JPH09229683A - Inclination detecting apparatus - Google Patents

Inclination detecting apparatus

Info

Publication number
JPH09229683A
JPH09229683A JP3606596A JP3606596A JPH09229683A JP H09229683 A JPH09229683 A JP H09229683A JP 3606596 A JP3606596 A JP 3606596A JP 3606596 A JP3606596 A JP 3606596A JP H09229683 A JPH09229683 A JP H09229683A
Authority
JP
Japan
Prior art keywords
spherical
magnetic
space
magnetic poles
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3606596A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kinoshita
秀俊 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3606596A priority Critical patent/JPH09229683A/en
Publication of JPH09229683A publication Critical patent/JPH09229683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out highly precise measurement with excellent linearity by providing a non-magnetic container which contains a spherical body made of a magnetic body in the inside and has a spherical space having larger diameter than that of the spherical body and magnetic poles installed at positions, which are points of contact of the spherical space and a cubic body circumscribing the spherical space. SOLUTION: A spherical body 1 is a magnetic body and made of an iron ball. A container 2 has a spherical space to contain the spherical body 1 and is made of a non-magnetic synthetic resin. A diameter of the spherical space of the container 2 is made wider than that of the spherical body 1, so that the spherical body 1 can move in the container 2. Magnetic poles 3-8 are installed at positions which are the points of contact of the spherical space and a cubic body circumscribing the spherical space. Coils 13-18 are coiled on respective magnetic poles 3-8 and a.c. current is applied to one side of each coil as an excitation side and the induction voltage increases more in the other side, which is a detection side, as the spherical body 1 comes closer. The magnetic poles 3-8 are connected with a yoke 10 made of a magnetic body and the yoke 10 works also as a magnetic shield. Of the coils, coils 13 and 14, coils 15 and 16, and coils 17 and 18 are differentially connected, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、水中、空中の移
動体、産業機械、民生用機械等に使用する傾斜検出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tilt detecting device used for underwater and aerial vehicles, industrial machines, consumer machines and the like.

【0002】[0002]

【従来の技術】従来、空間の極座標上の傾斜角度を検出
するためには、複数の傾斜検出装置をX、Y、Z軸それ
ぞれに対して配置し、それらの出力から演算を行なって
求める必要があった。一般に、X、Y、Z軸それぞれに
対して、センサの軸を相対的に直角に配置するには調整
に非常な手間がかかるものであり、また占有体積も大き
くなってしまう問題があった。
2. Description of the Related Art Conventionally, in order to detect a tilt angle on a polar coordinate of a space, it is necessary to arrange a plurality of tilt detecting devices for each of the X, Y and Z axes, and calculate the output from those devices. was there. In general, it takes a lot of time and effort to arrange the sensor axes relatively perpendicular to the X, Y, and Z axes, and there is a problem that the occupied volume becomes large.

【0003】このような問題を解決した傾斜検出装置と
して、特開昭59−178313号に示すようなものが
あった。この公報の記載の傾斜検出装置は、球体容器に
おいてその中心を原点とする直交座標系のX、Y,Z軸
上にそれぞれ1対の接近センサを取り付け、計6個の接
近センサからの信号を演算することにより傾斜の検出を
行おうとするものである。このようにすることにより、
球体に予め設けた6つの取付位置にそれぞれ近接センサ
を取り付けるだけでよいので、調整の手間がかなり省略
できる。
As an inclination detecting device which solves such a problem, there is one shown in Japanese Patent Laid-Open No. 59-178313. The tilt detecting device described in this publication is equipped with a pair of proximity sensors on the X, Y, and Z axes of an orthogonal coordinate system whose origin is the center of the spherical container, and outputs signals from a total of six proximity sensors. The calculation is intended to detect the inclination. By doing this,
Since it suffices to attach the proximity sensors to each of the six attachment positions provided in advance on the sphere, the labor of adjustment can be considerably omitted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
公報に記載された傾斜検出装置では、球形容器に設けた
6つの取り付け位置に近接センサをそれぞれ別々に配置
したものであるが、センサ個々の特性のばらつきの影
響、各取付位置への取り付け状態の微妙な差の影響など
で信号の直線性や高い精度を容易に得ることが困難であ
った。
However, in the inclination detecting device described in the above publication, the proximity sensors are separately arranged at the six mounting positions provided on the spherical container, but the characteristics of each sensor are different. It was difficult to easily obtain the linearity of the signal and high accuracy due to the influence of the variation of the above and the influence of the subtle difference in the mounting state at each mounting position.

【0005】本発明は以上のような課題を解決し、信号
の直線性が優れ、高精度な測定を行うことができる傾斜
検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a tilt detecting device which has excellent signal linearity and can perform highly accurate measurement.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
になされた本発明の傾斜検出装置は、磁性体からなる球
体と、前記球体を内包し前記球体より大きな径の球形の
空間を持つ非磁性体からなる容器と、前記容器の球形の
空間に外接する立方体と球形の空間の接点に当たる位置
に設けた6個の磁極と、前記各磁極に巻かれた各々2組
の巻線であって片方は励磁側として各磁極巻線とも共通
に励磁用の交流電流が流され、もう片方は検出側とし
て、各々向き合った磁極同志の巻線が差動接続されてい
るものと、前記磁極の外側を連結した磁性体からなる継
鉄を備えたことを特徴としている。また、さらに改良が
なされた第2の発明は、振動が多い場所で使うときダン
パを効かせるために、上記構成に加えて、前記容器と球
体との間に生じる空間に封入した化学的に不活性な液体
を備えたことを特徴としている。
The inclination detecting apparatus of the present invention made to solve the above-mentioned problems has a spherical body made of a magnetic material and a spherical space which contains the spherical body and has a larger diameter than the spherical body. A container made of a magnetic material, six magnetic poles provided at positions corresponding to the contact points of a cube and a spherical space circumscribing the spherical space of the container, and two sets of windings wound around each magnetic pole. One side is an excitation side, and an alternating current for excitation is commonly applied to each magnetic pole winding, and the other side is a detection side in which windings of mutually facing magnetic poles are differentially connected and the outside of the magnetic poles. It is characterized by having a yoke made of a magnetic material in which In addition, in the second invention, which has been further improved, in order to use the damper when used in a place where there is a lot of vibration, in addition to the above-mentioned configuration, a chemically non-existent space enclosed in the space formed between the container and the sphere is used. It is characterized by having an active liquid.

【0007】この発明の傾斜検出装置では、球形の空間
を持つ容器内の球体は常に重力の方向に引かれる。それ
に応じて、球体を囲む6個の磁極と、球体との距離が決
まる。 各磁極には各々2組の巻線が巻かれており、片
方は励磁側として各磁極巻線とも共通に励磁用の交流電
流が流されている。もう片方は検出側として、各々向き
合った磁極同志の巻線が差動接続されている。向き合っ
た磁極に同じ線径、同じ材材質の巻線を同じ回数卷くこ
とは容易にでき、各々励磁側に同じ発振器から交流電流
を流し、磁極に磁性体が接近した場合の各磁極の検出側
の誘導電圧を計るとすれば、きわめて特性が近いものが
できる。また、磁性体の移動範囲は両磁極の間の空間に
限定されるので磁極間の距離を小さくすることにより直
線性の良い部分だけを使うことができる。向き合った磁
極の検出側の巻線を位相が逆になるように作動接続し、
磁極の間にある磁性体の位置を計る場合、磁性体が両磁
極と等距離にある時、検出側の出力は同じ電圧となり打
ち消し合って零となる。つまり、零点の調整が不要であ
る。また、温度ドリフトに対しても、各々の磁極の検出
巻線からの信号は同じ量だけ信号がシフトするが、それ
らの信号の差を取るため打ち消され精度に対する影響を
抑えることができる。
In the inclination detecting device of the present invention, the sphere inside the container having the spherical space is always drawn in the direction of gravity. Accordingly, the distance between the six magnetic poles surrounding the sphere and the sphere is determined. Two sets of windings are wound around each magnetic pole, and one side is an excitation side, and an alternating current for excitation is commonly applied to each magnetic pole winding. The other side is the detection side, and the windings of the magnetic poles facing each other are differentially connected. It is easy to wind windings of the same wire diameter and the same material on the facing magnetic poles the same number of times.Detecting each magnetic pole when an AC current is sent from the same oscillator to each excitation side and a magnetic substance approaches the magnetic poles. If we measure the induced voltage on the side, it will be possible to have very similar characteristics. Further, since the moving range of the magnetic body is limited to the space between both magnetic poles, only the portion having good linearity can be used by reducing the distance between the magnetic poles. Operate and connect the windings on the detection side of the facing magnetic poles so that the phases are reversed,
When measuring the position of the magnetic substance between the magnetic poles, when the magnetic substance is equidistant from both magnetic poles, the output on the detection side becomes the same voltage and cancels each other out to zero. That is, it is not necessary to adjust the zero point. Further, even with respect to the temperature drift, the signals from the detection windings of the respective magnetic poles are shifted by the same amount, but since the signals are different from each other, they are canceled and the influence on the accuracy can be suppressed.

【0008】このような特徴は3組の磁極の対について
同じであるから、特に調整を要することなく球体の位置
を空間の直交座標上のX軸、Y軸、Z軸成分として各磁
極の対からそれぞれ精度良く取り出すことができる。
Since such characteristics are the same for the three pairs of magnetic poles, the pair of magnetic poles is used as the X-axis, Y-axis, and Z-axis components on the Cartesian coordinates of the space without any special adjustment. Can be taken out with high accuracy.

【0009】球体は休憩の空間内の重力に引かれる方向
の壁面に存在するから、球形の空間の中心を原点とした
球体の位置のベクトルは重力方向を示す。
Since the sphere exists on the wall surface in the rest space in the direction of being pulled by gravity, the vector of the position of the sphere with the center of the spherical space as the origin indicates the direction of gravity.

【0010】また、空間の直交座標上のX軸、Y軸、Z
軸成分から、直交座標から極座標への変換式による演算
によって空間の極座標上の垂直軸からの傾きと水平面内
の角度を得ることができる。
Further, the X-axis, Y-axis, Z on the Cartesian coordinates of the space
From the axis component, the inclination from the vertical axis on the polar coordinates of the space and the angle in the horizontal plane can be obtained by the calculation by the conversion formula from the rectangular coordinates to the polar coordinates.

【0011】また、第2の発明によれば上記に加え、振
動が多い場所で使用するとき、球形の空間に満たした適
度の粘度を持つ液体によって、中の球体の移動に対して
粘性抵抗によるダンパをかけることにより安定して使用
できる。
In addition to the above, according to the second aspect of the invention, when used in a place where there is a lot of vibration, due to the viscous resistance to the movement of the inside sphere due to the liquid having an appropriate viscosity filling the spherical space. It can be used stably by applying a damper.

【0012】以上により、より簡単に、より良い直線
性、精度の傾斜検出装置を得ることができる。
As described above, it is possible to more easily obtain the inclination detecting device having better linearity and accuracy.

【0013】[0013]

【発明の実施の形態】本発明の請求項1の一実施例の断
面図を図1に示す。
FIG. 1 is a sectional view showing an embodiment of claim 1 of the present invention.

【0014】図1において、1は磁性体の球体であり、
たとえば鉄球が用いられる。2は前記球体1を内包する
球形の空間を持つ非磁性体からなる容器であり、たとえ
ば合成樹脂などが用いられる。なお、容器内で球体1が
移動できるように、容器2の球形の空間の直径は球体1
の直径よりも大きくとってある。
In FIG. 1, reference numeral 1 is a magnetic sphere,
For example, an iron ball is used. Reference numeral 2 denotes a container made of a non-magnetic material having a spherical space that encloses the spherical body 1, for example, synthetic resin is used. It should be noted that the diameter of the spherical space of the container 2 is such that the sphere 1 can move within the container.
It is larger than the diameter of.

【0015】容器2には、その球形の空間に外接する立
方体と球形の空間との接点に当たる位置に合計6個の磁
極3,4,5,6,7,8が設けられている。すなわ
ち、容器2の球形の空間の中心を原点とするX、Y、Z
直交座標を考えると、各座標軸上にそれぞれ2個づつの
磁極がそれぞれ向き合う形で設置されている。
The container 2 is provided with a total of six magnetic poles 3, 4, 5, 6, 7, and 8 at the positions corresponding to the contact points between the cube circumscribing the spherical space and the spherical space. That is, X, Y, Z with the origin of the center of the spherical space of the container 2
Considering Cartesian coordinates, two magnetic poles are installed on each coordinate axis so as to face each other.

【0016】この各磁極3、4、5、6、7、8には巻
線13,14,15,16,17,18が巻かれてい
る。各巻線はそれぞれ2組あり、片方は励磁側として交
流電流が流される。もう片方は検出側で、各磁極3〜8
に磁性体からなる球体1が近づくほど誘導電圧は大きく
なる。
Windings 13, 14, 15, 16, 17, and 18 are wound around the magnetic poles 3, 4, 5, 6, 7, and 8. There are two sets of each winding, and one side is an excitation side and an alternating current is passed through. The other is the detection side, and each magnetic pole is 3-8.
The induced voltage increases as the spherical body 1 made of a magnetic material approaches.

【0017】各磁極3〜8は、それぞれ磁性体からなる
継鉄10に連結されている。継鉄10は全体を覆い、磁
気シールドも兼ねている。
The magnetic poles 3 to 8 are connected to a yoke 10 made of a magnetic material. The yoke 10 covers the whole and also serves as a magnetic shield.

【0018】球体1は球形の空間内しか動けないから原
点から見た球体の位置は、空間での重力の方向を意味す
る。
Since the sphere 1 can move only in a spherical space, the position of the sphere viewed from the origin means the direction of gravity in the space.

【0019】図2に信号処理部のブロック図を示す。各
磁極は、それぞれ3と4がX軸、5と6がY軸、7と8
がZ軸方向の球の位置を検出するために配置されてお
り、各磁極の巻線13,14,15,16,17,18
の検出側の巻線は13と14、15と16、17と18
がそれぞれ差動接続されている。
FIG. 2 shows a block diagram of the signal processing section. For each magnetic pole, 3 and 4 are the X axis, 5 and 6 are the Y axis, and 7 and 8
Are arranged to detect the position of the sphere in the Z-axis direction, and the windings 13, 14, 15, 16, 17, 18 of each magnetic pole are arranged.
The detection side windings are 13 and 14, 15 and 16, 17 and 18
Are differentially connected.

【0020】巻線13と14の検出側からの信号は検波
器19を通り、さらにフィルタ20を通る。前記操作の
結果、球体1の位置のX軸に関する情報が電圧信号Vx
として得られる。同様に、巻線15と16の検出側から
の信号は検波器21とフィルタ22を通り球体1の位置
のY軸に関する情報としての電圧信号Vyとなり、巻線
17と18の検出側からの信号は検波器23とフィルタ
24を通り球体1の位置のZ軸に関する情報としての電
圧信号Vzとなる。
The signal from the detection side of the windings 13 and 14 passes through the detector 19 and further through the filter 20. As a result of the above operation, information about the X axis of the position of the sphere 1 is the voltage signal Vx.
Is obtained as Similarly, a signal from the detection side of the windings 15 and 16 passes through the detector 21 and the filter 22 and becomes a voltage signal Vy as information about the Y axis of the position of the sphere 1, and a signal from the detection side of the windings 17 and 18. Passes through the detector 23 and the filter 24 and becomes a voltage signal Vz as information about the Z axis of the position of the sphere 1.

【0021】各軸電圧信号Vx、Vy、Vzは、A/D
変換器25によってそれぞれディジタル信号化される。
ディジタル化された信号は、ROM12に書き込まれて
いるプログラムによりCPU11、RAM26で処理さ
れ、パラレル信号としての出力はパラレル出力ポート2
7、シリアル信号としての出力はシリアルポート28、
アナログ電圧としての出力はD/A変換器29から出力
される。
Each axis voltage signal Vx, Vy, Vz is A / D
Each of them is converted into a digital signal by the converter 25.
The digitized signal is processed by the CPU 11 and the RAM 26 by the program written in the ROM 12, and the parallel signal output is the parallel output port 2
7. The serial signal output is the serial port 28,
The output as an analog voltage is output from the D / A converter 29.

【0022】次に、プログラムでの信号処理の概略を図
3を用いて説明する。空間の直交座標での各座標軸の成
分を意味するVx、Vy、Vzを、直交座標から極座標
への変換式である下記の(1)式と(2)式のような演
算式によって空間の極座標に於ける垂直軸からの傾き
と、水平面内での傾きの成分に変換する。
Next, the outline of the signal processing by the program will be described with reference to FIG. Vx, Vy, Vz, which means the components of each coordinate axis in the rectangular coordinates of the space, are converted into the polar coordinates of the rectangular coordinates by the following formulas (1) and (2) that are polar coordinates of the space. It is converted to the component of the inclination from the vertical axis in and the inclination in the horizontal plane.

【0023】垂直軸からの傾きψ: ψ=Arctan(√(Vx +Vy )/Vz ) (1)式 水平面内での傾きθ: θ=Arctan(Vy /Vx ) (2)式Inclination from the vertical axis ψ: ψ = Arctan (√ (Vx 2 + Vy 2 ) / Vz) (1) Inclination in the horizontal plane θ: θ = Arctan (Vy / Vx) (2)

【0024】続いて、第2の発明の一実施例について説
明する。 動作原理は前記実施例と同じであるので省略
し、異なる部分のみ説明する。前記実施例では球体1は
球形の空間内を動くが、本実施例では球形の空間内に化
学的に不活性で粘度が調整できる液体たとえばシリコン
オイルなどを封入する。
Next, an embodiment of the second invention will be described. The principle of operation is the same as that of the above-mentioned embodiment, so that it is omitted and only different parts will be described. In the above embodiment, the sphere 1 moves in a spherical space, but in this embodiment, a chemically inert liquid whose viscosity can be adjusted, such as silicone oil, is enclosed in the spherical space.

【0025】このことにより、球体1は液体の粘性抵抗
を受け、これがダンパとして働き振動があるところでも
安定に動作させることができる。
As a result, the spherical body 1 receives the viscous resistance of the liquid, which acts as a damper and can be stably operated even in the presence of vibration.

【0026】[0026]

【発明の効果】本発明の傾斜検出装置によれば、各座標
軸とも直線性が良く特性の揃った検出ができ、特性の揃
った位置検出手段同志の作動接続により零点の調整が不
要で温度ドリフトに対する影響も抑えることができる。
さらには一体化されているので組立時に各軸の調整を要
しないという特徴も有する。
According to the inclination detecting device of the present invention, it is possible to perform detection with good linearity on each coordinate axis and with uniform characteristics, and it is not necessary to adjust the zero point due to the operation connection of the position detecting means having uniform characteristics, and there is no temperature drift. It is possible to suppress the influence on.
Furthermore, since it is integrated, there is also a feature that adjustment of each axis is not required at the time of assembly.

【0027】また、1個の傾斜検出装置で空間の極座標
における垂直軸からの傾きと、水平面内での傾きの成分
を検出できることにより、複数の傾斜検出装置を相対的
に直角に取り付ける手間がかからず、占有体積も小さく
できる。さらに、継鉄により全体を囲むようにしたこと
により磁気シールドされているので、外部磁界の影響を
受けにくい。
Further, since it is possible to detect the tilt component from the vertical axis in the polar coordinates of the space and the tilt component in the horizontal plane by one tilt detecting device, it is troublesome to mount the plurality of tilt detecting devices at a right angle. Therefore, the occupied volume can be reduced. Furthermore, since it is magnetically shielded by surrounding the whole with a yoke, it is less susceptible to the external magnetic field.

【0028】また、第2に発明については、上記特徴に
加えて、振動が多い場所で使うときダンパが効くので振
動があるところでも安定に動作させることができる。
Secondly, according to the second aspect of the invention, in addition to the above characteristics, the damper is effective when used in a place where there is a lot of vibration, so that the device can be operated stably even in a place where there is vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である傾斜検出装置の断面図
であり、(a)はC−C’断面、(b)はA−A’断
面、(c)はB−B’断面である。
1A and 1B are cross-sectional views of a tilt detecting device according to an embodiment of the present invention, in which FIG. 1A is a CC ′ cross section, FIG. 1B is an AA ′ cross section, and FIG. 1C is a BB ′ cross section. Is.

【図2】本発明の一実施例である傾斜検出装置の信号処
理部のブロック図である。
FIG. 2 is a block diagram of a signal processing unit of the inclination detection device which is an embodiment of the present invention.

【図3】空間での座標変換の説明図である。FIG. 3 is an explanatory diagram of coordinate conversion in space.

【符号の説明】[Explanation of symbols]

1:球体(磁性体) 2:容器(非磁性体) 3、4:X軸方向の磁極 5、6:Y軸方向の磁極 7、8:Z軸方向の磁極 9:励磁用発信回路 10:継鉄 11:CPU 12:ROM 13、14:X軸方向の磁極巻線 15、16:Y軸方向の磁極巻線 17、18:Z軸方向の磁極巻線 25:A/D変換器 26:RAM 27:パラレル出力ポート 28:シリアルポート 29:D/A変換器 1: spherical body (magnetic body) 2: container (non-magnetic body) 3, 4: X-axis direction magnetic pole 5, 6: Y-axis direction magnetic pole 7, 8: Z-axis direction magnetic pole 9: excitation oscillation circuit 10: Yoke iron 11: CPU 12: ROM 13, 14: X-axis magnetic pole winding 15, 16: Y-axis magnetic pole winding 17, 18: Z-axis magnetic pole winding 25: A / D converter 26: RAM 27: Parallel output port 28: Serial port 29: D / A converter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁性体からなる球体と、前記球体を内包
し前記球体より大きな径の球形の空間を持つ非磁性体か
らなる容器と、前記容器の球形の空間に外接する立方体
と球形の空間との接点に当たる位置に設けた6個の磁極
と、前記各磁極に巻かれた各々2組の巻線であって片方
は励磁側として各磁極巻線とも共通に励磁用の交流電流
が流され、もう片方は検出側として、各々向き合った磁
極同志の巻線が差動接続されているものと、前記磁極の
外側を連結した磁性体からなる継鉄を備えたことを特徴
とする傾斜検出装置。
1. A spherical body made of a magnetic material, a container made of a non-magnetic material which contains the spherical body and has a spherical space having a diameter larger than that of the spherical body, and a cube and a spherical space which circumscribe the spherical space of the container. There are six magnetic poles provided at positions corresponding to the contact points with two magnetic poles, and two pairs of windings are wound around the magnetic poles, one of which is the excitation side, and an alternating current for excitation is commonly applied to each magnetic pole winding. The other one is, on the detection side, one in which windings of opposite magnetic poles facing each other are differentially connected, and a yoke made of a magnetic material connecting the outside of the magnetic poles is provided. .
【請求項2】 前記容器と球体との間に生じる空間に
化学的に不活性な液体を封入したことを特徴とする請求
項1の傾斜検出装置。
2. The tilt detecting device according to claim 1, wherein a chemically inert liquid is sealed in a space formed between the container and the sphere.
JP3606596A 1996-02-23 1996-02-23 Inclination detecting apparatus Pending JPH09229683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3606596A JPH09229683A (en) 1996-02-23 1996-02-23 Inclination detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3606596A JPH09229683A (en) 1996-02-23 1996-02-23 Inclination detecting apparatus

Publications (1)

Publication Number Publication Date
JPH09229683A true JPH09229683A (en) 1997-09-05

Family

ID=12459325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3606596A Pending JPH09229683A (en) 1996-02-23 1996-02-23 Inclination detecting apparatus

Country Status (1)

Country Link
JP (1) JPH09229683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464551C (en) * 2003-08-26 2009-02-25 乐金电子(中国)研究开发中心有限公司 Portable terminal input device
CN101957247A (en) * 2010-08-23 2011-01-26 李若泓 Pressure sensing device for keeping balance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464551C (en) * 2003-08-26 2009-02-25 乐金电子(中国)研究开发中心有限公司 Portable terminal input device
CN101957247A (en) * 2010-08-23 2011-01-26 李若泓 Pressure sensing device for keeping balance

Similar Documents

Publication Publication Date Title
EP1037056A1 (en) Current sensor
US6148669A (en) Acceleration sensor with a spherical inductance influencing member
JP2009069148A (en) Device for measuring magnetic field
US11841258B2 (en) Coriolis measuring sensor and coriolis measuring device having a coriolis measuring sensor
WO2022030287A1 (en) Current measurement device
US4362992A (en) System and method of detecting the proximity of an alternating magnetic field
US5237872A (en) Angular velocity sensor
US3873914A (en) Flux valve apparatus for sensing both horizontal and vertical components of an ambient magnetic field
JPH09229683A (en) Inclination detecting apparatus
CA1231255A (en) Coil system for inductive measurement of the velocity of movement of a magnetized body
JP4804764B2 (en) Small magnetic sensor element that detects magnetic field in three dimensions
JPH0749960B2 (en) Geomagnetic azimuth measuring device
JP4125059B2 (en) Multi-axis tilt detector
US5637813A (en) Pendular sensor with unlimited rotation along its longitudinal axis
US6336081B1 (en) Geomagnetic field direction measuring system
RU2725880C1 (en) Two-channel angular speed sensor
JPH09288124A (en) Acceleration detection apparatus
JPH041308B2 (en)
RU2166735C1 (en) Device for remote determination of coordinates and attitude of object (versions)
JPS61226608A (en) Horizontal and inclination angle detecting device using magnetic fluid
KR100237388B1 (en) Electric compass sensor using flux gate and rate sensor
JPH09273938A (en) Hybrid inertial navigation apparatus
JP3718751B2 (en) Method and apparatus for guiding unmanned driving vehicles
CN114814328A (en) Current measuring method and system based on three-axis magnetoresistance and storage medium
JPH06160008A (en) Two-dimensional angle-of-inclination detector