JPH09228151A - High-specific gravity and high-strength conjugate fiber and its production - Google Patents

High-specific gravity and high-strength conjugate fiber and its production

Info

Publication number
JPH09228151A
JPH09228151A JP3109196A JP3109196A JPH09228151A JP H09228151 A JPH09228151 A JP H09228151A JP 3109196 A JP3109196 A JP 3109196A JP 3109196 A JP3109196 A JP 3109196A JP H09228151 A JPH09228151 A JP H09228151A
Authority
JP
Japan
Prior art keywords
fiber
specific gravity
fine particles
core component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3109196A
Other languages
Japanese (ja)
Other versions
JP3335063B2 (en
Inventor
Shoichi Nishiyama
正一 西山
Kazuhiko Tanaka
和彦 田中
Eiji Akiba
英治 秋庭
Masao Kawamoto
正夫 河本
Eiichi Sasagawa
栄一 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP03109196A priority Critical patent/JP3335063B2/en
Publication of JPH09228151A publication Critical patent/JPH09228151A/en
Application granted granted Critical
Publication of JP3335063B2 publication Critical patent/JP3335063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a conjugate fiber having a combination of high sinkability with enough mechanical strength to cause no problem in its net making process, and having such high durability and weatherability as not to cause its mechanical strength drop-off even after used as a fishnet for a long period. SOLUTION: This fiber >=1.5 in specific gravity, >=60 in toughness and >=3.5g/d in tenacity, is composed of core component with a thermoplastic polymer >=1 in specific gravity incorporated with 50-85wt.% of non-lead-based inorganic fine particles >=3 in specific gravity and sheath component consisting of a polyester in the weight ratio of core/sheath of (20:80) to (70:30).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高比重と高強度を兼
ね備えた産業資材用途に好適な複合繊維に関し、とくに
海洋環境汚染の問題もなく、耐久性に優れた漁網用に好
適な複合繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite fiber having both high specific gravity and high strength, which is suitable for use in industrial materials, and particularly to a composite fiber which is free from the problem of marine environmental pollution and is suitable for fishing nets having excellent durability. .

【0002】[0002]

【従来の技術】従来、漁網、漁業用ロ−プ等に代表され
る水産用資材として耐水性、耐腐食性、強力、耐摩耗
性、耐久性等の点で天然繊維製品に比して優れた性質を
示す合成樹脂繊維製品が利用されてきた。しかしなが
ら、天然繊維製品に比して含水率が低く、とくに比重が
比較的小さいために海水中での沈降性および潮流に対す
る保形性が不満足であり、その利用に多くの制約を受け
る難点があった。
2. Description of the Related Art Conventionally, as a material for marine products represented by fishing nets, fishing ropes, etc., it is superior to natural fiber products in terms of water resistance, corrosion resistance, strength, abrasion resistance, durability, etc. Synthetic resin fiber products exhibiting the above properties have been used. However, its moisture content is lower than that of natural fiber products, and its specific gravity is relatively small, so its settability in seawater and shape retention against tidal current are unsatisfactory, and its use is subject to many restrictions. It was

【0003】このような難点を克服する種々の提案がな
されてきたが、繊維やロ−プ類それ自体の比重を増大さ
せて水中への沈降性を増す技術が最も注目されてきた。
繊維やロ−プ類自体の比重を増大させるための一手段と
して、金属鉛やその化合物を繊維に練り込む技術がある
が、鉛化合物等が繊維製造工程や加工工程においてガイ
ドとの摩擦で繊維から脱落したり、漁網として使用中に
海水に溶出して鉛公害の問題が発生する可能性があっ
た。さらに使用済の漁網を廃棄する場合においても、廃
棄焼却後に鉛を含む有害成分が残るなど同様の公害問題
が発生する可能性があり、安易には廃棄処分できないと
いう問題があった。一方鉛化合物を使用しない手段とし
て、たとえば比較的比重の大きい塩化ビニリデン系繊維
が使用されてきたが、製網技術の発達に伴って高速製網
に安定して供し得るような高強度の繊維が要求されるよ
うになり、塩化ビニリデン系繊維では強度不足という問
題が生じてきた。また、塩化ビニリデン系繊維からなる
漁網も焼却時には塩化水素ガスが発生するために焼却処
理が困難であるという問題を抱えている。このように、
高比重のみならず、高強度、無公害性なども要求される
ようになってきている。
Various proposals have been made to overcome such difficulties, but the technique of increasing the specific gravity of the fibers and the ropes themselves to increase the sedimentation property in water has received the most attention.
As a means for increasing the specific gravity of the fibers and the ropes themselves, there is a technique of kneading metallic lead or its compound into the fibers. There is a possibility that it may fall off from the ground or may be eluted into seawater during use as a fishing net and lead pollution problems may occur. Further, even when the used fishing net is discarded, there is a possibility that the same pollution problem may occur as a harmful component including lead remains after the waste is incinerated, so that it cannot be easily disposed of. On the other hand, as a means not using a lead compound, for example, vinylidene chloride-based fibers having a relatively large specific gravity have been used, but with the development of net-making technology, high-strength fibers that can be stably supplied to high-speed nets have As a result of the demand, vinylidene chloride fibers have a problem of insufficient strength. Further, a fishing net made of vinylidene chloride fiber also has a problem that it is difficult to incinerate because hydrogen chloride gas is generated during incineration. in this way,
Not only high specific gravity but also high strength and pollution-free properties are required.

【0004】このような要求に対しても種々の提案がな
されており、その1つの手段として、延伸処理により高
強度を発現する樹脂と高比重粉末との組み合わせによる
繊維が考えられている。具体的には(1)合成フィラメ
ント中に亜鉛、鉛等の高比重粉末を均一分散させてなる
繊維(たとえば、特公昭51−37378号公報、特開
昭56−61936号公報、特開昭61−613号公
報)、(2)低軟化点樹脂中に高比重粉末を混合分散
し、この混合物をさらに強度付与のための樹脂と混合し
てなる繊維(たとえば、特公昭57−20407号公
報)、(3)低軟化点樹脂と高比重粉末の混合物を芯層
とし、強度付与の樹脂を鞘層とする有芯型繊維(たとえ
ば、特開昭58−4819号公報)等が提案されてい
る。
Various proposals have been made to meet such demands, and as one means therefor, fibers made of a combination of a resin exhibiting high strength by a stretching treatment and a high specific gravity powder are considered. Specifically, (1) a fiber obtained by uniformly dispersing high specific gravity powder such as zinc or lead in a synthetic filament (for example, Japanese Patent Publication No. 51-37378, Japanese Patent Publication No. 56-61936, Japanese Patent Publication No. 61-61936). -613), (2) a fiber obtained by mixing and dispersing high specific gravity powder in a resin having a low softening point, and further mixing this mixture with a resin for imparting strength (for example, Japanese Patent Publication No. 57-20407). , (3) cored fibers having a mixture of a low softening point resin and high specific gravity powder as a core layer and a strength imparting resin as a sheath layer (for example, JP-A-58-4819). .

【0005】しかしながら、(1)の提案では、繊維の
比重を十分に上げようとすると粉末の添加量が多くな
り、繊維自体の強度が比重の向上に反比例して低下する
欠点を有している。また(2)の提案では、粉末が混合
された低軟化点樹脂が繊維の延伸方向に伸びて部分的に
かつ不規則に埋没偏在する繊維となり、このため該繊維
の製造が繁雑であることのほかに、同一繊維径で上述の
(1)の提案と比較して含有せしめる高比重粉末の量が
当然少なくなる制約があり、比重増大の程度に著しい制
限を受けることになる。さらに(3)の提案では、異種
樹脂界面における非親和性に起因する界面歪みの増大に
伴い、糸質の低下、耐久性の低下等の欠点を有している
ばかりか、低軟化点樹脂中の高比重粉末が均一に分散さ
れていないので繊維繊度の高いものしか得ることができ
ない欠点を有している。
However, the proposal (1) has a drawback that if the specific gravity of the fiber is sufficiently increased, the amount of the powder added increases, and the strength of the fiber itself decreases in inverse proportion to the improvement of the specific gravity. . Further, in the proposal of (2), the low softening point resin mixed with the powder extends in the drawing direction of the fiber to become a fiber which is partially and irregularly embedded unevenly, and therefore the production of the fiber is complicated. In addition, there is a restriction that the amount of high specific gravity powder contained in the same fiber diameter as compared with the proposal of the above (1) is naturally small, and the degree of increase in specific gravity is significantly limited. Further, the proposal of (3) not only has drawbacks such as a decrease in yarn quality and a decrease in durability due to an increase in interfacial strain due to the incompatibility at the interfaces of different resins, but also in the low softening point resin. Since the high specific gravity powder of 1) is not uniformly dispersed, it has a drawback that only powders with high fiber fineness can be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高沈
降性と製網加工上問題のない十分な繊維強度を兼ね備
え、かつ長期間漁網として使用しても強度低下のない優
れた耐久性、耐候性を有する繊維を提供することにあ
る。
The object of the present invention is to have a high settling property and a sufficient fiber strength that does not cause any problems in net-making processing, and has excellent durability that does not decrease even when used as a fishing net for a long period of time. , To provide fibers having weather resistance.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、比
重が1以上の熱可塑性ポリマ−中に、比重が3以上の非
鉛系無機微粒子が50〜85重量%含有されてなる芯成
分と、該芯成分を覆うポリエステルからなる鞘成分とよ
り構成され、該芯成分と該鞘成分の複合重量比率が芯/
鞘=20/80〜70/30、繊維比重が1.5以上、
タフネスが60以上、かつ強度が3.5g/デニ−ル以
上であることを特徴とする複合繊維である。
That is, the present invention provides a core component comprising a thermoplastic polymer having a specific gravity of 1 or more and 50 to 85% by weight of lead-free inorganic fine particles having a specific gravity of 3 or more. And a sheath component made of polyester covering the core component, wherein the composite weight ratio of the core component and the sheath component is core /
Sheath = 20/80 to 70/30, fiber specific gravity of 1.5 or more,
A composite fiber having a toughness of 60 or more and a strength of 3.5 g / denier or more.

【0008】[0008]

【発明の実施形態】本発明の複合繊維は、比重1.5以
上、タフネスが60以上、かつ強度が3.5g/デニ−
ル以上を兼ね備えているものである。該複合繊維の比重
が1.5未満の場合、海水中での高沈降性と漁網の保形
性を達成することが困難であり、強度が3.5g/デニ
−ル未満の場合には高速製網時に繊維が損傷するので実
用的でない。またタフネスは強度と伸度の積で示される
が、該値が60未満の場合、すなわち伸度が低い場合に
は潮流・波浪に対する疲労性、耐久性が低く、漁網とし
ての用をなさない。このような観点から、1.55以上
の比重と4.0g/デニ−ル以上の強度、80以上のタ
フネスを有する繊維であることが望まれる。
BEST MODE FOR CARRYING OUT THE INVENTION The conjugate fiber of the present invention has a specific gravity of 1.5 or more, a toughness of 60 or more, and a strength of 3.5 g / denier.
It has more than just When the specific gravity of the composite fiber is less than 1.5, it is difficult to achieve high sedimentation in seawater and shape retention of the fishing net, and when the strength is less than 3.5 g / denier, high speed is achieved. Not practical because the fibers are damaged during netting. Toughness is represented by the product of strength and elongation, but when the value is less than 60, that is, when elongation is low, fatigue resistance and durability against tidal currents and waves are low, and it is not useful as a fishing net. From this point of view, it is desired that the fiber has a specific gravity of 1.55 or more, a strength of 4.0 g / denier or more, and a toughness of 80 or more.

【0009】そして、本発明においては、繊維を高比重
化するために比重が3以上の非鉛系無機微粒子を含有さ
せることが必須である。比重が3未満の無機微粒子を使
用する場合は、目的の繊維比重を達成するために繊維中
の該無機微粒子の含有量を高め、しかも複合繊維におけ
る芯成分の複合比率を大きくしなければならず、たとえ
目的とする繊維比重の繊維が得られたとしても曳糸性、
延伸性等の工程性が不良で、繊維強力も低いものしか得
られないので漁網としての用途には不適となる。
In the present invention, it is essential to contain lead-free inorganic fine particles having a specific gravity of 3 or more in order to increase the specific gravity of the fiber. When using inorganic fine particles having a specific gravity of less than 3, the content of the inorganic fine particles in the fiber must be increased and the composite ratio of the core component in the composite fiber must be increased in order to achieve the target fiber specific gravity. , Even if the fiber of the target fiber specific gravity is obtained, the spinnability,
It is unsuitable for use as a fishing net because it has poor processability such as drawability and only fiber strength is low.

【0010】該無機微粒子の種類としては非鉛系金属の
微粒子またはその化合物の微粒子を挙げることができ
る。「非鉛系金属」とは、鉛や錫等環境問題を極めて起
こしやすい金属以外の金属を意味しており、具体的には
チタン、鉄、銅、亜鉛、銀、バリウム、ジルコニウム、
マンガン、アンチモン、タングステン等の金属やその酸
化物、塩などを挙げることができる。本発明において
は、無機微粒子としてかかる金属やその酸化物、塩など
から所望に応じて適宜選択することができるが、微粒子
の比重、ポリマ−中での微粒子の分散性、ポリマ−の熱
分解を促進させることのない非触媒性等の点で二酸化チ
タン、酸化鉄、硫酸バリウム等を使用することが好まし
い。さらに該無機微粒子は1種類のみならず、2種類以
上を混合して使用することもできる。
Examples of the type of the inorganic fine particles include fine particles of a lead-free metal or fine particles of a compound thereof. The "lead-free metal" means a metal other than a metal such as lead or tin that is extremely susceptible to environmental problems, and specifically, titanium, iron, copper, zinc, silver, barium, zirconium,
Examples thereof include metals such as manganese, antimony, and tungsten, and oxides and salts thereof. In the present invention, the inorganic fine particles can be appropriately selected from such metals, their oxides, and salts as desired, but the specific gravity of the fine particles, the dispersibility of the fine particles in the polymer, and the thermal decomposition of the polymer can be selected. Titanium dioxide, iron oxide, barium sulfate and the like are preferably used from the viewpoint of non-catalytic property which is not promoted. Further, the inorganic fine particles may be used not only in one kind but also in a mixture of two or more kinds.

