JPH07318797A - Lens for infrared ray - Google Patents

Lens for infrared ray

Info

Publication number
JPH07318797A
JPH07318797A JP11532694A JP11532694A JPH07318797A JP H07318797 A JPH07318797 A JP H07318797A JP 11532694 A JP11532694 A JP 11532694A JP 11532694 A JP11532694 A JP 11532694A JP H07318797 A JPH07318797 A JP H07318797A
Authority
JP
Japan
Prior art keywords
lens
component
object side
denotes
back focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11532694A
Other languages
Japanese (ja)
Inventor
Yoshie Shimizu
佳恵 清水
Tomoko Nakagawa
朋子 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP11532694A priority Critical patent/JPH07318797A/en
Publication of JPH07318797A publication Critical patent/JPH07318797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain a high-performance and low-cost lens having a sufficient back focus even at a wide angle of view of >=40 deg. by forming the lens of retrofocus constitution consisting of a negative first component and a positive second component and forming so the lens as to satisfy specific conditions. CONSTITUTION:This lens for IR rays is composed of an optical material to allow transmission of IR rays and is arranged, successively from the object side, the first component having a negative refracting power and the second component having a positive refracting power to the lens constitution arranged with a cooled full-aperture diaphragm behind the second component. Further, relation between the back focus and the focal length of the entire system and the shape of mainly the object side face on the extremely object side are so set as to satisfy the following two conditions: 4.5<d/(f.tanomega)<7.5, 0.021 <f/(nl.FNO.rl)<0.060. Here, (d) denotes the back focus (air equiv. length); (f) denotes the focal length of the entire system; omega denotes a half angle of view; nl denotes the refractive index of the lens on the extreme object side; rl denotes the radius of curvature of the object side face of the lens on the extreme object side; FNO denotes an F number.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線撮像装置等に用
いる赤外線用レンズに関するものであり、特に画角が4
0°を越える広角の赤外線用レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared lens used in an infrared image pickup device or the like, and particularly has an angle of view of 4
The present invention relates to a wide-angle infrared lens that exceeds 0 °.

【0002】[0002]

【従来の技術】最近の赤外線撮像装置は、2次元撮像素
子の実用化、素子の高集積化などにより、小型化、高性
能化、低価格化が進み、その応用分野は、工業用、医療
用から夜間監視用等へと大きく広がってきた。特に夜間
監視用等として使用される場合、より広い撮影範囲が得
られるよう撮影画角の大きい広角レンズの提供が望まれ
ている。
2. Description of the Related Art Recent infrared image pickup devices are becoming smaller, higher in performance and lower in price due to the practical use of two-dimensional image pickup devices and the high integration of the devices, and their application fields are industrial and medical. It has been widely used for business purposes such as night surveillance. In particular, when used for night-time monitoring, it is desired to provide a wide-angle lens having a wide photographing field angle so that a wider photographing range can be obtained.

【0003】画角が40゜を越える赤外線用レンズを開
示したものとしては、例えば特開昭52−37444号
公報、特開昭61−219015号公報が知られてい
る。
For example, JP-A-52-37444 and JP-A-61-219015 are known to disclose infrared lenses having an angle of view exceeding 40 °.

【0004】赤外線撮像装置は、物体がその温度に応じ
て放射している赤外線を検出して熱映像として出力する
装置である。ところが、撮像光学系を構成しているレン
ズ鏡胴や開口絞りなども赤外線を放射している。このた
め、装置自身が雑音となり、S/N比の低下を招く原因
となることがある。これらの雑音は、特開昭64−88
414号公報に記載されているように、冷却した開口絞
りをレンズ最終面の後方に配置することによって防ぐこ
とができる。ここで、レンズ最終面とは撮像素子直前に
置かれるフィルター等の平板を除いたレンズ系の最終面
である。
The infrared imaging device is a device for detecting infrared rays radiated by an object according to its temperature and outputting it as a thermal image. However, the lens barrel and the aperture stop, which form the imaging optical system, also emit infrared rays. Therefore, the device itself becomes noise, which may cause a decrease in S / N ratio. These noises are caused by Japanese Patent Laid-Open No. 64-88.
This can be prevented by disposing a cooled aperture stop behind the lens final surface, as described in Japanese Patent No. 414. Here, the lens final surface is the final surface of the lens system excluding a flat plate such as a filter placed immediately before the image pickup element.

【0005】ところで、前記2件の公報で開示された広
画角の赤外線用レンズは、バックフォーカスが不十分な
ため、レンズ最終面の後方に冷却された開口絞りを配置
し、かつ、画面の周辺部まで光量を確保することは不可
能である。
By the way, since the wide-angle infrared lens disclosed in the above two publications has an insufficient back focus, a cooled aperture stop is arranged behind the final lens surface, and the It is impossible to secure the light amount to the peripheral part.

【0006】また、広画角で、かつ、レンズ最終面の後
方に冷却された開口絞りを配置するに十分なバックフォ
ーカスを持つ赤外線用レンズとして、特開平4−356
008号公報に記載のレンズが知られている。しかし、
このレンズは、周辺部の光量を確保するためにリレーレ
ンズ系を採用しており、レンズ枚数が8枚と多い。赤外
線用レンズで用いられる光学材料は非常に高価であるた
め、レンズ枚数が多いとコストアップを招くことにな
る。さらには透過率の低下にもつながる。
Further, as an infrared lens having a wide angle of view and a back focus sufficient to dispose a cooled aperture stop behind the last surface of the lens, there is disclosed in Japanese Patent Laid-Open No. 4-356.
The lens described in Japanese Patent Publication No. 008 is known. But,
This lens adopts a relay lens system in order to secure the amount of light in the peripheral portion, and the number of lenses is as large as eight. Since the optical material used in the infrared lens is very expensive, a large number of lenses leads to an increase in cost. Furthermore, it also leads to a decrease in transmittance.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の事情
を考慮し、画角が40゜以上の広画角においても、十分
なバックフォーカスを有する高性能で低価格の赤外線用
レンズを提供することを目的とする。
In consideration of the above circumstances, the present invention provides a high-performance and low-cost infrared lens having a sufficient back focus even in a wide angle of view of 40 ° or more. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、赤外線を透過する光学材料によって構成
され、物体側より順に、負の屈折力を有する第1成分と
正の屈折力を有する第2成分を配置するとともに、冷却
された開口絞りを第2成分後方に配置するレンズ構成と
し、さらに、バックフォーカスと全系の焦点距離との関
係、及び、主に最も物体側のレンズの物体側面の形状を
適切に規定したことを特徴とする。
In order to achieve the above object, the present invention comprises a first component having a negative refracting power and a positive refracting power which are composed of an optical material which transmits infrared rays and which are, in order from the object side. And a cooled aperture stop at the rear of the second component, and further, the relationship between the back focus and the focal length of the entire system, and the lens closest to the object side. It is characterized in that the shape of the object side surface of is properly specified.

【0009】[0009]

【作用】負の第1成分と正の第2成分によるレトロフォ
ーカス構成により、広画角でも十分なバックフォーカス
が得られ、また、主に最も物体側のレンズの物体側面の
形状の適切な規定により、レトロフォーカス構成で発生
しやすいゴーストの光量が減少する。
With the retrofocus configuration of the negative first component and the positive second component, a sufficient back focus can be obtained even in a wide angle of view, and an appropriate definition of the shape of the object side surface of the lens closest to the object side is mainly provided. This reduces the amount of ghost light that is likely to occur in the retrofocus configuration.

【0010】[0010]

【実施例】本発明の赤外線用レンズは、赤外線を透過す
る光学材料によって構成され、物体側より順に、負の屈
折力を有する第1成分と正の屈折力を有する第2成分を
配置するとともに、冷却された開口絞りを第2成分後方
に配置し、さらに、以下の条件を満足することを特徴と
する。
EXAMPLE An infrared lens of the present invention is made of an optical material that transmits infrared rays, and a first component having a negative refracting power and a second component having a positive refracting power are arranged in order from the object side. The cooled aperture stop is arranged behind the second component, and further, the following condition is satisfied.

【0011】 (1) 4.5<d/(f・tanω)<7.5 (2) 0.021<f/(n1・FNO・r1)<0.0
60 ただし、 d :バックフォーカス(空気換算長)、 f :全系の焦点距離、 ω :半画角、 n1 :最も物体側のレンズの屈折率、 r1 :最も物体側のレンズの物体側面の曲率半径、 FNO:Fナンバ−、 である。
(1) 4.5 <d / (f · tanω) <7.5 (2) 0.021 <f / (n1 · FNO · r1) <0.0
60 where d is the back focus (air conversion length), f is the focal length of the entire system, ω is the half angle of view, n1 is the refractive index of the lens closest to the object side, and r1 is the curvature of the object side surface of the lens closest to the object side. The radius is FNO: F number.

【0012】赤外線撮像装置等に用いられる赤外線用レ
ンズは、「従来の技術」の項で記載したとおり、冷却さ
れた開口絞りをレンズ最終面(最も像側のレンズの像側
面)の後方に配置することにより、レンズ鏡胴や開口絞
りから放射される赤外線の影響を、無視できる程度に押
さえることができる。
In the infrared lens used in the infrared image pickup device and the like, as described in the section "Prior Art", a cooled aperture stop is arranged behind the final lens surface (the image side surface of the lens closest to the image side). By doing so, the influence of infrared rays emitted from the lens barrel and the aperture stop can be suppressed to a negligible extent.

【0013】上記条件式(1)は冷却された開口絞りを
レンズ最終面の後方に配置する空間を確保するととも
に、画面の周辺部においても十分な光量を確保するため
に必要なバックフォーカスを限定するものである。ここ
でのバックフォーカスとは、レンズ最終面と像面の距離
であり、レンズ最終面と像面の間に挿入されるフィルタ
−等の板厚を空気換算したものに空気間隔を加えたもの
である。
The above conditional expression (1) secures a space for arranging the cooled aperture stop behind the final lens surface, and limits the back focus necessary to secure a sufficient amount of light even in the peripheral portion of the screen. To do. The back focus here is the distance between the final lens surface and the image surface, and is obtained by adding the air gap to the air thickness of the plate thickness of the filter or the like inserted between the final lens surface and the image surface. is there.

【0014】条件式(1)の下限を越えると開口絞りと
像面の距離が近くなり、画面の中心部と周辺部とにおい
て、撮像素子に入射する光線の角度差が大きくなる。こ
の様子を示したのが図1である。像面と開口絞りの距離
が近くなると周辺部での光線の角度αが大きくなり、コ
サイン4乗則に基づき画面中心部と周辺部での光量差が
大きくなりすぎる。つまり、画面の中心部と周辺部での
感度差が大きくなってしまう。一方、条件式(1)の上
限を越えると、バックフォーカスが必要以上に長くな
り、レンズのコンパクト化が十分に達成できない。
If the lower limit of conditional expression (1) is exceeded, the distance between the aperture stop and the image plane will become short, and the angle difference between the light rays incident on the image pickup device will be large in the central portion and the peripheral portion of the screen. This is shown in FIG. When the distance between the image plane and the aperture stop becomes short, the angle α of the light beam at the peripheral portion becomes large, and the light amount difference between the central portion and the peripheral portion of the screen becomes too large based on the cosine fourth law. That is, the difference in sensitivity between the central portion and the peripheral portion of the screen becomes large. On the other hand, if the upper limit of conditional expression (1) is exceeded, the back focus becomes longer than necessary, and compactification of the lens cannot be achieved sufficiently.

【0015】また、広画角になるほど、焦点距離に対す
るバックフォーカスの比は大きくなる。そこで、物体側
に負の屈折力を有する第1成分を、像面側に正の屈折力
を有する第2成分を配置するいわゆるレトロフォーカス
タイプのレンズ構成を採用することにより、画角が40
゜を越えても、条件式(1)で限定するバックフォーカ
スを確保することが可能となる。
Further, the wider the angle of view, the larger the ratio of the back focus to the focal length. Therefore, by adopting a so-called retrofocus type lens configuration in which the first component having the negative refractive power is arranged on the object side and the second component having the positive refractive power is arranged on the image side, the angle of view is 40
Even if the angle exceeds °, it becomes possible to secure the back focus limited by the conditional expression (1).

【0016】一方、赤外線撮像装置で用いられる2次元
撮像素子は、その表面における赤外線の反射率が数10
%程度と非常に高い。このため、赤外線レンズにより一
度撮像素子上に結像した光が、この撮像素子表面での反
射により再び光学系を逆進し、光学系内部の各レンズ表
面で反射して再度撮像素子上に結像することによりゴー
ストが発生する。
On the other hand, the two-dimensional image pickup device used in the infrared image pickup device has a reflectance of infrared rays of several tens on its surface.
It is very high at about%. For this reason, the light once imaged on the image sensor by the infrared lens travels backward through the optical system due to the reflection on the surface of the image sensor, is reflected by each lens surface inside the optical system, and is again formed on the image sensor. Ghosting occurs due to the image.

【0017】一般に、レトロフォーカスタイプのレンズ
系を採用した場合、負の屈折力をもつ第1成分で発生す
る負の歪曲収差が問題となる。この歪曲収差を補正しよ
うとすると、第1レンズ第1面(最も物体側のレンズの
物体側面)での反射により発生するゴーストが大きな問
題となる。図2は、像面から出た軸上光束が第1レンズ
第1面で反射する様子を示したものである。ここでβは
軸上のマージナルレイの反射角であり、βが大きくなる
ほどゴーストの結像位置が像面から離れるためにゴース
トの光量が減少する。尚、このβは次の式で表される。
Generally, when a retrofocus type lens system is adopted, a negative distortion aberration generated by the first component having a negative refractive power becomes a problem. When it is attempted to correct this distortion, a ghost caused by reflection on the first surface of the first lens (the object side surface of the lens closest to the object side) becomes a serious problem. FIG. 2 shows how the axial light flux emerging from the image plane is reflected by the first surface of the first lens. Here, β is the reflection angle of the marginal ray on the axis, and as β increases, the image forming position of the ghost moves away from the image plane, and the light amount of the ghost decreases. This β is expressed by the following equation.

【0018】 β=arcsin(f/(2n1・FNO・r1))。Β = arcsin (f / (2n1 · FNO · r1))

【0019】条件式(2)は、第1レンズ第1面での反
射により発生するゴーストの光量が問題とならない範囲
を規定するものである。条件式(2)の下限を越える
と、第1レンズ第1面での反射により発生するゴースト
が増大し、一方、条件式(2)の上限を越えると、第1
成分で発生する負の歪曲収差を適切に補正することが難
しくなる。
Conditional expression (2) defines a range in which the amount of ghost light generated by the reflection on the first surface of the first lens is not a problem. When the lower limit of conditional expression (2) is exceeded, the ghost generated by reflection on the first surface of the first lens increases, whereas when the upper limit of conditional expression (2) is exceeded, the first
It becomes difficult to properly correct the negative distortion aberration generated in the component.

【0020】更に、第1成分の屈折力と前記第2成分の
屈折力が、以下の条件を満足することが望ましい。
Furthermore, it is desirable that the refractive power of the first component and the refractive power of the second component satisfy the following conditions.

【0021】 (3) −1.3<(φ1/φ2)tanω<−0.25 ただし、 φ1:第1成分の屈折力、 φ2:第2成分の屈折力、 である。(3) −1.3 <(φ1 / φ2) tan ω <−0.25 where φ1 is the refractive power of the first component, and φ2 is the refractive power of the second component.

【0022】赤外線用レンズでは、一般に大口径比であ
ることが要求される。これは、赤外線撮像素子が可視光
用のものと異なり、口径比を小さくすると、撮像素子に
おいて電気信号に変換する際のS/N比が低下し画質が
大幅に劣化すること、また、使用波長と口径比から決ま
る限界解像力が低下することなどの理由による。
Infrared lenses are generally required to have a large aperture ratio. This is because the infrared image sensor is different from the one for visible light, and when the aperture ratio is made smaller, the S / N ratio at the time of conversion into an electric signal in the image sensor is lowered and the image quality is significantly deteriorated. And the reason is that the critical resolution, which is determined by the aperture ratio, decreases.

【0023】条件式(3)は、第1成分と第2成分の屈
折力の関係の規定であり、Fナンバーが2以上の大口径
比で開口効率を高くしたまま、収差が良好に補正された
高性能な赤外線用レンズを得るための範囲を示してい
る。開口効率を極めて高くすることは画面の中心部と周
辺部での光量差を小さくするのに有効であると同時に、
光束規制をする玉枠から放射される赤外線による雑音を
抑えることにもつながる。条件式(3)の上限を越える
と、第2成分に対する第1成分の屈折力が弱すぎるため
に十分なバックフォーカスを確保することが困難とな
る。また、条件式(3)の下限を越えると、負のペッツ
バール和が増大し像面を良好に補正することが困難とな
る。
Conditional expression (3) defines the relationship between the refractive powers of the first component and the second component, and the aberration is satisfactorily corrected while keeping the aperture efficiency high at a large aperture ratio with an F number of 2 or more. It shows the range for obtaining a high-performance infrared lens. Making the aperture efficiency extremely high is effective in reducing the difference in the amount of light between the central part and the peripheral part of the screen, and at the same time,
It also reduces the noise caused by infrared rays emitted from the lens frame that regulates the luminous flux. If the upper limit of conditional expression (3) is exceeded, it is difficult to secure a sufficient back focus because the refractive power of the first component with respect to the second component is too weak. If the lower limit of conditional expression (3) is exceeded, the negative Petzval sum will increase, making it difficult to satisfactorily correct the image surface.

【0024】更に、第2成分中の負レンズに高分散材料
を用いることにより良好な色収差補正が可能となること
は言うまでもない。
Needless to say, good chromatic aberration can be corrected by using a high dispersion material for the negative lens in the second component.

【0025】また、本発明の赤外線用レンズは構成枚数
が従来のものと比べて少ないのでコスト的にも有利であ
る。
Further, the infrared lens of the present invention is advantageous in terms of cost since the number of constituent lenses is smaller than that of the conventional one.

【0026】以下、本発明にかかわる赤外線用レンズの
具体的な数値実施例を示す。但し、各実施例において、
ri(i=1,2,3・・・)は物体側から数えてi番目の面の曲
率半径、di(i=1,2,3・・・)は物体側から数えてi番目
の軸上面間隔を示し、Ni(i=1,2,3・・・)、νi(i=1,2,
3・・・)は、それぞれ物体側から数えてi番目のレンズの
波長4μmの赤外線に対する屈折率、アッベ数を示す。
また、fは全系の焦点距離、FNOは開放Fナンバーを示
す。
Specific numerical examples of the infrared lens according to the present invention will be shown below. However, in each example,
ri (i = 1,2,3 ...) is the radius of curvature of the i-th surface counted from the object side, and di (i = 1,2,3 ...) is the i-th axis counted from the object side. Shows the upper surface spacing, Ni (i = 1,2,3 ...)
3) indicates the refractive index and Abbe number of the i-th lens with respect to infrared rays having a wavelength of 4 μm counted from the object side.
Further, f is the focal length of the entire system, and FNO is the open F number.

【0027】 <実施例 1>----------------------------------------------------------- f = 6.3 FNO.= 2.0 曲率半径 軸上面間隔 屈折率 アッベ数 r 1 29.006 d 1 4.000 N 1 3.42290 ν 1 226.4 r 2 14.241 d 2 67.989 r 3 1029.718 d 3 3.500 N 2 3.42290 ν 2 226.4 r 4 -51.430 d 4 3.330 r 5 -25.020 d 5 3.000 N 3 4.02420 ν 3 103.2 r 6 -35.864 d 6 8.000 r 7 -30.777 d 7 3.500 N 4 3.42290 ν 4 226.4 r 8 -28.053 d 8 1.500 r 9 53.954 d 9 3.000 N 5 3.42290 ν 5 226.4 r10 60.995 d10 14.442 r11 ∞ d11 2.000 N 6 3.42290 ν 6 226.4 r12 ∞ d12 14.600 r13 ∞ d13 0.400 N 7 3.42290 ν 7 226.4 r14 ∞ <実施例 2>----------------------------------------------------------- f = 6.3 FNO.= 2.0 曲率半径 軸上面間隔 屈折率 アッベ数 r 1 38.358 d 1 4.000 N 1 3.42290 ν 1 226.4 r 2 21.752 d 2 74.989 r 3 -3273.108 d 3 3.500 N 2 3.42290 ν 2 226.4 r 4 -60.483 d 4 4.783 r 5 -22.970 d 5 3.300 N 3 4.02420 ν 3 103.2 r 6 -36.965 d 6 10.000 r 7 -30.457 d 7 3.000 N 4 3.42290 ν 4 226.4 r 8 -27.764 d 8 1.500 r 9 56.533 d 9 3.000 N 5 3.42290 ν 5 226.4 r10 196.653 d10 10.462 r11 ∞ d11 2.000 N 6 3.42290 ν 6 226.4 r12 ∞ d12 14.600 r13 ∞ d13 0.400 N 7 3.42290 ν 7 226.4 r14 ∞ <実施例 3>----------------------------------------------------------- f = 4.5 FNO.= 2.0 曲率半径 軸上面間隔 屈折率 アッベ数 r 1 25.500 d 1 4.000 N 1 3.42290 ν 1 226.4 r 2 18.218 d 2 4.000 r 3 36.353 d 3 3.000 N 2 3.42290 ν 2 226.4 r 4 20.475 d 4 65.000 r 5 811.912 d 5 3.500 N 3 3.42290 ν 3 226.4 r 6 -60.617 d 6 4.480 r 7 -22.782 d 7 3.300 N 4 4.02420 ν 4 103.2 r 8 -38.133 d 8 10.000 r 9 -32.007 d 9 3.500 N 5 3.42290 ν 5 226.4 r10 -27.721 d10 1.500 r11 46.715 d11 3.000 N 6 3.42290 ν 6 226.4 r12 93.861 d12 10.895 r13 ∞ d13 2.000 N 7 3.42290 ν 7 226.4 r14 ∞ d14 14.600 r15 ∞ d15 0.400 N 8 3.42290 ν 8 226.4 r16 ∞ <実施例 4>----------------------------------------------------------- f = 11.5 FNO.= 2.0 曲率半径 軸上面間隔 屈折率 アッベ数 r 1 29.411 d 1 2.500 N 1 3.42290 ν 1 226.4 r 2 19.399 d 2 27.000 r 3 78.812 d 3 3.000 N 2 3.42290 ν 2 226.4 r 4 -1230.845 d 4 5.000 r 5 -20.278 d 5 3.500 N 3 4.02420 ν 3 103.2 r 6 -36.300 d 6 6.500 r 7 -21.683 d 7 3.000 N 4 3.42290 ν 4 226.4 r 8 -20.641 d 8 1.000 r 9 4443.453 d 9 3.000 N 5 3.42290 ν 5 226.4 r10 -112.738 d10 1.000 r11 40.089 d11 3.000 N 6 3.42290 ν 6 226.4 r12 53.714 d12 13.624 r13 ∞ d13 2.000 N 7 3.42290 ν 7 226.4 r14 ∞ d14 14.600 r15 ∞ d15 0.400 N 8 3.42290 ν 8 226.4 r16 ∞ <実施例 5>----------------------------------------------------------- f = 6.3 FNO.= 2.0 曲率半径 軸上面間隔 屈折率 アッベ数 r 1 38.358 d 1 4.000 N 1 3.42290 ν 1 226.4 r 2 20.188 d 2 50.000 r 3 219.729 d 3 3.500 N 2 3.42290 ν 2 226.4 r 4 -65.254 d 4 4.783 r 5 -20.619 d 5 3.300 N 3 4.02420 ν 3 103.2 r 6 -33.998 d 6 10.000 r 7 -32.865 d 7 3.000 N 4 3.42290 ν 4 226.4 r 8 -27.064 d 8 1.500 r 9 40.452 d 9 3.000 N 5 3.42290 ν 5 226.4 r10 81.928 d10 11.836 r11 ∞ d11 2.000 N 6 3.42290 ν 6 226.4 r12 ∞ d12 8.000 r13 ∞ d13 0.400 N 7 3.42290 ν 7 226.4 r14 ∞ ----------------------------------------------------------------------- 尚、波長4μmの赤外線に対するアッベ数(ν(4))
は、次の式で定義される分散を示す。
<Example 1> ------------------------------------------- ----------------- f = 6.3 FNO. = 2.0 Curvature radius Axial upper surface spacing Refractive index Abbe number r 1 29.006 d 1 4.000 N 1 3.42290 ν 1 226.4 r 2 14.241 d 2 67.989 r 3 1029.718 d 3 3.500 N 2 3.42290 ν 2 226.4 r 4 -51.430 d 4 3.330 r 5 -25.020 d 5 3.000 N 3 4.02420 ν 3 103.2 r 6 -35.864 d 6 8.000 r 7 -30.777 d 7 3.500 N 4 3.42290 ν 4 226.4 r 8 -28.053 d 8 1.500 r 9 53.954 d 9 3.000 N 5 3.42290 ν 5 226.4 r10 60.995 d10 14.442 r11 ∞ d11 2.000 N 6 3.42290 ν 6 226.4 r12 ∞ d12 14.600 r13 ∞ d13 0.400 ν 76.42 90 r14 ∞ <Example 2> ------------------------------------------- ---------------- f = 6.3 FNO. = 2.0 Curvature radius Axial upper surface spacing Refractive index Abbe number r 1 38.358 d 1 4.000 N 1 3.42290 ν 1 226.4 r 2 21.752 d 2 74.989 r 3 -3273.108 d 3 3.500 N 2 3.42290 ν 2 226.4 r 4 -60.483 d 4 4.783 r 5 -22.970 d 5 3 .300 N 3 4.02420 ν 3 103.2 r 6 -36.965 d 6 10.000 r 7 -30.457 d 7 3.000 N 4 3.42290 ν 4 226.4 r 8 -27.764 d 8 1.500 r 9 56.533 d 9 3.000 N 5 3.42290 ν 5 226.4 r10 196.653 d10 10.462 r11 ∞ d11 2.000 N 6 3.42290 ν 6 226.4 r12 ∞ d12 14.600 r13 ∞ d13 0.400 N 7 3.42290 ν 7 226.4 r14 ∞ <Example 3> ------------------ ----------------------------------------- f = 4.5 FNO. = 2.0 Radius of curvature Axis upper surface distance Refractive index Abbe number r 1 25.500 d 1 4.000 N 1 3.42290 ν 1 226.4 r 2 18.218 d 2 4.000 r 3 36.353 d 3 3.000 N 2 3.42290 ν 2 226.4 r 4 20.475 d 4 65.000 r 5 811.912 d 5 3.500 N 3 3.42290 ν 3 226.4 r 6 -60.617 d 6 4.480 r 7 -22.782 d 7 3.300 N 4 4.02420 ν 4 103.2 r 8 -38.133 d 8 10.000 r 9 -32.007 d 9 3.500 N 5 3.42290 ν 5 226.4 r10 -27.721 d10 1.500 r11 46.715 d11 3.000 N 6 3.42290 ν 6 226.4 r12 93.861 d12 10.895 r13 ∞ d13 2.000 N 7 3.42290 ν 7 226.4 r14 ∞ 14 14.600 r15 ∞ d15 0.400 N 8 3.42290 ν 8 226.4 r16 ∞ <Example 4> ------------------------------- ---------------------------- f = 11.5 FNO. = 2.0 Curvature radius Axial surface spacing Refractive index Abbe number r 1 29.411 d 1 2.500 N 1 3.42290 ν 1 226.4 r 2 19.399 d 2 27.000 r 3 78.812 d 3 3.000 N 2 3.42290 ν 2 226.4 r 4 -1230.845 d 4 5.000 r 5 -20.278 d 5 3.500 N 3 4.02420 ν 3 103.2 r 6 -36.300 d 6 6.500 r 7 -21.683 d 7 3.000 N 4 3.42290 ν 4 226.4 r 8 -20.641 d 8 1.000 r 9 4443.453 d 9 3.000 N 5 3.42290 ν 5 226.4 r10 -112.738 d10 1.000 r11 40.089 d11 3.000 N 6 3.42290 r 53.226.4 d12 13.624 r13 ∞ d13 2.000 N 7 3.42290 ν 7 226.4 r14 ∞ d14 14.600 r15 ∞ d15 0.400 N 8 3.42290 ν 8 226.4 r16 ∞ <Example 5> ------------------ ------------------------------------------ f = 6.3 FNO. = 2.0 Curvature Radius Axis Upper surface spacing Refractive index Abbe number r 1 38.358 d 1 4.000 N 1 3.42290 ν 1 22 6.4 r 2 20.188 d 2 50.000 r 3 219.729 d 3 3.500 N 2 3.42290 ν 2 226.4 r 4 -65.254 d 4 4.783 r 5 -20.619 d 5 3.300 N 3 4.02420 ν 3 103.2 r 6 -33.998 d 6 10.000 r 7 -32.865 d 7 3.000 N 4 3.42290 ν 4 226.4 r 8 -27.064 d 8 1.500 r 9 40.452 d 9 3.000 N 5 3.42290 ν 5 226.4 r10 81.928 d10 11.836 r11 ∞ d11 2.000 N 6 3.42290 ν 6 226.4 r12 ∞ d12 8.000 r13 00 N 7 3.42290 ν 7 226.4 r14 ∞ ---------------------------------------------------------- ----------------------------- Abbe number (ν (4)) for infrared rays with a wavelength of 4 μm
Indicates the variance defined by the following equation.

【0028】ν(4)=(n(4)−1)/(n(3)−n(5)) ただし、 n(4):波長4μmの赤外線に対する屈折率、 n(3):波長3μmの赤外線に対する屈折率、 n(5):波長5μmの赤外線に対する屈折率、 である。Ν (4) = (n (4) -1) / (n (3) -n (5)) where n (4) is the refractive index for infrared rays having a wavelength of 4 μm, and n (3) is a wavelength of 3 μm. N (5): Refractive index for infrared rays having a wavelength of 5 μm.

【0029】本発明の実施例にレンズ材料として用いら
れているシリコン(Si)及びゲルマニウム(Ge)の
各波長に対する屈折率(n(4)、n(3)、n(5))及びア
ッベ
The refractive index (n (4), n (3), n (5)) and Abbe of each wavelength of silicon (Si) and germanium (Ge) used as lens materials in the embodiments of the present invention.

【0030】数(ν(4))を、The number (ν (4)) is

【表1】に示す。It shows in [Table 1].

【0031】[0031]

【表1】 [Table 1]

【0032】図3〜図7は、実施例1〜5に対応するレ
ンズ構成図である。尚、第2成分の後方に設けられてい
る2枚の平板は、コ−ルドシ−ルドのウインドウ及び撮
像素子のフェイスプレ−トに相当する。
FIGS. 3 to 7 are lens configuration diagrams corresponding to the first to fifth embodiments. The two flat plates provided behind the second component correspond to the window of the cold shield and the face plate of the image pickup device.

【0033】実施例1、2、5は、物体側より順に、物
体側に凸の負メニスカスレンズである第1レンズよりな
る第1成分と、正の第2レンズ及び物体側に凹の負メニ
スカスレンズである第3レンズ及び物体側に凹の正メニ
スカスレンズである第4レンズ及び物体側に凸の正メニ
スカスレンズである第5レンズよりなる第2成分とから
構成されている。
In Examples 1, 2, and 5, in order from the object side, the first component consisting of the first lens which is a negative meniscus lens convex to the object side, the positive second lens and the negative meniscus concave to the object side. It is composed of a third lens which is a lens, a fourth lens which is a positive meniscus lens concave to the object side, and a second component which is a fifth lens which is a positive meniscus lens convex to the object side.

【0034】実施例3は、物体側より順に、物体側に凸
の負メニスカスレンズである第1レンズよりなる第1成
分と、正の第2レンズ及び物体側に凹の負メニスカスレ
ンズである第3レンズ及び物体側に凹の正メニスカスレ
ンズである第4レンズ及び正の第5レンズ及び物体側に
凸の正メニスカスレンズである第6レンズよりなる第2
成分とから構成されている。
In the third embodiment, in order from the object side, the first component is a negative meniscus lens that is convex toward the object side, the second component is positive, and the negative meniscus lens is concave toward the object side. A third lens, a fourth lens which is a positive meniscus lens concave to the object side and a positive fifth lens, and a second lens which is a sixth lens which is a positive meniscus lens convex to the object side
It is composed of ingredients.

【0035】実施例4は、物体側より順に、物体側に凸
の負メニスカスレンズである第1レンズと負の第2レン
ズよりなる第1成分と、正の第3レンズ及び物体側に凹
の負メニスカスレンズである第4レンズ及び物体側に凹
の正メニスカスレンズである第5レンズ及び物体側に凸
の正メニスカスレンズである第6レンズよりなる第2成
分とから構成されている。
In the fourth embodiment, in order from the object side, the first component which is a negative meniscus lens having a convex surface toward the object side and the negative second lens, the positive third lens, and the concave surface toward the object side are concave. It is composed of a fourth lens which is a negative meniscus lens, a fifth lens which is a positive meniscus lens concave to the object side, and a second component which is a sixth lens which is a positive meniscus lens convex to the object side.

【0036】図8〜図12は実施例1〜5に対応する収
差図である。また、実線は波長4μmの赤外線に対する
球面収差を表し、破線(SC)は正弦条件を表す。更
に、破線(DM)と実線(DS)はメリディオナル面と
サジタル面での非点収差をそれぞれ表す。尚、ωは半画
角を表す。
8 to 12 are aberration diagrams corresponding to Examples 1 to 5. Further, the solid line represents the spherical aberration for infrared rays having a wavelength of 4 μm, and the broken line (SC) represents the sine condition. Furthermore, the broken line (DM) and the solid line (DS) represent astigmatism on the meridional surface and the sagittal surface, respectively. In addition, ω represents a half angle of view.

【0037】また、実施例1〜5における条件式(1)
〜(3)の値を
Conditional expression (1) in Examples 1 to 5
To the value of (3)

【表2】に示す。It shows in [Table 2].

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明の構成によれば、負の第1成分と
正の第2成分によるレトロフォーカス構成により、広画
角でも十分なバックフォーカスが得られ、また、主に最
も物体側のレンズの物体側面の形状の適切な規定によ
り、レトロフォーカス構成で発生しやすいゴーストの光
量が減少する。従って、画角が40゜以上の広画角にお
いても、十分なバックフォーカスを有する高性能で低価
格の赤外線用レンズが提供できる。
According to the structure of the present invention, a sufficient amount of back focus can be obtained even at a wide angle of view by the retrofocus structure composed of the negative first component and the positive second component, and mainly on the most object side. Proper definition of the object-side shape of the lens reduces the amount of ghost light that is likely to occur in retrofocus configurations. Therefore, it is possible to provide a high-performance and low-cost infrared lens having a sufficient back focus even in a wide field angle of 40 ° or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】絞りの位置と軸外光線の関係を説明するための
模式図。
FIG. 1 is a schematic diagram for explaining a relationship between a position of a diaphragm and an off-axis ray.

【図2】第1レンズ第1面でのゴースト光の反射を説明
するための模式図。
FIG. 2 is a schematic diagram for explaining reflection of ghost light on the first surface of the first lens.

【図3】本発明の実施例1のレンズ構成図。FIG. 3 is a lens configuration diagram of Example 1 of the present invention.

【図4】本発明の実施例2のレンズ構成図。FIG. 4 is a lens configuration diagram of a second embodiment of the present invention.

【図5】本発明の実施例3のレンズ構成図。FIG. 5 is a lens configuration diagram of a third embodiment of the present invention.

【図6】本発明の実施例4のレンズ構成図。FIG. 6 is a lens configuration diagram of a fourth embodiment of the present invention.

【図7】本発明の実施例5のレンズ構成図。FIG. 7 is a lens configuration diagram of a fifth embodiment of the present invention.

【図8】本発明の実施例1の収差図。FIG. 8 is an aberration diagram of Example 1 of the present invention.

【図9】本発明の実施例2の収差図。FIG. 9 is an aberration diagram of Example 2 of the present invention.

【図10】本発明の実施例3の収差図。FIG. 10 is an aberration diagram of Example 3 of the present invention.

【図11】本発明の実施例4の収差図。FIG. 11 is an aberration diagram of Example 4 of the present invention.

【図12】本発明の実施例5の収差図。FIG. 12 is an aberration diagram of Example 5 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】赤外線を透過する光学材料によって構成さ
れ、物体側より順に、負の屈折力を有する第1成分と正
の屈折力を有する第2成分を配置するとともに、冷却さ
れた開口絞りを第2成分後方に配置し、さらに、以下の
条件を満足することを特徴とする赤外線用レンズ; 4.5<d/(f・tanω)<7.5 0.021<f/(n1・FNO・r1)<0.060 ただし、 d :バックフォーカス(空気換算長)、 f :全系の焦点距離、 ω :半画角、 n1 :最も物体側のレンズの屈折率、 r1 :最も物体側のレンズの物体側面の曲率半径、 FNO:Fナンバ−、 である。
1. A first component having a negative refracting power and a second component having a positive refracting power, which are made of an optical material that transmits infrared rays, are arranged in order from the object side, and a cooled aperture stop is provided. An infrared lens arranged behind the second component and further satisfying the following conditions: 4.5 <d / (f · tan ω) <7.5 0.021 <f / (n1 · FNO -R1) <0.060 However, d: back focus (air conversion length), f: focal length of the whole system, ω: half angle of view, n1: refractive index of lens on the most object side, r1: most object side The radius of curvature of the object side surface of the lens is FNO: F number.
【請求項2】前記第1成分の屈折力と前記第2成分の屈
折力が、以下の条件を満足することを特徴とする請求項
1に記載の赤外線用レンズ; −1.3<(φ1/φ2)tanω<−0.25 ただし、 φ1:第1成分の屈折力、 φ2:第2成分の屈折力、 である。
2. The infrared lens according to claim 1, wherein the refractive power of the first component and the refractive power of the second component satisfy the following condition: −1.3 <(φ1 / Φ2) tan ω <−0.25 where φ1 is the refractive power of the first component, and φ2 is the refractive power of the second component.
JP11532694A 1994-05-27 1994-05-27 Lens for infrared ray Pending JPH07318797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11532694A JPH07318797A (en) 1994-05-27 1994-05-27 Lens for infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11532694A JPH07318797A (en) 1994-05-27 1994-05-27 Lens for infrared ray

Publications (1)

Publication Number Publication Date
JPH07318797A true JPH07318797A (en) 1995-12-08

Family

ID=14659805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11532694A Pending JPH07318797A (en) 1994-05-27 1994-05-27 Lens for infrared ray

Country Status (1)

Country Link
JP (1) JPH07318797A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131631A (en) * 2000-10-23 2002-05-09 Fuji Photo Optical Co Ltd Single focus lens
EP1533638A1 (en) * 2003-11-18 2005-05-25 Raytheon Company Compact fisheye infrared imaging optical system
JP2011076021A (en) * 2009-10-02 2011-04-14 Nikon Corp Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
JP2012058315A (en) * 2010-09-06 2012-03-22 Fujifilm Corp Projection lens and projection type display device
CN102981247A (en) * 2011-09-02 2013-03-20 大立光电股份有限公司 Image lens group
JP2013228539A (en) * 2012-04-25 2013-11-07 Tamron Co Ltd Optical system for infrared rays
CN107121760A (en) * 2017-07-04 2017-09-01 北京理工大学 A kind of infrared refractive and reflective panorama camera lens of broadband refrigeration
CN114236778A (en) * 2021-11-17 2022-03-25 漳州三眼通光电科技有限公司 High-resolution infrared low-distortion fisheye optical system
CN115128774A (en) * 2022-04-29 2022-09-30 福建福光股份有限公司 Infrared athermalization fisheye lens

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131631A (en) * 2000-10-23 2002-05-09 Fuji Photo Optical Co Ltd Single focus lens
EP1533638A1 (en) * 2003-11-18 2005-05-25 Raytheon Company Compact fisheye infrared imaging optical system
US6989537B2 (en) 2003-11-18 2006-01-24 Raytheon Company Compact inverse-telephoto infrared imaging optical system
JP2011076021A (en) * 2009-10-02 2011-04-14 Nikon Corp Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
JP2012058315A (en) * 2010-09-06 2012-03-22 Fujifilm Corp Projection lens and projection type display device
CN102981247A (en) * 2011-09-02 2013-03-20 大立光电股份有限公司 Image lens group
JP2013228539A (en) * 2012-04-25 2013-11-07 Tamron Co Ltd Optical system for infrared rays
CN107121760A (en) * 2017-07-04 2017-09-01 北京理工大学 A kind of infrared refractive and reflective panorama camera lens of broadband refrigeration
CN114236778A (en) * 2021-11-17 2022-03-25 漳州三眼通光电科技有限公司 High-resolution infrared low-distortion fisheye optical system
CN114236778B (en) * 2021-11-17 2024-01-19 漳州三眼通光电科技有限公司 High-resolution infrared low-distortion fisheye optical system
CN115128774A (en) * 2022-04-29 2022-09-30 福建福光股份有限公司 Infrared athermalization fisheye lens

Similar Documents

Publication Publication Date Title
JP3255490B2 (en) Retrofocus large aperture lens
US8767320B2 (en) Endoscope optical system and endoscope
JP4274602B2 (en) Objective optical system
JPH07111500B2 (en) Endoscope objective lens
JP2007094032A (en) Wide angle lens system and imaging apparatus
JP2009014947A (en) Image-forming optical system and imaging apparatus using the same
JP4981466B2 (en) Optical system and imaging apparatus having the same
JPH06308381A (en) Endoscope objective
JPH07318797A (en) Lens for infrared ray
JP4435341B2 (en) Infrared lens
JP3723654B2 (en) Shooting lens system
JP2582144B2 (en) Shooting lens
JP3295027B2 (en) Retrofocus type large aperture ratio wide-angle lens
JP4838899B2 (en) Zoom lens and optical apparatus using the same
JP4491107B2 (en) Lens for photography
JP3746849B2 (en) Endoscope objective lens
US6603610B2 (en) Wide-angle lens system
JP2004053813A (en) Lens system
JP2005062559A (en) Lens for infrared camera
JP4817551B2 (en) Zoom lens
JP5006627B2 (en) Optical system and optical apparatus having the same
JP2001183582A (en) Light, wide-angle infrared lens
US20070097520A1 (en) Imaging lens, imaging unit, and optical device
JP2002196233A (en) Infrared optical system and infrared optical device provided with the same
JP2002228925A (en) Retrofocus wide-angle lens