JPH09230088A - Stop method for boiling water nuclear power plant - Google Patents

Stop method for boiling water nuclear power plant

Info

Publication number
JPH09230088A
JPH09230088A JP8040926A JP4092696A JPH09230088A JP H09230088 A JPH09230088 A JP H09230088A JP 8040926 A JP8040926 A JP 8040926A JP 4092696 A JP4092696 A JP 4092696A JP H09230088 A JPH09230088 A JP H09230088A
Authority
JP
Japan
Prior art keywords
reactor
residual heat
removing system
reactor water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8040926A
Other languages
Japanese (ja)
Inventor
Motohiro Aizawa
元浩 会沢
Hiroshi Sasaki
宏 佐々木
Katsumi Osumi
克己 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP8040926A priority Critical patent/JPH09230088A/en
Publication of JPH09230088A publication Critical patent/JPH09230088A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the dose rate of a residual heat removing system by starting the operation of a residual heat removing system within a range of specified reactor water temperature and a reactor internal pressure gauge indicated value. SOLUTION: With the start of operation for stopping a plant, a control rod is inserted in fuel to stop nuclear reaction. The calorific value from fuel is decreased, and at the stage where the steam generation quantity is decreased and it is difficult to keep rated reactor pressure, power generation is stopped. When the reactor water temperature reaches below about 130 deg.C (reactor internal pressure gauge indicated value 2kg/cm<2> ), warming operation is started. At the stage where a difference between the reactor water temperature and the residual heat removing system outlet temperature is about 50 deg.C or less, the warming operation is ended. After that, reator water is passed through the residual heat removing system, and a nuclear reactor accessary cooling water is introduced to a residual heat removing system heat exchanger 23 through a piping 29 to cool the reactor water in the residual heat removing system. Thus, by the operation of setting the operation start temperature of the residual heat removing system to about 130 deg.C (reactor internal pressure gauge indicated value 2kg/cm<2> ) or less, it is possible to reduce adhesion of ion-like reactive matter to the residual heat removing system piping.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、沸騰水型原子力発
電プラントにおける炉水放射能濃度を低く維持すること
によって、原子炉水と接する構造材表面に蓄積する放射
性物質の量を低減し、プラントの定期検査を行う作業者
の受ける放射線量を限りなく少なくする技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention reduces the amount of radioactive substances accumulated on the surface of a structural material in contact with reactor water by maintaining a low concentration of radioactive water in the reactor water in a boiling water nuclear power plant. Related to the technology for reducing the radiation dose received by workers who perform regular inspections.

【0002】[0002]

【従来の技術】図2に、沸騰水型原子力発電プラントの
構成を示す。
2. Description of the Related Art FIG. 2 shows the structure of a boiling water nuclear power plant.

【0003】原子炉1内に装荷した原子燃料の燃焼によ
って発生する蒸気は、主蒸気配管2を通って高圧タービ
ン3および低圧タービン4に導かれ仕事を行う。仕事が
終わった蒸気は復水器5で凝縮され、復水配管6を通り
復水ポンプ7,復水ろ過装置8,復水脱塩器9および復
水昇圧ポンプ10を経由して給水系に導かれる。給水系
では、給水配管11および給水ポンプ12を通り、給水
加熱器13で昇温した後、再び原子炉に戻る。
The steam generated by the combustion of the nuclear fuel loaded in the nuclear reactor 1 is introduced into the high pressure turbine 3 and the low pressure turbine 4 through the main steam pipe 2 to perform work. After the work is completed, the steam is condensed in the condenser 5, passes through the condenser pipe 6, passes through the condensate pump 7, the condensate filter 8, the condensate desalinator 9, and the condensate booster pump 10 to the water supply system. Be guided. In the water supply system, the water is passed through the water supply pipe 11 and the water supply pump 12, heated by the water supply heater 13, and then returned to the reactor again.

【0004】一方、炉水は再循環ポンプ14および再循
環配管15で構成される2系列の再循環系を循環する。
また、炉水の一部は、原子炉浄化系ポンプ16および原
子炉再循環系配管17を通って原子炉浄化設備18に導
かれ浄化される。その後、給水系配管11に合流して原
子炉に戻る。その間、原子炉浄化設備ろ過脱塩装置18
は粉末イオン交換樹脂を使用していることにより、炉水
を約50℃に冷却する必要性から原子炉浄化系熱交換器
19で冷却している。また、給水から流入した不純物
は、原子炉内で沸騰濃縮され、その一部が原子炉浄化系
のろ過脱塩装置で除去されることにより、炉水が清浄に
保たれる。
On the other hand, the reactor water circulates in a two-line recirculation system composed of a recirculation pump 14 and a recirculation pipe 15.
Further, a part of the reactor water is guided to the reactor purification facility 18 through the reactor purification system pump 16 and the reactor recirculation system pipe 17 and purified. Then, it joins the water supply system piping 11 and returns to the nuclear reactor. Meanwhile, the reactor decontamination equipment filtration desalination device 18
Since the powder ion exchange resin is used, the reactor water is cooled by the reactor cleaning system heat exchanger 19 because it is necessary to cool the reactor water to about 50 ° C. In addition, impurities flowing from the feedwater are concentrated by boiling in the nuclear reactor, and a part of the impurities is removed by a filtration and desalination apparatus of the reactor purification system, so that the reactor water is kept clean.