【0011】また該無機微粒子の芯成分中の含有量は5
0〜85重量%であることが必要である。該含有量が5
0重量%未満の場合は目的とする繊維比重を得るために
は複合繊維における芯成分比率を大きくしなければなら
ず、繊維強力の低いものしか得られなくなる。一方、該
含有量が85重量%を越える場合は紡糸時のポリマ−溶
融流動性が悪くなり、糸切れが頻発する。
The content of the inorganic fine particles in the core component is 5
It is necessary to be 0 to 85% by weight. The content is 5
If it is less than 0% by weight, the core component ratio in the composite fiber must be increased in order to obtain the target fiber specific gravity, and only a fiber having a low fiber strength can be obtained. On the other hand, when the content exceeds 85% by weight, the polymer melt flowability during spinning is deteriorated and the yarn breaks frequently.

【0012】該無機微粒子の粒子径は、一次粒子の平均
粒子径が5μm以下であることが望ましい。粒子径が5
μmを越えると紡糸・延伸時に断糸や毛羽が多発しやす
くなる。該粒子径があまり小さくなると、ポリマ−中に
微粒子を添加させる時に、成形加工時の熱により熱凝集
が発生して逆に粗大粒子化したり、紡糸時にポリマ−溶
融ラインの配管中で微粒子の熱凝集が発生しやすくなり
ラインが詰まるというトラブルが多発しやすくなる。し
たがって、該無機微粒子の一次粒子の平均粒子径は0.
05μm以上であることが好ましい。
Regarding the particle size of the inorganic fine particles, the average particle size of the primary particles is preferably 5 μm or less. Particle size is 5
If it exceeds μm, yarn breakage or fluffing is likely to occur during spinning and drawing. If the particle size is too small, when the fine particles are added to the polymer, thermal agglomeration occurs due to the heat during the molding process, which causes coarse particles on the contrary, or heat of the fine particles in the pipe of the polymer melting line during spinning. Trouble such as agglomeration is likely to occur and the line is often clogged. Therefore, the average particle diameter of the primary particles of the inorganic fine particles is 0.
It is preferably at least 05 μm.

【0013】該無機微粒子としてまず酸化鉄を使用する
場合について説明する。酸化鉄には色調が黒色のマグネ
タイトすなわち磁鉄鉱(Fe3 4 )、茶色のγ型ヘマ
タイト、赤褐色のα型ヘマタイト等があるが、定置網等
の漁網用繊維においては色相を黒色系とすると魚に警戒
感を与えないため、漁獲高に好結果を与えることがで
き、黒色を呈する磁鉄鉱を使用することが好ましい。磁
鉄鉱を他の無機微粒子と併用する場合には、使用する無
機微粒子全体の20重量%以上を磁鉄鉱にすると染色処
理等を簡素化または省略することができるが、この場合
においても鞘成分として原着ポリエステルを使用するこ
とは何等差支えない。
First, the case where iron oxide is used as the inorganic fine particles will be described. Iron oxide includes magnetite with a black color, that is, magnetite (Fe 3 O 4 ), brown γ-type hematite, reddish-brown α-type hematite, and the like. Since no vigilance is given, it is preferable to use black magnetite, which can give a favorable result to the catch and is black. When magnetite is used in combination with other inorganic fine particles, dyeing treatment or the like can be simplified or omitted by using magnetite in an amount of 20% by weight or more of the whole inorganic fine particles to be used. It does not make any difference to use polyester.

【0014】また酸化鉄の粒子形状としては球状、八面
体状、六面体状、多面体状等があり、いずれの形状をも
使用することができるが、球状の酸化鉄微粒子を使用す
ると芯成分中での分散性が最も良好となり望ましい。と
くに、無機微粒子を多量にポリマ−中に添加する場合に
は、球状微粒子の使用が顕著な効果を奏し、凝集による
紡糸時のフィルタ−詰まりの発生も少なく、しかも紡糸
・延伸時の糸切れ発生も少ない。
The particle shape of iron oxide includes spherical, octahedral, hexahedral and polyhedral shapes, and any shape can be used. Is preferable because it has the best dispersibility. In particular, when a large amount of inorganic fine particles are added to the polymer, the use of spherical fine particles exerts a remarkable effect, the filter clogging during spinning due to agglomeration is less likely to occur, and yarn breakage occurs during spinning / drawing. Also few.

【0015】さらに該酸化鉄は、シリカやフェライト等
の有機系または無機系化合物により表面コ−ティング処
理が施されていてもよく、表面コ−ティング処理がなさ
れた微粒子を使用するとポリマ−の熱分解が抑制され、
微粒子分散性をさらに向上させることができるので好ま
しい。
Further, the iron oxide may be subjected to a surface coating treatment with an organic or inorganic compound such as silica or ferrite. When fine particles subjected to the surface coating treatment are used, the heat of the polymer is reduced. Decomposition is suppressed,
It is preferable because the dispersibility of fine particles can be further improved.

【0016】酸化鉄は芯成分中に含有される無機微粒子
として単独で使用されてもよいが、芯成分中でその含有
率が50重量%を越えると粒子形状、粒子径の適切な酸
化鉄を用いても溶融押出時のライン中での熱凝集による
コンタミの発生や、激しい場合には配管の詰まり等のト
ラブルが生じる場合がある。芯成分中に含有される無機
微粒子として酸化鉄を使用し、50重量%を越える含有
率にするためには酸化鉄と他の微粒子とを併用すること
が好ましい。とくに細デニ−ルの糸を製造する場合等で
は、溶融ポリマ−のライン中での滞留時間が長くなり、
ライン詰まりのトラブル発生の原因ともなる。
Iron oxide may be used alone as the inorganic fine particles contained in the core component, but when the content exceeds 50% by weight in the core component, iron oxide having an appropriate particle shape and particle size is obtained. Even if it is used, contamination may occur due to thermal agglomeration in the line during melt extrusion, and in severe cases, trouble such as pipe clogging may occur. Iron oxide is used as the inorganic fine particles contained in the core component, and it is preferable to use iron oxide in combination with other fine particles in order to achieve a content rate exceeding 50% by weight. Especially when producing fine denier yarns, the residence time in the molten polymer line becomes long,
It also causes troubles such as line clogging.

【0017】酸化鉄と併用する他の微粒子は、比重が3
以上で、かつ一次粒子の平均粒子径が5μm以下、しか
も熱凝集性が余りなく、コスト的にも高価でないものを
選択することが好ましい。好適な例としては二酸化チタ
ン、酸化亜鉛、硫酸バリウム、アルミナ、フェライト、
リトポン、酸化銅、酸化マグネシウム等挙げられ、中で
も芯成分中の無機微粒子の分散性等の点で二酸化チタン
がとくに好ましい。酸化鉄と二酸化チタンとを併用する
場合の混合率は、芯成分に対する合計含有量が50〜8
5重量%の範囲内であれば任意に変更しても紡糸性、延
伸性等良好で大きなトラブルの発生もなく、目的とする
繊維を得ることができる。好適な混合率の例を挙げると
酸化鉄/二酸化チタン=20/80〜70/30(重量
比)である。たとえば、芯成分中の微粒子の合計量が7
0重量%の場合、酸化鉄を30重量%、二酸化チタンを
40重量%にしたり、合計量が60重量%の場合、酸化
鉄を30重量%、二酸化チタンを30重量%にすると、
得られた繊維の色相が好ましいものとなる。
Other fine particles used in combination with iron oxide have a specific gravity of 3
As described above, it is preferable to select the primary particles having an average particle size of 5 μm or less, having little thermal agglomeration, and being inexpensive in terms of cost. Suitable examples include titanium dioxide, zinc oxide, barium sulfate, alumina, ferrite,
Examples thereof include lithopone, copper oxide, and magnesium oxide. Among them, titanium dioxide is particularly preferable in terms of dispersibility of inorganic fine particles in the core component. When iron oxide and titanium dioxide are used in combination, the mixing ratio is such that the total content relative to the core component is 50 to 8
If the amount is within the range of 5% by weight, the desired fiber can be obtained without any serious troubles such as good spinnability and drawability even if arbitrarily changed. An example of a suitable mixing ratio is iron oxide / titanium dioxide = 20/80 to 70/30 (weight ratio). For example, the total amount of fine particles in the core component is 7
In the case of 0% by weight, iron oxide is 30% by weight and titanium dioxide is 40% by weight. When the total amount is 60% by weight, iron oxide is 30% by weight and titanium dioxide is 30% by weight.
The hue of the resulting fiber becomes preferred.

【0018】このように、芯成分中の微粒子の含有量が
50重量%以上の高含有量で、しかもその中に酸化鉄を
高添加するする場合には二酸化チタンを併用して添加す
ることにより、溶融押出時のライン詰まり等のトラブル
がなく、しかも芯成分中の分散性が良好で、工程中の糸
切れも少なく、A格率が高い状態で目的とする繊維が得
られることは、本発明者等が種々検討した中で初めて見
出されたことである。
As described above, when the content of the fine particles in the core component is as high as 50% by weight or more, and when iron oxide is added to the core component at a high content, titanium dioxide is added together. The fact that there is no trouble such as line clogging during melt extrusion, the dispersibility in the core component is good, the number of yarn breakage during the process is small, and the target fiber can be obtained in a state with a high A rating is This was first discovered by the inventors after various examinations.

【0019】次に、無機微粒子として二酸化チタンを使
用する場合について説明する。本発明は優れた機械的物
性と高比重を兼ね備えた漁網用繊維を提供すると同時
に、種々の色相に対応できる漁網用繊維を提供すること
を目的としている。しかしながら、上述のように、無機
微粒子として酸化鉄のような着色微粒子を高含有率で使
用した場合、色相を自由に変更することができにくくな
るが、無機微粒子として二酸化チタンを使用すると、二
酸化チタンが白色であり、このような白色系微粒子を芯
成分中に添加し、鞘成分であるポリエステルに所望の色
の顔料等を配合することで芯成分の色に邪魔されること
なく目的とする色相を発現させることができるのであ
る。
Next, the case where titanium dioxide is used as the inorganic fine particles will be described. It is an object of the present invention to provide a fishing net fiber having both excellent mechanical properties and high specific gravity, and at the same time provide a fishing net fiber capable of coping with various hues. However, as described above, when colored fine particles such as iron oxide are used at a high content rate as the inorganic fine particles, it becomes difficult to freely change the hue. Is white, and such a white fine particle is added to the core component, and the desired hue is obtained without being disturbed by the color of the core component by adding a pigment of a desired color to the polyester that is the sheath component. Can be expressed.

【0020】二酸化チタンは、結晶形によりアナタ−ゼ
型(Anatase)、ルチル型(Rutile)、ブ
ルカイト型(Brookite)の3つの形態があり、
一般に顔料として使用されているのはアナタ−ゼ型とル
チル型である。とくに、合成繊維には工程上の摩耗性に
及ぼす硬度の関係と溶剤または分散媒に対する分散性の
問題からアナタ−ゼ型が主として使用されているが、比
重が高い点、耐光性に優れている点において本発明にお
いてはルチル型を使用することが好ましい。この場合、
モ−ス硬度がルチル型のほうがアナタ−ゼ型のものより
大きく、工程上の摩耗等のトラブルが発生する懸念があ
るが、本発明の複合繊維においては、無機微粒子を含有
する芯成分を鞘成分で実質的に覆っているので、紡糸時
のノズル口金の摩耗や加工工程中のガイド類やロ−ラ類
の摩耗損傷等の問題はない。
Titanium dioxide has three forms of anatase type (Anatase), rutile type (Rutile) and brookite type (Brookite) depending on the crystal form.
Generally used as pigments are anatase type and rutile type. In particular, the anatase type is mainly used for synthetic fibers due to the relationship of hardness affecting wear resistance in the process and the problem of dispersibility in a solvent or dispersion medium, but it has a high specific gravity and is excellent in light resistance. In this respect, the rutile type is preferably used in the present invention. in this case,
Although the motile hardness of the rutile type is larger than that of the anatase type, there is a concern that troubles such as abrasion in the process may occur, but in the composite fiber of the present invention, the core component containing inorganic fine particles is sheathed. Since it is substantially covered with the components, there are no problems such as abrasion of the nozzle die during spinning and abrasion damage of guides and rollers during the processing step.

【0021】また、二酸化チタンは他の無機微粒子に比
し、ポリマ−中に高含有率で添加しても、ポリマ−の溶
融押出時に熱凝集が起こり難く、溶融ポリマ−ライン中
でのコンタミによる詰まりが発生しにくく、紡糸時のフ
ィルタ−詰まりも少なく、かつ紡糸・延伸時の糸切れの
発生も少ない。かかる二酸化チタンの表面はチタン、ア
ルミナ、シリカ等の無機系または有機系化合物によりコ
−ティング処理が施されていてもよく、表面コ−ティン
グ処理がなされた微粒子を使用すると耐熱性や微粒子分
散性をさらに向上させることができるので好ましい。
Titanium dioxide is less likely to cause thermal coagulation during melt extrusion of the polymer even if it is added to the polymer at a high content ratio as compared with other inorganic fine particles, and this is caused by contamination in the melt polymer line. Clogs are less likely to occur, filter clogging during spinning is less, and yarn breakage during spinning and drawing is less likely to occur. The surface of such titanium dioxide may be subjected to a coating treatment with an inorganic or organic compound such as titanium, alumina, silica, etc. When the fine particles subjected to the surface coating treatment are used, heat resistance and fine particle dispersibility are obtained. Is more preferable because it can be further improved.

