JPH09228049A - Raw compound for cvd of rare-earth element and film forming method using the compound - Google Patents

Raw compound for cvd of rare-earth element and film forming method using the compound

Info

Publication number
JPH09228049A
JPH09228049A JP5824196A JP5824196A JPH09228049A JP H09228049 A JPH09228049 A JP H09228049A JP 5824196 A JP5824196 A JP 5824196A JP 5824196 A JP5824196 A JP 5824196A JP H09228049 A JPH09228049 A JP H09228049A
Authority
JP
Japan
Prior art keywords
earth element
rare earth
cvd
complex
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5824196A
Other languages
Japanese (ja)
Other versions
JP3818691B2 (en
Inventor
Yuzo Tazaki
雄三 田▲崎▼
Hideji Yoshizawa
秀二 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP05824196A priority Critical patent/JP3818691B2/en
Publication of JPH09228049A publication Critical patent/JPH09228049A/en
Application granted granted Critical
Publication of JP3818691B2 publication Critical patent/JP3818691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To deposit a material contg. a rare-earth element of specified composi tion by CVD and to secure a constant film forming rate for a long time by using a specified org. rare-earth element complex as the raw compd. for CVD. SOLUTION: An org. rare-earth element complex with 2,2,6,6-tetramethyl-3,5- octanedione as the ligand of the rare-earth element is used as the raw compd. for the CVD of a rare-earth element to deposit a rare-earth element or a rare- earth element-contg. material by CVD. The complex has a structure shown by the formula and has a low m.p. usable as the raw material for CVD, and the evaporating temp. is distinctly separated from the decomposing temp. Accordingly, the complex is heated above its m.p. and stably evaporated from the liq., and a film is efficiently formed by CVD.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,化学的気相蒸着法
(CVD法)によって希土類元素または該元素含有物質
を析出させるのに適した希土類元素のCVD用原料化合
物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material compound for CVD of a rare earth element or a rare earth element suitable for depositing a rare earth element or a substance containing the element by a chemical vapor deposition method (CVD method).

【0002】[0002]

【従来の技術】周知のように,単結晶薄膜や多結晶薄膜
の形成方法としては,ドライプロセスとウェットプロセ
スの2種類の方法があるが,一般にウェットプロセスに
比べてドライプロセスによって形成された薄膜の方が品
質面で優れるため,ドライプロセスが多用されている。
2. Description of the Related Art As is well known, there are two methods of forming a single crystal thin film and a polycrystalline thin film, a dry process and a wet process. Generally, a thin film formed by a dry process is compared with a wet process. The dry process is often used because of the superior quality.

【0003】ドライプロセスには,真空蒸着法,イオン
プレーティング法およびスパッタリング法等の物理的成
膜法と,化学的気相蒸着法(CVD法)等の化学的成膜
法とがある。なかでも後者のCVD法は,成膜速度の制
御が容易である上,成膜を高真空下で行う必要がなく,
しかも高速成膜が可能であることなどから,量産向きで
あるため広く用いられている。
The dry process includes a physical film forming method such as a vacuum vapor deposition method, an ion plating method and a sputtering method, and a chemical film forming method such as a chemical vapor deposition method (CVD method). The latter CVD method, in particular, makes it easy to control the film formation rate and does not require film formation under high vacuum.
Moreover, it is widely used because it is suitable for mass production because it enables high-speed film formation.

【0004】CVD法においては,原料化合物として有
機金属錯体も使用されており,その蒸気を分解させて金
属薄膜を形成する場合,熱CVD法,光CVD法または
プラズマCVD法などが採用されている。原料錯体化合
物としては,一般に,有機部分(配位子)がジピバロイ
ルメタン,ヘキサフルオロアセチルアセトン等であるβ
−ジケトン系有機金属錯体が使用されてきた。
In the CVD method, an organometallic complex is also used as a raw material compound, and when the vapor is decomposed to form a metal thin film, a thermal CVD method, a photo CVD method or a plasma CVD method is adopted. . As a raw material complex compound, generally, β whose organic part (ligand) is dipivaloylmethane, hexafluoroacetylacetone, etc.
-Diketone-based organometallic complexes have been used.

【0005】近年,超電導体材料等に有用な薄膜とし
て,希土類元素(YやNdなど)またはその酸化物をC
VD法で成膜することが提案されている。かような物質
をCVD法によって析出させる場合の原料化合物として
有機希土類元素錯体が有利である。この場合にも,前記
のジピバロイルメタン,ヘキサフルオロアセチルアセト
ン等のβ−ジケトンを配位子とした有機金属錯体とする
ことが考えられる。
In recent years, rare earth elements (Y, Nd, etc.) or their oxides have been used as C as a thin film useful for superconductor materials and the like.
It has been proposed to form a film by the VD method. An organic rare earth element complex is advantageous as a raw material compound when depositing such a substance by the CVD method. Also in this case, it is possible to use an organometallic complex having a β-diketone such as dipivaloylmethane or hexafluoroacetylacetone as a ligand.

【0006】例えば,特開平4−72066号公報およ
び特開平4−74866号公報には周期律表第II属金
属, III属金属, IVA属金属, IB金属との錯体を構成
する有機化合物として炭素数1〜5の低級アルキル基を
もつ1,3−ジケトン類が記載されている。
For example, JP-A-4-72066 and JP-A-4-74866 disclose carbon as an organic compound forming a complex with Group II metal, Group III metal, Group IVA metal and Group IB metal of the periodic table. 1,3-diketones having lower alkyl groups of the numbers 1 to 5 are described.

【0007】[0007]

【発明が解決しようとする課題】従来提案されたβ−ジ
ケトン系有機化合物を配位子とした有機金属錯体は一般
にその融点が高いので,CVD法の原料化合物に適用す
る場合,これを融点以上の温度に加熱することができな
いから,固体状態からの昇華によって原料蒸気を発生さ
せなければならない。
SUMMARY OF THE INVENTION Since conventionally proposed organometallic complexes having a β-diketone-based organic compound as a ligand generally have a high melting point, when applied to a raw material compound of the CVD method, this is not less than the melting point. Since it cannot be heated to the temperature of 1, the raw material vapor must be generated by sublimation from the solid state.

【0008】このため,原料容器内の原料残量が減少す
るに従って,原料化合物の表面積が減少して気化速度が
遅くなるという現象が起き,一定の時間内に発生する原
料蒸気量が減少するので,一定した成膜速度を長時間確
保することができないという問題がある。また2元素以
上の金属を含む化合物薄膜を作製しようとする場合には
同じ理由でその組成の制御が困難になるという問題もあ
る。
Therefore, as the residual amount of the raw material in the raw material container decreases, the surface area of the raw material compound decreases and the vaporization rate slows down, and the amount of raw material vapor generated within a certain period of time decreases. However, there is a problem that a constant film forming speed cannot be secured for a long time. Further, when a compound thin film containing a metal of two or more elements is to be produced, it is difficult to control the composition for the same reason.

【0009】前記の特開平4−72066号公報および
特開平4−74866号公報に記載の有機金属錯体も高
昇華性であることに特徴があり,CVD用原料化合物と
しては固体状態から気化させることを意図したものであ
り,したがって,前記と同様の問題がある。
The organometallic complexes described in JP-A-4-72066 and JP-A-4-74866 are also characterized by high sublimation properties. As a raw material compound for CVD, vaporization from a solid state is required. Is intended, and therefore has the same problems as described above.

【0010】また,ヘキサフルオロアセチルアセトン等
のように分子内にフッ素を含む配位子を用いた有機金属
錯体は,融点は低いが成膜した膜中に不純物としてフッ
化物が混在するおそれがあり,この場合には膜の特性を
著しく損なう結果となる。
Further, an organometallic complex using a ligand containing fluorine in the molecule such as hexafluoroacetylacetone has a low melting point, but fluoride may be mixed as an impurity in the formed film, In this case, the properties of the film are significantly impaired.

【0011】したがって本発明は,前記のような問題を
解決できるような低融点の有機金属錯体,特に希土類元
素の有機金属錯体を得ることを目的としたものである。
Therefore, the present invention is intended to obtain an organometallic complex having a low melting point, particularly an organometallic complex of a rare earth element, which can solve the above problems.

【0012】[0012]

【課題を解決するための手段】本発明者らは斯かる課題
を解決するために鋭意研究したところ,2,2,6,6
−テトラメチル−3,5−オクタンジオンのβ−ジケト
ンを配位子とした有機希土類元素の錯体は,CVD用原
料化合物として液体状態で使用可能な低融点を有し且つ
蒸発温度と分解温度がはっきり離れているというCVD
法の成膜にとって極めて有利な性質を有することを見い
だした。この特性により,これをCVD法の原料化合物
とした場合,液体状態からの蒸発を行わせることがで
き,また希土類元素の原料蒸気の基材への供給と基材上
での希土類元素の分解析出を安定して行わせることがで
きるので,既述の課題が解決できることがわかった。
[Means for Solving the Problems] The inventors of the present invention have diligently studied in order to solve such problems, and found 2, 2, 6, 6
A complex of an organic rare earth element having a β-diketone of tetramethyl-3,5-octanedione as a ligand has a low melting point that can be used in a liquid state as a raw material compound for CVD, and has an evaporation temperature and a decomposition temperature. CVD that is clearly separated
It has been found that the method has extremely advantageous properties for the film formation by the method. Due to this characteristic, when this is used as a raw material compound for the CVD method, it is possible to evaporate from a liquid state, and to supply the raw material vapor of the rare earth element to the base material and analyze the content of the rare earth element on the base material. It was found that the problems described above can be solved because the output can be performed stably.

【0013】すなわち本発明によれば,CVD法により
希土類元素または該元素を含有する物質を析出させるの
に使用する希土類元素のCVD用原料化合物であって,
2,2,6,6−テトラメチル−3,5−オクタンジオ
ンを希土類元素の配位子とした有機希土類元素錯体から
なる希土類元素のCVD用原料化合物を提供する。
That is, according to the present invention, there is provided a raw material compound for CVD of a rare earth element used for precipitating a rare earth element or a substance containing the element by a CVD method,
A raw material compound for CVD of a rare earth element, which comprises an organic rare earth element complex using 2,2,6,6-tetramethyl-3,5-octanedione as a ligand of the rare earth element.

【0014】また本発明によれば,CVD法により希土
類元素または該元素を含有する物質を基材上に析出させ
るさいに,その原料化合物として,2,2,6,6−テ
トラメチル−3,5−オクタンジオンを希土類元素の配
位子とした有機希土類元素錯体を使用し,この有機希土
類元素錯体を融点以上の温度に加熱し,当該錯体の液相
から当該錯体を蒸発させることを特徴とするCVD法に
よる希土類元素または希土類元素含有物質の成膜法を提
供する。
Further, according to the present invention, when a rare earth element or a substance containing the element is deposited on the substrate by the CVD method, 2,2,6,6-tetramethyl-3, An organic rare earth element complex having 5-octanedione as a ligand of the rare earth element is used, and the organic rare earth element complex is heated to a temperature equal to or higher than a melting point to evaporate the complex from a liquid phase of the complex. The present invention provides a method for forming a film of a rare earth element or a rare earth element-containing substance by the CVD method.

【0015】本発明に従う有機希土類元素錯体は化1の
一般式で表されるものであり,新規化合物であると思わ
れる。式中のREMは希土類元素を表す。本明細書で言
う希土類元素はY(イットリウム)を含む。したがっ
て,REMにはYを含む。
The organic rare earth element complex according to the present invention is represented by the general formula of Chemical formula 1 and is considered to be a novel compound. In the formula, REM represents a rare earth element. The rare earth element referred to in the present specification includes Y (yttrium). Therefore, Y is included in REM.

【0016】[0016]

【化1】[Chemical 1]

【0017】[0017]

【発明の実施の形態】本発明に従うβ−ジケトン系の有
機希土類元素錯体は,目的とする希土類元素の無機酸塩
(塩化物,硝酸塩等)と2,2,6,6−テトラメチル
−3,5−オクタンジオンを,水−エタノール溶液中で
攪拌しながらアルカリ水溶液(水酸化ナトリウム,アン
モニア等)を滴下し,生じた沈澱をろ過で分取し,これ
を再結晶,蒸留等の精製法で精製するという方法で得る
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION A β-diketone-based organic rare earth element complex according to the present invention comprises a target rare earth element inorganic acid salt (chloride, nitrate, etc.) and 2,2,6,6-tetramethyl-3. , 5-octanedione was added dropwise to an aqueous alkaline solution (sodium hydroxide, ammonia, etc.) while stirring in a water-ethanol solution, and the resulting precipitate was collected by filtration and purified by recrystallization, distillation, etc. It can be obtained by the method of purification by.

【0018】このようにして得られた有機希土類元素錯
体をCVD法の原料化合物として使用し,CVD法で該
希土類元素または希土類元素含有物質を成膜するには,
例えば図1に示したように,該有機希土類元素錯体1を
入れた原料容器2を恒温槽3内で当該希土類元素の融点
より高い温度(希土類元素の種類によって異なるが,お
よそ70〜150℃)に保持し,不活性キャリアガス
(例えばアルゴンガス)4を,流量計5によって流量を
調整しながら(例えば5〜500ミリリットル/分)原
料容器2内に導入することよって,有機希土類元素錯体
を同伴したガス流を該容器2から発生させる。
Using the organic rare earth element complex thus obtained as a starting material compound for the CVD method and forming a film of the rare earth element or the rare earth element-containing substance by the CVD method,
For example, as shown in FIG. 1, a raw material container 2 containing the organic rare earth element complex 1 is placed in a thermostatic chamber 3 at a temperature higher than the melting point of the rare earth element (depending on the kind of the rare earth element, about 70 to 150 ° C.). And the inert carrier gas (for example, argon gas) 4 is introduced into the raw material container 2 while adjusting the flow rate by the flow meter 5 (for example, 5 to 500 ml / min), thereby accommodating the organic rare earth element complex. A generated gas stream is generated from the container 2.

【0019】発生した有機希土類元素錯体蒸気は熱分解
炉6の反応管7内に導かれる。反応管(例えば石英管)
7はヒータ8によって加熱され,管内に設置した基板9
を所定の温度(例えば300〜800℃)に加熱保持す
ることによって,該有機希土類元素錯体が熱分解して基
板9上に希土類元素が析出し,成膜する。なお,原料容
器2から熱分解炉6までの配管は,凝縮を防ぐために保
温層10または加熱保温手段によって80〜160℃に
保温維持するのがよい。反応管7から出る排ガスは冷却
トラップ11を経て排出される。図中の12はバルブ
を,また13はロータリーポンプを示している。また,
希土類元素の酸化物を成膜するさいには,酸素容器14
から流量計15およびバルブ16を経て反応雰囲気中
(例えば反応管7内)に適量の気体酸素を送気する。ま
た,他の元素との複合物質を成膜するには,図示されて
はいないが,当該他の物質の原料化合物を同時に反応管
7内に導くようにする。
The generated organic rare earth element complex vapor is introduced into the reaction tube 7 of the thermal decomposition furnace 6. Reaction tube (eg quartz tube)
7 is heated by a heater 8 and is a substrate 9 installed in the tube.
Is heated and maintained at a predetermined temperature (for example, 300 to 800 ° C.), the organic rare earth element complex is thermally decomposed and the rare earth element is deposited on the substrate 9 to form a film. The piping from the raw material container 2 to the pyrolysis furnace 6 is preferably kept warm at 80 to 160 ° C. by the heat retaining layer 10 or the heat retaining means in order to prevent condensation. Exhaust gas from the reaction tube 7 is discharged through a cooling trap 11. In the figure, 12 indicates a valve, and 13 indicates a rotary pump. Also,
When depositing an oxide of a rare earth element, the oxygen container 14
Then, an appropriate amount of gaseous oxygen is fed into the reaction atmosphere (for example, in the reaction tube 7) through the flow meter 15 and the valve 16. Further, in order to form a composite material with another element, although not shown, the raw material compounds of the other material are simultaneously introduced into the reaction tube 7.

【0020】[0020]

【実施例】【Example】

〔実施例1〕図1のCVD設備を用いて,ステンレス鋼
製の原料容器2内に,原料化合物として,化2に示した
トリス(2,2,6,6−テトラメチル−3,5−オク
タンジオナト)イットリウムを入れ,基板9には酸化マ
グネシウム基板を用いてその上に成膜する操作を行っ
た。
[Example 1] Tris (2,2,6,6-tetramethyl-3,5- as shown in Chemical formula 2 was used as a raw material compound in a stainless steel raw material container 2 using the CVD equipment shown in FIG. Octanedionate) yttrium was added, and a magnesium oxide substrate was used as the substrate 9 to perform film formation thereon.

【0021】[0021]

【化2】 Embedded image

【0022】化2のトリス(2,2,6,6−テトラメ
チル−3,5−オクタンジオナト)イットリウムは,次
のようにして製造した。
The tris (2,2,6,6-tetramethyl-3,5-octanedionato) yttrium of Chemical formula 2 was prepared as follows.

【0023】硝酸イットリウム六水和物12.5gを水
100ミリミットルに溶解させ,これに2,2,6,6
−テトラメチル−3,5−オクタンジオン17.5gと
エタノール100ミリミットルを加えて攪拌し,さらに
アンモニア水を滴下して沈澱を生成させる。ついで,こ
れをろ過し,ろ別した澱物を減圧乾燥したあと,減圧蒸
留精製によって,4.5gのトリス(2,2,6,6−
テトラメチル−3,5−オクタンジオナト)イットリウ
ムを得た。この化合物の融点を測定したところ94〜9
6℃であった。
12.5 g of yttrium nitrate hexahydrate was dissolved in 100 milliliters of water, and 2,2,6,6
-Tetramethyl-3,5-octanedione (17.5 g) and ethanol (100 milliliter) were added and stirred, and further aqueous ammonia was added dropwise to form a precipitate. Then, this was filtered, and the precipitate separated by filtration was dried under reduced pressure and then purified by distillation under reduced pressure to give 4.5 g of tris (2,2,6,6-
Tetramethyl-3,5-octandionato) yttrium was obtained. When the melting point of this compound was measured, it was 94-9.
6 ° C.

【0024】この化合物1gを容器2内に装填し,恒温
槽3を130℃の恒温に設定保持した。酸化マグネシウ
ム基板9をヒータ8によって700℃に加熱保持した状
態で,キャリヤーガスとしてアルゴンガスを100ミリ
リットル/分を通流して該化合物を石英反応管7に導い
た。容器2から熱分解炉6までの配管は140℃に保持
されるように保温した。
1 g of this compound was loaded into the container 2 and the thermostat 3 was kept at a constant temperature of 130.degree. While the magnesium oxide substrate 9 was heated and held at 700 ° C. by the heater 8, an argon gas as a carrier gas was passed through at 100 ml / min to introduce the compound into the quartz reaction tube 7. The piping from the container 2 to the pyrolysis furnace 6 was kept warm so as to be maintained at 140 ° C.

【0025】この条件下で30分間の成膜操作を行った
ところ,厚さ2000オングストロームの均一なイット
リウムの薄膜が得られた。
When a film forming operation was performed for 30 minutes under these conditions, a uniform yttrium thin film having a thickness of 2000 angstrom was obtained.

【0026】容器2に装填したトリス(2,2,6,6
−テトラメチル−3,5−オクタンジオナト)イットリ
ウムの量を2gに変更した以外は,前記と全く同じ条件
で成膜操作を繰り返した。この場合にも同じく厚さが2
000オングストロームの均一なイットリウムの薄膜が
得られた。すなわち,容器2に装填する原料化合物量を
変えても同厚の成膜ができた。このことは,原料化合物
からの蒸発量が処理時間中一定であり,且つ分解量も一
定であることを示している。
Tris (2, 2, 6, 6 loaded in container 2
The film forming operation was repeated under exactly the same conditions as described above, except that the amount of -tetramethyl-3,5-octanedionate) yttrium was changed to 2 g. Also in this case, the thickness is 2
A uniform yttrium thin film of 000 Å was obtained. That is, even if the amount of the raw material compound loaded in the container 2 was changed, a film having the same thickness could be formed. This indicates that the amount of evaporation from the raw material compound is constant during the processing time and the amount of decomposition is also constant.

【0027】〔実施例2〕気体酸素を酸素源14から流
量計15および弁16を経て反応管7内に100ミリリ
ットル/分の流量で追加した以外は,実施例1と同様の
処理を同じく30分間行った。その結果,原料装填量が
1gと2gの両方とも2900オングストロームの同じ
厚さの酸化イットリウムの薄膜が得られた。
Example 2 The same process as in Example 1 was repeated except that gaseous oxygen was added from the oxygen source 14 through the flow meter 15 and the valve 16 into the reaction tube 7 at a flow rate of 100 ml / min. I went for a minute. As a result, yttrium oxide thin films having the same thickness of 2900 angstroms were obtained for both raw material loadings of 1 g and 2 g.

【0028】〔実施例3〕原料化合物として化3に示し
たトリス(2,2,6,6−テトラメチル−3,5−オ
クタンジオナト)ネオジムを用いて,実施例1と同様に
マグネシウム基板の上に成膜する操作を行った。
Example 3 Using the tris (2,2,6,6-tetramethyl-3,5-octanedionate) neodymium shown in Chemical formula 3 as a raw material compound, a magnesium substrate was prepared in the same manner as in Example 1. The operation of forming a film on the above was performed.

【0029】[0029]

【化3】 Embedded image

【0030】化3のトリス(2,2,6,6−テトラメ
チル−3,5−オクタンジオナト)ネオジムは,次のよ
うにして製造した。
The tris (2,2,6,6-tetramethyl-3,5-octanedionato) neodymium of Chemical formula 3 was prepared as follows.

【0031】硝酸ネオジム五水和物13.0gを水10
0ミリミットルに溶解させ,これに2,2,6,6−テ
トラメチル−3,5−オクタンジオン17.5gとエタ
ノール100ミリミットルを加えて攪拌し,さらにアン
モニア水を滴下して沈澱を生成させる。ついで,これを
ろ過し,ろ別した澱物を減圧乾燥したあと,減圧蒸留精
製によって,4.1gのトリス(2,2,6,6−テト
ラメチル−3,5−オクタンジオナト)ネオジムを得
た。この化合物の融点を測定したところ134〜136
℃であった。
13.0 g of neodymium nitrate pentahydrate was added to 10 parts of water.
It is dissolved in 0 milimitle, and 2,2,6,6-tetramethyl-3,5-octanedione (17.5 g) and ethanol 100 milimitle are added and stirred, and ammonia water is added dropwise to form a precipitate. Then, this was filtered, and the precipitate separated by filtration was dried under reduced pressure, and then purified by distillation under reduced pressure to obtain 4.1 g of tris (2,2,6,6-tetramethyl-3,5-octanedionate) neodymium. Obtained. When the melting point of this compound was measured, it was 134 to 136.
° C.

【0032】この化合物1gまたは2gを容器2内に装
填し,恒温槽3を150℃の恒温に設定保持し,容器2
から熱分解炉6までの配管を160℃に保持されるよう
に保温した以外は,実施例1と同様の条件でいずれも3
0分間の成膜操作を行った。その結果,原料充填量が1
gと2gの両方とも,1800オングストロームの同じ
厚さの均一なネオジム薄膜が得られた。このことは,原
料化合物からの蒸発量が処理時間中一定であり,且つ分
解量も一定であることを示している。
1 g or 2 g of this compound was loaded into the container 2, and the thermostat 3 was kept at a constant temperature of 150 ° C.
3 to 3 under the same conditions as in Example 1 except that the pipes from the heat treatment furnace to the pyrolysis furnace 6 were kept warm so as to be maintained at 160 ° C.
A film forming operation for 0 minutes was performed. As a result, the raw material filling amount is 1
Both g and 2 g resulted in uniform neodymium thin films of the same thickness of 1800 Å. This indicates that the amount of evaporation from the raw material compound is constant during the processing time and the amount of decomposition is also constant.

【0033】〔実施例4〕気体酸素を酸素源14から流
量計15および弁16を経て反応管7内に100ミリリ
ットル/分の流量で追加した以外は,実施例3と同様の
処理を同じく30分間行った。その結果,原料装填量が
1gと2gの両方とも2500オングストロームの同じ
厚さの酸化ネオジムの薄膜が得られた。
Example 4 The same process as in Example 3 was repeated except that gaseous oxygen was added from the oxygen source 14 through the flow meter 15 and the valve 16 into the reaction tube 7 at a flow rate of 100 ml / min. I went for a minute. As a result, a neodymium oxide thin film having the same thickness was obtained, in which the raw material loadings were both 2500 g and 2500 g.

【0034】〔比較例1〕トリス(2,2,6,6−テ
トラメチル−3,5−オクタンジオナト)イットリウム
に代えて,融点が174〜176℃のトリス(ジピバロ
イルメタナト)イットリウムを使用した以外は実施例1
と同様な条件で成膜した。その結果,30分後に原料充
填量1gのものは厚さが1900オングストローム,ま
た,原料充填量2gのものは厚さが2400オングスト
ロームのイットリウムの薄膜が得られた。このことは,
容器内原料の容積変化にともなって,蒸発量も経時変化
したことを示している。
[Comparative Example 1] Yttrium tris (dipivaloylmethanato) having a melting point of 174 to 176 ° C in place of tris (2,2,6,6-tetramethyl-3,5-octanedionate) yttrium. Example 1 except that
The film was formed under the same conditions as described above. As a result, after 30 minutes, a thin film of yttrium having a material loading of 1 g and a thickness of 1900 angstroms and a material loading of 2 g having a thickness of 2400 angstroms was obtained. This means that
This indicates that the evaporation amount changed with time as the volume of the raw material in the container changed.

【0035】〔比較例2〕気体酸素を酸素源14から流
量計15および弁16を経て反応管7内に100ミリリ
ットル/分の流量で追加した以外は,比較例1と同様の
処理を同じく30分間行った。その結果,原料充填量1
gのものは厚さが2700オングストローム,また原料
充填量2gのものは厚さが3200オングストロームの
酸化イットリウムの薄膜が得られた。
Comparative Example 2 The same procedure as in Comparative Example 1 was repeated except that gaseous oxygen was added from the oxygen source 14 through the flow meter 15 and the valve 16 into the reaction tube 7 at a flow rate of 100 ml / min. I went for a minute. As a result, the raw material filling amount 1
A thin film of yttrium oxide having a thickness of 2700 angstroms and a raw material filling amount of 2 g was 3200 angstroms.

【0036】〔比較例3〕トリス(2,2,6,6−テ
トラメチル−3,5−オクタンジオナト)ネオジムに代
えて,融点が218〜219℃のトリス(ジピバロイル
メタナト)ネオジムを使用した以外は,実施例3と同様
な条件で成膜した。その結果,30分後に原料充填量1
gのものは厚さが1600オングストローム,また,原
料充填量2gのものは厚さが2100オングストローム
のネオジムの薄膜が得られた。このことは,容器内原料
の容積変化にともなって,蒸発量も経時変化したことを
示している。
Comparative Example 3 Tris (dipivaloylmethanato) neodymium having a melting point of 218 to 219 ° C. in place of tris (2,2,6,6-tetramethyl-3,5-octanedionate) neodymium. A film was formed under the same conditions as in Example 3 except that was used. As a result, the raw material filling amount 1 after 30 minutes
A thin film of neodymium having a thickness of 1600 angstroms was obtained for the sample of g, and a film thickness of 2100 angstroms for the sample having a raw material filling amount of 2 g. This indicates that the evaporation amount also changed with time as the volume of the raw material in the container changed.

【0037】〔比較例4〕気体酸素を酸素源14から流
量計15および弁16を経て反応管7内に100ミリリ
ットル/分の流量で追加した以外は,比較例3と同様の
処理を同じく30分間行った。その結果,原料充填量1
gのものは厚さが2000オングストローム,また原料
充填量2gのものは厚さが2600オングストロームの
酸化ネオジムの薄膜が得られた。
Comparative Example 4 The same procedure as in Comparative Example 3 was repeated except that gaseous oxygen was added from the oxygen source 14 through the flow meter 15 and the valve 16 into the reaction tube 7 at a flow rate of 100 ml / min. I went for a minute. As a result, the raw material filling amount 1
A thin film of neodymium oxide having a thickness of 2000 angstroms and a raw material filling amount of 2 g was 2600 angstroms.

【0038】[0038]

【発明の効果】以上のように,本発明に従うβ−ジケト
ン系有機希土類元素錯体は低融点で,高気化性であり,
かつ蒸発温度と分解温度がはなれていることから,CV
D法によって希土類元素または希土類元素含有物質の薄
膜を製造するための原料化合物として使用する場合に,
液体状態で使用できるという優れた利点があり,またこ
のために蒸発速度が一定となるので安定した成膜速度が
得られ,しかも高速で且つ均質な成膜ができるという特
徴がある。
As described above, the β-diketone-based organic rare earth element complex according to the present invention has a low melting point and high vaporization property,
And since the evaporation temperature and the decomposition temperature are different, CV
When used as a raw material compound for producing a thin film of a rare earth element or a rare earth element-containing substance by the D method,
It has an excellent advantage that it can be used in a liquid state, and because of this, the evaporation rate becomes constant, so that a stable film formation rate can be obtained, and further, high-speed and uniform film formation is possible.

【0039】したがって,本発明によれば,超電導材料
などに有用な希土類元素または希土類元素含有物質の成
膜技術に多大の貢献ができる。
Therefore, according to the present invention, it is possible to make a great contribution to the film forming technique of a rare earth element or a rare earth element-containing substance useful for a superconducting material or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱CVD法を実施する設備の機器配置例を示し
た略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of equipment arrangement of equipment for carrying out a thermal CVD method.

【符号の説明】[Explanation of symbols]

1 有機金属錯体 2 原料容器 3 恒温槽 4 不活性キャリヤーガス 5 流量計 6 熱分解炉 7 石英反応管 8 ヒータ 9 基板 10 保温層 11 冷却トラップ 12 バルブ 13 ロータリーポンプ 14 酸素源 1 Organometallic Complex 2 Raw Material Container 3 Constant Temperature Tank 4 Inert Carrier Gas 5 Flow Meter 6 Pyrolysis Furnace 7 Quartz Reaction Tube 8 Heater 9 Substrate 10 Heat Retaining Layer 11 Cooling Trap 12 Valve 13 Rotary Pump 14 Oxygen Source

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 25/02 C30B 25/02 Z 29/02 29/02 29/16 29/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C30B 25/02 C30B 25/02 Z 29/02 29/02 29/16 29/16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CVD法により希土類元素または該元素
を含有する物質を析出させるのに使用する希土類元素の
CVD用原料化合物であって,2,2,6,6−テトラ
メチル−3,5−オクタンジオンを希土類元素の配位子
とした有機希土類元素錯体からなる希土類元素のCVD
用原料化合物。
1. A raw material compound for CVD of a rare earth element used for precipitating a rare earth element or a substance containing the element by a CVD method, comprising 2,2,6,6-tetramethyl-3,5- CVD of rare earth element consisting of organic rare earth complex with octanedione as ligand of rare earth element
Raw material compound.
【請求項2】 有機希土類元素錯体は化1で示される請
求項1に記載のCVD用原料化合物。 【化1】
2. The raw material compound for CVD according to claim 1, wherein the organic rare earth element complex is represented by Chemical formula 1. Embedded image
【請求項3】 CVD法により希土類元素または該元素
を含有する物質を基材上に析出させるさいに,その原料
物質として,2,2,6,6−テトラメチル−3,5−
オクタンジオンを希土類元素の配位子とした有機希土類
元素錯体を使用し,この有機希土類元素錯体を融点以上
の温度に加熱し,当該錯体の液相から当該錯体を蒸発さ
せることを特徴とするCVD法による希土類元素または
希土類元素含有物質の成膜法。
3. When depositing a rare earth element or a substance containing the element on a substrate by a CVD method, 2,2,6,6-tetramethyl-3,5-
CVD using an organic rare earth element complex with octanedione as a ligand of the rare earth element, heating the organic rare earth element complex to a temperature above the melting point, and evaporating the complex from the liquid phase of the complex Method of forming a rare earth element or a rare earth element-containing substance by the method.
JP05824196A 1996-02-22 1996-02-22 Raw material compound for CVD of rare earth elements and film forming method using the same Expired - Lifetime JP3818691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05824196A JP3818691B2 (en) 1996-02-22 1996-02-22 Raw material compound for CVD of rare earth elements and film forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05824196A JP3818691B2 (en) 1996-02-22 1996-02-22 Raw material compound for CVD of rare earth elements and film forming method using the same

Publications (2)

Publication Number Publication Date
JPH09228049A true JPH09228049A (en) 1997-09-02
JP3818691B2 JP3818691B2 (en) 2006-09-06

Family

ID=13078621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05824196A Expired - Lifetime JP3818691B2 (en) 1996-02-22 1996-02-22 Raw material compound for CVD of rare earth elements and film forming method using the same

Country Status (1)

Country Link
JP (1) JP3818691B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072402A (en) * 1999-08-05 2001-03-21 Patent Treuhand Ges Elektr Gluehlamp Mbh Method and apparatus for producing oxide nanocrystal, its use and fluorescent substance for irradiation apparatus
WO2004106583A1 (en) * 2003-05-30 2004-12-09 Saes Getters S.P.A. Precursor solution used for the cvd method and use thereof in the production of thin films
JP2009120866A (en) * 2007-11-12 2009-06-04 Shin Etsu Chem Co Ltd Method for depositing rare earth oxide coating film
JP2020045340A (en) * 2018-09-20 2020-03-26 北京夏禾科技有限公司 Organic luminescent material containing novel auxiliary ligand

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072402A (en) * 1999-08-05 2001-03-21 Patent Treuhand Ges Elektr Gluehlamp Mbh Method and apparatus for producing oxide nanocrystal, its use and fluorescent substance for irradiation apparatus
WO2004106583A1 (en) * 2003-05-30 2004-12-09 Saes Getters S.P.A. Precursor solution used for the cvd method and use thereof in the production of thin films
JP2009120866A (en) * 2007-11-12 2009-06-04 Shin Etsu Chem Co Ltd Method for depositing rare earth oxide coating film
JP2020045340A (en) * 2018-09-20 2020-03-26 北京夏禾科技有限公司 Organic luminescent material containing novel auxiliary ligand
KR20200034636A (en) * 2018-09-20 2020-03-31 베이징 썸머 스프라우트 테크놀로지 컴퍼니 리미티드 Organic luminescent materials containing novel ancillary ligands
JP2022017297A (en) * 2018-09-20 2022-01-25 北京夏禾科技有限公司 Organic luminescent material containing novel auxiliary ligand

Also Published As

Publication number Publication date
JP3818691B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
KR100539206B1 (en) GROWTH OF BaSrTiO3 USING POLYAMINE-BASED PRECURSORS
US5149596A (en) Vapor deposition of thin films
JP2001524597A (en) Alkane / polyamine solvent composition for liquid fed CVD
JP3611640B2 (en) Method for depositing group 8 elements and raw material compounds used
JP3818691B2 (en) Raw material compound for CVD of rare earth elements and film forming method using the same
Morstein et al. Composition and Microstructure of Zirconia Films Obtained by MOCVD with a New, Liquid, Mixed Acetylacetonato‐Alcoholato Precursor
JP3584089B2 (en) Rare earth element material for CVD and film forming method using the same
JPH0885873A (en) Production of thin film using organometallic complex
Burgess et al. Solid precursor MOCVD of heteroepitaxial rutile phase TiO2
JP4022662B2 (en) Zirconium alkoxytris (β-diketonate), production method thereof, and liquid composition for forming PZT film
US5952047A (en) CVD precursors and film preparation method using the same
JP3584091B2 (en) Copper source material for CVD and film forming method using the same
JP2802676B2 (en) Method for producing thin film using 1,3-diketone organometallic complex
JP3465848B2 (en) Production method of thin film using organometallic complex
JP2799763B2 (en) Production method of thin film using organometallic complex
JP3584097B2 (en) Calcium source material for CVD and film forming method using the same
JP3231835B2 (en) Production method of thin film using organometallic complex
JPH09228048A (en) Barium source material for cvd and film forming method using the material
JP3379315B2 (en) Raw materials for forming platinum thin films by metal organic chemical vapor deposition
JPH10324970A (en) Raw material for cvd and film-forming method using the same
USH1170H (en) Volatile divalent double metal alkoxides
JP3964976B2 (en) Strontium source material for CVD and film forming method using the same
JPH06306609A (en) Production of thin film by using organic metallic complex
JP2001181840A (en) Copper raw material for chemical vapor growth and method for producing thin film using the same
JP2005097092A (en) Process for producing fine metal oxide particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term