【0005】さらに、原子力プラントの出力を落とし冷
温停止する場合には、燃料間に制御棒を挿入し燃料の核
反応を停止するとともに、燃料の有する残留熱を炉水を
蒸発させ気化熱として除去するとともに、炉水を原子炉
再循環系から分岐する残留熱除去系に導き熱交換するこ
とにより冷却する。沸騰水型原子力発電プラントのプラ
ント停止操作は、以下の手順に従う。
Furthermore, when the output of the nuclear power plant is reduced to stop the cold temperature, a control rod is inserted between the fuels to stop the nuclear reaction of the fuels, and the residual heat of the fuels is removed as vaporization heat by evaporating the reactor water. At the same time, the reactor water is guided to the residual heat removal system that branches from the reactor recirculation system and heat-exchanged to cool it. The plant shutdown operation of a boiling water nuclear power plant follows the procedure below.

【0006】(1)定格の炉水温度は280℃であり、そ
の状態で制御棒を挿入し燃料の核反応を停止する。
(1) The rated reactor water temperature is 280 ° C., and control rods are inserted in that state to stop the nuclear reaction of fuel.

【0007】(2)(1)の操作と同時に280℃から15
0℃程度までは炉圧が高く蒸気の発生量が多いため、主
蒸気ライン2から蒸気を復水器に送り気化熱により原子
炉を冷却する。なおタービン解列後は、タービンバイパ
スライン20から蒸気を復水器に送り冷却する。
(2) From 280 ° C to 15 at the same time as the operation of (1)
Since the reactor pressure is high and the amount of steam generated is large up to about 0 ° C., steam is sent from the main steam line 2 to the condenser to cool the reactor by heat of vaporization. After the turbine is disconnected, steam is sent from the turbine bypass line 20 to the condenser for cooling.

【0008】(3)残留熱除去系の運転を開始する前に
は、機器および配管の熱応力を緩和し健全性を維持する
ために系統の温度を徐々に上昇させ炉水温度に近づける
ウォーミング運転を行う。
(3) Before starting the operation of the residual heat removal system, warming is performed to gradually raise the temperature of the system and bring it close to the reactor water temperature in order to alleviate thermal stress of equipment and piping and maintain soundness. Drive.

【0009】(4)150℃以下の温度では、気化熱によ
る冷却効率が低下するため、原子炉再循環系から分岐す
る残留熱除去系配管21および残留熱除去系ポンプ22
により原子炉水を導き残留熱除去系熱交換器23に導き
冷却する。
(4) At a temperature of 150 ° C. or lower, the cooling efficiency due to the heat of vaporization decreases, so the residual heat removal system piping 21 and the residual heat removal system pump 22 branched from the reactor recirculation system.
The reactor water is guided to the residual heat removal system heat exchanger 23 for cooling.

【0010】さらに、原子炉水を冷却する速度は、残留
熱除去系熱交換器23に通水する流量と残留熱除去系熱
交換器のバイパス配管24の流量をコントロールするこ
とにより調整する。
Further, the cooling rate of the reactor water is adjusted by controlling the flow rate of water flowing through the residual heat removal system heat exchanger 23 and the bypass piping 24 of the residual heat removal system heat exchanger.

【0011】次に沸騰水型原子力プラントにおける線量
の低減技術の適用状況について示す。
Next, the application status of the dose reduction technology in a boiling water nuclear power plant will be described.

【0012】一般に、沸騰水型原子力発電プラントの配
管,ポンプ,熱交換器等の構成材料表面からは、金属イ
オン成分や不溶解性成分(クラッド)等の腐食生成物が
わずかずつ溶出する。材料から溶出した腐食生成物は冷
却水とともに原子炉に流入し、燃料表面に付着する。燃
料表面に付着した腐食生成物は、原子燃料の燃焼に伴っ
て発生してくる中性子照射を受けてCo−58あるいは
Co−60などの長半減期の放射性物質となる。燃料表
面に付着して放射性を帯びるようになった腐食生成物の
一部は、再び原子炉水中に溶出あるいは脱離して、原子
炉水を循環させる原子炉冷却材再循環系、あるいは原子
炉水中の不純物を浄化している原子炉冷却材浄化系の機
器・配管内面に付着・蓄積し、放射線量率を持つ。
Generally, corrosion products such as metal ion components and insoluble components (clads) are eluted little by little from the surfaces of constituent materials such as pipes, pumps and heat exchangers of boiling water nuclear power plants. Corrosion products eluted from the material flow into the reactor with cooling water and adhere to the fuel surface. Corrosion products adhering to the surface of the fuel are irradiated with neutrons generated by the combustion of the nuclear fuel and become radioactive substances with a long half-life such as Co-58 or Co-60. Some of the corrosion products that have become radioactive due to being attached to the fuel surface are eluted or desorbed again into the reactor water, and the reactor coolant recirculation system that circulates the reactor water or the reactor water. It adheres to and accumulates on the inner surface of the equipment and pipes of the reactor coolant purification system that purifies the impurities of, and has a radiation dose rate.

【0013】ここで、残留熱除去系の線量の抑制のため
には、公開文献K.OTOHA , et. al.,International Conf
erence on Water Chemistry of Nuclear Reactor Syste
ms,5, 315−316 ,1989 に示されるように、炉水の変化
率を小さくすることにより燃料表面に付着している放射
性物質を含むクラッド(原子炉水に溶解しない固形状の
腐食生成物の総称)状の濃度を低くすることが有効と報
告されている。
Here, in order to suppress the dose of the residual heat removal system, the publication K.OTOHA, et. Al., International Conf.
erence on Water Chemistry of Nuclear Reactor Syste
ms, 5, 315-316, 1989, clad containing radioactive material adhering to the fuel surface by reducing the rate of change of reactor water (solid corrosion products that do not dissolve in reactor water It is reported that it is effective to lower the concentration of the form.

【0014】さらに、特開平7−157618 号公報に示すよ
うに、残留熱除去系の運転温度である約150℃の温度
領域では、残留熱除去系の構成材料である炭素鋼の腐食
が生じイオン(炉水に溶解している成分)状の放射性物
質が取込まれるため、系統内をあらかじめ酸化処理を行
い放射能の取込を抑制する方法が提案されている。
Further, as shown in Japanese Patent Application Laid-Open No. 7-157618, in the temperature range of about 150 ° C., which is the operating temperature of the residual heat removing system, corrosion of carbon steel, which is a constituent material of the residual heat removing system, occurs Since radioactive substances in the form of (components dissolved in reactor water) are taken in, a method has been proposed in which the system is pre-oxidized to suppress the incorporation of radioactivity.

【0015】[0015]

【発明が解決しようとする課題】上述のように、残留熱
除去系の線量上昇抑制を図るためには、プラント停止時
のクラッド成分濃度の抑制および酸化皮膜内へのイオン
成分放射性物質の取込み抑制を同時に行うことが有効で
ある。一方では、プラントの稼働率向上を図るには、定
期点検期間の効率向上と期間短縮が望ましく、プラント
の停止期間の短縮も考慮した線量低減が望まれている。
As described above, in order to suppress the increase in the dose of the residual heat removal system, the concentration of the clad component is suppressed when the plant is stopped and the intake of the ionic component radioactive substance into the oxide film is suppressed. It is effective to do both at the same time. On the other hand, in order to improve the operation rate of the plant, it is desirable to improve the efficiency and shorten the period of the periodic inspection period, and to reduce the dose in consideration of the shortening of the plant shutdown period.

【0016】そこで、本発明者らは初めに残留熱除去系
の線量率を維持する運転方法の検討を行った。具体的に
は、残留熱除去系を形成している炭素鋼配管への放射性
物質の取込挙動についての試験を行った。以下に本発明
者らが行った試験結果を示す。
Therefore, the present inventors first examined the operation method for maintaining the dose rate of the residual heat removal system. Specifically, a test was conducted on the behavior of incorporating radioactive substances into the carbon steel pipe forming the residual heat removal system. The test results conducted by the present inventors are shown below.

【0017】残留熱除去系に使用されている炭素鋼への
Coの付着挙動をCo−58のトレーサを用いて行っ
た。試験条件は炭素鋼の配管内にCo−58を含む試験
水を通水し、配管表面の線量率変化を測定することによ
り配管内面に付着したCoの量を想定した。配管内面に
通水する試験水の温度は、残留熱除去系の運転温度であ
る150℃を上限とし約15℃/hの降温速度で低下さ
せた。
The adhesion behavior of Co to carbon steel used in the residual heat removal system was carried out using a Co-58 tracer. As the test conditions, test water containing Co-58 was passed through the carbon steel pipe, and the dose rate change on the pipe surface was measured to assume the amount of Co adhering to the inner surface of the pipe. The temperature of the test water passing through the inner surface of the pipe was lowered at a temperature lowering rate of about 15 ° C./h with an upper limit of 150 ° C. which is the operating temperature of the residual heat removal system.

【0018】[0018]

【課題を解決するための手段】試験結果を図1に示す。
図1に示すように、試験水温度が150℃から一定の降
温速度で低下している間の炭素鋼配管表面の線量率変化
は、約130℃に達した時点で飽和した。この現象は、
130℃以下の温度では炭素鋼の腐食が減少し、その結
果として放射性物質が付着進行しなくなったことを示し
ている。これらの結果から残留熱除去系の運転開始炉水
温度を従来の150℃(炉内圧力計指示値:約4kg/cm
2 )から約130℃(炉内圧力計指示値:約2kg/c
m2 )以下とすることにより、残留熱除去系配管内面へ
の放射能の付着を抑制でき、プラントの線量率を低く維
持することが可能になる。なお、本発明で示す炉内圧力
は、絶対圧力ではなく圧力計の指示値を意味する。
The results of the test are shown in FIG.
As shown in FIG. 1, the dose rate change on the surface of the carbon steel pipe while the test water temperature was decreasing from 150 ° C. at a constant temperature decrease rate was saturated when it reached about 130 ° C. This phenomenon is
It shows that the corrosion of carbon steel was reduced at a temperature of 130 ° C. or lower, and as a result, the radioactive material stopped adhering and progressing. Based on these results, the operating temperature of the residual heat removal system was set at 150 ° C (conventional furnace pressure gauge: approx. 4 kg / cm).
2 ) to approx. 130 ° C (pressure reading in furnace: approx. 2 kg / c
By setting it to be m 2 ) or less, it is possible to suppress the adhesion of radioactivity to the inner surface of the residual heat removal system pipe, and it is possible to keep the dose rate of the plant low. The pressure in the furnace shown in the present invention means not the absolute pressure but the value indicated by the pressure gauge.

【0019】一方、残留熱除去系の運転を開始する前に
はウォーミング運転を行う必要があり、炉水を炉内圧力
により大気圧の圧力抑制室に通水することにより行う。
On the other hand, it is necessary to perform a warming operation before starting the operation of the residual heat removal system, which is performed by passing the reactor water to the pressure suppression chamber at atmospheric pressure by the pressure in the furnace.

【0020】炉内圧力が低くくなり過ぎると、炉水を残
留熱除去系に通水する時間が長くなるあるいは炉水温度
100℃(炉内圧力計指示値:0kg/cm2 )以下では通
水することができなくなる。したがって、停止時間の短
縮のためには、ウォーミング運転を行いその後に炉水の
冷却を行うためには、残留熱除去系に炉水を通水する下
限の圧力,温度を設定する必要がある。具体的には、ウ
ォーミング運転を行うために必要な流量および残留熱除
去系の系統圧力損失を考慮すると炉内圧力計指示値0.
5kg/cm2 (炉水温度約110℃)以上の圧力を確保す
る必要がある。配管内面への放射能付着抑制およびウォ
ーミング運転を行うために必要な炉内圧力確保の観点か
ら、炉水温度130℃〜110℃(炉内圧力計指示値2
〜0.5kg/cm2 )の範囲で残留熱除去系の運転を開始す
ることが有効と考えられる。
If the reactor pressure becomes too low, the reactor water will pass through the residual heat removal system for a long time, or if the reactor water temperature is 100 ° C. (reactor pressure gauge reading: 0 kg / cm 2 ) or less. You will not be able to water. Therefore, in order to shorten the stop time, in order to perform the warming operation and then cool the reactor water, it is necessary to set the lower limit pressure and temperature for passing the reactor water through the residual heat removal system. . Specifically, considering the flow rate required for warming operation and the system pressure loss of the residual heat removal system, the indicated value of the in-core pressure gauge is 0.
It is necessary to secure a pressure of 5 kg / cm 2 (reactor water temperature of about 110 ° C) or higher. From the viewpoint of suppressing the radioactivity from adhering to the inner surface of the pipe and ensuring the reactor pressure necessary to perform warming operation, the reactor water temperature is 130 ° C to 110 ° C (reactor pressure gauge reading 2
It is considered effective to start the operation of the residual heat removal system within the range of up to 0.5 kg / cm 2 .

【0021】さらに、炉水温度130℃〜110℃(炉
内圧力2〜0.5kg/cm2)の範囲で残留熱除去系の運転
を開始するためには、炉水を130℃以下の温度まで蒸
気を復水器に導く方法で迅速に、かつ、燃料表面に付着
しているクラッドの剥離を抑制しながら低下させる必要
がある。150℃以下の範囲で炉水温度を迅速に低下さ
せるにはタービンバイパス弁の開度をこれまで以上に大
きく開ける必要が生じてくる。一方では、タービンバイ
パス弁の開度を大きく開ける操作は、蒸気流量の変動が
大きくなり、燃料表面のクラッド剥離を大きくし、残留
熱除去系運転時に系統に流入し線量低減効果を少なくす
る可能性を有している。蒸気流量の変動範囲の縮小ひい
ては炉水低加速度を安定させるためには、タービンバイ
パス弁開度を炉水温度の降温速度の情報に基づき自動制
御する方法が有効である。
Further, in order to start the operation of the residual heat removal system within the range of the reactor water temperature of 130 ° C. to 110 ° C. (reactor pressure of 2 to 0.5 kg / cm 2 ), the reactor water is kept at a temperature of 130 ° C. or less. It is necessary to reduce the vapor rapidly by the method of guiding the steam to the condenser, while suppressing the separation of the clad adhering to the fuel surface. In order to rapidly reduce the reactor water temperature in the range of 150 ° C. or lower, it becomes necessary to open the turbine bypass valve opening more than ever. On the other hand, the operation of opening the turbine bypass valve to a large degree may cause large fluctuations in the steam flow rate, increase clad delamination on the fuel surface, and enter the system during residual heat removal system operation, reducing the dose reduction effect. have. In order to reduce the fluctuation range of the steam flow rate and to stabilize the reactor water low acceleration, it is effective to automatically control the turbine bypass valve opening based on the information of the cooling rate of the reactor water temperature.

【0022】残留熱除去系の線量低減を図りかつプラン
トの停止期間の一定の範囲で行うためには、炉水温度1
30℃〜115℃(炉内圧力計指示値2〜0.5kg/c
m2)の範囲で残留熱除去系の運転を開始し、残留熱除去
系配管内面にイオン成分放射性物質が付着する量を少な
くする運転が有効である。加えて、130℃以下の炉水
温度までタービンバイパス系統から復水器に蒸気をブロ
ーする方法で炉水温度低下を炉水温度の降温速度のデー
タに基づきタービンバイパス弁の開度調整を自動的に行
うことによりクラッド成分放射性の剥離を抑制し、ひい
ては残留熱除去系へのクラッド成分放射性物質の量を抑
制することにより残留熱除去系の線量率を現状よりさら
に低く維持することが可能となる。
In order to reduce the dose of the residual heat removal system and to perform it within a certain range of the plant shutdown period, the reactor water temperature should be 1
30 ℃ -115 ℃ (In-furnace pressure gauge reading 2-0.5kg / c
It is effective to start the operation of the residual heat removal system in the range of m 2 ) and reduce the amount of ionic component radioactive substances adhering to the inner surface of the residual heat removal system piping. In addition, the method of blowing steam from the turbine bypass system to the condenser up to the reactor water temperature of 130 ° C or lower automatically adjusts the opening of the turbine bypass valve based on the data of the cooling rate of the reactor water temperature. It is possible to keep the dose rate of the residual heat removal system lower than the current level by suppressing the radiation of the clad component radioactivity by suppressing the radiation of the clad component and by suppressing the amount of the radioactive material of the clad component into the residual heat removal system. .

【0023】タービンバイパス弁の自動制御は、炉水温
度のデータから変化率を計算し、変化率が計画より小さ
い場合はタービンバイパス弁の開度を一定間隔開き、一
方炉水温度の変化率が計画より大きい場合にはタービン
バイパス弁の開度を一定間隔閉じる操作を、繰り返し行
う自動制御装置を追加することで可能となる。
In the automatic control of the turbine bypass valve, the rate of change is calculated from the data of the reactor water temperature. If the rate of change is smaller than the plan, the opening of the turbine bypass valve is opened at regular intervals, while the rate of change of the reactor water temperature is If it is larger than the plan, it is possible to add an automatic control device that repeatedly performs the operation of closing the opening of the turbine bypass valve at regular intervals.

【0024】本発明を適用することにより、残留熱除去
系の線量率を低く維持でき、さらにはタービンバイパス
弁の自動制御装置を追加することにより停止時間の短縮
に貢献することが可能となる。
By applying the present invention, the dose rate of the residual heat removal system can be kept low, and by adding an automatic control device for the turbine bypass valve, it is possible to contribute to the reduction of the stop time.

【0025】[0025]

【発明の実施の形態】本発明の実施例を以下に示す。Embodiments of the present invention will be described below.

【0026】炉水温度130℃(炉内圧力計指示値:2
kg/cm2 )以降に残留熱除去系を用いて冷却する方法の
実施例を図3に示す。
Reactor water temperature 130 ° C. (Reactor pressure gauge reading: 2
FIG. 3 shows an example of a method of cooling using a residual heat removal system after kg / cm 2 ).

【0027】プラントの停止操作開始とともに制御棒を
燃料間に挿入し核反応を停止させる。また、炉水は停止
操作初期の燃料からの発熱が継続している間は運転中と
同様主蒸気配管2から高圧タービン3および低圧タービ
ン4を経由して復水器5に蒸気として送られる。燃料か
らの発熱量が少なくり、蒸気の発生量の減少および定格
の炉圧を維持することが困難になった段階でタービンを
解列させ発電を停止する。
When the plant stop operation is started, the control rod is inserted between the fuels to stop the nuclear reaction. Further, the reactor water is sent as steam from the main steam pipe 2 to the condenser 5 via the high-pressure turbine 3 and the low-pressure turbine 4 while the heat generation from the fuel in the initial stage of the stop operation continues, as in the operation. When the amount of heat generated from the fuel is small and it becomes difficult to reduce the amount of steam generated and maintain the rated furnace pressure, the turbine is disconnected and power generation is stopped.

【0028】その後の蒸気はタービンバイパスライン2
0から復水器に送られ凝縮される。この際炉水温度の変
化率は、タービンバイパスラインから復水器に送られる
蒸気量により変わる。
The steam thereafter is the turbine bypass line 2
It is sent from 0 to a condenser and condensed. At this time, the rate of change of the reactor water temperature changes depending on the amount of steam sent from the turbine bypass line to the condenser.

【0029】さらに、蒸気量の調整は、タービンバイパ
ス弁26の開度を調整することにより行う。炉水温度の
低下速度を一定に保つためには、タービンバイパス弁の
開度を徐々に大きくする操作を丁寧に行うこととなる。
温度の低下に伴う炉内圧力の変化は徐々に小さくなるた
め、炉水温度の低下速度を一定に保つためにはタービン
バイパス弁の開度の変化率も徐々に大きくして行くこと
が必要であり操作員の熟練を要する。
Further, the amount of steam is adjusted by adjusting the opening of the turbine bypass valve 26. In order to keep the rate of decrease of the reactor water temperature constant, the operation of gradually increasing the opening of the turbine bypass valve must be performed carefully.
Since the change in reactor pressure due to the decrease in temperature gradually decreases, it is necessary to gradually increase the rate of change in the degree of opening of the turbine bypass valve in order to keep the rate of decrease in reactor water temperature constant. Yes Requires skilled operator.

【0030】炉水温度が約130℃(炉内圧計指示値:
2kg/cm2 )以下に達した時点でウォーミング運転を開
始する。ウォーミング運転は、残留熱除去系の入口配管
から炉水を導き残留熱除去系循環ポンプ20および熱交
換器23を介して、圧力抑制室30に弁33を開とし配
管31より炉水をブローする。炉水温度と残留熱除去系
出口温度との差が約50℃以下となった段階でウォーミ
ング運転を終了する。その後は、残留熱除去系に炉水を
通水するとともに、残留熱除去系熱交換器23に原子炉
補機冷却水を配管29より導き残留熱除去系で炉水の冷
却を行う。この残留熱除去系の運転開始温度を約130
℃(炉内圧計指示値:2kg/cm2)以下とする操作により
残留熱除去系配管へのイオン状放射性物質の付着を低減
することが可能となる。
The reactor water temperature is about 130 ° C. (reactor pressure gauge reading:
Start warming operation when it reaches 2kg / cm 2 ) or less. In the warming operation, the reactor water is guided from the inlet pipe of the residual heat removal system, the valve 33 is opened in the pressure suppression chamber 30 through the residual heat removal system circulation pump 20 and the heat exchanger 23, and the reactor water is blown from the pipe 31. To do. The warming operation is ended when the difference between the reactor water temperature and the residual heat removal system outlet temperature becomes approximately 50 ° C. or less. After that, the reactor water is passed through the residual heat removal system, and the reactor auxiliary cooling water is introduced into the residual heat removal system heat exchanger 23 through the pipe 29 to cool the reactor water. The operation start temperature of this residual heat removal system is about 130
It becomes possible to reduce the adherence of ionic radioactive substances to the residual heat removal system piping by the operation below ℃ (reactor pressure gauge indicated value: 2 kg / cm 2 ).

【0031】第2の実施例は、第1の実施例の残留熱除
去系運転開始温度を約130℃(炉内圧計指示値:2kg
/cm2 )以下としイオン成分放射性物質の付着を抑制す
るとともに、タービンバイパス弁の開度を自動制御する
ことにより、残留熱除去系へのクラッド成分放射性物質
の付着をも低減する実施例について示す(図4参照)。
In the second embodiment, the operation start temperature of the residual heat removal system of the first embodiment is about 130.degree. C. (internal pressure gauge indicated value: 2 kg).
/ Cm 2 ) or less to suppress the adhesion of the ionic component radioactive material, and also to reduce the adhesion of the clad component radioactive material to the residual heat removal system by automatically controlling the opening of the turbine bypass valve. (See Figure 4).

【0032】タービンバイパス弁の自動制御の開始は、
従来の手動のタービンバイパス弁操作信号ライン34に
切り替えスィッチ37を設け炉水温度変化率コントロー
ラからの信号に切り替えることにより行う。
The start of automatic control of the turbine bypass valve is
This is performed by providing a switching switch 37 on the conventional manual turbine bypass valve operation signal line 34 and switching to a signal from the reactor water temperature change rate controller.

【0033】タービンバイパス弁の自動制御方法は、炉
水温度の指示値を温度変化コントローラ36に呼び込
み、一定の時間間隔で炉水温度変化率(dT/dt)を
計算する。炉水温度変化率が、あらかじめ設定した変化
率より小さい場合はタービンバイパス弁の開度を一定量
増加させる信号を送る。反対に、炉水温度変化率が、あ
らかじめ設定した変化率より大きい場合はタービンバイ
パス弁の開度を一定量減少させる信号を送る。この操作
を連続して一定間隔で行うことにより炉水温度の低下速
度を一定に制御することが可能となる。この操作を、炉
水温度が約130℃(炉内圧計指示値:2kg/cm2 )以
下となるまで継続し、その後残留熱除去系での冷却操作
を行う。これにより、イオン成分の放射性物質の付着を
抑制するばかりでなくクラッド成分の放射性物質濃度の
付着をも抑制することが可能となる。
In the turbine bypass valve automatic control method, the indicated value of the reactor water temperature is called into the temperature change controller 36, and the reactor water temperature change rate (dT / dt) is calculated at regular time intervals. When the reactor water temperature change rate is smaller than a preset change rate, a signal for increasing the opening degree of the turbine bypass valve by a certain amount is sent. On the contrary, when the rate of change of the reactor water temperature is higher than the preset rate of change, a signal for reducing the opening of the turbine bypass valve by a fixed amount is sent. By performing this operation continuously at regular intervals, it becomes possible to control the rate of decrease of the reactor water temperature at a constant rate. This operation is continued until the reactor water temperature becomes approximately 130 ° C. (reactor pressure gauge indicated value: 2 kg / cm 2 ) or less, and then cooling operation in the residual heat removal system is performed. This makes it possible to suppress not only the adhesion of the radioactive substance of the ionic component but also the adhesion of the radioactive substance concentration of the clad component.

【0034】第3の実施例は、第2の実施例と異なった
制御方法で、タービンバイパス弁の開度を自動制御する
ことにより、残留熱除去系へのクラッド成分放射性物質
の付着をも低減する実施例について示す(図5参照)。
In the third embodiment, a control method different from that of the second embodiment is used to automatically control the opening of the turbine bypass valve to reduce the adhesion of the clad component radioactive material to the residual heat removal system. An example will be shown (see FIG. 5).

【0035】タービンバイパス弁の自動制御の開始は、
従来の手動のタービンバイパス弁操作信号ライン34に
切り替えスィッチ37を設け炉水温度変化率コントロー
ラからの信号に切り替えることにより行う。
The start of automatic control of the turbine bypass valve is
This is performed by providing a switching switch 37 on the conventional manual turbine bypass valve operation signal line 34 and switching to a signal from the reactor water temperature change rate controller.

【0036】タービンバイパス弁の自動制御方法は、炉
水温度コントローラにあらかじめ停止操作時間に対する
温度変化を入力する。停止操作時間に対する温度変化と
実際の炉水温度の差を逐次測定する。計画の炉水温度に
対して実際の炉水温度が図5の(1)に示したように高
い場合には、タービンバイパス弁の開度を一定量増加さ
せるさせる信号を送る。反対に、計画の炉水温度に対し
て実際の炉水温度が図5の(2)に示したように低い場
合には、タービンバイパス弁の開度を一定量減少させる
信号を送る。この操作を連続して一定間隔で行うことに
より炉水温度の低下速度を一定に制御することが可能と
なる。
In the method of automatically controlling the turbine bypass valve, the temperature change with respect to the stop operation time is input to the reactor water temperature controller in advance. The difference between the temperature change and the actual reactor water temperature with respect to the stop operation time is sequentially measured. When the actual reactor water temperature is higher than the planned reactor water temperature as shown in (1) of FIG. 5, a signal for increasing the opening degree of the turbine bypass valve by a certain amount is sent. On the contrary, when the actual reactor water temperature is lower than the planned reactor water temperature as shown in (2) of FIG. 5, a signal for reducing the opening degree of the turbine bypass valve by a certain amount is sent. By performing this operation continuously at regular intervals, it becomes possible to control the rate of decrease of the reactor water temperature at a constant rate.

【0037】この操作を、炉水温度が約130℃(炉内
圧計指示値:2kg/cm2 )以下となるまで継続し、その
後残留熱除去系での冷却操作を行う。これにより、イオ
ン成分の放射性物質の付着を抑制するばかりでなくクラ
ッド成分の放射性物質濃度の付着をも抑制することが可
能となる。
This operation is continued until the reactor water temperature becomes about 130 ° C. (reactor pressure gauge indicated value: 2 kg / cm 2 ) or less, after which the cooling operation in the residual heat removal system is performed. This makes it possible to suppress not only the adhesion of the radioactive substance of the ionic component but also the adhesion of the radioactive substance concentration of the clad component.

【0038】[0038]

【発明の効果】本発明に示した方法を適用することによ
り、残留熱除去系のより一層の線量低減が達成でき、点
検作業者等プラントで働く人の受ける線量率も低減でき
る。
By applying the method shown in the present invention, the dose of the residual heat removing system can be further reduced, and the dose rate received by workers such as inspection workers in the plant can be reduced.

【0039】このような原子力発電プラントの維持管理
技術の充実はプラントの信頼性の向上につながり安定な
電力供給に寄与できる。
The enhancement of the maintenance and management technology for such a nuclear power plant can improve the reliability of the plant and contribute to a stable power supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素鋼酸化皮膜への放射能付着と温度との関係
の試験結果を示す特性図。
FIG. 1 is a characteristic diagram showing the test results of the relationship between radioactivity adhesion to a carbon steel oxide film and temperature.

【図2】沸騰水型原子力発電プラントの構成を示す系統
図。
FIG. 2 is a system diagram showing a configuration of a boiling water nuclear power plant.

【図3】残留熱除去系の運転開始温度を低くする運転の
実施例の系統図。
FIG. 3 is a system diagram of an example of an operation in which the operation start temperature of the residual heat removal system is lowered.

【図4】タービンバイパス弁の開度を自動的に制御する
実施例を示す系統図。
FIG. 4 is a system diagram showing an embodiment in which the opening of a turbine bypass valve is automatically controlled.

【図5】タービンバイパス弁の開度を自動的に制御する
実施例を示す系統図。
FIG. 5 is a system diagram showing an embodiment for automatically controlling the opening of a turbine bypass valve.

【符号の説明】[Explanation of symbols]

1…原子炉、8…復水ろ過装置、9…復水脱塩装置、1
8…原子炉浄化系ろ過脱塩装置、20…残留熱除去系ポ
ンプ、21…残留熱除去系配管、23…残留熱除去系熱
交換器、26…タービンバイパス弁、35…炉水温度
計、36…炉水温度変化コントローラ、37…タービン
バイパス弁信号切り替えスィッチ。
1: Nuclear reactor, 8: Condensate filtration unit, 9: Condensate desalination unit, 1
8 ... Reactor purification system filtration desalination apparatus, 20 ... Residual heat removal system pump, 21 ... Residual heat removal system piping, 23 ... Residual heat removal system heat exchanger, 26 ... Turbine bypass valve, 35 ... Reactor water thermometer, 36 ... Reactor water temperature change controller, 37 ... Turbine bypass valve signal switching switch.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大角 克己 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Ohsumi 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd., Hitachi Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】沸騰水型原子力発電プラントの原子炉停止
操作において、残留熱除去系停止時冷却運転モードの運
転開始温度を原子炉水温度130℃から110℃または
原子炉圧力計指示値が2kg/cm2から0.5kg/cm2 とす
ることを特徴とする沸騰水型原子力発電プラントの停止
方法。
1. In a reactor shutdown operation of a boiling water nuclear power plant, the operation start temperature of the cooling operation mode when the residual heat removal system is stopped is set to a reactor water temperature of 130 ° C. to 110 ° C. or a reactor pressure gauge reading of 2 kg. / Cm 2 to 0.5 kg / cm 2 A method for shutting down a boiling water nuclear power plant characterized by being set to 0.5 kg / cm 2 .
【請求項2】沸騰水型原子力発電プラントの原子炉停止
操作において、残留熱除去系停止時冷却運転モードの運
転開始温度を原子炉水温度130℃から110℃または
原子炉圧力計指示値が2kg/cm2から0.5kg/cm2 とす
るとともに、原子炉水温度130℃または原子炉圧力計
指示値2kg/cm2 までの降下操作は、あらかじめ設定す
る原子炉温の変化率にしたがいタービンバイパス系の弁
の開度調整を自動制御することによりタービンバイパス
系から復水器に蒸気を送り冷却する方法で行うことを特
徴とする沸騰水型原子力発電プラントの停止方法。
2. In a reactor shutdown operation of a boiling water nuclear power plant, the operation start temperature of the cooling operation mode when the residual heat removal system is stopped is set to a reactor water temperature of 130 ° C. to 110 ° C. or a reactor pressure gauge reading of 2 kg. / Cm 2 to 0.5 kg / cm 2 and lowering the reactor water temperature to 130 ° C or the reactor pressure gauge reading 2 kg / cm 2 according to the preset rate of change in reactor temperature. A method for shutting down a boiling water nuclear power plant, which comprises performing a method of sending steam from a turbine bypass system to a condenser by automatically controlling the opening degree of a valve of the system to cool the system.
JP8040926A 1996-02-28 1996-02-28 Stop method for boiling water nuclear power plant Pending JPH09230088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8040926A JPH09230088A (en) 1996-02-28 1996-02-28 Stop method for boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8040926A JPH09230088A (en) 1996-02-28 1996-02-28 Stop method for boiling water nuclear power plant

Publications (1)

Publication Number Publication Date
JPH09230088A true JPH09230088A (en) 1997-09-05

Family

ID=12594117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8040926A Pending JPH09230088A (en) 1996-02-28 1996-02-28 Stop method for boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JPH09230088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811084A (en) * 2012-11-14 2014-05-21 中国广东核电集团有限公司 Pre-commissioning preparation method of nuclear power station waste heat discharging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811084A (en) * 2012-11-14 2014-05-21 中国广东核电集团有限公司 Pre-commissioning preparation method of nuclear power station waste heat discharging system

Similar Documents

Publication Publication Date Title
EP2312588B1 (en) Method of operating a nuclear plant
US4123324A (en) Apparatus for decontaminating a radioactively contaminated coolant
JP3048270B2 (en) Method and apparatus for chemical decontamination of primary reactor system
JPH09230088A (en) Stop method for boiling water nuclear power plant
US20200312471A1 (en) Corrosion Mitigation Method for Carbon Steel Pipe
US5517539A (en) Method of decontaminating a PWR primary loop
JPS6346397B2 (en)
JPH1090485A (en) System and method for controlling dissolved oxygen concentration in reactor water
JP3941392B2 (en) Reactor operation method
JPS6048716B2 (en) How to prevent corrosion of reactor piping
JPH0361918B2 (en)
JPH0636066B2 (en) Method and apparatus for producing anticorrosion coating for nuclear power plant
JPH10115696A (en) Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency
JP3266485B2 (en) Boiling water nuclear power plant, method of operating the same, and method of forming oxide film on wetted surface of its component
JPH06167596A (en) Corrosion suppression method and device for reactor primary system structure material
JPS604439B2 (en) How to operate a nuclear reactor plant
JPS6154199B2 (en)
JP6585553B2 (en) Method for controlling stress corrosion cracking of nuclear plant components
JPS5834398A (en) Method of operating bwr type reactor at start-up
JP2005030814A (en) Operation method for nuclear power generation plant
JPS61170697A (en) Nuclear reactor
JPH095489A (en) Dose reducing method for reactor residual heat removing system
JPH10160892A (en) Method and device for treatment of carbon steel part in reactor power plant
JP2000046993A (en) Method for operating boiling-water nuclear plant
JPS6048000B2 (en) How to operate a nuclear reactor