【0022】二酸化チタンは単独で使用してもよいし、
比重が3以上でかつ平均粒子径が5μm以下の他の微粒
子と併用してもよい。また併用する微粒子が、上述した
ような熱凝集の問題を生じ易いものであっても、二酸化
チタンを15重量%以上、とくに40重量%以上使用す
ることにより分散性の向上が期待できる。他の微粒子と
しては、たとえば酸化錫(スズ石)等に比して毒性の少
ない酸化亜鉛、アルミナ、硫酸バリウム、リトポン、酸
化マグネシウム等を使用することができる。なお、二酸
化チタンは紫外線によるチタン原子の励起により芯成分
を構成する熱可塑性ポリマ−の劣化を促進しやすいので
酸化防止剤を併用することが好ましい。
Titanium dioxide may be used alone or
It may be used in combination with other fine particles having a specific gravity of 3 or more and an average particle diameter of 5 μm or less. Further, even if the fine particles to be used in combination are those which easily cause the problem of thermal aggregation as described above, improvement in dispersibility can be expected by using titanium dioxide in an amount of 15% by weight or more, particularly 40% by weight or more. As other fine particles, for example, zinc oxide, alumina, barium sulfate, lithopone, magnesium oxide, etc., which have less toxicity than tin oxide (tin stone), etc. can be used. Since titanium dioxide easily promotes deterioration of the thermoplastic polymer constituting the core component by exciting titanium atoms with ultraviolet rays, it is preferable to use an antioxidant together.

【0023】本発明において芯成分を構成する熱可塑性
ポリマ−は比重が1以上であることが必要である。該熱
可塑性ポリマ−の比重が1未満の場合、繊維の比重を高
めるためには微粒子の含有量を多くせざるを得ず、より
工程調子を乱すことになる。
In the present invention, the thermoplastic polymer constituting the core component must have a specific gravity of 1 or more. If the specific gravity of the thermoplastic polymer is less than 1, the content of the fine particles must be increased in order to increase the specific gravity of the fiber, which further disturbs the process condition.

【0024】また、一般に無機微粒子を高含有率で含有
するポリマ−を溶融紡糸する際、特異な粘性挙動のため
に極めて紡糸調子が悪化することが問題となる。かかる
粘性挙動とは低剪断下では溶融粘度が高く、一方高剪断
下では溶融粘度は低くなるという、いわゆるチクソトロ
ピ−性を示す。紡糸パックに、無機微粒子を高含有率で
含有するポリマ−が供給される導入部においては剪断速
度が100 sec-1オ−ダ−であるが、ノズル孔に分配
される分流板では102 sec-1オ−ダ−、さらには鞘
成分であるポリマ−と合流して押し出されるノズルでは
103 sec-1オ−ダ−にも達するのである。チクソト
ロピ−性の顕著なポリマ−流は、この大きな剪断速度の
変化の下で溶融粘度に大きな斑が生じ、ノズル単孔辺り
の吐出量が変動し、芯鞘のバランスが崩れるために極め
て紡糸が困難となる。本発明ではかかる点をも検討した
結果、無機微粒子を多量に含有する芯成分と鞘成分であ
るポリエステルの溶融粘度が重要であることを見い出し
た。すなわち、300℃における剪断速度が1.0×1
1 〜5×102 sec-1の全領域において、芯成分の
溶融粘度aと鞘成分であるポリエステルの溶融粘度bと
の比(a/b)が5.0〜0.05の範囲にあることが
望ましいのである。かかる範囲に芯成分と鞘成分の溶融
粘度比がある場合にのみ、無機微粒子を多量に含有する
芯成分と鞘成分の合流が円滑に行われ、複合紡糸・延伸
性等の操業性も向上する。しかも無機微粒子が芯成分を
構成する熱可塑性ポリマ−中に均一に分散され、目的と
する複合繊維を操業性よく製造することが可能となった
のである。好ましい溶融粘度比(a/b)は1.5〜
0.8である。
Further, in general, when a polymer containing a high content of inorganic fine particles is melt-spun, there is a problem that the spinning tone is extremely deteriorated due to a peculiar viscous behavior. Such viscous behavior means so-called thixotropic property, in which melt viscosity is high under low shear, while melt viscosity becomes low under high shear. The shear rate is 10 0 sec -1 order at the introduction part where the polymer containing a high content of inorganic fine particles is supplied to the spinning pack, but it is 10 2 at the flow distribution plate distributed to the nozzle holes. A sec -1 order , and further, a nozzle which is extruded by merging with a polymer which is a sheath component, reaches 10 3 sec -1 order . The polymer flow having a remarkable thixotropic property has a large variation in the melt viscosity under this large change in the shear rate, the discharge amount per nozzle single hole fluctuates, and the balance of the core-sheath is lost, resulting in extremely spinning. It will be difficult. In the present invention, as a result of studying such points, it was found that the melt viscosity of the polyester, which is a core component and a sheath component containing a large amount of inorganic fine particles, is important. That is, the shear rate at 300 ° C is 1.0 x 1
In the entire range of 0 1 to 5 × 10 2 sec -1 , the ratio (a / b) of the melt viscosity a of the core component to the melt viscosity b of the polyester that is the sheath component is in the range of 5.0 to 0.05. It is desirable to have one. Only when the melt viscosity ratio of the core component and the sheath component is in this range, the core component and the sheath component containing a large amount of inorganic fine particles can be smoothly joined, and the operability such as the composite spinning / drawability is also improved. . Moreover, the inorganic fine particles are uniformly dispersed in the thermoplastic polymer that constitutes the core component, and it has become possible to manufacture the target composite fiber with good operability. A preferable melt viscosity ratio (a / b) is 1.5 to
0.8.

【0025】かかる溶融粘度比(a/b)を調整するに
は、まず芯成分のチクソトロピ−性を極力抑制した上
で、鞘成分のポリマ−の極限粘度を設定することが望ま
しい。芯成分のチクソトロピ−性の抑制手段としては、
無機微粒子の表面積を小さくすべく球形のものを選択し
て粒子径を大きくするか、極力比重の高いものを選択し
無機微粒子の添加率を下げること;芯成分のポリマ−の
分子量、融点の適性化;芯成分のポリマ−と無機微粒子
との親和性を向上させるべくカップリング剤を添加する
ことなどを挙げることができる。
In order to adjust the melt viscosity ratio (a / b), it is desirable to first suppress the thixotropy of the core component as much as possible and then set the intrinsic viscosity of the polymer of the sheath component. As means for suppressing the thixotropy of the core component,
Select spherical particles to increase the particle size to reduce the surface area of the inorganic particles, or select particles with a high specific gravity as much as possible to reduce the addition rate of the inorganic particles; the molecular weight and melting point of the core component polymer The addition of a coupling agent in order to improve the affinity between the core component polymer and the inorganic fine particles.

【0026】上述のような条件、すなわち比重、融点、
溶融粘度を満足する熱可塑性ポリマ−としてはナイロン
6、ナイロン66、ナイロン610、ナイロン11、ナ
イロン12等のポリアミド;ポリエチレンテレフタレ−
ト、ポリブチレンテレフタレ−ト、ポリヘキサメチレン
テレフタレ−ト等のポリエステルを挙げることができ
る。
The above-mentioned conditions, that is, specific gravity, melting point,
As the thermoplastic polymer satisfying the melt viscosity, polyamides such as nylon 6, nylon 66, nylon 610, nylon 11 and nylon 12; polyethylene terephthalate
And polyester such as polybutylene terephthalate and polyhexamethylene terephthalate.

【0027】本発明のように、無機微粒子を高添加する
場合には、該無機微粒子とポリマ−とのヌレ性およびポ
リマ−中での分散性が良好で、紡糸性、延伸性が最も良
好な熱可塑性ポリマ−を使用することが好ましく、かか
る観点から本発明においてはポリアミド、とくにナイロ
ン6を主成分とするポリアミドを使用することが好まし
い。好適な例として用いるナイロン6の重合度は、数平
均分子量で約22000以下、とくに20000以下6
000以上であることが好ましい。重合度が高すぎる
と、無機微粒子を高添加した芯成分の溶融粘度が高くな
りすぎ、トラブルが発生したり、無機微粒子の分散不良
が生じやすい。また、実際に無機微粒子を高添加したポ
リマ−を溶融押出して繊維化する際、溶融粘度が高すぎ
ると設備上のトラブルが多発しやすくなると同時に断糸
が多発してくるため好ましくない。一方、重合度が低す
ぎると溶融粘度が鞘成分に対して低くなりすぎるため芯
鞘界面の形成が困難となる。
When a large amount of inorganic fine particles are added as in the present invention, the wettability between the inorganic fine particles and the polymer and the dispersibility in the polymer are good, and the spinnability and the drawability are the best. It is preferable to use a thermoplastic polymer, and from this viewpoint, it is preferable to use a polyamide, particularly a polyamide containing nylon 6 as a main component. Nylon 6 used as a suitable example has a number average molecular weight of about 22,000 or less, especially 20,000 or less.
It is preferably at least 000. If the degree of polymerization is too high, the melt viscosity of the core component to which a large amount of inorganic fine particles is added becomes too high, and troubles are likely to occur or the inorganic fine particles may be poorly dispersed. Further, when a polymer having a high content of inorganic fine particles is actually melt-extruded to form a fiber, if the melt viscosity is too high, equipment troubles are likely to occur frequently and, at the same time, yarn breakage occurs frequently, which is not preferable. On the other hand, if the degree of polymerization is too low, the melt viscosity becomes too low relative to the sheath component, making it difficult to form the core-sheath interface.

【0028】加えて、芯成分を構成する熱可塑性ポリマ
−としてポリアミドを使用する場合、芯成分として水分
を500ppm以下、とくに300ppm以下とするこ
とが好ましい。ポリアミドのような吸水性ポリマ−に多
量に無機微粒子を含有せしめると、水分率が高い場合、
溶融時に極端に流動性が低下し、工程調子を著しく害し
てしまう問題がある。一般に、ポリアミドは、その水分
量が500〜1000ppm程度で使用されているのに
対し、無機微粒子を多量に含有させる本発明においては
とくに配慮しなければならない点である。また、ポリア
ミドは少量の第3成分を共重合していたり、また少量の
添加剤、安定剤等を含んでいてもよい。
In addition, when polyamide is used as the thermoplastic polymer constituting the core component, the moisture content of the core component is preferably 500 ppm or less, more preferably 300 ppm or less. When a large amount of inorganic fine particles are contained in a water-absorbing polymer such as polyamide, when the water content is high,
There is a problem that the fluidity is extremely lowered during melting and the process condition is significantly impaired. In general, polyamide is used with a water content of about 500 to 1000 ppm, but in the present invention in which a large amount of inorganic fine particles are contained, special consideration must be given. Further, the polyamide may be copolymerized with a small amount of the third component, and may contain a small amount of additives, stabilizers and the like.

【0029】本発明の複合繊維の主な使用目的は漁業用
途であるが、漁網は屋外で使用されるため経時的な耐候
性が重要な課題であり、長期間使用している間に強力の
低下が発生し、実用上問題となるものは使用することが
できない。上述のような無機微粒子が多量に添加された
ポリアミドを芯成分として使用した場合、漁網として長
期間使用した時に繊維強度低下が生じてくる可能性があ
るが、本発明においては該ポリアミドに対して0.01
重量%以上、とくに0.1重量%以上、2重量%以下の
範囲でヨウ化銅等の銅塩を熱安定剤として添加すること
により、経時的な繊維強度低下は実用上問題とならない
レベルまで改良される。
The main purpose of using the composite fiber of the present invention is for fishing. However, since the fishing net is used outdoors, the weather resistance over time is an important issue, and the strength of the fishing net remains strong during long-term use. It is not possible to use a material that causes deterioration and is a practical problem. When a polyamide to which a large amount of inorganic fine particles as described above is added is used as a core component, there is a possibility that fiber strength may decrease when used as a fishing net for a long period of time. 0.01
Addition of a copper salt such as copper iodide as a heat stabilizer in a range of not less than 0.1% by weight, particularly not less than 0.1% by weight and not more than 2% by weight makes it possible to reduce the fiber strength over time to a level at which practically no problem occurs. Be improved.

【0030】本発明において鞘成分であるポリエステル
としては、ポリエチレンテレフタレ−ト、ポリブチレン
テレフタレ−トを主成分とするポリエステルが好まし
い。また、かかるポリエステルには少量の第3成分が共
重合されていてもよく、たとえば、イソフタル酸、フタ
ル酸、ナフタレンジカルボン酸、ビフェニルジカルボン
酸、4,4’ージフェニルエーテルジカルボン酸、4,
4’ージフェニルメタンジカルボン酸、4,4’ージフ
ェニルスルホンジカルボン酸、4,4’ージフェニルイ
ソプロピリデンジカルボン酸、1,2ージフェノキシエ
タンー4’,4”ージカルボン酸、アントラセンジカル
ボン酸、2,5ーピリジンジカルボン酸、ジフェノキシ
ケトンジカルボン酸、5ーナトリウムスルホイソルタル
酸、ジメチル5ーナトリウムスルホイソフタレート、5
ーテトラブチルホスホニウムスルホイソフタル酸等の芳
香族ジカルボン酸;マロン酸、コハク酸、アジピン酸、
アゼライン酸、セバチン酸等の脂肪族ジカルボン酸;デ
カリンジカルボン酸、シクロヘキサンジカルボン酸等の
脂環族ジカルボン酸;βーヒドロキシエトキシ安息香
酸、p−オキシ安息香酸、ヒドロキシプロピオン酸、ヒ
ドロキシアクリル酸等のヒドロキシカルボン酸;またこ
れらのエステル形成性誘導体から誘導されたカルボン
酸、εーカプロラクトン等の脂肪族ラクトン、トリメチ
レングリコール、ヘキサメチレングリコール、ネオペン
チルグリコール、ジエチレングリコール、ポリエチレン
グリコール等の脂肪族ジオール;ヒドロキノンカテコー
ル、ナフタレンジオール、レゾルシン、ビスフェノール
A、ビスフェノールAのエチレンオキサイド付加物、ビ
スフェノールS、ビスフェノールSのエチレンオキサイ
ド付加物等の芳香族ジオール;シクロヘキサンジメタノ
ール等の脂肪族ジオールなどを挙げることができる。こ
れらの第3成分は1種のみまたは2種以上共重合されて
いてもよい。
In the present invention, the polyester as a sheath component is preferably a polyester containing polyethylene terephthalate or polybutylene terephthalate as a main component. Further, a small amount of a third component may be copolymerized with the polyester, and examples thereof include isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 4,
4'-diphenylmethane dicarboxylic acid, 4,4'-diphenyl sulfone dicarboxylic acid, 4,4'-diphenyl isopropylidene dicarboxylic acid, 1,2-diphenoxyethane-4 ', 4 "-dicarboxylic acid, anthracene dicarboxylic acid, 2, 5-pyridinedicarboxylic acid, diphenoxyketone dicarboxylic acid, 5-sodium sulfoisotalic acid, dimethyl 5-sodium sulfoisophthalate, 5
-Aromatic dicarboxylic acids such as tetrabutylphosphonium sulfoisophthalic acid; malonic acid, succinic acid, adipic acid,
Aliphatic dicarboxylic acids such as azelaic acid and sebacic acid; alicyclic dicarboxylic acids such as decalin dicarboxylic acid and cyclohexanedicarboxylic acid; hydroxy such as β-hydroxyethoxybenzoic acid, p-oxybenzoic acid, hydroxypropionic acid and hydroxyacrylic acid Carboxylic acids; carboxylic acids derived from these ester-forming derivatives; aliphatic lactones such as ε-caprolactone; aliphatic diols such as trimethylene glycol, hexamethylene glycol, neopentyl glycol, diethylene glycol, polyethylene glycol; hydroquinone catechol , Naphthalenediol, resorcin, bisphenol A, bisphenol A ethylene oxide adduct, bisphenol S, bisphenol S ethylene oxide adduct, etc. Examples thereof include aliphatic diols such as cyclohexanedimethanol. These 3rd components may be copolymerized by 1 type (s) or 2 or more types.

【0031】さらに本発明のポリエステルには、ポリエ
ステルが実質的に線状である範囲内でトリメリット酸、
トリメシン酸、ピロメリット酸、トリカルバリル酸等の
多価カルボン酸;グリセリン、トリメチロールエタン、
トリメチロールプロパン、ペンタエリスリトール等の多
価アルコールが含まれていてもよい。該ポリエステルに
は蛍光増白剤、安定剤等の添加剤が含有されていてもよ
い。とくに、複合繊維全体の耐候性、すなわち経時間的
な強度保持率をさらに良好なレベルに維持するにはカ−
ボンブラックを鞘成分であるポリエステルに含有させて
もよい。
Further, the polyester of the present invention contains trimellitic acid within a range where the polyester is substantially linear,
Polyvalent carboxylic acids such as trimesic acid, pyromellitic acid and tricarballylic acid; glycerin, trimethylolethane,
A polyhydric alcohol such as trimethylolpropane or pentaerythritol may be contained. The polyester may contain additives such as a fluorescent whitening agent and a stabilizer. In particular, in order to maintain the weather resistance of the composite fiber as a whole, that is, the strength retention rate over time at a better level, a key is
Bonblack may be contained in polyester which is a sheath component.

【0032】かかるポリエステルの極限粘度〔η〕は
0.7以上であることが好ましい。なお、極限粘度はフ
ェノ−ル/テトラクロロエタンの等重量混合溶媒中、3
0℃で測定した値である。通常の衣料用繊維において、
ポリエチレンテレフタレ−トの極限粘度は0.60〜
0.65程度のものが使用されるのに対し、本発明では
目的とする繊維強度を発現させるために、通常の重合度
よりさらに重合度の大きいポリエステルを使用したもの
である。極限粘度が0.7未満では、繊維比重1.5以
上、繊維強度3.5g/デニ−ル以上およびタフネス6
0以上をいずれをも満足することは難しく、鞘成分と芯
成分との複合比率を変更し、鞘成分リッチにすれば繊維
比重が目標とするレベルまで至ることができず、逆に芯
成分リッチにすれば繊維強度、タフネスが目標とするレ
ベルまで至らないという結果になった。すなわち、鞘成
分として極限粘度が0.7以上のポリエステルを用いる
ことにより、初めて繊維強度、タフネス、比重のいずれ
をも満足するものが得られたわけである。
The intrinsic viscosity [η] of the polyester is preferably 0.7 or more. The intrinsic viscosity is 3 in a mixed solvent of equal weight of phenol / tetrachloroethane.
It is a value measured at 0 ° C. In ordinary clothing fibers,
The intrinsic viscosity of polyethylene terephthalate is 0.60
Whereas those having a degree of polymerization of about 0.65 are used, the present invention uses a polyester having a degree of polymerization higher than the ordinary degree of polymerization in order to express the desired fiber strength. When the intrinsic viscosity is less than 0.7, the fiber specific gravity is 1.5 or more, the fiber strength is 3.5 g / denier or more, and the toughness is 6
It is difficult to satisfy all of 0 or more, and if the composite ratio of the sheath component and the core component is changed to make the sheath component rich, the fiber specific gravity cannot reach the target level, and conversely the core component is rich. The result is that the fiber strength and toughness do not reach the target levels. That is, by using polyester having an intrinsic viscosity of 0.7 or more as the sheath component, it was possible to obtain the one satisfying all of the fiber strength, toughness and specific gravity for the first time.

【0033】本発明における極限粘度は、紡糸後の繊維
中の鞘成分であるポリエステルの極限粘度である。すな
わち、紡糸時に熱分解または加水分解等で重合度低下が
生じる場合は、その分を見込んだやや高めの重合度のポ
リエステルを用いて繊維化しなければならないことはい
うまでもないことである。
The intrinsic viscosity in the present invention is the intrinsic viscosity of polyester which is a sheath component in the fiber after spinning. That is, it is needless to say that when the degree of polymerization is lowered due to thermal decomposition or hydrolysis during spinning, it is necessary to use the polyester having a slightly higher degree of polymerization to make it into fibers.

【0034】ところで、本発明においては鞘成分である
ポリエステルに着色剤を添加して、前述したような漁網
用途に適した色相にすることができ、該ポリエステルの
溶融紡糸温度に耐え得る耐熱性を有する有機顔料や無機
顔料を適宜使用することができる。具体的には、カ−ボ
ンブラック、アントラキノン系褐色着色剤、アントラキ
ノン系紫色着色剤、ベンゾキノン系赤色着色剤、通常の
原着用着色剤を使用することができ、これらの着色剤は
単独または2種類以上併用して添加率0.1〜5重量%
の範囲内でポエリエステルに配合され得る。該着色剤の
添加量が0.1重量%未満の場合には十分な「色相」や
「ツヤ」を呈する漁網用原着糸を得ることが困難であ
り、また添加量が5重量%を越えると強力の低下が大き
くなるので好ましくない。
By the way, in the present invention, a colorant can be added to polyester which is a sheath component to give a hue suitable for use in fishing nets as described above, and heat resistance of the polyester that can withstand the melt spinning temperature. An organic pigment or an inorganic pigment that it has can be appropriately used. Specifically, carbon black, anthraquinone brown colorant, anthraquinone purple colorant, benzoquinone red colorant, and ordinary underwear colorant may be used, and these colorants may be used alone or in combination of two kinds. Addition rate of 0.1-5% by weight
Can be incorporated into the Porie ester within the range. When the amount of the colorant added is less than 0.1% by weight, it is difficult to obtain a spun yarn for fishing nets exhibiting sufficient "hue" and "luster", and the amount added exceeds 5% by weight. If this is the case, the strength is greatly reduced, which is not preferable.

【0035】とくに、現在必要とされる漁網用原着糸の
色相の大部分が黒色であるが、このような場合、カ−ボ
ンブラックを鞘成分であるポリエステルに1〜3重量%
添加することが好ましい。カ−ボンブラックは紫外線を
吸収しポリエステルの劣化を防ぐ効果があり、繊維の耐
候性、すなわち経時的な繊維強度の低下を防止でき、相
乗的な効果を発現することができる。また、繊維形成後
に所望の色に染色することも可能である。
In particular, most of the hues of the currently required primary yarn for fishing nets are black. In such a case, carbon black is added to the polyester as the sheath component in an amount of 1 to 3% by weight.
It is preferred to add. Carbon black has an effect of absorbing ultraviolet rays and preventing deterioration of polyester, can prevent weather resistance of fibers, that is, decrease in fiber strength over time, and can exert a synergistic effect. Further, it is also possible to dye a desired color after fiber formation.

【0036】本発明の複合繊維は、上述したような無機
微粒子を含有した芯成分を鞘成分であるポリエステルで
実質的に覆った断面形状をしている。ここで「実質的に
覆った断面形状」とは繊維表面周長の60%以上、好ま
しくは80%以上が鞘成分で占められていることを示
す。紡糸・延伸工程におけるガイドやロ−ラの摩擦およ
び糸切れをより一層防ぎ、芯成分と鞘成分との界面剥離
の問題を解決するために、本発明においては芯成分が鞘
成分で完全に覆われていることが好ましく、かかる断面
形状としては同芯芯鞘型、偏芯芯鞘型などがあり、芯の
数としては1〜4を挙げることができる。
The composite fiber of the present invention has a cross-sectional shape in which the core component containing the above-mentioned inorganic fine particles is substantially covered with the polyester as the sheath component. Here, "substantially covered cross-sectional shape" means that 60% or more, preferably 80% or more, of the fiber surface perimeter is occupied by the sheath component. In the present invention, the core component is completely covered with the sheath component in order to further prevent friction and yarn breakage of guides and rollers in the spinning / drawing process and to solve the problem of interfacial peeling between the core component and the sheath component. The cross-sectional shape may be a concentric core-sheath type, an eccentric core-sheath type, or the like, and the number of cores may be 1 to 4.

【0037】芯成分と鞘成分との複合重量比率は前者/
後者=20/80〜70/30、好ましくは前者/後者
=20/80〜50/50である。鞘成分の複合重量比
率が少なすぎると繊維強度の低下が生じ、一方、鞘成分
の複合重量比率が多すぎると繊維比重を高くする効果が
十分発揮できなくなる。
The composite weight ratio of the core component and the sheath component is the former /
The latter = 20/80 to 70/30, preferably the former / latter = 20/80 to 50/50. If the composite weight ratio of the sheath component is too small, the fiber strength will decrease. On the other hand, if the composite weight ratio of the sheath component is too large, the effect of increasing the fiber specific gravity cannot be sufficiently exerted.

【0038】本発明の複合繊維を得るための方法はとく
に限定されるものではないが、鞘成分であるポリエステ
ルと芯成分とを別々の溶融系で加熱溶融しておき、それ
ぞれ通常の押出紡糸装置により紡糸口金まで送り、紡糸
口金直前で両成分を所望の芯鞘型の複合形状に合わせて
合流させ、押し出して得られる糸条を巻取り、さらに延
伸、熱処理することにより得られる。また紡糸口金から
押し出した後、巻き取ることなく直ちに延伸する方法
や、紡糸口金から押し出した後、高速で巻取り、そのま
ま製品とする方法も用いることができる。
The method for obtaining the conjugate fiber of the present invention is not particularly limited, but the polyester, which is the sheath component, and the core component are heated and melted in separate melting systems, and each is prepared by a usual extrusion spinning device. To the spinneret, and immediately before the spinneret, both components are brought together according to a desired core-sheath type composite shape, and the yarn obtained by extrusion is wound up, further stretched and heat-treated. Further, there can be used a method in which the material is extruded from the spinneret and then immediately stretched without being wound, or a method in which the material is extruded from the spinneret and then wound at high speed to obtain a product as it is.

【0039】具体的にはおおよそ4000m/分以下の
速度で引取り、一旦これを巻き取った後に延伸するいわ
ゆるPOYやFOY延伸法、または巻き取ることなく延
伸するスピンドロ−法、さらには4000m/分以上の
高速で引き取るDSY法、あるいはDSY法においてノ
ズルと引取りロ−ラの間にヒ−タ−を設け、延伸しなが
ら引き取る方法などが採用される。中でも好ましいの
は、300〜4000m/分、さら好ましくは600〜
2000m/分で引き取り延伸し(FOYでもスピンド
ロ−でも良い)、ついで熱処理する方法である。該速度
が300m/分未満では、未延伸糸の配向度が低く、所
望の繊維強度を得るためには延伸倍率を上げる必要が生
じ、その結果、繊維中に多数のボイドが発生し、繊維の
高比重化が十分達成できない場合がある。一方該速度が
4000m/分を越える、いわゆるDSYといわれる領
域で引き取る場合は、延伸熱処理操作を実施しなくても
目標物性が得られることもあるが、前述した引取り速度
で引取り延伸熱処理する方法に比較し繊維強度が低下す
ることは避けられない。
Specifically, the so-called POY or FOY stretching method in which the material is drawn at a speed of about 4000 m / min or less, and is once wound and then stretched, or the spin-draw method in which the material is stretched without winding, and further 4000 m / min. The above-mentioned DSY method for drawing at a high speed, or a method of installing a heater between a nozzle and a drawing roller in the DSY method and drawing while drawing is adopted. Among them, 300 to 4000 m / min is preferable, and 600 to 600 is more preferable.
This is a method in which the film is drawn and drawn at 2000 m / min (either FOY or spin-draw may be used) and then heat treated. If the speed is less than 300 m / min, the degree of orientation of the undrawn yarn is low, and it is necessary to increase the draw ratio in order to obtain the desired fiber strength. As a result, many voids are generated in the fiber and In some cases, high specific gravity cannot be achieved. On the other hand, in the case where the drawing is carried out in a so-called DSY region where the speed exceeds 4000 m / min, the target physical properties may be obtained without carrying out the drawing heat treatment operation, but the drawing draw heat treatment is carried out at the above-mentioned drawing speed. It is unavoidable that the fiber strength is reduced as compared with the method.

【0040】延伸は一段延伸でも二段延伸でもよい。ま
た延伸倍率は紡糸速度により様々に変化するので一義的
に特定できないが、破断に至る倍率の75〜85%程度
の倍率を採用することが好ましい。とくに、本発明の繊
維の製造において特徴的な点は延伸後の熱処理である。
すなわち、芯成分を構成する熱可塑性ポリマ−の(融点
−80)℃以上、鞘成分であるポリエステルの(融点−
5)℃以下の温度で熱処理を施すことに特徴があり、か
かる熱処理温度としては毛羽が発生しない範囲で高めに
設定する方が繊維比重が高く、かつ強度、タフネスの大
きい繊維が得られる。芯成分を構成する熱可塑性ポリマ
−の融点に近いか、もしくはそれ以上の温度で加熱され
ることにより、繊維が収縮しつつ延伸時に発生した繊維
中での無機微粒子周辺のボイドがある程度修復されるた
めと推定され、また熱処理温度を高めることにより繊維
の機械的性質を発現させる鞘成分の結晶化が促進される
ためと推定される。
The stretching may be one-stage stretching or two-stage stretching. Further, the draw ratio cannot be uniquely specified because it varies depending on the spinning speed, but it is preferable to adopt a draw ratio of about 75 to 85% of the break ratio. Particularly, the characteristic point in the production of the fiber of the present invention is the heat treatment after drawing.
That is, the melting point of the thermoplastic polymer constituting the core component is not less than (melting point −80) ° C.
5) It is characterized in that it is heat-treated at a temperature of not higher than 0 ° C., and when the heat-treatment temperature is set higher within the range where fluff does not occur, a fiber having a higher fiber specific gravity and a higher strength and toughness can be obtained. By heating at a temperature close to or higher than the melting point of the thermoplastic polymer constituting the core component, the voids around the inorganic fine particles in the fiber generated during stretching while the fiber shrinks are restored to some extent. It is presumed that this is because the crystallization of the sheath component that expresses the mechanical properties of the fiber is promoted by increasing the heat treatment temperature.

【0041】かかる熱処理温度が鞘成分であるポリエス
テルの(融点−5)℃を越えると断糸が多発し、芯成分
を構成する熱可塑性ポリマ−の(融点−80)℃未満の
場合は上述の無機微粒子周辺のボイドを充分に修復する
ことが困難である。好ましい熱処理温度は芯成分を構成
する熱可塑性ポリマ−の(融点−60)℃以上、鞘成分
であるポリエステルの(融点−10)℃以下である。具
体例を示すと、芯成分を構成する熱可塑性ポリマ−がナ
イロン6の場合、熱処理温度を160℃以上、255℃
以下にすることが望ましい。
When the heat treatment temperature exceeds (melting point-5) ° C of the polyester which is the sheath component, yarn breakage occurs frequently, and when the temperature is less than (melting point-80) ° C of the thermoplastic polymer which constitutes the core component, the above-mentioned is used. It is difficult to sufficiently repair the voids around the inorganic fine particles. A preferable heat treatment temperature is (melting point -60) ° C or higher of the thermoplastic polymer constituting the core component and (melting point -10) ° C or lower of polyester which is the sheath component. As a specific example, when the thermoplastic polymer constituting the core component is nylon 6, the heat treatment temperature is 160 ° C. or higher and 255 ° C.
It is desirable to make the following.

【0042】また、延伸を安定化させ、かつ無機微粒子
周辺のボイドの発生を抑制するには延伸時の加熱を熱ロ
−ル等の接触加熱方式に加えてスチ−ムジェットや空気
加熱等の非接触加熱方式を併用することが好ましい。こ
れは、芯成分を構成する熱可塑性ポリマ−の融点よりも
十分高い温度で芯成分の流動性を高めた状態で延伸しよ
うというものであり、たとえば芯成分を構成する熱可塑
性ポリマ−がナイロン6であるときには350℃以上、
好ましくは400℃以上、さらに好ましくは430℃以
上の温度スチ−ムジェットを用いて加熱延伸することが
好ましい。なお、かかるスチ−ムジェットの温度は、本
発明における熱処理温度そのものを示すものではなく、
本発明における熱処理温度とは接触加熱温度を意味する
ものである。これらの知見から、芯成分を構成する熱可
塑性ポリマ−の融点は鞘成分であるポリエステルの融点
より20℃以上、とくに30℃以上高いことが必要とな
り、必然的に該熱可塑性ポリマ−の融点は200℃以上
が必要となる。
Further, in order to stabilize the stretching and suppress the generation of voids around the inorganic fine particles, heating at the time of stretching is performed by a contact heating method such as a heat roll, and also by non-heating such as steam jet or air heating. It is preferable to use the contact heating method together. This is intended to be stretched in a state where the fluidity of the core component is enhanced at a temperature sufficiently higher than the melting point of the thermoplastic polymer constituting the core component. For example, the thermoplastic polymer constituting the core component is made of nylon 6 350 ° C or higher,
It is preferable to heat draw using a temperature steam jet of preferably 400 ° C. or higher, more preferably 430 ° C. or higher. The temperature of the steam jet does not indicate the heat treatment temperature itself in the present invention,
The heat treatment temperature in the present invention means a contact heating temperature. From these findings, it is necessary that the melting point of the thermoplastic polymer that constitutes the core component is higher than the melting point of the polyester that is the sheath component by 20 ° C. or higher, especially 30 ° C. or higher, and the melting point of the thermoplastic polymer is inevitably high. 200 ° C or higher is required.

【0043】本発明の複合繊維は単独または他の繊維と
混用して広汎な用途に使用され得る。他の繊維と混用す
る場合には、混繊、合糸、合撚、交織、交編、その他あ
らゆる手段を用いることができ、さらに得られた布帛は
必要に応じて種々後加工処理を施して各種の用途に供す
ることができる。本発明の複合繊維の好適な用途として
は、従来にない高比重、実用に耐え得る繊維強力、タフ
ネスを有するポリエステル系繊維である特徴を最大限に
生かせる刺網類、曳網類、旋網類、建網類、敷網類等各
種魚網用途に好適である。とくに、サケ、ブリ、マグ
ロ、アジ、サバ、イワシ、スズキ、イカ等の定置網用と
して最適である。
The composite fiber of the present invention can be used in a wide variety of applications either alone or in combination with other fibers. When mixed with other fibers, any means such as mixed fiber, mixed yarn, combined twist, mixed woven, mixed knit, and the like can be used, and the obtained fabric may be subjected to various post-processing treatments if necessary. It can be used for various purposes. Preferable uses of the conjugate fiber of the present invention include unprecedented high specific gravity, fiber strength that can withstand practical use, and gill nets, towing nets, lathes, and constructions that maximize the characteristics of polyester fibers having toughness. It is suitable for various fish nets such as nets and nets. Especially, it is most suitable for the set net such as salmon, yellowtail, tuna, horse mackerel, mackerel, sardine, sea bass, squid.

【0044】上述の魚網用途以外の用途として土木工事
等で使用されるシルトプロテクタ−用を始め、従来にな
い高比重性能を保持したポリエステル系繊維として各種
産業資材用途への応用が可能である。また産業資材用途
以外にもカ−テン、暗幕等非衣料分野への応用も好適で
ある。
In addition to the above-mentioned fish net applications, it can be applied to various industrial material applications such as a silt protector used in civil engineering work and the like, as a polyester fiber having a high specific gravity performance that has never been seen. In addition to industrial materials, it is also suitable for non-clothing fields such as curtains and blackout curtains.

【0045】[0045]

【実施例】以下、実施例により本発明を詳述するが、本
発明はこれら実施例により何等限定されるものではな
い。なお、実施例中における各物性値は以下の方法によ
り測定したものである。 (1)ポリエステルの極限粘度〔η〕:フェノ−ルとテ
トラクロロエタンの等重量混合溶媒を用い、30℃で測
定した。 (2)ナイロンの数平均分子量:ウオ−タ−ズ社製HL
C−510によるGPCクロマトグラムにより測定し
た。 (3)無機微粒子の平均粒径:堀場製作所社製の遠心式
自動粒度分布測定装置CAPA−500により測定し
た。 (4)繊維比重:四塩化炭素とノルマルヘキサンを用
い、密度勾配法により20℃で測定した。 (5)繊維強度、伸度およびタフネス:島津製作所社製
の引張試験機(オ−トグラフIM−100)を用い、2
0℃、65RH%で測定した。なお、タフネスは破断点
の強度と伸度との積で示す。 (6)ポリマ−の溶融粘度(ポイズ)(株)東洋精機製
キャピログラフ1C型を用い、300℃で測定した。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. In addition, each physical-property value in an Example is measured by the following method. (1) Intrinsic viscosity [η] of polyester: Measured at 30 ° C. using an equal weight mixed solvent of phenol and tetrachloroethane. (2) Number average molecular weight of nylon: HL manufactured by Waters Co., Ltd.
It was measured by a GPC chromatogram according to C-510. (3) Average particle size of inorganic fine particles: Measured by a centrifugal automatic particle size distribution analyzer CAPA-500 manufactured by Horiba Ltd. (4) Fiber specific gravity: Measured at 20 ° C. by a density gradient method using carbon tetrachloride and normal hexane. (5) Fiber strength, elongation and toughness: 2 using a tensile tester (Autograph IM-100) manufactured by Shimadzu Corporation
It was measured at 0 ° C. and 65 RH%. The toughness is indicated by the product of the strength at break and the elongation. (6) Melt viscosity of polymer (poise) It was measured at 300 ° C. using Capirograph 1C type manufactured by Toyo Seiki Co., Ltd.

【0046】実施例1 数平均分子量11000のナイロン6粉末〔宇部興産
(株)社製、P1011F〕を芯成分を構成する熱可塑
性ポリマ−として用い、芯成分の無機微粒子として平均
粒子径0.2μmの球状の磁鉄鉱粉末〔戸田工業(株)
社製、表面フェライトコ−ト品、比重5.0〕30重量
%と、平均粒子径0.35μmの二酸化チタン〔チタン
工業(株)社製、ルチル型、比重4.2〕40重量%と
の混合物を用い、芯成分として二軸混練機で溶融混練し
てストランド状に押出し、ストランドを切断してペレッ
ト化し、90℃で真空乾燥して水分を180ppmにし
た。一方、鞘成分として二酸化チタン0.08重量%含
有する極限粘度〔η〕=0.80のポリエチレンテレフ
タレ−トを使用し、該ポリエステルは常法により溶融重
合しペレット化したものを使用した。
Example 1 Nylon 6 powder having a number average molecular weight of 11,000 (P1011F manufactured by Ube Industries, Ltd.) was used as a thermoplastic polymer constituting a core component, and an average particle diameter of 0.2 μm was used as inorganic fine particles of the core component. Spherical magnetite powder [Toda Industry Co., Ltd.
Surface ferrite coated product, specific gravity 5.0] 30% by weight, and titanium dioxide having an average particle diameter of 0.35 μm (Rutile type, specific gravity 4.2) 40% by weight, manufactured by Titanium Industry Co., Ltd. The mixture was melt-kneaded as a core component with a twin-screw kneader and extruded into a strand, and the strand was cut into pellets and vacuum dried at 90 ° C. to a water content of 180 ppm. On the other hand, polyethylene terephthalate having an intrinsic viscosity [η] = 0.80 containing 0.08% by weight of titanium dioxide was used as a sheath component, and the polyester was melt-polymerized and pelletized by a conventional method.

【0047】芯成分および鞘成分を別々の溶融押出機で
溶融押出しし、紡糸温度295℃、複合重量比率(芯成
分/鞘成分)1/2の同芯芯鞘型となるようにノズル部
で合流し、ノズル口径0.4mmφ、8ホ−ルのノズル
を用いて吐出させ、1000m/分の速度で巻き取っ
た。このとき得られた複合繊維を形成している鞘成分の
ポリエチレンテレフタレ−トの極限粘度〔η〕は0.7
5であった。
The core component and the sheath component are melt-extruded by separate melt extruders, and the same core-sheath type having a spinning temperature of 295 ° C. and a composite weight ratio (core component / sheath component) of 1/2 is formed in the nozzle portion. They were merged, discharged using a nozzle having a nozzle aperture of 0.4 mmφ and 8 holes, and wound at a speed of 1000 m / min. The intrinsic viscosity [η] of the polyethylene terephthalate as the sheath component forming the composite fiber obtained at this time was 0.7.
It was 5.

【0048】得られた紡糸原糸をホットロ−ラ温度80
℃、ホットプレ−ト温度140℃で延伸倍率4.0倍で
延伸し、つづいて3%のオ−バ−フィ−ドを入れながら
ホットロ−ラ温度180℃で熱処理した後、75デニ−
ル/8フィラメントのマルチフィラメントを巻き取っ
た。このマルチフィラメント糸の断面形状を顕微鏡観察
したところ、芯鞘複合比率がいずれの繊維においてもま
た長さ方向においてもほぼ一定であり、毛羽もなかっ
た。また紡糸・延伸工程におけるトラブルの発生も認め
られなかった。延伸糸の繊維比重は1.58、強度は
4.5g/デニ−ル、タフネスは67.5であった。
The obtained spun raw yarn was heated at a hot roller temperature of 80.
At a hot plate temperature of 140 ° C. and a draw ratio of 4.0, followed by heat treatment at a hot roller temperature of 180 ° C. while adding 3% of over feed, and then 75 deniers.
A multifilament of 8/8 filaments was wound up. When the cross-sectional shape of this multifilament yarn was observed with a microscope, the core-sheath composite ratio was almost constant in all fibers and in the length direction, and there was no fluff. In addition, no trouble was observed in the spinning / drawing process. The fiber specific gravity of the drawn yarn was 1.58, the strength was 4.5 g / denier, and the toughness was 67.5.

【0049】この延伸糸を合糸して網を作成し、海中に
投入して観察したところ、沈降性良好であり、海中での
網揺れも少なく、かつ耐久性に優れ、魚網として好適な
繊維であることが確認された。
The drawn yarns were combined to form a net, and the net was put into the sea and observed. As a result, the settling property was good, there was little shaking of the net in the sea, and the durability was excellent. Was confirmed.

【0050】また、延伸時の熱処理温度を変化させるこ
とにより得られた延伸糸の繊維比重が異なることがわか
った。上述した紡糸条件で得られた紡糸原糸を以下の条
件で延伸した結果、以下の物性を有する延伸糸が得られ
た。
It was also found that the fiber specific gravity of the drawn yarn obtained by changing the heat treatment temperature during drawing was different. As a result of drawing the spun raw yarn obtained under the above spinning conditions under the following conditions, a drawn yarn having the following physical properties was obtained.

【0051】 延伸温度条件 繊維物性 HR1 HP HR2 ρ DT タフネス 毛羽 80℃ 140℃ 180℃ 1.58 4.5g/d 67.5 ○ 80 140 160 1.53 4.3 55.9 ○ 80 140 230 1.60 4.7 72.0 ○ 80 180 230 1.60 4.6 69.0 × 注:HR1 =ホットロ−ラ(第1ロ−ラ)、HP=ホットプレ−ト HR2 =ホットロ−ラ(第2ロ−ラ)、ρ=比重、DT=強度 Stretching Temperature Conditions Fiber Properties HR 1 HP HR 2 ρ DT Toughness Fluff 80 ° C. 140 ° C. 180 ° C. 1.58 4.5g / d 67.5 ○ 80 140 140 160 1.53 4.3 55.9 ○ 80 140 140 230 1.60 4.7 72.0 ○ 80 180 180 230 1.60 4.6 69.0 × Note: HR 1 = hot roller (first roller), HP = hot plate HR 2 = hot roller (second roller), ρ = specific gravity, DT = strength

【0052】収縮処理時の処理温度が高い程、繊維物性
が良好な繊維が得られるが、該処理温度が極端に高くな
ると延伸毛羽が多発してくるため好ましくない。
The higher the treatment temperature at the time of the shrinking treatment, the more excellent the fiber properties are. However, if the treatment temperature is extremely high, the drawn fluff will frequently occur, which is not preferable.

【0053】また、磁鉄鉱粉末を上記のものに代えて表
面コ−ティングされていない磁鉄鉱粉末〔戸田工業
(株)社製、比重5.0〕を用いて同様にして繊維化を
行った。その結果、延伸糸の繊維比重は1.53であ
り、表面コ−ティング品使用の場合よりも若干比重が低
いものであった。
Further, instead of the above magnetite powder, magnetite powder not surface-coated (manufactured by Toda Kogyo Co., Ltd., specific gravity 5.0) was used for fiberizing in the same manner. As a result, the fiber specific gravity of the drawn yarn was 1.53, which was slightly lower than that when the surface-coated article was used.

【0054】実施例2 芯成分中にヨウ化銅を0.2重量%添加したこと以外は
実施例1と同様にして複合繊維(延伸糸)を製造し、得
られた延伸糸の強度保持性について測定した。評価手段
として83℃下でカ−ボンフェ−ド照射400時間照射
後の強度保持率と、83℃下でキセノンウエザ−照射4
00時間照射後の強度保持率について調べた。その結
果、カ−ボンフェ−ド照射400時間後のn=5の平均
強度保持率は約86%、キセノンウエザ−照射400時
間後のn=5の平均強度保持率は約84%であった。こ
れに対して、実施例1で得られた複合繊維(延伸糸)は
カ−ボンフェ−ド照射400時間後のn=5の平均強度
保持率は約42%、キセノンウエザ−照射400時間後
のn=5の平均強度保持率は約36%であった。
Example 2 A composite fiber (drawn yarn) was produced in the same manner as in Example 1 except that 0.2% by weight of copper iodide was added to the core component, and the strength retention of the obtained drawn yarn was obtained. Was measured. As an evaluation means, the strength retention ratio after carbon fade irradiation for 400 hours at 83 ° C. and the xenon weather irradiation at 83 ° C. 4
The strength retention after irradiation for 00 hours was examined. As a result, the average strength retention of n = 5 after 400 hours of carbon-fade irradiation was about 86%, and the average strength retention of n = 5 after 400 hours of xenon weather irradiation was about 84%. On the other hand, the composite fiber (drawn yarn) obtained in Example 1 has an average strength retention of about 42% at n = 5 after 400 hours irradiation with carbon fade, and n after 400 hours irradiation with xenon weather. = 5, the average strength retention rate was about 36%.

【0055】実施例3〜6 芯成分中に含有される無機微粒子として、磁鉄鉱粉末5
0重量%、二酸化チタン20重量%の計70重量%の混
合物を(実施例3)、磁鉄鉱粉末20重量%、二酸化チ
タン50重量%の計70重量%の混合物を(実施例
4)、磁鉄鉱粉末10重量%、二酸化チタン60重量%
の計70重量%の混合物を(実施例5)、磁鉄鉱粉末3
0重量%、二酸化チタン20重量%の計50重量%の混
合物を(実施例6)使用した以外は実施例2と同様にし
て複合繊維を得た。いずれも工程性のトラブルもなく、
しかも良好な繊維物性を有する繊維が得られた。実施例
4で得られた複合繊維の色相は灰色を呈し、黒色とやや
異なるレベルであった。また実施例5で得られた複合繊
維の色相は白っぽい灰色であった。
Examples 3 to 6 Magnetite powder 5 was used as the inorganic fine particles contained in the core component.
A mixture of 0% by weight and 20% by weight of titanium dioxide in a total of 70% by weight (Example 3), 20% by weight of magnetite powder and a mixture of 50% by weight of titanium dioxide in a total of 70% by weight (Example 4), magnetite powder 10% by weight, titanium dioxide 60% by weight
70% by weight of the mixture (Example 5), magnetite powder 3
A composite fiber was obtained in the same manner as in Example 2 except that a total of 50% by weight of 0% by weight and 20% by weight of titanium dioxide was used (Example 6). In both cases, there are no process problems.
Moreover, fibers having good fiber properties were obtained. The hue of the conjugate fiber obtained in Example 4 was gray and was at a level slightly different from black. The hue of the conjugate fiber obtained in Example 5 was whitish gray.

【0056】実施例7〜8 実施例2において、鞘成分であるポリエチレンテレフタ
レ−トの極限粘度〔η〕を0.85にした以外(実施例
7)、芯成分と鞘成分の複合重量比率を(芯成分/鞘成
分)=1/1にした以外(実施例8)は同様にして複合
繊維を得た。いずれも工程性のトラブルもなく、しかも
良好な繊維物性を有する繊維が得られた。各実施例にお
ける複合繊維の諸物性を表1および表2に示す。
Examples 7 to 8 In Example 2, except that the intrinsic viscosity [η] of polyethylene terephthalate, which is a sheath component, was 0.85 (Example 7), the composite weight ratio of the core component and the sheath component was set. A composite fiber was obtained in the same manner except that (core component / sheath component) = 1/1 (Example 8). In all cases, fibers having good processability and good fiber properties were obtained. Various physical properties of the conjugate fiber in each example are shown in Tables 1 and 2.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】実施例9〜10 実施例2において、二酸化チタンの代わりに、平均粒径
1.0μmの酸化亜鉛(比重5.5)を用い(実施例
9)、平均粒径2.0μmのアルミナ(比重3.98)
を用いた(実施例10)以外は同様にして複合繊維を得
た。いずれも紡糸時にやや毛羽が発生したこと以外は工
程性が良好で、しかも繊維物性も良好なものであった
(表1および表2参照)。
Examples 9 to 10 In Example 2, zinc oxide having an average particle size of 1.0 μm (specific gravity 5.5) was used in place of titanium dioxide (Example 9), and alumina having an average particle size of 2.0 μm was used. (Specific gravity 3.98)
A composite fiber was obtained in the same manner except that was used (Example 10). In each case, the processability was good except that some fluff was generated during spinning, and the fiber physical properties were also good (see Tables 1 and 2).

【0060】実施例11〜12 実施例2において、芯の数を3(実施例11)、芯の数
を4(実施例12)にした以外は同様にして複合繊維を
得た。いずれも工程性が良好で、しかも繊維物性も良好
なものであった。
Examples 11 to 12 Composite fibers were obtained in the same manner as in Example 2, except that the number of cores was 3 (Example 11) and the number of cores was 4 (Example 12). All of them had good processability and good fiber properties.

【0061】実施例13 実施例2において、数平均分子量11000のナイロン
6に代えて、数平均分子量22000であるナイロン6
〔宇部興産(株)社製、P1022〕を用いた以外は同
様にして複合繊維を得た。得られた複合繊維の諸物性を
表1および表2に示す。
Example 13 Nylon 6 having a number average molecular weight of 22000 is used instead of nylon 6 having a number average molecular weight of 11,000 in Example 2.
A composite fiber was obtained in the same manner except that [P1022 manufactured by Ube Industries, Ltd.] was used. Various physical properties of the obtained conjugate fiber are shown in Tables 1 and 2.

【0062】実施例14 極限粘度〔η〕=0.70のポリエチレンテレフタレ−
トを芯成分を構成する熱可塑性ポリマ−として用い、芯
成分の無機微粒子として平均粒子径0.5μmの硫酸バ
リウム(比重4.35)70重量%を用い、芯成分とし
て二軸混練機で溶融混練してストランド状に押出し、ス
トランドを切断してペレット化した。一方、鞘成分とし
て二酸化チタン0.08重量%含有する極限粘度〔η〕
=0.80のポリエチレンテレフタレ−トを使用し、該
ポリエステルは常法により溶融重合しペレット化したも
のを使用した。
Example 14 Polyethylene terephthalate having an intrinsic viscosity [η] = 0.70
Is used as a thermoplastic polymer constituting the core component, 70% by weight of barium sulfate (specific gravity 4.35) having an average particle diameter of 0.5 μm is used as the inorganic fine particles of the core component, and melted by a biaxial kneader as the core component. The mixture was kneaded and extruded into a strand, and the strand was cut into pellets. On the other hand, the intrinsic viscosity [η] containing 0.08% by weight of titanium dioxide as a sheath component
= 0.80 polyethylene terephthalate was used, and the polyester was melt-polymerized and pelletized by a conventional method.

【0063】芯成分および鞘成分を別々の溶融押出機で
溶融押出しし、紡糸温度295℃、複合重量比率(芯成
分/鞘成分)1/2の同芯芯鞘型となるようにノズル部
で合流し、ノズル口径0.4mmφ、8ホ−ルのノズル
を用いて吐出させ、1000m/分の速度で巻き取っ
た。このとき得られた複合繊維を形成している鞘成分の
ポリエチレンテレフタレ−トの極限粘度〔η〕は0.7
5であった。
The core component and the sheath component are melt-extruded by separate melt extruders, and the spinning temperature is 295 ° C. and the composite weight ratio (core component / sheath component) is 1/2. They were merged, discharged using a nozzle having a nozzle aperture of 0.4 mmφ and 8 holes, and wound at a speed of 1000 m / min. The intrinsic viscosity [η] of the polyethylene terephthalate as the sheath component forming the composite fiber obtained at this time was 0.7.
It was 5.

【0064】得られた紡糸原糸をホットロ−ラ温度80
℃、ホットプレ−ト温度140℃で延伸倍率4.0倍で
延伸し、つづいて3%のオ−バ−フィ−ドを入れながら
ホットロ−ラ温度180℃で熱処理した後、75デニ−
ル/8フィラメントのマルチフィラメントを巻き取っ
た。このマルチフィラメント糸の断面形状を顕微鏡観察
したところ、芯鞘複合比率がいずれの繊維においてもま
た長さ方向においてもほぼ一定であり、毛羽もなかっ
た。また紡糸・延伸工程におけるトラブルの発生も認め
られなかった。延伸糸の繊維比重は1.52、強度は
4.1g/デニ−ル、タフネスは61.5であった。
The obtained spun raw yarn was heated at a hot roller temperature of 80.
At a hot plate temperature of 140 ° C. and a draw ratio of 4.0, followed by heat treatment at a hot roller temperature of 180 ° C. while adding 3% of over feed, and then 75 deniers.
A multifilament of 8/8 filaments was wound up. When the cross-sectional shape of this multifilament yarn was observed with a microscope, the core-sheath composite ratio was almost constant in all fibers and in the length direction, and there was no fluff. In addition, no trouble was observed in the spinning / drawing process. The fiber specific gravity of the drawn yarn was 1.52, the strength was 4.1 g / denier, and the toughness was 61.5.

【0065】この延伸糸を合糸して網を作成し、海中に
投入して観察したところ、沈降性良好であり、海中での
網揺れも少なく、かつ耐久性に優れ、魚網として好適な
繊維であることが確認された。
The drawn yarns were combined to form a net, which was put into the sea and observed. As a result, the settling was good, the net was not shaken in the sea, and the durability was excellent. Was confirmed.

【0066】比較例1 鞘成分として紡糸前に極限粘度〔η〕が0.65である
ポリエチレンテレフタレ−トチップを用い、紡糸後の極
限粘度〔η〕が0.60となるように紡糸してこと以外
は実施例2と同様の方法で複合繊維を得た。その結果、
紡糸時、延伸時に毛羽がやや発生し、鞘成分の粘度が低
いため繊維強度が2.5g/デニ−ルと低く、実施例2
で得られた繊維よりも劣るものであった。
Comparative Example 1 A polyethylene terephthalate chip having an intrinsic viscosity [η] of 0.65 before spinning was used as a sheath component, and spinning was performed so that the intrinsic viscosity [η] after spinning was 0.60. A composite fiber was obtained in the same manner as in Example 2 except for the above. as a result,
The fluff was slightly generated during spinning and stretching, and the fiber strength was low at 2.5 g / denier due to the low viscosity of the sheath component.
It was inferior to the fiber obtained in.

【0067】比較例2 無機微粒子として磁鉄鉱物15重量%と二酸化チタン1
5重量%の混合物を使用した以外は実施例2と同様の方
法で複合繊維を得た。紡糸・延伸工程は良好で繊維化可
能であったが、繊維比重が1.45であり、実施例2で
得られた繊維よりも劣るものであった。
Comparative Example 2 15% by weight of magnetite mineral and titanium dioxide 1 as inorganic fine particles
A composite fiber was obtained in the same manner as in Example 2 except that 5% by weight of the mixture was used. The spinning / drawing process was good and the fibers could be formed, but the fiber specific gravity was 1.45, which was inferior to the fibers obtained in Example 2.

【0068】比較例3〜4 実施例2において、二酸化チタンの代わりに平均粒子径
0.1μm、比重2.2の二酸化ケイ素粒子を用い(比
較例3)、平均粒子径1.0μm、比重2.5のカオリ
ン粒子を用い(比較例4)た以外は実施例2と同様にし
て複合繊維を得た。いずれも毛羽が多発いし、紡糸せ
い、延伸性はあまり良くなかった。得られた各々の複合
繊維の比重も、実施例2で得られた繊維よりも劣るレベ
ルのものであった。
Comparative Examples 3 to 4 In Example 2, silicon dioxide particles having an average particle size of 0.1 μm and a specific gravity of 2.2 were used in place of titanium dioxide (Comparative Example 3), and an average particle size of 1.0 μm and a specific gravity of 2 were used. A composite fiber was obtained in the same manner as in Example 2 except that the kaolin particles of 0.5 (Comparative Example 4) were used. In each case, many fluffs were generated, spinning was not possible, and the drawability was not so good. The specific gravity of each of the obtained conjugate fibers was also inferior to that of the fiber obtained in Example 2.

【0069】比較例5〜6 実施例2において、複合重量比率(芯成分/鞘成分)を
15/85(比較例5)、15/85(比較例6)にし
た以外は実施例2と同様にして複合紡糸を行った。比較
例5においては繊維化が良好であったが、繊維比重性能
としてはレベルの劣るものであった。比較例6において
は紡糸性、延伸性が不良で毛羽、断糸が多発し、性能評
価できるレベルの繊維を得ることはできなかった。これ
ら各比較例の結果を表1および表2に示す。
Comparative Examples 5 to 6 The same as Example 2 except that the composite weight ratio (core component / sheath component) was 15/85 (Comparative Example 5) and 15/85 (Comparative Example 6). Then, composite spinning was performed. In Comparative Example 5, fiberization was good, but the level of fiber specific gravity was poor. In Comparative Example 6, the spinnability and drawability were poor, fluff and yarn breakage occurred frequently, and it was not possible to obtain fibers at a level at which performance could be evaluated. The results of these comparative examples are shown in Tables 1 and 2.

【0070】実施例15 数平均分子量11000のナイロン6粉末〔宇部興産
(株)社製、P1011F〕を芯成分を構成する熱可塑
性ポリマ−として用い、芯成分の無機微粒子として平均
粒子径0.35μmの二酸化チタン〔チタン工業(株)
社製、比重4.2〕70重量%とを用い、芯成分として
二軸混練機で溶融混練してストランド状に押出し、スト
ランドを切断してペレット化し、100℃の窒素循環に
より水分率を460ppmにした。一方、鞘成分として
平均粒子径0.03μmのカ−ボンブラック(テグサ社
製)を1.5重量%含有する極限粘度〔η〕=0.80
のポリエチレンテレフタレ−トを使用し、該ポリエステ
ルは常法により溶融重合しペレット化したものを使用し
た。
Example 15 Nylon 6 powder having a number average molecular weight of 11,000 (P1011F manufactured by Ube Industries, Ltd.) was used as a thermoplastic polymer constituting a core component, and an average particle diameter of 0.35 μm was used as inorganic fine particles of the core component. Titanium dioxide [Titanium Industry Co., Ltd.
Manufactured by K.K., specific gravity 4.2] 70% by weight, melt-kneaded as a core component in a twin-screw kneader and extruded into a strand, and the strand is cut into pellets, and the moisture content is 460 ppm by circulating nitrogen at 100 ° C. I chose On the other hand, the intrinsic viscosity [η] = 0.80 containing 1.5% by weight of carbon black (manufactured by Tegusa) having an average particle diameter of 0.03 μm as a sheath component.
Polyethylene terephthalate was used, and the polyester was melt-polymerized and pelletized by a conventional method.

【0071】これらの芯成分および鞘成分を実施例2と
同様にして紡糸、延伸し複合繊維を得た。該複合繊維の
鞘成分であるポリエチレンテレフタレ−トの極限粘度
〔η〕は0.75であった。また繊維比重は1.57、
強度は4.6g/デニ−ル、伸度は18%であり、魚網
用途として優れた性能を有していた。
The core component and the sheath component were spun and drawn in the same manner as in Example 2 to obtain a composite fiber. The intrinsic viscosity [η] of polyethylene terephthalate, which is the sheath component of the composite fiber, was 0.75. The fiber specific gravity is 1.57,
The strength was 4.6 g / denier and the elongation was 18%, and it had excellent performance for fishnet applications.

【0072】実施例16 二酸化チタンの含有量を55重量%にした以外は実施例
15と同様にして複合繊維を得た。得られた複合繊維の
比重は1.53、強度は5.2g/デニ−ル、伸度は2
0%であり、紡糸性、延伸性ともに優れていた。
Example 16 A composite fiber was obtained in the same manner as in Example 15 except that the content of titanium dioxide was changed to 55% by weight. The specific gravity of the obtained composite fiber is 1.53, the strength is 5.2 g / denier, and the elongation is 2.
It was 0% and was excellent in both spinnability and stretchability.

【0073】実施例17 実施例15において、無機微粒子として二酸化チタン5
0重量%と平均粒子径1.0μm、比重5.5の酸化亜
鉛20重量%の混合物を使用した以外は同様にして複合
繊維を得た。得られた複合繊維の比重は1.58、強度
は4.5g/デニ−ル、伸度は15%であり、紡糸時に
若干の毛羽が発生したものの、延伸性に優れ、漁網用途
として優れた性能を有していた。
Example 17 In Example 15, titanium dioxide 5 was used as the inorganic fine particles.
A composite fiber was obtained in the same manner except that a mixture of 0% by weight and 20% by weight of zinc oxide having an average particle size of 1.0 μm and a specific gravity of 5.5 was used. The specific gravity of the obtained composite fiber was 1.58, the strength was 4.5 g / denier, and the elongation was 15%. Although some fluff was generated during spinning, it was excellent in stretchability and was excellent as a fishing net application. Had performance.

【0074】実施例18 実施例15において、無機微粒子として二酸化チタン5
0重量%と平均粒子径2.0μm、比重3.9のアルミ
ナ20重量%の混合物を使用した以外は同様にして複合
繊維を得た。得られた複合繊維の比重は1.56、強度
は4.5g/デニ−ル、伸度は15%であり、紡糸時に
若干の毛羽が発生したものの、延伸性に優れ、漁網用途
として優れた性能を有していた。
Example 18 In Example 15, titanium dioxide 5 was used as the inorganic fine particles.
A composite fiber was obtained in the same manner except that a mixture of 0% by weight and 20% by weight of alumina having an average particle diameter of 2.0 μm and a specific gravity of 3.9 was used. The specific gravity of the obtained conjugate fiber was 1.56, the strength was 4.5 g / denier, and the elongation was 15%. Although some fluff was generated during spinning, it was excellent in stretchability and was excellent for fishing net use. Had performance.

【0075】実施例19 実施例15において、無機微粒子として二酸化チタン5
0重量%と平均粒子径0.6μm、比重4.3の硫酸バ
リウム20重量%の混合物を使用した以外は同様にして
複合繊維を得た。得られた複合繊維の比重は1.57、
強度は4.5g/デニ−ル、伸度は14%であり、紡糸
時に若干の毛羽が発生したものの、延伸性に優れ、漁網
用途として優れた性能を有していた。実施例15〜19
で得られた複合繊維につき、各成分構成、繊維物性等を
表3および表4に示す。
Example 19 In Example 15, titanium dioxide 5 was used as the inorganic fine particles.
A composite fiber was obtained in the same manner except that a mixture of 0% by weight and 20% by weight of barium sulfate having an average particle size of 0.6 μm and a specific gravity of 4.3 was used. The specific gravity of the obtained conjugate fiber is 1.57,
The strength was 4.5 g / denier and the elongation was 14%, and although some fluff was generated during spinning, it was excellent in stretchability and had excellent performance for fishing net applications. Examples 15-19
Table 3 and Table 4 show the composition of each component, the fiber physical properties, etc. of the conjugate fiber obtained in the above.

【0076】[0076]

【表3】 [Table 3]

【0077】[0077]

【表4】 [Table 4]

【0078】実施例20 数平均分子量11000のナイロン6粉末を芯成分を構
成する熱可塑性ポリマ−として用い、芯成分の無機微粒
子として平均粒子径0.35μmの二酸化チタン60重
量%を用いて芯成分とし(水分率100ppm)、二酸
化チタン0.08重量%含有する極限粘度〔η〕=0.
95のポリエチレンテレフタレ−トを鞘成分として、別
々の押出機で溶融押出しし、紡糸温度300℃、複合重
量比率(芯成分/鞘成分)1/1の同芯芯鞘型となるよ
うにノズル部で合流し、ノズル口径0.5mmφ、20
0ホ−ルのノズルを用いて吐出させた。吐出糸条は、ノ
ズル直下に設けた20cm長、380℃の加熱帯域を通
過させた後、25℃、毎分7Nm3 の冷却風で冷却し、
オイリングロ−ラで紡糸油剤を付与し、紡糸速度600
m/分で引き取った。
Example 20 Nylon 6 powder having a number average molecular weight of 11,000 was used as a thermoplastic polymer constituting the core component, and 60% by weight of titanium dioxide having an average particle diameter of 0.35 μm was used as the inorganic fine particles of the core component. (Moisture content 100 ppm), and an intrinsic viscosity [η] of 0.08 wt% titanium dioxide = 0.
95 polyethylene terephthalate is used as a sheath component and melt-extruded by a separate extruder, and a nozzle is formed so as to form a concentric core-sheath type with a spinning temperature of 300 ° C. and a composite weight ratio (core component / sheath component) of 1/1. Merged at the nozzle, nozzle diameter 0.5 mmφ, 20
It was ejected using a 0-hole nozzle. The discharged yarn is passed through a heating zone of 20 cm long and 380 ° C. provided directly under the nozzle, and then cooled with a cooling air of 25 ° C. and 7 Nm 3 per minute,
A spinning oil is applied with an oiling roller, and the spinning speed is 600.
Withdrawn at m / min.

【0079】引き続き、該糸条を巻き取ることなく、延
伸、熱処理を以下の要領で実施し巻き取った。 延 伸:110℃の熱ロ−ルで加熱後、400℃の加熱
蒸気を噴射しつつ4.3倍に一段延伸。 熱処理:220℃の熱ロ−ルと弛緩ロ−ルとの間で3%
の熱収縮処理。 その結果、工程安定性は良好で、1004デニ−ル、強
度4.0g/デニ−ル、伸度18%、比重1.62の漁
網用繊維として実用性の高い繊維が得られた。
Subsequently, drawing and heat treatment were carried out in the following manner without winding the yarn, and the yarn was wound. Stretching: After being heated by a heat roll of 110 ° C., it is stretched by 4.3 times while injecting heated steam of 400 ° C. Heat treatment: 3% between heat roll and relaxation roll at 220 ° C
Heat shrink treatment. As a result, the process stability was good, and a highly practical fiber as a fishing net fiber having a denier of 1004, a strength of 4.0 g / denier, an elongation of 18% and a specific gravity of 1.62 was obtained.

【0080】実施例21 数平均分子量12000のナイロン6粉末を芯成分を構
成する熱可塑性ポリマ−として用い、芯成分の無機微粒
子として平均粒子径0.35μmの二酸化チタン25重
量%と平均粒子径0.2μmのα型ヘマタイト粉末〔戸
田工業(株)社製、比重5.2〕50重量%との混合物
を用いて芯成分とし(水分率200ppm)、カ−ボン
ブラック(テグサ社製)1.0重量%含有する極限粘度
〔η〕=1.0のポリエチレンテレフタレ−トを鞘成分
として、別々の押出機で溶融押出しし、紡糸温度300
℃、複合重量比率(芯成分/鞘成分)1/2の同芯芯鞘
型となるようにノズル部で合流し、ノズル口径0.6m
mφ、100ホ−ルのノズルを用いて吐出させた。吐出
糸条は、ノズル直下に設けた20cm長、380℃の加
熱帯域を通過させた後、25℃、毎分7Nm3 の冷却風
で冷却し、オイリングロ−ラで紡糸油剤を付与し、紡糸
速度600m/分で引き取った。
Example 21 Nylon 6 powder having a number average molecular weight of 12000 was used as a thermoplastic polymer constituting the core component, and 25% by weight of titanium dioxide having an average particle size of 0.35 μm and an average particle size of 0 were used as the inorganic fine particles of the core component. Carbon black (manufactured by Tegusa) was used as a core component (moisture content of 200 ppm) by using a mixture of 50% by weight of α-hematite powder of 2 μm [manufactured by Toda Kogyo KK, specific gravity 5.2]. Polyethylene terephthalate containing 0% by weight of intrinsic viscosity [η] = 1.0 was used as a sheath component and melt-extruded by separate extruders, and the spinning temperature was 300.
℃, combined weight ratio (core component / sheath component) of 1/2, concentric core-sheath type to join to form a nozzle with a nozzle diameter of 0.6 m
Discharge was performed using a nozzle of mφ and 100 holes. The discharged yarn was passed through a heating zone of 20 cm long and 380 ° C. provided directly below the nozzle, then cooled with a cooling air of 25 ° C. and 7 Nm 3 per minute, and a spinning oil was applied with an oiling roller, and the spinning speed was increased. It was collected at 600 m / min.

【0081】引き続き、該糸条を巻き取ることなく、延
伸、熱処理を以下の要領で実施し巻き取った。 延 伸:110℃の熱ロ−ルで加熱後、450℃の加熱
蒸気を噴射しつつ4.8倍に一段延伸。 熱処理:210℃の熱ロ−ルと弛緩ロ−ルとの間で4%
の熱収縮処理。 その結果、工程安定性は良好で、1002デニ−ル、強
度5.5g/デニ−ル、伸度19%、比重1.62の漁
網用繊維として実用性の高い繊維が得られた。
Successively, without winding the yarn, drawing and heat treatment were carried out according to the following procedure. Stretching: After being heated by a heat roll of 110 ° C., it is stretched 4.8 times while injecting heated steam of 450 ° C. Heat treatment: 4% between 210 ° C. heat roll and relaxation roll
Heat shrink treatment. As a result, the process stability was good, and a highly practical fiber as a fishing net fiber having a denier of 1002, a strength of 5.5 g / denier, an elongation of 19% and a specific gravity of 1.62 was obtained.

【0082】比較例7 加熱蒸気の温度を300℃とした以外は実施例20と同
様にして複合繊維を製造したが、その結果、強度3.3
g/デニ−ル、伸度20%、比重1.54とわずかでは
あるが、繊維強度が本発明に達しない繊維が得られた。
延伸時に芯成分を構成する熱可塑性ポリマ−の流動性が
不十分であることに起因するものと思われ、延伸時に断
糸が多発した。
Comparative Example 7 A composite fiber was produced in the same manner as in Example 20 except that the temperature of heated steam was 300 ° C., and as a result, the strength was 3.3.
A fiber having a fiber strength of less than the present invention was obtained, which was as small as g / denier, elongation 20%, and specific gravity 1.54.
This was probably due to the insufficient fluidity of the thermoplastic polymer constituting the core component during drawing, and many yarn breakages occurred during drawing.

【0083】実施例22〜23および比較例8 延伸後の熱処理温度を245℃(実施例22)、160
℃(実施例23)、256℃(比較例8)とした以外は
実施例20と同様にして複合繊維を製造した。その結
果、実施例22においては強度4.2g/デニ−ル、伸
度21%、比重1.63と高強度、高比重の複合繊維を
得ることができた。また実施例23においては強度3.
7g/デニ−ル、伸度15%、比重1.53の複合繊維
が得られた。比較例8においては繊維が一部融着し、断
糸した。
Examples 22 to 23 and Comparative Example 8 The heat treatment temperature after stretching was 245 ° C. (Example 22), 160.
A composite fiber was produced in the same manner as in Example 20 except that the temperature was changed to 0 ° C (Example 23) and 256 ° C (Comparative Example 8). As a result, in Example 22, a composite fiber having a strength of 4.2 g / denier, an elongation of 21%, a specific gravity of 1.63 and a high strength and a high specific gravity could be obtained. In Example 23, the strength was 3.
A composite fiber having 7 g / denier, an elongation of 15% and a specific gravity of 1.53 was obtained. In Comparative Example 8, some fibers were fused and broken.

【0084】比較例9 実施例1において、芯成分の水分率を650ppmにし
たところ、ノズル孔からビス落ちが生じ、全く紡糸不可
能であった。
Comparative Example 9 In Example 1, when the moisture content of the core component was set to 650 ppm, screws dropped from the nozzle holes, and spinning was not possible at all.

【0085】比較例10 実施例5において、二酸化チタンの粒子径を0.02μ
とした以外は実施例5と同様にしてチップを作成し、複
合紡糸を試みた。剪断速度が1×101 sec-1の時、
芯成分の溶融粘度は30×103 ポイズ、鞘成分の溶融
粘度は7.0×103 ポイズであり、剪断速度が5×1
2 sec-1の時、芯成分の溶融粘度は0.08×10
3 ポイズ、鞘成分の溶融粘度は7.0×103 ポイズで
あった。すなわちa/bは剪断速度が1×101 sec
-1の時には4.3であり、剪断速度が5×102 sec
-1の時には0.02であった。この時、ノズル面で単糸
切れが多発し、紡糸が不可能であった。
Comparative Example 10 In Example 5, the particle diameter of titanium dioxide was 0.02 μm.
Except for the above, chips were prepared in the same manner as in Example 5, and composite spinning was tried. When the shear rate is 1 × 10 1 sec -1 ,
The melt viscosity of the core component is 30 × 10 3 poise, the melt viscosity of the sheath component is 7.0 × 10 3 poise, and the shear rate is 5 × 1.
At 0 2 sec -1 , the melt viscosity of the core component is 0.08 × 10.
The melt viscosity of 3 poise and the sheath component was 7.0 × 10 3 poise. That is, a / b has a shear rate of 1 × 10 1 sec
When it is -1 , it is 4.3 and the shear rate is 5 × 10 2 sec.
It was 0.02 at -1 . At this time, single yarn breakage frequently occurred on the nozzle surface, and spinning was impossible.

【0086】[0086]

【発明の効果】本発明によれば、特定の無機微粒子が高
添加された芯成分とポリエステルからなる鞘成分による
複合繊維を得ることにより、従来にない高強力と高比重
を兼ね備え、しかも定置網用繊維として公害問題がな
く、かつ好適な色相を有した複合繊維を提供することが
できる。
EFFECTS OF THE INVENTION According to the present invention, by obtaining a composite fiber having a core component highly added with specific inorganic fine particles and a sheath component made of polyester, it has both high strength and high specific gravity, which have never been seen before, and is for stationary netting. It is possible to provide a composite fiber which has no pollution problem as a fiber and has a suitable hue.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河本 正夫 愛媛県西条市朔日市892番地 株式会社ク ラレ内 (72)発明者 笹川 栄一 大阪市北区梅田1丁目12番39号 株式会社 クラレ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masao Kawamoto Inventor, Masao Saijo City, Ehime Prefecture, 892 Sakusui City, Kuraray Co., Ltd. (72) Inventor, Eiichi Sasakawa 1-1239, Umeda, Kita-ku, Osaka Kuraray Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】比重が1以上の熱可塑性ポリマ−中に、比
重が3以上の非鉛系無機微粒子が50〜85重量%含有
されてなる芯成分と、該芯成分を覆うポリエステルから
なる鞘成分とより構成され、該芯成分と該鞘成分の複合
重量比率が芯/鞘=20/80〜70/30、繊維比重
が1.5以上、タフネスが60以上、かつ強度が3.5
g/デニ−ル以上であることを特徴とする複合繊維。
1. A sheath made of a thermoplastic polymer having a specific gravity of 1 or more containing 50 to 85% by weight of lead-free inorganic fine particles having a specific gravity of 3 or more, and a polyester covering the core component. The core component and the sheath component have a composite weight ratio of core / sheath = 20/80 to 70/30, fiber specific gravity of 1.5 or more, toughness of 60 or more, and strength of 3.5.
A composite fiber having a g / denier or more.
【請求項2】非鉛系無機微粒子が、二酸化チタン、酸化
亜鉛、アルミナおよび硫酸バリウムからなる群より選ば
れる少なくとも1種の微粒子Aと酸化鉄微粒子BとがA
/B=10/0〜3/7の重量比率で混合されてなる混
合微粒子であることを特徴とする請求項1記載の複合繊
維。
2. The lead-free inorganic fine particles are iron oxide fine particles B and at least one fine particle A selected from the group consisting of titanium dioxide, zinc oxide, alumina and barium sulfate.
2. The composite fiber according to claim 1, which is mixed fine particles obtained by mixing in a weight ratio of / B = 10/0 to 3/7.
【請求項3】300℃における剪断速度が1.0×10
1 〜5×102 sec-1の全領域において、芯成分の溶
融粘度aと鞘成分の溶融粘度bとの比(a/b)が5.
0〜0.05であることを特徴とする請求項1または請
求項2記載の複合繊維。
3. The shear rate at 300 ° C. is 1.0 × 10.
In the entire region of 1 to 5 × 10 2 sec −1 , the ratio (a / b) of the melt viscosity a of the core component and the melt viscosity b of the sheath component is 5.
It is 0-0.05, The composite fiber of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】比重3以上の非鉛系無機微粒子を50〜8
5重量%含有する、比重が1以上である熱可塑性ポリマ
ーを芯成分とし、ポリエステルを鞘成分として複合紡糸
し、加熱延伸した後に、芯成分の熱可塑性ポリマーの
(融点または軟化点−80)℃以上、鞘成分のポリエス
テルの(融点または軟化点−5)℃以下の温度で熱処理
を施すことを特徴とする複合繊維の製造方法。
4. A lead-free inorganic fine particle having a specific gravity of 3 or more is 50 to 8
A thermoplastic polymer containing 5% by weight and having a specific gravity of 1 or more is used as a core component, polyester is used as a sheath component for composite spinning, and after heat drawing, the thermoplastic polymer of the core component has a melting point or softening point of -80 ° C. As described above, the method for producing a conjugate fiber is characterized in that the heat treatment is carried out at a temperature of (melting point or softening point −5) ° C. or lower of the sheath component polyester.
JP03109196A 1996-02-20 1996-02-20 High specific gravity / high strength composite fiber and method for producing the same Expired - Fee Related JP3335063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03109196A JP3335063B2 (en) 1996-02-20 1996-02-20 High specific gravity / high strength composite fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03109196A JP3335063B2 (en) 1996-02-20 1996-02-20 High specific gravity / high strength composite fiber and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002112928A Division JP3712121B2 (en) 2002-04-16 2002-04-16 Manufacturing method of composite fiber

Publications (2)

Publication Number Publication Date
JPH09228151A true JPH09228151A (en) 1997-09-02
JP3335063B2 JP3335063B2 (en) 2002-10-15

Family

ID=12321740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03109196A Expired - Fee Related JP3335063B2 (en) 1996-02-20 1996-02-20 High specific gravity / high strength composite fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3335063B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200154A (en) * 1998-01-14 1999-07-27 Toray Ind Inc Conjugated fiber and its production
JPH11293523A (en) * 1998-04-15 1999-10-26 Unitika Ltd Polyoxymethylene filament having high specific gravity
JPH11293525A (en) * 1998-04-09 1999-10-26 Kuraray Co Ltd Conjugate yarn having excellent repulsion and color development
JP2000096377A (en) * 1998-09-25 2000-04-04 Unitika Ltd Production of high density composite filament
JP2000226737A (en) * 1999-02-08 2000-08-15 Toray Ind Inc Conjugate fiber and its production
JP2002266157A (en) * 2001-03-13 2002-09-18 Unitica Fibers Ltd X-ray-sensitive fiber
KR101484505B1 (en) * 2012-10-15 2015-01-20 한국생산기술연구원 X rays- sensitized fiber, manufacturing method thereof and article for preventing forgery using the same
CN113026139A (en) * 2019-12-25 2021-06-25 宇部爱科喜模株式会社 Black synthetic fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200154A (en) * 1998-01-14 1999-07-27 Toray Ind Inc Conjugated fiber and its production
JPH11293525A (en) * 1998-04-09 1999-10-26 Kuraray Co Ltd Conjugate yarn having excellent repulsion and color development
JPH11293523A (en) * 1998-04-15 1999-10-26 Unitika Ltd Polyoxymethylene filament having high specific gravity
JP2000096377A (en) * 1998-09-25 2000-04-04 Unitika Ltd Production of high density composite filament
JP2000226737A (en) * 1999-02-08 2000-08-15 Toray Ind Inc Conjugate fiber and its production
JP2002266157A (en) * 2001-03-13 2002-09-18 Unitica Fibers Ltd X-ray-sensitive fiber
KR101484505B1 (en) * 2012-10-15 2015-01-20 한국생산기술연구원 X rays- sensitized fiber, manufacturing method thereof and article for preventing forgery using the same
CN113026139A (en) * 2019-12-25 2021-06-25 宇部爱科喜模株式会社 Black synthetic fiber
JP2021102821A (en) * 2019-12-25 2021-07-15 宇部エクシモ株式会社 Black synthetic fiber

Also Published As

Publication number Publication date
JP3335063B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
JP6731760B2 (en) Core-sheath composite fiber
JP3335063B2 (en) High specific gravity / high strength composite fiber and method for producing the same
JP2000226737A (en) Conjugate fiber and its production
JP3712121B2 (en) Manufacturing method of composite fiber
JP3752250B2 (en) High specific gravity / high strength composite fiber
JP3574513B2 (en) High specific gravity / high strength conjugate fiber and method for producing the same
JP3537546B2 (en) Original high-density conjugate fiber and method for producing the same
JP3686126B2 (en) Fishing net
JP3563160B2 (en) Longline
JP2003213528A (en) Sheath/core conjugate polyester monofilament for screen gauze and method for producing the same
JP3474318B2 (en) High specific gravity / high strength composite fiber
JP4586634B2 (en) Sea-island type composite fiber with excellent see-through property
JPH06108309A (en) Conjugate magnetic fiber
JP2004003116A (en) Conjugated fiber of high specific gravity and high strength
JP2004162205A (en) Sheath/core-type monofilament and fishnet using the same
JP3697882B2 (en) Composite fiber and method for producing the same
JP2002069742A (en) High-specific gravity yarn
JP3647493B2 (en) Fishing net
JPH08158161A (en) High specific gravity yarn
JP2001303467A (en) False monofilament
JPH10273828A (en) Abrasion resistant sheath core type high specific gravity conjugate fiber and fishing net composed of the same
JPH1060739A (en) Stationary net
JPH1143823A (en) Conjugate fiber and its production
JPH10325018A (en) Conjugate filament having high specific gravity and its production
JPS6215327A (en) High-specific gravity conjugate fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees