JP3584097B2 - Calcium source material for CVD and film forming method using the same - Google Patents

Calcium source material for CVD and film forming method using the same Download PDF

Info

Publication number
JP3584097B2
JP3584097B2 JP29335995A JP29335995A JP3584097B2 JP 3584097 B2 JP3584097 B2 JP 3584097B2 JP 29335995 A JP29335995 A JP 29335995A JP 29335995 A JP29335995 A JP 29335995A JP 3584097 B2 JP3584097 B2 JP 3584097B2
Authority
JP
Japan
Prior art keywords
calcium
complex
cvd
organic
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29335995A
Other languages
Japanese (ja)
Other versions
JPH09111454A (en
Inventor
雄三 田▲崎▼
秀二 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP29335995A priority Critical patent/JP3584097B2/en
Publication of JPH09111454A publication Critical patent/JPH09111454A/en
Application granted granted Critical
Publication of JP3584097B2 publication Critical patent/JP3584097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,化学的気相蒸着法(CVD法)によってカルシウムまたはカルシウム含有物質を析出させるのに適したCVD用カルシウム源物質に関する。
【0002】
【従来の技術】
【0003】
超電導材料やEL材料などに有用な薄膜として,カルシウムまたはカルシウム含有物質の薄膜をCVD法で成膜することが種々提案されている。カルシウムまたはカルシウム含有物質をCVD法によって析出させる場合の原料化合物として有機カルシウム錯体を用いることが有利である。
【0004】
従来より,或る金属またはその化合物をCVD法で成膜するさいの原料化合物としてその金属の有機錯体が使用されており,かような有機金属錯体を構成する有機部分(配位子)としては,ジピバロイルメタン或いはヘキサフルオロアセチルアセトン等のβ−ジケトンが一般に知られている。特開平4−72066号公報および特開平4−74866号公報には周期律表第IIA属金属, IIIA属金属,IVA属金属,IB属金属との錯体を構成する有機化合物として炭素数1〜5の低級アルキル基をもつ1,3ジケトン類が記載されている。
【0005】
なお,CVD法には,熱CVD法,光CVD法またはプラズマCVD法などが知られており,いずれも原料化合物の蒸気を分解させて薄膜を形成するものであるが,原料化合物の蒸気を発生させる場合には,固体状態にある原料化合物からその蒸気を昇華させるのが一般的である。
【0006】
【発明が解決しようとする課題】
従来提案されたβ−ジケトン系有機化合物を配位子とした有機カルシウム錯体は,一般にその融点が高い(ほぼ200℃前後)。このため,CVD法の原料化合物に適用する場合,これを融点以上の高温に加熱することはせずに,固体状態からの昇華によって原料蒸気を発生させることが行われている。
【0007】
固体状態からの昇華の場合には,原料容器内の原料残量が減少するに従って,原料化合物の表面積が減少して気化速度が遅くなるという現象が起き,この蒸気量の減少により,一定した成膜速度を長時間確保することができないという問題がある。また,この気化速度が変化することにより,カルシウムと他の元素とが複合した物質の薄膜(例えばBi Sr Ca Cuなど) を作製しようとする場合には, その組成の制御が困難になるという問題もある。
【0008】
前記の特開平4−72066号公報および特開平4−74866号公報に記載された有機金属錯体も高昇華性である点を特徴とするものであり,CVD用原料化合物としては固体状態で蒸発させるものである。したがって,前記同様の問題がある。
【0009】
また,ヘキサフルオロアセチルアセトン等のように分子内にフッ素を含む配位子を用いた有機金属錯体は,融点は低いが成膜した膜中に不純物としてフッ化物が混在するおそれがあり,この場合には膜の特性を著しく損なう結果となる。
【0010】
したがって本発明は,前記のような問題を解決できるような低融点のCVD用カルシウム源物質を得ることを課題としたものである。
【0011】
【課題を解決するための手段】
本発明者らは斯かる課題を解決するために鋭意研究したところ,6−エチル−2,2−ジメチル−3,5−オクタンジオンのβ−ジケトンを配位子とした有機カルシウム錯体は,CVD用原料化合物として液体状態で使用可能な低融点(ほぼ155〜160℃)を有し且つ蒸発温度と分解温度がはっきり離れているというCVD法の成膜にとって極めて有利な性質を有することを見いだした。この特性により,これをCVD法のカルシウム源物質とした場合,液体状態からの蒸発を行わせることができ,またカルシウムの原料蒸気の基材への供給と基材上でのカルシウムの分解析出を安定して行わせることができるので,既述の課題が解決できることがわかった。
【0012】
すなわち,本発明によれば,CVD法によりカルシウムまたはカルシウム含有物質を析出させるのに使用するCVD用カルシウム源物質であって,6−エチル−2,2−ジメチル−3,5−オクタンジオンをカルシウムの配位子とした有機カルシウム錯体からなるCVD用同源物質を提供する。
【0013】
また本発明によれば,CVD法によりカルシウムまたはカルシウム含有物質を基材上に析出させるさいに,カルシウム源物質として6−エチル−2,2−ジメチル−3,5−オクタンジオンをカルシウムの配位子とした有機カルシウム錯体を使用し,この有機カルシウム錯体を融点以上の温度に加熱し,当該錯体の液相から当該錯体を蒸発させることを特徴とするCVD法によるカルシウムまたはカルシウム含有物質の成膜法を提供する。
【0014】
本発明に従う有機カルシウム錯体は化1の一般式で表されるものであり,新規化合物であると思われる。
【0015】
【化1】
【0016】
【発明の実施の形態】
本発明に従うβ−ジケトン系有機カルシウム錯体は,金属カルシウムと,配位子の6−エチル−2,2−ジメチル−3,5−オクタンジオンを,トルエン−エタノール溶液中で加熱攪拌し,溶媒を留去して析出した固体を,再結晶,蒸留等の精製法で精製するという方法で得ることができる。
【0017】
このようにして得られた本発明の有機カルシウム錯体をCVD法の原料化合物として使用し,CVD法で該カルシウムまたはカルシウム含有物質を成膜するには,例えば図1に示したように,該有機カルシウム錯体1を入れた原料容器2を恒温槽3内で所定の温度(融点より高い温度,例えば160〜170℃)に保持し,不活性キャリアガス(例えばアルゴンガス)4を流量計5によって流量を調整しながら(例えば5〜500ミリリットル/分)原料容器2内に導入することよって,有機カルシウム錯体を同伴したガス流を該容器2から発生させる。
【0018】
発生した有機カルシウム錯体蒸気は熱分解炉6の反応管7内に導かれる。反応管(例えば石英管)7はヒータ8によって加熱され,管内に設置した基板9を所定の温度(例えば400〜800℃)に加熱保持することによって,該有機カルシウム錯体が熱分解して基板9上にカルシウムが析出し,成膜する。なお,原料容器2から熱分解炉6までの配管は,凝縮を防ぐために保温層10または加熱保温手段によって165〜175℃に保温維持するのがよい。反応管7から出る排ガスは冷却トラップ11を経て排出される。図中の12はバルブを,また13はロータリーポンプを示している。なお,カルシウムの酸化物を成膜するさいには,酸素容器14から流量計15およびバルブ16を経て反応雰囲気中(例えば反応間7内)に適量の気体酸素を送気する。また,他の元素との複合物質を成膜するには,図示されてはいないが,当該他の物質の原料化合物を同時に反応間7内に導くようにする。
【0019】
【実施例】
〔実施例1〕
図1のCVD設備を用いて,ステンレス鋼製の原料容器2内に,カルシウム源としての原料化合物として,化1に示したビス(6−エチル−2,2−ジメチル−3,5−オクタンジオナト)カルシウムを入れ,基板9にはシリコン基板を用いてその上に成膜する操作を行った。
【0020】
なお,化1のビス(6−エチル−2,2−ジメチル−3,5−オクタンジオナト)カルシウムは,次のようにして製造した。まず,窒素雰囲気下で,金属カルシウム4gにエタノール200ミリリットルとトルエン100ミリリットルを加え,これに6−エチル−2,2−ジメチル−3,5−オクタンジオン40gを加えて100℃で攪拌し,金属カルシウムが完全に溶解した後,溶媒を減圧留去し,さらに減圧乾燥したのち昇華精製によって41gのビス(6−エチル−2,2−ジメチル−3,5−オクタンジオナト)カルシウムを得た。得られた錯体の融点測定を行ったところ155〜160℃であった。
【0021】
この有機カルシウム錯体1gを容器2内に装填し,恒温槽3を160℃の恒温に設定保持した。シリコン基板9をヒータ8によって600℃に加熱保持した状態で,キャリヤーガスとしてアルゴンガスを100ミリリットル/分を通流して該化合物を石英反応管7に導いた。容器2から熱分解炉6までの配管は170℃に保持されるように保温した。
【0022】
この条件下で30分間の成膜操作を行ったところ,厚さ1000オングストロームの均一なカルシウムの薄膜が得られた。
【0023】
容器2に装填したビス(6−エチル−2,2−ジメチル−3,5−オクタンジオナト)カルシウムの量を2gに変更した以外は,前記と全く同じ条件で成膜操作を繰り返した。この場合にも同じく厚さが1000オングストロームの均一なカルシウムの薄膜が得られた。すなわち,容器2に装填する原料化合物量を変えても同厚の成膜ができた。このことは,原料化合物からの蒸発量が処理時間中一定であり,且つ分解量も一定であることを示している。
【0024】
〔実施例2〕
気体酸素を酸素源14から流量計15および弁16を経て反応管7内に100ミリリットル/分の流量で追加した以外は,実施例1と同様の処理を同じく30分間行った。その結果,原料装填量が1gと2gの両方とも1700オングストロームの同じ厚さの酸化カルシウムの薄膜が得られた。
【0025】
〔比較例1〕
ビス(6−エチル−2,2−ジメチル−3,5−オクタンジオナト)カルシウムに代えて,融点が199〜200℃のビス(ジピバロイルメタナト)カルシウムを使用した以外は,実施例1と同様な条件で成膜した。その結果,30分後に原料充填量1gのものは厚さが1800オングストローム,また,原料充填量2gのものは厚さが2900オングストロームのカルシウムの薄膜が得られた。このことは,容器内原料の容積変化にともなって蒸発量も経時変化したことを示している。
【0026】
〔比較例2〕
気体酸素を酸素源14から流量計15および弁16を経て反応管7内に100ミリリットル/分の流量で追加した以外は,比較例1と同様の処理を同じく30分間行った。その結果,原料充填量1gのものは厚さが2700オングストローム,また原料充填量2gのものは厚さが3700オングストロームの酸化カルシウムの薄膜が得られた。
【0027】
【発明の効果】
以上のように,本発明に従うβ−ジケトン系有機カルシウム錯体は低融点で,高気化性であり,かつ蒸発温度と分解温度がはなれていることから,CVD法によってカルシウムまたはカルシウム含有物質の薄膜を製造するためのカルシウム源物質として使用する場合に,液体状態で使用できるという優れた利点があり,またこのために蒸発速度が一定となるので安定した成膜速度が得られ,しかも高速で且つ均質な成膜ができるという特徴がある。
【0028】
したがって,本発明によれば,超電導材料やEL材料などに有用なカルシウムまたはカルシウム含有物質の成膜技術に多大の貢献ができる。
【図面の簡単な説明】
【図1】熱CVD法を実施する設備の機器配置例を示した略断面図である。
【符号の説明】
1 有機金属錯体
2 原料容器
3 恒温槽
4 不活性キャリヤーガス
5 流量計
6 熱分解炉
7 石英反応管
8 ヒータ
9 基板
10 保温層
11 冷却トラップ
12 バルブ
13 ロータリーポンプ
14 酸素源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a calcium source material for CVD suitable for depositing calcium or a calcium-containing material by a chemical vapor deposition (CVD) method.
[0002]
[Prior art]
[0003]
Various proposals have been made for forming a thin film of calcium or a calcium-containing substance by a CVD method as a thin film useful for a superconducting material or an EL material. It is advantageous to use an organic calcium complex as a raw material compound when depositing calcium or a calcium-containing substance by a CVD method.
[0004]
BACKGROUND ART Conventionally, an organic complex of a metal or a compound thereof has been used as a raw material compound when a film is formed by a CVD method, and an organic portion (ligand) constituting such an organometallic complex is as follows. Β-diketones such as dipivaloylmethane and hexafluoroacetylacetone are generally known. JP-A-4-72066 and JP-A-4-74866 disclose organic compounds constituting a complex with metals belonging to Group IIA, IIIA, IVA and IB of the periodic table having 1 to 5 carbon atoms. 1,3 diketones having a lower alkyl group are described.
[0005]
As the CVD method, a thermal CVD method, an optical CVD method, a plasma CVD method, and the like are known. In each case, a thin film is formed by decomposing a vapor of a raw material compound. In this case, the vapor is generally sublimated from the raw material compound in a solid state.
[0006]
[Problems to be solved by the invention]
