satisfy the above conditions.

【0012】条件(1)、(2)、(3)は、良好な結
像特性と均一な周辺光量比特性並びにコンパクト化を同
時に実現する範囲を規定するものである。
The conditions (1), (2), and (3) define a range in which good imaging characteristics, uniform peripheral light amount ratio characteristics, and compactness can be realized at the same time.

【0013】条件(1)の下限を越えると、レンズ面へ
の軸外光束の主光線高が小さくなり、歪曲収差を必要な
程度に発生させることが困難となり、周辺光量比が軸外
で減少し、周辺光量比の均一化が困難となる。これを抑
制するために、レンズ第2面の曲率半径を小さくし、歪
曲収差を負の方向に大きく発生させようとするとコマ収
差が発生し、結像特性が劣化する。上限を越えると、歪
曲収差が必要以上に負に偏奇し、周辺光量比が軸外で増
加する傾向が発生する。さらに、軸外光束の上側光線が
補正不足となりコマ収差が劣化する。
If the lower limit of the condition (1) is exceeded, the chief ray height of the off-axis light beam to the lens surface will be small, and it will be difficult to generate distortion to the required extent, and the peripheral light amount ratio will decrease off-axis. However, it becomes difficult to make the peripheral light amount ratio uniform. In order to suppress this, if the radius of curvature of the second surface of the lens is made small and distortion is made to be large in the negative direction, coma is generated and the imaging characteristics are deteriorated. When the value exceeds the upper limit, the distortion aberration becomes negative more than necessary, and the peripheral light amount ratio tends to increase off-axis. Further, the upper ray of the off-axis light beam is undercorrected, and the coma aberration deteriorates.

【0014】条件(2)の下限を越えると、絞りからレ
ンズ第2面までの光路長が小さくなり、レンズ第2面で
の軸外光束の主光線高が小さくなる。これにより、負の
歪曲収差が必要な程度に発生せず、周辺光量比が軸外で
減少し、周辺光量比の均一化が困難となる。上限を越え
ると、歪曲収差が必要以上に負に偏奇し易くなったり、
レンズ中心厚が大となり、バックフォーカスを確保する
ことが困難となる。
When the value goes below the lower limit of the condition (2), the optical path length from the diaphragm to the lens second surface becomes small, and the chief ray height of the off-axis light beam at the lens second surface becomes small. As a result, negative distortion does not occur to the required extent, the peripheral light amount ratio decreases off-axis, and it becomes difficult to make the peripheral light amount ratio uniform. When the upper limit is exceeded, distortion tends to be more negatively biased than necessary,
The center thickness of the lens becomes large, and it becomes difficult to secure the back focus.

【0015】条件(3)は、絞りから像面までの距離を
規定するもので、下限を越えるとコンパクト化には有利
であるが、絞りとレンズ第1面との間隔やレンズ木端厚
等が小さくなり過ぎ加工や組立が困難となる。上限を越
えるとコンパクト化が困難となる。
The condition (3) defines the distance from the diaphragm to the image plane. If the lower limit is exceeded, it is advantageous for compactness. However, the distance between the diaphragm and the lens first surface, the lens edge thickness, etc. Becomes too small, making processing and assembly difficult. If the upper limit is exceeded, downsizing becomes difficult.

【0016】条件(4)と(5)は、均一な周辺光量比
特性を実現する歪曲収差の発生量の範囲を規定するもの
である。条件(4)の下限を越えると、中間画角帯の負
の歪曲収差が大きくなりすぎ、周辺光量比が中間画角帯
で増加する傾向が発生し、最大画角では周辺光量比が大
きく正に偏奇する。上限を越えると、中間画角帯での負
の歪曲収差が小さくなりすぎ、周辺光量比が不足する傾
向が発生する。条件(5)の下限を越えると、最大画角
で周辺光量比が正に大きく偏奇する。上限を越えると周
辺光量比が不足する。
The conditions (4) and (5) define the range of the amount of distortion generated that realizes a uniform peripheral light amount ratio characteristic. When the value goes below the lower limit of the condition (4), the negative distortion aberration in the intermediate field angle band becomes too large, and the peripheral light amount ratio tends to increase in the intermediate field angle band. At the maximum angle of view, the peripheral light amount ratio has a large positive deviation. To do. If the upper limit is exceeded, the negative distortion in the intermediate angle of view band becomes too small, and the peripheral light amount ratio tends to become insufficient. When the value goes below the lower limit of the condition (5), the peripheral light amount ratio is positively greatly deviated at the maximum field angle. If the upper limit is exceeded, the peripheral light amount ratio will be insufficient.

【0017】条件(6)は、本発明にかかる赤外広角単
レンズと組み合わせて用いる赤外検出器との空気間隔を
必要量確保する範囲を規定するものである。下限を越え
ると、赤外広角単レンズと組み合わせて用いる赤外検出
器との空気間隔が小さくなりすぎ、組立調整が困難とな
る。上限を越えると、組立調整は容易となるが装置が大
きくなる。
The condition (6) defines a range in which a necessary amount of air is secured between the infrared detector and the infrared detector used in combination with the infrared wide-angle single lens according to the present invention. If the value goes below the lower limit, the air gap between the infrared detector used in combination with the infrared wide-angle single lens becomes too small, which makes assembly and adjustment difficult. If the upper limit is exceeded, assembly and adjustment will be easy, but the device will be large.

【0018】本発明にかかる赤外広角単レンズは、シリ
コン(Si)からなることが望ましい。一般的に、波長
10μm程度の赤外領域において十分な透過特性を有す
る材料としては、シリコンの他にゲルマニウム(G
e)、セレン化亜鉛(ZnSe)等があるが、コストが
高いという問題点がある。これに反して、シリコンは半
導体材料として大量に生産されており、レンズ素材とし
てのコストが低い。
The infrared wide-angle single lens according to the present invention is preferably made of silicon (Si). Generally, in addition to silicon, germanium (G) is used as a material having sufficient transmission characteristics in the infrared region with a wavelength of about 10 μm.
e), zinc selenide (ZnSe), etc., but they have a problem of high cost. On the contrary, silicon is mass-produced as a semiconductor material, and the cost as a lens material is low.

【0019】本発明にかかる赤外広角単レンズと赤外検
出器を組み合わせると、小型で低コストしかも広い測定
範囲の温度分布を正確に測定可能な非接触温度測定装置
を実現することができる。さらに、赤外検出器を冷却不
要な焦電型赤外検出器とすることにより、小型で低コス
トな温度分解能の良好な非接触温度測定装置を実現する
ことができる。
By combining the infrared wide-angle single lens according to the present invention and the infrared detector, it is possible to realize a non-contact temperature measuring device which is small in size, low in cost, and capable of accurately measuring the temperature distribution in a wide measuring range. Furthermore, by making the infrared detector a pyroelectric infrared detector that does not require cooling, it is possible to realize a small-sized, low-cost, non-contact temperature measuring device with good temperature resolution.

【0020】また、上記非接触温度測定装置を用いるこ
とにより、人体位置検出及び室内の各領域ごとの温度分
布を測定し、その測定結果を用いて最適な空調制御を行
なうことができる空調装置を小型、低コストで実現でき
る。
Further, by using the non-contact temperature measuring device, an air conditioner capable of detecting the position of the human body and measuring the temperature distribution of each area in the room and using the measurement result to perform optimum air conditioning control. It can be realized with small size and low cost.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。なお、各実施の形態中、d
0は絞りからレンズ第1面までの面間隔、d1はレンズ
中心厚、r1、r2はレンズ第1面と第2面の曲率半
径、nはレンズの硝材の波長10μmにおける屈折率、
fは焦点距離、Dist0.7、Dist1.0は夫々
最大画角を1としたときの相対画角0.7における歪曲
収差と最大画角における歪曲収差、bfはバックフォー
カスである。次に各実施の形態の条件を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In each embodiment, d
0 is the surface distance from the diaphragm to the lens first surface, d1 is the lens center thickness, r1 and r2 are the radii of curvature of the lens first and second surfaces, n is the refractive index of the glass material of the lens at a wavelength of 10 μm,
f is the focal length, Dist 0.7 and Dist 1.0 are the distortion aberration at the relative angle of view 0.7 and the distortion aberration at the maximum angle of view when the maximum angle of view is 1, and bf is the back focus. Next, conditions of each embodiment will be shown.

【0022】(第1実施の形態) Fナンバー :1.4 半画角=60deg f=2.10 d0/f=0.25 (d0+d1/n)/f=0.55 (d0+d1/n+bf)/f=1.48 Dist0.7=−0.232 Dist1.0=−0.479 bf/f=0.92 d0=0.52 r1=20.274 d1=2.19 n=3.4177 r2=−6.258 (第2実施の形態) Fナンバー :1.4 半画角=60deg f=1.77 d0/f=0.21 (d0+d1/n)/f=0.57 (d0+d1/n+bf)/f=1.43 Dist0.7=−0.236 Dist1.0=−0.489 bf/f=0.86 d0=0.38 r1=10.742 d1=2.14 n=3.4177 r2=−6.105 (第3実施の形態) Fナンバー :1.4 半画角=60deg f=1.78 d0/f=0.22 (d0+d1/n)/f=0.57 (d0+d1/n+bf)/f=1.41 Dist0.7=−0.235 Dist1.0=−0.488 bf/f=0.84 d0=0.39 r1=9.360 d1=2.13 n=3.4177 r2=−6.685 図1は本発明に係る赤外広角単レンズの第1実施の形態
に基づく概略構成を示す。物体側から像面側へと、絞
り、赤外広角単レンズ1の順に配置される。図2
(a)、(b)、(c)は本発明に係る赤外広角単レン
ズの第1実施の形態の収差特性を示す収差図である。図
2(a)は球面収差特性を実線、正弦条件を破線で示
し、図2(b)はサジタル像面湾曲を実線、タンジェン
シャル像面湾曲を破線で示す非点収差特性、図2(c)
は歪曲収差特性をそれぞれ示す。同様に、図3(a)、
(b)、(c)と図4(a)、(b)、(c)は本発明
に係る赤外広角単レンズの第2実施の形態と第3実施の
形態の収差特性を示す収差図である。
(First embodiment) F number: 1.4 Half angle of view = 60 deg f = 2.10 d0 / f = 0.25 (d0 + d1 / n) /f=0.55 (d0 + d1 / n + bf) / f = 1.48 Dist0.7 = −0.232 Dist1.0 = −0.479 bf / f = 0.92 d0 = 0.52 r1 = 20.274 d1 = 2.19 n = 3.4177 r2 = -6.258 (Second Embodiment) F number: 1.4 Half angle of view = 60 deg f = 1.77 d0 / f = 0.21 (d0 + d1 / n) /f=0.57 (d0 + d1 / n + bf) /F=1.43 Dist0.7 = -0.236 Dist1.0 = -0.489 bf / f = 0.86 d0 = 0.38 r1 = 10.742 d1 = 2.14 n = 3.4177 r2 = -6.105 (Third Embodiment F number: 1.4 Half angle of view = 60 deg f = 1.78 d0 / f = 0.22 (d0 + d1 / n) /f=0.57 (d0 + d1 / n + bf) /f=1.41 Dist0.7 =- 0.235 Dist1.0 = -0.488 bf / f = 0.84 d0 = 0.39 r1 = 9.360 d1 = 2.13 n = 3.4177 r2 = -6.685 FIG. 1 shows the present invention. 1 shows a schematic configuration based on the first embodiment of such an infrared wide-angle single lens. The diaphragm and the infrared wide-angle single lens 1 are arranged in this order from the object side to the image plane side. FIG.
(A), (b), (c) is an aberration diagram showing aberration characteristics of the first embodiment of the infrared wide-angle single lens according to the present invention. 2A shows a spherical aberration characteristic with a solid line and a sine condition with a broken line, and FIG. 2B shows an astigmatism characteristic with a sagittal image surface curve shown by a solid line and a tangential image surface curve shown by a broken line, and FIG. )
Indicates distortion characteristics, respectively. Similarly, FIG.
FIGS. 4 (b) and 4 (c) and FIGS. 4 (a), 4 (b) and 4 (c) are aberration diagrams showing the aberration characteristics of the second embodiment and the third embodiment of the infrared wide-angle single lens according to the present invention. Is.

【0023】(表1)は、本発明にかかる赤外広角単レ
ンズの第1実施の形態から第3実施の形態の、各相対画
角に対する周辺光量比を示す。(表1)に示されるよう
に、周辺光量比特性の変化幅は20%程度であり、良好
な周辺光量比特性を実現している。
Table 1 shows peripheral light amount ratios for each relative angle of view in the first to third embodiments of the infrared wide-angle single lens according to the present invention. As shown in (Table 1), the margin of change in the peripheral light amount ratio characteristic is about 20%, which realizes a good peripheral light amount ratio characteristic.

【0024】[0024]

【表1】 [Table 1]

【0025】図5は上記実施の形態の赤外広角単レンズ
を非接触温度測定装置6に用いた場合の概略構成図であ
る。非接触温度測定装置6は、本発明の赤外広角単レン
ズ1、絞り2、縦方向に8素子アレイ状に配置された焦
電型赤外検出器3、赤外光を断続的に遮蔽するチョッパ
4、ユニット全体を横方向に走査するモータ5で構成さ
れている。このような構成において、チョッパ4により
断続的に遮蔽される赤外光は赤外広角単レンズ1により
焦電型赤外検出器3に結像され、縦方向に8分割された
領域の1次元赤外線像が検出される。そして、モータ5
により横方向に走査することで2次元赤外線像を検出す
る。また、測定した各領域の温度分布から人体位置検出
も可能である。
FIG. 5 is a schematic configuration diagram when the infrared wide-angle single lens of the above embodiment is used in the non-contact temperature measuring device 6. The non-contact temperature measuring device 6 of the present invention includes an infrared wide-angle single lens 1, a diaphragm 2, a pyroelectric infrared detector 3 arranged in an array of eight elements in the vertical direction, and intermittently shields infrared light. It is composed of a chopper 4 and a motor 5 for laterally scanning the entire unit. In such a configuration, the infrared light intermittently shielded by the chopper 4 is imaged on the pyroelectric infrared detector 3 by the infrared wide-angle single lens 1 and is one-dimensionally divided into eight areas in the vertical direction. An infrared image is detected. And the motor 5
The two-dimensional infrared image is detected by scanning in the horizontal direction. Further, the human body position can be detected from the measured temperature distribution of each area.

【0026】以上のように本実施の形態によれば、本発
明の赤外広角単レンズと焦電型赤外検出器を用いること
により、被測定物の温度分布を測定することができ、小
型で低コストの非接触温度測定装置を実現することがで
きる。
As described above, according to the present embodiment, by using the infrared wide-angle single lens and the pyroelectric infrared detector of the present invention, it is possible to measure the temperature distribution of the object to be measured, which is small in size. Thus, a low-cost non-contact temperature measuring device can be realized.

【0027】図6は、上記本発明の非接触温度測定装置
6を用いた空調装置12の概略構成を示す。空調装置1
2は本発明の非接触温度測定装置6、非接触温度測定装
置6から出力される信号から各領域の温度分布のデータ
を形成するデータ形成部7、データ形成部7から得られ
たデータから空調制御信号を形成するための制御信号形
成部8、空調装置の送風力、風向、排出風の温度などの
制御をする空調制御部9、送風口11を有する空調装置
筐体10から構成される。本空調装置12は、本発明に
かかる赤外広角単レンズを用いた非接触温度測定装置6
を用いることにより、人体位置検出及び室内の各領域ご
との温度分布を測定し、その測定結果を用いて最適な空
調制御を行なうことのできる空調装置を小型で低コスト
で実現できる。
FIG. 6 shows a schematic configuration of an air conditioner 12 using the non-contact temperature measuring device 6 of the present invention. Air conditioner 1
Reference numeral 2 denotes a non-contact temperature measuring device 6 of the present invention, a data forming part 7 for forming data of temperature distribution of each region from a signal output from the non-contact temperature measuring device 6, and an air conditioner based on the data obtained from the data forming part 7. It is composed of a control signal forming unit 8 for forming a control signal, an air conditioning control unit 9 for controlling wind power of the air conditioner, a wind direction, a temperature of exhaust air, and the like, and an air conditioner housing 10 having a blower port 11. The air conditioner 12 is a non-contact temperature measuring device 6 using an infrared wide-angle single lens according to the present invention.
By using, the air conditioner capable of detecting the human body position and measuring the temperature distribution of each area in the room and performing the optimum air conditioning control using the measurement result can be realized in a small size and at low cost.

【0028】[0028]

【発明の効果】以上述べたところから明らかなように、
本発明の赤外広角単レンズは上記のような構成とするこ
とにより、単レンズでありながら半画角60degの結
像領域全域において、良好な結像特性を実現しつつ、周
辺光量比の変化幅が20%程度の優れた性能を満たす赤
外広角単レンズを提供することを可能としている。
As is apparent from the above description,
By configuring the infrared wide-angle single lens of the present invention as described above, although the single lens is a single lens, the peripheral light amount ratio changes while realizing good imaging characteristics in the entire imaging region with a half field angle of 60 deg. It is possible to provide an infrared wide-angle single lens satisfying excellent performance with a width of about 20%.

【0029】特に、周辺光量比が略均一であるために、
赤外検出器を構成する1次元のアレイ状、あるいは2次
元状に配列された複数の赤外検出画素に、測定対象物の
温度分布と同一分布で赤外線を集光することができる。
Particularly, since the peripheral light amount ratio is substantially uniform,
It is possible to focus infrared rays on a plurality of infrared detection pixels arranged in a one-dimensional array or two-dimensionally forming an infrared detector, with the same distribution as the temperature distribution of the measurement target.

【0030】これにより、赤外検出器の出力を光学系の
周辺光量比特性で補正する必要がなく、画像の周辺部ま
で高いS/N比を得ることができる。
As a result, it is not necessary to correct the output of the infrared detector by the peripheral light amount ratio characteristic of the optical system, and a high S / N ratio can be obtained even in the peripheral portion of the image.

【0031】さらに、結像の中心から周辺部まで良好な
結像特性と均一な周辺光量比特性のため、本発明にかか
る赤外広角単レンズと赤外検出器の光軸合わせに多少の
ディセンタが生じても測定に誤差が発生し難く、組立調
整が容易となる。
Further, because of the good image forming characteristics from the center of the image forming to the peripheral portion and the uniform peripheral light amount ratio characteristic, some decentering is required for the optical axis alignment of the infrared wide-angle single lens and the infrared detector according to the present invention. Even if the error occurs, an error is unlikely to occur in the measurement, and the assembly and adjustment are easy.

【0032】また、本発明の赤外広角単レンズと赤外検
出器を用いることにより小型、低コストの非接触温度測
定装置を実現できる。
Further, by using the infrared wide-angle single lens and the infrared detector of the present invention, a compact, low-cost non-contact temperature measuring device can be realized.

【0033】また、本発明の非接触温度測定装置を用い
ることにより、人体位置検出及び室内の各領域ごとの温
度分布を測定し、その測定結果を用いて最適な空調制御
を行なうことのできる空調装置を、小型、低コストで実
現できる。
Further, by using the non-contact temperature measuring device of the present invention, it is possible to detect the human body position and measure the temperature distribution in each area of the room, and use the measurement result to perform optimum air conditioning control. The device can be realized in a small size and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外広角単レンズの第1実施の形態に
基づく概略構成図である。
FIG. 1 is a schematic configuration diagram based on a first embodiment of an infrared wide-angle single lens of the present invention.

【図2】(a)、(b)、(c)は、第1実施の形態の
収差特性を示す収差図であって、それぞれ、(a)は球
面収差特性と正弦条件特性、(b)は非点収差特性、
(c)は歪曲収差特性をそれぞれ示す。
2 (a), (b), and (c) are aberration diagrams showing aberration characteristics of the first embodiment, (a) showing spherical aberration characteristics and sine condition characteristics, and (b) respectively. Is the astigmatism characteristic,
(C) shows distortion aberration characteristics, respectively.

【図3】図3は第2実施の形態の収差特性を示す収差図
である。
FIG. 3 is an aberration diagram showing aberration characteristics of the second embodiment.

【図4】図4は第3実施の形態の収差特性を示す収差図
である。
FIG. 4 is an aberration diagram showing aberration characteristics of the third embodiment.

【図5】本発明の赤外広角単レンズを用いた非接触温度
測定装置の概略構成図である。
FIG. 5 is a schematic configuration diagram of a non-contact temperature measuring device using an infrared wide-angle single lens of the present invention.

【図6】本発明の非接触温度測定装置を用いた空調装置
の概略構成図である。
FIG. 6 is a schematic configuration diagram of an air conditioner using the non-contact temperature measuring device of the present invention.

【図7】従来の非接触温度測定装置の概略構成図であ
る。
FIG. 7 is a schematic configuration diagram of a conventional non-contact temperature measuring device.

【符号の説明】[Explanation of symbols]

1・・・赤外広角単レンズ 2・・・絞り 3・・・焦電型赤外検出器 4・・・チョッパ 5・・・モータ 6・・・非接触温度測定装置 1 ... Infrared wide-angle single lens 2 ... Aperture 3 ... Pyroelectric infrared detector 4 ... Chopper 5 ... Motor 6 ... Non-contact temperature measuring device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】物体側に絞りを有する両凸レンズであっ
て、d0を絞りからレンズ第1面までの面間隔、d1を
レンズ中心厚、bfをバックフォーカス、nを波長10
μmにおける硝材の屈折率、fを焦点距離とするとき、 (1) 0.15<d0/f<0.3 (2) 0.45<(d0+d1/n)/f<0.65 (3) 1.3<(d0+d1/n+bf)/f<1.
5 なる条件(1)、(2)、(3)を満足することを特徴
とする赤外広角単レンズ。
1. A biconvex lens having an aperture on the object side, wherein d0 is the surface distance from the aperture to the first lens surface, d1 is the lens center thickness, bf is the back focus, and n is the wavelength 10.
When the focal length is f, which is the refractive index of the glass material at μm, (1) 0.15 <d0 / f <0.3 (2) 0.45 <(d0 + d1 / n) / f <0.65 (3) 1.3 <(d0 + d1 / n + bf) / f <1.
An infrared wide-angle single lens which satisfies the following conditions (1), (2), and (3).
【請求項2】半画角60deg、Dist0.7を最大
画角を1としたときの相対画角0.7における理想像高
をy07、実光線の主光線像高をy7、Dist1.0
を最大画角における理想像高をy01、実光線の主光線
像高をy1、としたとき、次の式で定義する歪曲収差で
あるとき、 Dist0.7=(y7−y07)/y07 Dist1.0=(y1−y01)/y01 (4) −0.25<Dist0.7<−0.2 (5) −0.5<Dist1.0<−0.45 なる条件(4)、(5)を満足することを特徴とする請
求項1記載の赤外広角単レンズ。
2. An ideal image height at a relative field angle of 0.7 when the half field angle is 60 deg and Dist 0.7 is a maximum field angle of 1, y7 is a principal ray image height of a real ray, and Dist1.0.
Is the ideal image height at the maximum angle of view and y1 is the principal ray image height of the real light ray, and the distortion aberration is defined by the following equation, Dist0.7 = (y7−y07) / y07 Dist1. 0 = (y1-y01) / y01 (4) -0.25 <Dist0.7 <-0.2 (5) -0.5 <Dist1.0 <-0.45 Conditions (4), (5) The infrared wide-angle single lens according to claim 1, wherein
【請求項3】bfをバックフォーカスとしたとき、 (6) 0.7<bf/f<1 なる条件(6)を満足することを特徴とする請求項1記
載の赤外広角単レンズ。
3. The infrared wide-angle single lens according to claim 1, wherein the condition (6) of 0.7 <bf / f <1 is satisfied when bf is a back focus.
【請求項4】請求項1記載の赤外広角単レンズと、その
レンズを通じて入力される光を検出する赤外検出器とを
備えたことを特徴とする非接触温度測定装置。
4. A non-contact temperature measuring device comprising the infrared wide-angle single lens according to claim 1 and an infrared detector for detecting light input through the lens.
【請求項5】請求項4記載の非接触温度測定装置と、そ
の装置からの出力に基づいて空調を制御する制御手段と
を備えたことを特徴とする空調装置。
5. An air conditioner comprising the non-contact temperature measuring device according to claim 4 and control means for controlling air conditioning based on an output from the device.
JP03778296A 1996-02-26 1996-02-26 Infrared wide-angle single lens, non-contact temperature measuring device and air conditioner Expired - Fee Related JP3441286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03778296A JP3441286B2 (en) 1996-02-26 1996-02-26 Infrared wide-angle single lens, non-contact temperature measuring device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03778296A JP3441286B2 (en) 1996-02-26 1996-02-26 Infrared wide-angle single lens, non-contact temperature measuring device and air conditioner

Publications (2)

Publication Number Publication Date
JPH09230233A true JPH09230233A (en) 1997-09-05
JP3441286B2 JP3441286B2 (en) 2003-08-25

Family

ID=12507067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03778296A Expired - Fee Related JP3441286B2 (en) 1996-02-26 1996-02-26 Infrared wide-angle single lens, non-contact temperature measuring device and air conditioner

Country Status (1)

Country Link
JP (1) JP3441286B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052511A1 (en) * 1999-03-03 2000-09-08 Mitsubishi Denki Kabushiki Kaisha Infrared optical system for infrared camera
US6888687B2 (en) 2002-05-10 2005-05-03 Seiko Epson Corporation Photographic lens and camera module
WO2014038541A1 (en) * 2012-09-05 2014-03-13 ナルックス株式会社 Infrared imaging optical system
CN103673089A (en) * 2012-09-03 2014-03-26 日立空调·家用电器株式会社 Air-conditioning machine
NO20131303A1 (en) * 2013-09-26 2015-03-27 Prox Dynamics As Lens Events
JP2018189958A (en) * 2017-05-01 2018-11-29 カンタムエレクトロニクス株式会社 Optical system device, and double-convex lens

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052511A1 (en) * 1999-03-03 2000-09-08 Mitsubishi Denki Kabushiki Kaisha Infrared optical system for infrared camera
US6888687B2 (en) 2002-05-10 2005-05-03 Seiko Epson Corporation Photographic lens and camera module
CN103673089A (en) * 2012-09-03 2014-03-26 日立空调·家用电器株式会社 Air-conditioning machine
CN103673089B (en) * 2012-09-03 2016-11-23 江森自控日立空调技术(香港)有限公司 Air conditioner
WO2014038541A1 (en) * 2012-09-05 2014-03-13 ナルックス株式会社 Infrared imaging optical system
JP5584870B2 (en) * 2012-09-05 2014-09-10 ナルックス株式会社 Infrared imaging optical system
CN104603664A (en) * 2012-09-05 2015-05-06 纳卢克斯株式会社 Infrared imaging optical system
US9618660B2 (en) 2012-09-05 2017-04-11 Nalux Co., Ltd. Infrared imaging system
NO20131303A1 (en) * 2013-09-26 2015-03-27 Prox Dynamics As Lens Events
JP2018189958A (en) * 2017-05-01 2018-11-29 カンタムエレクトロニクス株式会社 Optical system device, and double-convex lens

Also Published As

Publication number Publication date
JP3441286B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
JP4422432B2 (en) Decentered optical system and optical system using the same
JPS6226444B2 (en)
JPH06273671A (en) High-speed reflecting system, which has wide angle and returns large, clear image
JP2005020175A (en) Photodetector and optical system
JPS633289B2 (en)
JP2945431B2 (en) Imaging X-ray microscope
EP0045138B1 (en) Infra-red optical system
JP4292609B2 (en) Off-axis reflection optics
US5479292A (en) Infrared wide-angle single lens for use in an infrared optical system
JP3441286B2 (en) Infrared wide-angle single lens, non-contact temperature measuring device and air conditioner
JPH0310924B2 (en)
JPH0814661B2 (en) View conversion optical system
JPH08146290A (en) Infrared wide angle single lens
JPS61117516A (en) Optical laser beam deflector
JP4372926B2 (en) Scanning optical system
JP3724520B2 (en) Infrared optics
JPH07318797A (en) Lens for infrared ray
JP2945097B2 (en) Telecentric fθ lens
EP1376196B1 (en) Optical scanner comprising a compact f-theta lens with high cromatic aberration correctabilty
JPH0519195A (en) Optical device
US20030002170A1 (en) Imaging lens and image reading apparatus using the same
JP3121452B2 (en) Optical scanning device
JP2011232661A (en) Two-dimensional scanner
JP3594274B2 (en) Optical scanning optical system and apparatus using this optical system
JP3024147B2 (en) Concentrator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees