JPH09288124A - Acceleration detection apparatus - Google Patents

Acceleration detection apparatus

Info

Publication number
JPH09288124A
JPH09288124A JP8099772A JP9977296A JPH09288124A JP H09288124 A JPH09288124 A JP H09288124A JP 8099772 A JP8099772 A JP 8099772A JP 9977296 A JP9977296 A JP 9977296A JP H09288124 A JPH09288124 A JP H09288124A
Authority
JP
Japan
Prior art keywords
sphere
space
container
spherical
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8099772A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kinoshita
秀俊 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8099772A priority Critical patent/JPH09288124A/en
Publication of JPH09288124A publication Critical patent/JPH09288124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acceleration detection apparatus by which the direction and the magnitude of an acceleration in a space can be detected by one integrated detector and in which the adjustment between three axes is not required. SOLUTION: An acceleration detection apparatus is provided with a container 2 which contains a spherical body 1 at the inside and which has a spherical space whose diameter is larger than that of the spherical body 1, with an elastic body 19 which is situated in a space generated between the container 2 and the spherical body 1 and which weightlessly holds the spherical body 1 in the central point of the spherical space and with a plurality of position detection means 3 to 8 which are installed in positions corresponding to contacts between a cube coming ino external contact with the spherical space at the container 2 and the spherical space. Then, the deviation amount of the central position of the spherical body 1 is measured by the position detection means 3 to 8, and acceleration is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、水中、空中の移
動体、産業機械、民生用機械等に使用する加速度検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration detecting device used for underwater and aerial vehicles, industrial machines, consumer machines and the like.

【0002】[0002]

【従来の技術】従来、空間での加速度を検出するために
は、複数の加速度検出装置をX、Y、Z軸それぞれに対
して配置し、それらの出力から演算を行って求める必要
があった。
2. Description of the Related Art Conventionally, in order to detect an acceleration in space, it has been necessary to dispose a plurality of acceleration detection devices for each of the X, Y and Z axes and to calculate them from the outputs thereof. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、複数の
加速度検出装置を相対的に直角に配置するのは手間がか
かり、その上、占有体積も大きくなるという問題もあっ
た。本発明はこのような問題を解決し、1つの加速度検
出装置で空間での加速度の向きと大きさが検出できるよ
うにすることを目的とする。
However, it is troublesome to arrange a plurality of acceleration detecting devices at a right angle, and in addition, the occupied volume becomes large. SUMMARY OF THE INVENTION It is an object of the present invention to solve such a problem and enable one acceleration detecting device to detect the direction and magnitude of acceleration in space.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
になされた本発明の加速度検出装置は、球体と、前記球
体を内包し前記球体より大きな径の球形の空間を持つ容
器と、前記容器と球体との間に生じる空間にあって無重
力状態で前記球形の空間の中心点に前記球体を保持する
弾性体と、前記容器の球形の空間に外接する立方体と球
形の空間との接点に当たる位置に設けた複数の位置検出
手段を備えたことを特徴としている。
SUMMARY OF THE INVENTION An acceleration detecting device of the present invention made to solve the above problems is a sphere, a container having the sphere therein and having a spherical space having a diameter larger than that of the sphere, and the container. And a spherical body in a space generated between the spherical body and the elastic body for holding the spherical body at the center point of the spherical space, and a position corresponding to the contact point between the cube and the spherical space circumscribing the spherical space of the container. Is provided with a plurality of position detecting means.

【0005】この発明の加速度検出装置では、球形の空
間を持つ容器内の球体は加速度を受けることによって球
体の質量と受けた加速度の積に当たる力と弾性体の反発
力が釣り合う位置にずれる。
In the acceleration detecting device of the present invention, the sphere in the container having the spherical space is subjected to acceleration, whereby the force corresponding to the product of the mass of the sphere and the received acceleration and the repulsive force of the elastic body are displaced to each other.

【0006】これを囲む複数の位置検出手段との距離が
それに応じて決まり、各々の位置検出手段に検出される
信号も決まる。
The distances from the plurality of position detecting means surrounding it are determined accordingly, and the signals detected by the respective position detecting means are also determined.

【0007】そして、前記複数の位置検出手段に検出さ
れた信号から、空間の直交座標上の加速度ベクトルのX
軸、Y軸、Z軸成分がわかる。以上により、1個の加速
度検出装置で空間の加速度を検出できる。
Then, from the signals detected by the plurality of position detecting means, X of the acceleration vector on the Cartesian coordinates of the space is calculated.
The axis, Y axis, and Z axis components are known. As described above, the acceleration of the space can be detected by one acceleration detecting device.

【0008】さらに、第2の発明は、磁性体からなる球
体と、前記球体を内包し前記球体より大きな径の球形の
空間を持つ非磁性体からなる容器と、前記容器と球体と
の間に生じる空間にあって無重力状態で前記球形の空間
の中心点に前記球体を保持する弾性体と、前記容器の球
形の空間に外接する立方体と球形の空間との接点に当た
る位置に設けた6個の磁極と、前記各磁極に巻かれた各
々2組の巻線であって片方は励磁側として各磁極巻線と
も共通に励磁用の交流電流が流され、もう片方は検出側
として、各々向き合った磁極同志の巻線が差動接続され
ているものと、前記磁極の外側を連結した磁性体からな
る継鉄を備えたことを特徴としている。向き合った磁極
に同じ線径、同じ材質の巻線を同じ回数巻くことは容易
にでき、各々励磁側に同じ発振器から交流電流を流し、
磁極に磁性体が接近した場合の各磁極の検出側の誘導電
圧を計るとすれば、きわめて特性が近いものができる。
Further, the second invention is such that a sphere made of a magnetic material, a container made of a non-magnetic material which contains the sphere and has a spherical space having a diameter larger than that of the sphere, and between the container and the sphere. An elastic body that holds the sphere at the center point of the spherical space in a weightless state in the space where it occurs, and six pieces provided at the position corresponding to the contact point between the cube and the spherical space that circumscribes the spherical space of the container. A magnetic pole and two sets of windings wound around the magnetic poles, one of which is an excitation side, and an alternating current for excitation is commonly applied to each magnetic pole winding, and the other of which is a detection side and faces each other. It is characterized in that the windings of the same magnetic pole are differentially connected and that a yoke made of a magnetic material that connects the outsides of the magnetic poles is provided. It is easy to wind the windings of the same wire diameter and the same material on the facing magnetic poles the same number of times, and apply an alternating current from the same oscillator to each excitation side,
If the induced voltage on the detection side of each magnetic pole is measured when the magnetic body approaches the magnetic pole, it is possible to obtain one with extremely close characteristics.

【0009】また、磁性体の移動範囲は両磁極の間の空
間に限定されるので磁極間の距離を小さくすることによ
り直線性の良い部分だけを使うことができる。
Further, since the moving range of the magnetic body is limited to the space between both magnetic poles, only the portion having good linearity can be used by reducing the distance between the magnetic poles.

【0010】向き合った磁極の検出側の巻線を位相が逆
になるように差動接続し、磁極の間にある磁性体の位置
を計る場合、磁性体が両磁極と等距離にある時、検出側
の出力は同じ電圧となり打ち消し合って零となる。
When the detection side windings of the facing magnetic poles are differentially connected so that the phases are opposite to each other and the position of the magnetic body between the magnetic poles is measured, when the magnetic body is equidistant from both magnetic poles, The output on the detection side has the same voltage and cancels each other out to zero.

【0011】また、温度ドリフトに対しても、各々の磁
極の検出巻線からの信号は同じ量だけ信号がシフトする
が、それらの信号の差を取るため打ち消され精度に対す
る影響を押さえることができる。
Further, even with respect to the temperature drift, the signals from the detection windings of the respective magnetic poles are shifted by the same amount, but since the signals are different, they are canceled and the influence on the accuracy can be suppressed. .

【0012】前記の特長は3組の磁極の対について同じ
であるから、特に調整を要することなく球体の位置を空
間の直交座標上のX軸、Y軸、Z軸成分として各磁極の
対からそれぞれ精度良く取り出すことができる。
Since the above-mentioned characteristics are the same for the three pairs of magnetic poles, the position of the sphere is used as the X-axis, Y-axis, and Z-axis components on the Cartesian coordinates of the space without any special adjustment. Each can be taken out accurately.

【0013】加速度の方向と大きさによって球形の空間
内での球体の位置が決まるから、球形の空間の中心を原
点とした球体の位置のベクトルは加速度の大きさと方向
を示す。
Since the position of the sphere in the spherical space is determined by the direction and magnitude of the acceleration, the vector of the position of the sphere with the center of the spherical space as the origin indicates the magnitude and direction of the acceleration.

【0014】以上により、より簡単に、より良い直線
性、精度の加速度検出装置を得ることができる。
As described above, it is possible to easily obtain an acceleration detecting device having better linearity and accuracy.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図を用い
て説明する。図1は本発明の一実施例を示す加速度検出
器の断面図であり、図2は図1の加速度検出器に接続さ
れる信号処理部のブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a sectional view of an acceleration detector showing an embodiment of the present invention, and FIG. 2 is a block diagram of a signal processing unit connected to the acceleration detector of FIG.

【0016】図1において、1は球体であり、たとえば
鉄球が用いられる。2は前記球体1を内包する球形の空
間を持つ容器であり、たとえば合成樹脂などが用いられ
る。なお、容器内で球体1が移動できるように、容器2
の球形の空間の直径は球体1の直径よりも大きくとって
ある。
In FIG. 1, reference numeral 1 denotes a sphere, for example, an iron ball is used. Reference numeral 2 denotes a container having a spherical space that encloses the spherical body 1, and is made of, for example, synthetic resin. It should be noted that the container 2 can be moved so that the sphere 1 can move inside the container
The diameter of the spherical space is larger than the diameter of the spherical body 1.

【0017】前記容器2と球体1との間に生じる空間に
は無重力状態で前記球形の空間の中心点に前記球体を保
持する形で弾性体19が入れられている。弾性体にはた
とえばゴムを用いる。なお、弾性体の取り付けの際は、
球体を位容器の中心に仮に設置するために、容器下部に
水平面内で120度ごと、垂直面に対して45度に定め
られた3本の細い位置決め用ピンをはめ込んでこれによ
り支えた状態でゴムを取り付け、その後引き抜くように
する。
In the space formed between the container 2 and the spherical body 1, an elastic body 19 is inserted so as to hold the spherical body at the center point of the spherical space in a weightless state. Rubber is used for the elastic body, for example. In addition, when attaching the elastic body,
In order to temporarily install the sphere in the center of the container, insert three thin positioning pins, which are set at 120 ° in the horizontal plane and 45 ° with respect to the vertical plane, into the lower part of the container and support it by this. Attach the rubber and then pull it out.

【0018】前記容器2には球形の空間に外接する立方
体と球形の空間との接点に当たる位置に合計6個の位置
検出手段3、4、5、6、7、8が設けられている。位
置検出手段にはたとえば近接センサが用いられる。すな
わち、容器2の球形の空間の中心を原点とするX、Y、
Z直交座標を考えると、各座標軸上にそれぞれ2個づつ
の位置検出手段がそれぞれ向き合う形で設置されてい
る。
The container 2 is provided with a total of six position detecting means 3, 4, 5, 6, 7, 8 at the positions corresponding to the contact points between the cube circumscribing the spherical space and the spherical space. For example, a proximity sensor is used as the position detecting means. That is, X, Y, whose origin is the center of the spherical space of the container 2,
Considering the Z orthogonal coordinates, two position detecting means are installed on each coordinate axis so as to face each other.

【0019】それぞれ向き合っている2個の位置検出手
段の信号の差を取ると、球形の空間の中の球体1の位置
の各座標軸方向の成分を検出できることになる。
By taking the difference between the signals of the two position detecting means facing each other, the component of the position of the sphere 1 in the spherical space in each coordinate axis direction can be detected.

【0020】本発明の加速度検出装置に加速度がかかっ
た場合の動作を図7で説明する。図7において座標の原
点Oは容器2の球形の空間の中心位置である。
The operation when acceleration is applied to the acceleration detecting device of the present invention will be described with reference to FIG. In FIG. 7, the origin O of the coordinates is the center position of the spherical space of the container 2.

【0021】加速度がかからない状態では、球体1は弾
性体19に支えられて球体1の中心が原点Oにある。
加速度がかかった状態では、球体1には次式で示される
ような力Fが発生する。
When no acceleration is applied, the spherical body 1 is supported by the elastic body 19 and the center of the spherical body 1 is at the origin O.
In the state of being accelerated, a force F as shown by the following equation is generated on the spherical body 1.

【0022】F=m・a F:球体1が加速度を受けることによって弾性体19を
押す力 m:球体1の質量 a:加速度 球体は弾性体19で囲まれているため、球体1は加速度
による力Fと、球体1が動くことに対して発生する弾性
体19の反発力Fsとが釣り合う位置に移動する。そし
て、球体1の空間上の位置を検出すれば、原点Oからの
移動距離pは加速度の大きさに比例し、原点からの方向
は加速度と正反対の向きになる。従って、原点から見た
球体の位置を検出すれば、空間での加速度の方向と大き
さを測定できる。
F = m · a F: Force that pushes the elastic body 19 when the spherical body 1 receives acceleration m: Mass of the spherical body 1 a: Acceleration Since the spherical body is surrounded by the elastic body 19, the spherical body 1 is subject to acceleration. The force F and the repulsive force Fs of the elastic body 19 generated due to the movement of the sphere 1 move to a position where they are in balance. When the position of the sphere 1 in space is detected, the moving distance p from the origin O is proportional to the magnitude of the acceleration, and the direction from the origin is the direction opposite to the acceleration. Therefore, if the position of the sphere seen from the origin is detected, the direction and magnitude of the acceleration in space can be measured.

【0023】図2に信号処理部のブロック図を示す。位
置検出手段3、4、5、6、7、8は球体1が接近する
とその距離に応じて電圧を出力するものである。各位置
検出手段は、それぞれ3、4がX軸、5、6がY軸、
7、8がZ軸方向の球の位置を検出するために配置され
ている。位置検出手段3と4からの出力信号は差動増幅
器9で差を取られ球体1の位置のX軸に関する情報とし
て電圧信号Vxとなる。同様に、位置検出手段5と6か
らの出力信号は差動増幅器10で差を取られ球体1の位
置のY軸に関する情報としての電圧信号Vy、位置検出
手段7と8からの信号は差動増幅器11で差を取られ球
体1の位置のZ軸に関する情報としての電圧信号Vzと
なる。 各軸電圧信号Vx、Vy、Vzは、A/D変換
器12によってそれぞれディジタル信号化される。
FIG. 2 shows a block diagram of the signal processing section. The position detecting means 3, 4, 5, 6, 7, 8 outputs a voltage according to the distance when the sphere 1 approaches. In each position detecting means, 3, 4 are X-axis, 5 and 6 are Y-axis,
7 and 8 are arranged to detect the position of the sphere in the Z-axis direction. The output signals from the position detecting means 3 and 4 are subtracted by the differential amplifier 9 and become a voltage signal Vx as information about the X axis of the position of the sphere 1. Similarly, the output signals from the position detecting means 5 and 6 are subtracted by the differential amplifier 10, and the voltage signal Vy as information on the Y axis of the position of the sphere 1 and the signals from the position detecting means 7 and 8 are differential. The difference is taken by the amplifier 11 and becomes a voltage signal Vz as information on the Z axis of the position of the sphere 1. The axis voltage signals Vx, Vy, Vz are converted into digital signals by the A / D converter 12.

【0024】ディジタル化された信号は、ROM14に
書き込まれているプログラムによりCPU13、RAM
15で処理され、パラレル信号としての出力はパラレル
出力ポート16、シリアル信号としての出力はシリアル
ポート17、アナログ電圧としての出力はD/A変換器
18から出力される。
The digitized signal is sent to the CPU 13 and RAM by the program written in the ROM 14.
The output as a parallel signal is output from the parallel output port 16, the output as a serial signal is output from the serial port 17, and the output as an analog voltage is output from the D / A converter 18.

【0025】次に、プログラムでの信号処理の概略を説
明する。空間の直交座標での各座標軸の成分を意味する
Vx、Vy、Vzを、加速度ベクトルの各軸成分とする
ように係数をかける処理をする。必要であれは演算処理
にて空間の直交座標系から極座標系への変換も可能であ
る。
Next, an outline of signal processing by a program will be described. A process of multiplying Vx, Vy, and Vz, which means the component of each coordinate axis in the orthogonal coordinates of the space, with each axis component of the acceleration vector is performed. If necessary, it is possible to convert the space orthogonal coordinate system to the polar coordinate system by arithmetic processing.

【0026】前記実施例では精度を上げるために位置検
出手段を6個用いて各軸差を取っているが、各軸1個と
して差動増幅器を省いても同様に、加速度を検出でき
る。
In the above embodiment, six position detecting means are used to improve the accuracy to take the difference between the axes, but the acceleration can be detected in the same manner even if the differential amplifier is omitted with one axis.

【0027】また、本発明の他の一実施例である加速度
検出器の断面図を図3に示す。図3に於て、21は磁性
体の球体であり、たとえば鉄球が用いられる。22は前
記球体21を内包する球形の空間を持つ非磁性体からな
る容器であり、たとえば合成樹脂などが用いられる。な
お、容器内で球体21が移動できるように、容器22の
球形の空間の直径は球体21の直径よりも大きくとって
ある。
FIG. 3 is a sectional view of an acceleration detector which is another embodiment of the present invention. In FIG. 3, reference numeral 21 denotes a magnetic spherical body, for example, an iron ball is used. Reference numeral 22 denotes a container made of a non-magnetic material having a spherical space that encloses the spherical body 21 and is made of, for example, synthetic resin. The diameter of the spherical space of the container 22 is set larger than the diameter of the sphere 21 so that the sphere 21 can move within the container.

【0028】前記容器22と球体21との間に生じる空
間には無重力状態で前記球形の空間の中心点に前記球体
を保持する形で弾性体19が入れられている。弾性体に
はたとえばゴムを用いる。
In the space formed between the container 22 and the sphere 21, an elastic body 19 is inserted so as to hold the sphere at the center point of the spherical space in a weightless state. Rubber is used for the elastic body, for example.

【0029】容器22には、その球形の空間に外接する
立方体と球形の空間との接点に当たる位置に合計6個の
磁極23、24、25、26、27、28が設けられて
いる。すなわち、容器22の球形の空間の中心を原点と
するX、Y、Z直交座標を考えると、各座標軸上にそれ
ぞれ2個づつの磁極がそれぞれ向き合う形で設置されて
いる。この各磁極23、24、25、26、27、28
には巻線33,34,35,36,37,38が巻かれ
ている。各巻線はそれぞれ2組あり、片方は励磁側とし
て交流電流が流される。もう片方は検出側で、各磁極2
3〜28に磁性体からなる球体21が近づくほど誘導電
圧は大きくなる。各磁極23〜28は、それぞれ磁性体
からなる継鉄30に連結されている。継鉄30は全体を
覆い、磁気シールドも兼ねている。
The container 22 is provided with a total of six magnetic poles 23, 24, 25, 26, 27, 28 at the positions corresponding to the contact points between the cube circumscribing the spherical space and the spherical space. That is, considering X, Y, and Z orthogonal coordinates with the origin of the center of the spherical space of the container 22, two magnetic poles are respectively installed on each coordinate axis so as to face each other. These magnetic poles 23, 24, 25, 26, 27, 28
Windings 33, 34, 35, 36, 37, 38 are wound around the. There are two sets of each winding, and one side is an excitation side and an alternating current is passed through. The other is the detection side, each magnetic pole 2
The induced voltage increases as the spherical body 21 made of a magnetic material approaches 3 to 28. Each of the magnetic poles 23 to 28 is connected to a yoke 30 made of a magnetic material. The yoke 30 covers the whole and also serves as a magnetic shield.

【0030】加速度の方向と大きさによって球形の空間
内での球体の位置が決まるから、球形の空間の中心を原
点とした球体の位置のベクトルは加速度の大きさと方向
を示す。
Since the position of the sphere in the spherical space is determined by the direction and magnitude of the acceleration, the vector of the position of the sphere with the center of the spherical space as the origin indicates the magnitude and direction of the acceleration.

【0031】図4に図3の加速度検出器の信号処理部の
ブロック図を示す。各磁極は、それぞれ23、24がX
軸、25、26がY軸、27、28がZ軸方向の球体2
1の位置を検出するために配置されており、各磁極の巻
線33、34、35、36、37、38の検出側の巻線
は33と34、35と36、37と38がそれぞれ差動
接続されている。
FIG. 4 shows a block diagram of a signal processing unit of the acceleration detector shown in FIG. For each magnetic pole, 23 and 24 are X
Axis 2, 25 and 26 are Y-axis, 27 and 28 are Z-axis spheres 2
It is arranged to detect the position of No. 1, and the windings 33, 34, 35, 36, 37, 38 of the respective magnetic poles on the detection side are 33 and 34, 35 and 36, and 37 and 38, respectively. Connected.

【0032】各巻線の励磁側には励磁用発振回路29か
ら交流の励磁電流が流されている。巻線33と34の検
出側からの信号は検波器40を通り、さらにフィルタ4
1を通る。前記操作の結果、球体21の位置のX軸に関
する情報が電圧信号Vxとして得られる。同様に、巻線
35と36の検出側からの信号は検波器42とフィルタ
43を通り球体21の位置のY軸に関する情報としての
電圧信号Vyとなり、巻線37と38の検出側からの信
号は検波器44とフィルタ45を通り球体21の位置の
Z軸に関する情報としての電圧信号Vzとなる。
An alternating exciting current is supplied from the exciting oscillation circuit 29 to the exciting side of each winding. The signal from the detection side of the windings 33 and 34 passes through the detector 40, and the filter 4
Pass 1 As a result of the above operation, information about the X axis of the position of the sphere 21 is obtained as the voltage signal Vx. Similarly, the signal from the detection side of the windings 35 and 36 passes through the detector 42 and the filter 43 and becomes a voltage signal Vy as information on the Y axis of the position of the sphere 21, and the signal from the detection side of the windings 37 and 38. Passes through the detector 44 and the filter 45 and becomes a voltage signal Vz as information about the Z axis of the position of the sphere 21.

【0033】各軸電圧信号Vx、Vy、Vzは、A/D
変換器46によってそれぞれディジタル信号化される。
ディジタル化された信号は、ROM31に書き込まれて
いるプログラムによりCPU39、RAM32で処理さ
れ、パラレル信号としての出力はパラレル出力ポート4
7、シリアル信号としての出力はシリアルポート48、
アナログ電圧としての出力はD/A変換器49から出力
される。プログラムでの信号処理は、前記実施例と同じ
である。
Each axis voltage signal Vx, Vy, Vz is A / D
Each of them is converted into a digital signal by the converter 46.
The digitized signal is processed by the CPU 39 and the RAM 32 by the program written in the ROM 31, and the parallel signal is output as the parallel output port 4.
7. The serial signal output is the serial port 48,
The output as an analog voltage is output from the D / A converter 49. The signal processing by the program is the same as in the above embodiment.

【0034】上記の実施例では、各磁極に2組の巻線を
用い、向かい合っている磁極の検出用巻線を差動接続し
て、差動トランスとして用いているが、検出用巻線の代
わりに磁極の先端に固着した磁気検出素子を用いること
でも同様に、加速度を検出できる。磁気検出素子として
はホール素子や磁気抵抗素子を用いる。なお、これらの
素子は一般的に良く知られているので説明ではバイアス
回路などを含んでいるものとし、出力は電圧で得られる
ものとして説明する。
In the above embodiment, two sets of windings are used for each magnetic pole, and the detection windings of the facing magnetic poles are differentially connected and used as a differential transformer. The acceleration can be similarly detected by using a magnetic detection element fixed to the tip of the magnetic pole instead. A Hall element or a magnetoresistive element is used as the magnetic detection element. Since these elements are generally well known, the description will be made assuming that a bias circuit and the like are included, and that the output is obtained by voltage.

【0035】この場合の実施例の断面図を図5に、信号
処理部のブロック図を図6に示す。大部分の動作原理は
前記実施例と同じであるので省略し、異なる部分のみ説
明する。
FIG. 5 shows a sectional view of the embodiment in this case, and FIG. 6 shows a block diagram of the signal processing section. Since most of the operating principle is the same as that of the above-mentioned embodiment, it will be omitted and only different parts will be described.

【0036】前記実施例では、各磁極に2組の巻線を用
い、向かい合っている磁極の検出用巻線を差動接続し
て、差動トランスとして用いたが、本実施例では検出用
巻線の代わりに磁極の先端に固着した磁気検出素子5
1、52、53、54、55、56を用いる。磁気検出
素子51と52の出力信号は差動増幅器58で差を取ら
れた後検波器61とフィルタ64を通る。前記操作の結
果、球体21の位置のX軸に関する情報が電圧信号Vx
として得られる。同様に、磁気検出素子53と54から
の信号は差動増幅器59で差を取られ検波器62とフィ
ルタ65を通って球体21の位置のY軸に関する情報と
しての電圧信号Vy、磁気検出素子55と56からの信
号は差動増幅器60で差を取られ検波器63とフィルタ
66を通って球体21の位置のZ軸に関する情報として
の電圧信号Vzとなる。
In the above embodiment, two sets of windings are used for each magnetic pole, and the detection windings of the facing magnetic poles are differentially connected and used as a differential transformer. However, in this embodiment, the detection windings are used. Magnetic detection element 5 fixed to the tip of the magnetic pole instead of the wire
1, 52, 53, 54, 55, 56 are used. The output signals of the magnetic detection elements 51 and 52 are passed through the detector 61 and the filter 64 after being subtracted by the differential amplifier 58. As a result of the above operation, information about the X axis of the position of the sphere 21 is the voltage signal Vx.
Is obtained as Similarly, the signals from the magnetic detection elements 53 and 54 are subtracted by the differential amplifier 59, passed through the detector 62 and the filter 65, and the voltage signal Vy as information about the Y axis at the position of the sphere 21 and the magnetic detection element 55. The signals from and 56 are taken out by the differential amplifier 60, passed through the detector 63 and the filter 66, and become a voltage signal Vz as information on the Z axis at the position of the sphere 21.

【0037】[0037]

【発明の効果】本発明の加速度検出装置によれば、1個
の加速度検出装置で空間での加速度の向きと大きさが検
出できることにより、複数の加速度検出装置を相対的に
直角に取り付ける手間がかからず、占有体積も小さくで
きる。
According to the acceleration detecting device of the present invention, since the direction and magnitude of the acceleration in space can be detected by one acceleration detecting device, there is no need to attach a plurality of acceleration detecting devices at a relatively right angle. It does not take, and the occupied volume can be reduced.

【0038】一体化されているので組立時に各軸の調整
を要しないという特徴も有する。
Since they are integrated, there is also a feature that adjustment of each axis is not required at the time of assembly.

【0039】また、第2の発明については、上記特徴に
加えて、各座標軸とも直線性が良く特性の揃った検出が
でき、特性の揃った位置検出手段同志の差動接続により
零点の調整が不用で温度ドリフトに対する影響も押さえ
ることができる。さらに、継鉄により全体を囲むように
したことにより磁気シールドされているので、外部磁界
の影響を受けにくい。
In the second invention, in addition to the above characteristics, detection can be performed with good linearity on each coordinate axis and with uniform characteristics, and the zero point can be adjusted by the differential connection of the position detecting means with uniform characteristics. It is unnecessary and can suppress the influence on temperature drift. Furthermore, since it is magnetically shielded by surrounding the whole with a yoke, it is less susceptible to the external magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である加速度検出装置の断面
図であり、(a)はC−C’断面、(b)はA−A’断
面、(c)はB−B’断面である。
FIG. 1 is a cross-sectional view of an acceleration detecting device according to an embodiment of the present invention, in which (a) is a CC ′ cross section, (b) is an AA ′ cross section, and (c) is a BB ′ cross section. Is.

【図2】図1の加速度検出装置の信号処理部のブロック
図である。
FIG. 2 is a block diagram of a signal processing unit of the acceleration detection device of FIG.

【図3】本発明の他の一実施例である加速度検出装置の
断面図であり、(a)はF−F’断面、(b)はD−
D’断面、(c)はE−E’断面である。
3A and 3B are cross-sectional views of an acceleration detecting device according to another embodiment of the present invention, in which FIG. 3A is a FF ′ cross section, and FIG.
D'section, (c) is an EE 'section.

【図4】図3の加速度検出装置の信号処理部のブロック
図である。
FIG. 4 is a block diagram of a signal processing unit of the acceleration detection device in FIG.

【図5】本発明の一実施例である加速度検出装置の断面
図であり、(a)はI−I’断面、(b)はG−G’断
面、(c)はH−H’断面である。
5A and 5B are cross-sectional views of an acceleration detecting device according to an embodiment of the present invention, in which FIG. 5A is an II ′ cross section, FIG. 5B is a GG ′ cross section, and FIG. Is.

【図6】図5の加速度検出装置の信号処理部のブロック
図である。
6 is a block diagram of a signal processing unit of the acceleration detection device in FIG.

【図7】この発明の動作説明図である。FIG. 7 is an explanatory diagram of the operation of the present invention.

【符号の説明】[Explanation of symbols]

1:球体 2:容器 3、4:X軸方向の位置検出手段 5、6:Y軸方向の位置検出手段 7、8:Z軸方向の位置検出手段 19:弾性体 21:球体(磁性体) 22:容器(非磁性体) 23、24:X軸方向の磁極 25、26:Y軸方向の磁極 27、28:Z軸方向の磁極 29:励磁用発振回路 30:継鉄 33、34:X軸方向の磁極巻線 35、36:Y軸方向の磁極巻線 37、38:Z軸方向の磁極巻線 51、52:X軸方向の磁気検出素子 53、54:Y軸方向の磁気検出素子 55、56:Z軸方向の磁気検出素子 DESCRIPTION OF SYMBOLS 1: Sphere 2: Container 3, 4: X-axis direction position detecting means 5, 6: Y-axis direction position detecting means 7, 8: Z-axis direction position detecting means 19: Elastic body 21: Sphere (magnetic body) 22: container (non-magnetic body) 23, 24: magnetic pole in X-axis direction 25, 26: magnetic pole in Y-axis direction 27, 28: magnetic pole in Z-axis direction 29: excitation oscillation circuit 30: yoke 33, 34: X Axial magnetic pole winding 35, 36: Y-axis magnetic pole winding 37, 38: Z-axis magnetic pole winding 51, 52: X-axis magnetic detecting element 53, 54: Y-axis magnetic detecting element 55, 56: Z-axis magnetic detection element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 球体と、前記球体を内包し前記球体より
大きな径の球形の空間を持つ容器と、前記容器と球体と
の間に生じる空間にあって無重力状態で前記球形の空間
の中心点に前記球体を保持する弾性体と、前記容器の球
形の空間に外接する立方体と球形の空間との接点に当た
る位置に設けた複数の位置検出手段を備えたことを特徴
とする加速度検出装置。
1. A sphere, a container containing the sphere and having a spherical space having a diameter larger than that of the sphere, and a center point of the spherical space in a space generated between the container and the sphere in a gravity-free state. An acceleration detecting device comprising: an elastic body for holding the sphere; and a plurality of position detecting means provided at a position corresponding to a contact point between a cube and a spherical space circumscribing the spherical space of the container.
【請求項2】 磁性体からなる球体と、前記球体を内包
し前記球体より大きな径の球形の空間を持つ非磁性体か
らなる容器と、前記容器と球体との間に生じる空間にあ
って無重力状態で前記球形の空間の中心点に前記球体を
保持する弾性体と、前記容器の球形の空間に外接する立
方体と球形の空間との接点に当たる位置に設けた6個の
磁極と、前記各磁極に巻かれた各々2組の巻線であって
片方は励磁側として各磁極巻線とも共通に励磁用の交流
電流が流され、もう片方は検出側として、各々向き合っ
た磁極同志の巻線が差動接続されているものと、前記磁
極の外側を連結した磁性体からなる継鉄を備えたことを
特徴とする加速度検出装置。
2. A sphere made of a magnetic material, a container made of a non-magnetic material which contains the sphere and has a spherical space having a diameter larger than that of the sphere, and a space formed between the container and the sphere has no gravity. An elastic body for holding the sphere at the center point of the spherical space in a state, six magnetic poles provided at positions corresponding to the contact points of the cube and the spherical space circumscribing the spherical space of the container, and the magnetic poles. Each of the two windings is wound on one side, and one side is the excitation side, and an alternating current for excitation is commonly applied to each magnetic pole winding, and the other side is the detection side. An acceleration detecting device comprising a differentially connected yoke and a yoke made of a magnetic material that connects the outsides of the magnetic poles.
JP8099772A 1996-04-22 1996-04-22 Acceleration detection apparatus Pending JPH09288124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8099772A JPH09288124A (en) 1996-04-22 1996-04-22 Acceleration detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8099772A JPH09288124A (en) 1996-04-22 1996-04-22 Acceleration detection apparatus

Publications (1)

Publication Number Publication Date
JPH09288124A true JPH09288124A (en) 1997-11-04

Family

ID=14256265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8099772A Pending JPH09288124A (en) 1996-04-22 1996-04-22 Acceleration detection apparatus

Country Status (1)

Country Link
JP (1) JPH09288124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065659A1 (en) * 1999-04-27 2000-11-02 Tokimec Inc. Production method for micro-machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065659A1 (en) * 1999-04-27 2000-11-02 Tokimec Inc. Production method for micro-machine

Similar Documents

Publication Publication Date Title
EP3006896B1 (en) Three-axis digital compass
JP2008096131A (en) Sensor module, correction method, program, and recording medium
US11009566B2 (en) Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
JP2015178956A (en) Three-dimensional magnetic detection device and three-dimensional magnetic detection method
JP6860029B2 (en) Position detector, signal processing circuit and magnetic sensor system
JP2829375B2 (en) Weak magnetic field measuring device and measuring method
EP3433568B1 (en) Magnetic sensor system
EP2513620B1 (en) Magnetic force sensor
JP2004325328A (en) Multiple component force detector
JPS59100812A (en) Device for detecting bearing
JPH09288124A (en) Acceleration detection apparatus
JPH033190B2 (en)
US5502379A (en) Sensor for measuring the swing of a cable including a crown with permanent magnets secured to the cable
JPH0933489A (en) Moving exciting coil type eddy current flaw detector employing squid flux meter
JPH0246913B2 (en)
JPH09204104A (en) Measuring instrument for magnetic attractive force of magnet roller
JP2005043238A (en) Installation structure of magnetic field sensor
JPS6235864B2 (en)
JPS58142203A (en) Magnetic body detecting device
JPS62229076A (en) Acceleration detector
JPH0682206A (en) Non-contact position detector
JPH10260042A (en) Azimuth angle sensor
JPH05218678A (en) Magnetic shielding device
JPH04351909A (en) External disturbance compensation method for on-vehicle direction indicator
JP2005501239A (en) Magnetoresistive angle sensor