Organic calcium complexes using a conventionally proposed β-diketone organic compound as a ligand generally have a high melting point (about 200 ° C.). For this reason, when it is applied to a raw material compound of the CVD method, a raw material vapor is generated by sublimation from a solid state without heating it to a high temperature higher than its melting point.
[0007]
In the case of sublimation from the solid state, as the remaining amount of the raw material in the raw material container decreases, the surface area of the raw material compound decreases, and the vaporization rate slows down. There is a problem that the film speed cannot be secured for a long time. In addition, when the vaporization rate changes, a thin film (for example, Bi 2 Sr 2 Ca 2 Cu 3 O 9 ) of a substance in which calcium and other elements are compounded is to be produced, and the composition is controlled. There is also a problem that it becomes difficult.
[0008]
The organometallic complexes described in the above-mentioned JP-A-4-72066 and JP-A-4-74866 are also characterized in that they have high sublimability, and as a raw material compound for CVD, they are evaporated in a solid state. Things. Therefore, there is the same problem as described above.
[0009]
An organometallic complex using a ligand containing fluorine in the molecule, such as hexafluoroacetylacetone, has a low melting point, but fluoride may be present as an impurity in the formed film. Results in significantly impairing the properties of the film.
[0010]
Accordingly, an object of the present invention is to provide a calcium source material for CVD having a low melting point capable of solving the above-mentioned problems.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve such a problem. As a result, an organic calcium complex having β-diketone of 6-ethyl-2,2-dimethyl-3,5-octanedione as a ligand was obtained by CVD. It has a low melting point (approximately 155 to 160 ° C.) that can be used in the liquid state as a raw material compound, and has extremely advantageous properties for film formation by the CVD method, in which the evaporation temperature and the decomposition temperature are clearly separated. . Due to this characteristic, when this is used as a calcium source material in the CVD method, it can be evaporated from a liquid state, and supply of a raw material vapor of calcium to a base material and decomposition and precipitation of calcium on the base material Can be performed stably, so that the above-mentioned problem can be solved.
[0012]
That is, according to the present invention, 6-ethyl-2,2-dimethyl-3,5-octanedione is a calcium source material for CVD used for depositing calcium or a calcium-containing material by a CVD method. The present invention provides a source material for CVD comprising an organic calcium complex as a ligand of
[0013]
According to the present invention, when calcium or a calcium-containing substance is deposited on a substrate by a CVD method, 6-ethyl-2,2-dimethyl-3,5-octanedione is coordinated with calcium as a calcium source substance. A film of calcium or a calcium-containing substance formed by a CVD method, wherein the organic calcium complex is heated to a temperature equal to or higher than its melting point, and the complex is evaporated from a liquid phase of the complex. Provide the law.
[0014]
The organic calcium complex according to the present invention is represented by the general formula (I) and is considered to be a novel compound.
[0015]
Embedded image
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The β-diketone organic calcium complex according to the present invention is obtained by heating and stirring metal calcium and the ligand 6-ethyl-2,2-dimethyl-3,5-octanedione in a toluene-ethanol solution. The solid precipitated by distillation can be obtained by a purification method such as recrystallization or distillation.
[0017]
In order to use the thus obtained organic calcium complex of the present invention as a raw material compound for the CVD method and form a film of the calcium or calcium-containing material by the CVD method, for example, as shown in FIG. The raw material container 2 containing the calcium complex 1 is kept at a predetermined temperature (a temperature higher than the melting point, for example, 160 to 170 ° C.) in the thermostat 3, and an inert carrier gas (for example, argon gas) 4 is flowed by a flow meter 5. Is introduced into the raw material container 2 while adjusting (for example, 5 to 500 ml / min), a gas flow accompanied by the organic calcium complex is generated from the container 2.
[0018]
The generated organic calcium complex vapor is led into the reaction tube 7 of the pyrolysis furnace 6. The reaction tube (eg, quartz tube) 7 is heated by a heater 8, and the substrate 9 placed in the tube is heated and maintained at a predetermined temperature (eg, 400 to 800 ° C.). Calcium is deposited on the film to form a film. The piping from the raw material container 2 to the thermal decomposition furnace 6 is preferably maintained at a temperature of 165 to 175 ° C. by the heat insulating layer 10 or a heat insulating means in order to prevent condensation. Exhaust gas from the reaction tube 7 is discharged through a cooling trap 11. In the figure, reference numeral 12 denotes a valve, and reference numeral 13 denotes a rotary pump. In forming the calcium oxide film, an appropriate amount of gaseous oxygen is supplied from the oxygen container 14 through the flow meter 15 and the valve 16 into the reaction atmosphere (for example, during the reaction 7). In addition, in order to form a film of a composite material with another element, a raw material compound of the other material is simultaneously introduced into the reaction chamber 7, although not shown.
[0019]
【Example】
[Example 1]
Using the CVD equipment shown in FIG. 1, bis (6-ethyl-2,2-dimethyl-3,5-octanedithione) shown in Chemical Formula 1 was placed in a stainless steel raw material container 2 as a raw material compound as a calcium source. Nato) Calcium was added, and a silicon substrate was used as the substrate 9 to form a film thereon.
[0020]
In addition, bis (6-ethyl-2,2-dimethyl-3,5-octandionato) calcium of Chemical Formula 1 was produced as follows. First, under nitrogen atmosphere, 200 ml of ethanol and 100 ml of toluene were added to 4 g of metal calcium, 40 g of 6-ethyl-2,2-dimethyl-3,5-octanedione was added thereto, and the mixture was stirred at 100 ° C. After the calcium was completely dissolved, the solvent was distilled off under reduced pressure, and the residue was further dried under reduced pressure, and then purified by sublimation to obtain 41 g of bis (6-ethyl-2,2-dimethyl-3,5-octanedionato) calcium. When the melting point of the obtained complex was measured, it was 155 to 160 ° C.
[0021]
1 g of this organic calcium complex was charged into the container 2, and the temperature of the thermostat 3 was kept at a constant temperature of 160 ° C. With the silicon substrate 9 heated and maintained at 600 ° C. by the heater 8, argon gas as a carrier gas was passed at 100 ml / min to guide the compound to the quartz reaction tube 7. The piping from the vessel 2 to the pyrolysis furnace 6 was kept warm so as to be kept at 170 ° C.
[0022]
When a film forming operation was performed under these conditions for 30 minutes, a uniform calcium thin film having a thickness of 1000 Å was obtained.
[0023]
The film forming operation was repeated under exactly the same conditions as described above, except that the amount of bis (6-ethyl-2,2-dimethyl-3,5-octanedionato) calcium charged in the container 2 was changed to 2 g. In this case, a uniform calcium thin film having a thickness of 1000 Å was obtained. That is, even when the amount of the raw material compound charged in the container 2 was changed, a film having the same thickness could be formed. This indicates that the amount of evaporation from the starting compound is constant during the treatment time and the amount of decomposition is also constant.
[0024]
[Example 2]
The same process as in Example 1 was performed for 30 minutes, except that gaseous oxygen was added from the oxygen source 14 via the flowmeter 15 and the valve 16 into the reaction tube 7 at a flow rate of 100 ml / min. As a result, a calcium oxide thin film having the same thickness of 1700 angstroms was obtained for both the raw material loading amounts of 1 g and 2 g.
[0025]
[Comparative Example 1]
Example 1 except that bis (dipivaloylmethanato) calcium having a melting point of 199 to 200 ° C was used in place of bis (6-ethyl-2,2-dimethyl-3,5-octandionato) calcium. A film was formed under the same conditions as described above. As a result, after 30 minutes, a thin film of calcium having a thickness of 1800 angstroms was obtained for a material having a loading of 1 g, and a thin film of calcium having a thickness of 2900 angstroms for a loading of 2 g. This indicates that the evaporation amount also changed over time with the change in the volume of the raw material in the container.
[0026]
[Comparative Example 2]
The same process as in Comparative Example 1 was performed for 30 minutes, except that gaseous oxygen was added from the oxygen source 14 to the reaction tube 7 via the flowmeter 15 and the valve 16 at a flow rate of 100 ml / min. As a result, a thin film of calcium oxide having a thickness of 2700 angstroms was obtained with a raw material loading of 1 g, and a thickness of 3700 angstroms was obtained with a raw material loading of 2 g.
[0027]
【The invention's effect】
As described above, since the β-diketone organic calcium complex according to the present invention has a low melting point, a high vaporization property, and an evaporating temperature and a decomposition temperature separated from each other, a thin film of calcium or a calcium-containing substance is formed by the CVD method. When used as a calcium source material for production, there is an excellent advantage that it can be used in a liquid state. Also, since the evaporation rate is constant, a stable film formation rate can be obtained, and a high speed and uniform It has the feature that it is possible to form a thin film.
[0028]
Therefore, according to the present invention, a great contribution can be made to a technique for forming calcium or a calcium-containing substance useful for a superconducting material or an EL material.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of equipment arrangement of equipment for performing a thermal CVD method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Organometallic complex 2 Raw material container 3 Thermostat 4 Inert carrier gas 5 Flow meter 6 Pyrolysis furnace 7 Quartz reaction tube 8 Heater 9 Substrate 10 Heat insulation layer 11 Cooling trap 12 Valve 13 Rotary pump 14 Oxygen source

Claims (4)

CVD法によりカルシウムまたはカルシウム含有物質を析出させるのに使用するCVD用カルシウム源物質であって,6−エチル−2,2−ジメチル−3,5−オクタンジオンをカルシウムの配位子とした有機カルシウム錯体からなるCVD用カルシウム源物質。A calcium source material for CVD used for depositing calcium or a calcium-containing material by a CVD method, wherein the organic calcium has 6-ethyl-2,2-dimethyl-3,5-octanedione as a calcium ligand. A calcium source material for CVD comprising a complex. 有機カルシウム錯体は化1で示される請求項1に記載のCVD用カルシウム源物質。
Figure 0003584097
The calcium source material for CVD according to claim 1, wherein the organic calcium complex is represented by Chemical Formula 1.
Figure 0003584097
有機カルシウム錯体は融点が155〜160℃のものである請求項1または2に記載のCVD用カルシウム源物質。The calcium source material for CVD according to claim 1 or 2, wherein the organic calcium complex has a melting point of 155 to 160 ° C. CVD法によりカルシウムまたはカルシウム含有物質を基材上に析出させるさいに,カルシウム源物質として6−エチル−2,2−ジメチル−3,5−オクタンジオンをカルシウムの配位子とした有機カルシウム錯体を使用し,この有機カルシウム錯体を融点以上の温度に加熱し,当該錯体の液相から当該錯体を蒸発させることを特徴とするCVD法によるカルシウムまたはカルシウム含有物質の成膜法。When calcium or a calcium-containing substance is deposited on a substrate by the CVD method, an organic calcium complex using 6-ethyl-2,2-dimethyl-3,5-octanedione as a calcium ligand as a calcium source substance is used. A method of forming a film of calcium or a calcium-containing substance by a CVD method, wherein the organic calcium complex is heated to a temperature equal to or higher than a melting point of the organic calcium complex, and the complex is evaporated from a liquid phase of the complex.
JP29335995A 1995-10-17 1995-10-17 Calcium source material for CVD and film forming method using the same Expired - Lifetime JP3584097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29335995A JP3584097B2 (en) 1995-10-17 1995-10-17 Calcium source material for CVD and film forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29335995A JP3584097B2 (en) 1995-10-17 1995-10-17 Calcium source material for CVD and film forming method using the same

Publications (2)

Publication Number Publication Date
JPH09111454A JPH09111454A (en) 1997-04-28
JP3584097B2 true JP3584097B2 (en) 2004-11-04

Family

ID=17793777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29335995A Expired - Lifetime JP3584097B2 (en) 1995-10-17 1995-10-17 Calcium source material for CVD and film forming method using the same

Country Status (1)

Country Link
JP (1) JP3584097B2 (en)

Also Published As

Publication number Publication date
JPH09111454A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP5128289B2 (en) Hafnium-based compound, hafnium-based thin film forming material, and hafnium-based thin film forming method
JP2002523634A (en) Precursor chemistry for chemical vapor deposition of ruthenium or ruthenium oxide.
US5449799A (en) Compound for depositing copper layers
JP3611640B2 (en) Method for depositing group 8 elements and raw material compounds used
JP5214191B2 (en) Thin film forming raw material and thin film manufacturing method
US6037485A (en) CVD precursors and film preparation method using the same
KR20000013302A (en) Glass copper precursor for chemical vapor deposition
JPH0885873A (en) Production of thin film using organometallic complex
JP3584097B2 (en) Calcium source material for CVD and film forming method using the same
JP3584089B2 (en) Rare earth element material for CVD and film forming method using the same
JP3584091B2 (en) Copper source material for CVD and film forming method using the same
Kojima et al. Measurements of vapor pressures of MOCVD materials, which are usable for ferroelectric thin films
JP2977484B2 (en) Barium source material for CVD and film forming method using the same
JP3818691B2 (en) Raw material compound for CVD of rare earth elements and film forming method using the same
JP3964976B2 (en) Strontium source material for CVD and film forming method using the same
Du et al. Synthesis, characterization of silicon (iv) compounds containing 2-alkyl-aminopyridine ligands and evaluation of them as CVD precursors
JP3465848B2 (en) Production method of thin film using organometallic complex
JP4225607B2 (en) Method for producing bismuth-containing composite metal oxide film
JPH10324970A (en) Raw material for cvd and film-forming method using the same
JP2802676B2 (en) Method for producing thin film using 1,3-diketone organometallic complex
JP3379315B2 (en) Raw materials for forming platinum thin films by metal organic chemical vapor deposition
JP2799763B2 (en) Production method of thin film using organometallic complex
USH1170H (en) Volatile divalent double metal alkoxides
JPH05287534A (en) Production of thin film using organic metal complex
WO2017150212A1 (en) Method for producing aluminum oxide film and production starting material for aluminum oxide film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term