JPH09227983A - High strength steel excellent in delayed fracture resistance - Google Patents

High strength steel excellent in delayed fracture resistance

Info

Publication number
JPH09227983A
JPH09227983A JP2878396A JP2878396A JPH09227983A JP H09227983 A JPH09227983 A JP H09227983A JP 2878396 A JP2878396 A JP 2878396A JP 2878396 A JP2878396 A JP 2878396A JP H09227983 A JPH09227983 A JP H09227983A
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
ferrite
strength
grain boundaries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2878396A
Other languages
Japanese (ja)
Inventor
Michihiko Nagumo
道彦 南雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2878396A priority Critical patent/JPH09227983A/en
Publication of JPH09227983A publication Critical patent/JPH09227983A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a steel having high strength of >=1100MPa tensile strength and furthermore excellent in delayed fracture resistance. SOLUTION: This steel has a compsn. contg., by weight, 0.20 to 0.50% C, 0.2 to 2.0% Si, one ore two kinds among Mn, Ni, Cr and Mo respectively by 0.2 to 3.0% one or >= two kinds among Al, Nb, V and Ti respectively by 0.01 to 0.3%, <=0.02% Ni, and the balance Fe with inevitable impurities, in which the main structure is composed of tempered martensite, and the precious austenitic grain boundary is applied with a ferritic layer having 0.1 to 10μm thickness. Its tensile strength is regulated to 1100 to 1500MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高力ボルト、ねじ、
ばね、シャフト、補強板などの構造部材、機械部品に適
用可能な高強度鋼に関するものである。
TECHNICAL FIELD The present invention relates to high strength bolts, screws,
The present invention relates to high strength steel applicable to structural members such as springs, shafts and reinforcing plates, and machine parts.

【0002】[0002]

【従来の技術】引張り強さが1100MPa以上の高力ボルト
は自然環境で使用した場合にも遅れ破壊を起こすために
高強度化による構造物や機械部品の軽量化が要望されて
いるにも拘らずその使用が制限されている。遅れ破壊は
主に環境雰囲気中から鋼の腐食により鋼中に侵人する微
量の水素によって生ずる現象であり、鋼の強度が増加す
るにつれて顕著になる。
2. Description of the Related Art Although high strength bolts with a tensile strength of 1100 MPa or more cause delayed fracture even when used in a natural environment, it is required to reduce the weight of structures and mechanical parts by increasing the strength. Its use is restricted. Delayed fracture is a phenomenon mainly caused by a trace amount of hydrogen invading the steel from the environment atmosphere due to corrosion of the steel, and becomes more remarkable as the strength of the steel increases.

【0003】鋼の高強度化はマルテンサイト組織で得る
のが通常の方法であり、従来は経験的にPC鋼棒にたい
してはSiやCaなどの添加が耐遅れ破壊特性の改善に
有効であること、Niの添加で水素侵入が減少すること
などが知られている。またマルテンサイト組織での遅れ
破壊形態は旧オーステナイト結晶粒界の割れによるもの
が多いことから、粒界強度を低下させると考えられるP
やSなどの不純物元素の低減や、結晶粒の微細化もはか
られている。
It is a usual method to obtain a high strength steel by using a martensitic structure. Conventionally, it has been empirically empirically found that addition of Si, Ca or the like to a PC steel bar is effective for improving delayed fracture resistance. It is known that addition of Ni, Ni reduces hydrogen penetration. Further, the delayed fracture morphology in the martensite structure is often due to the cracking of the former austenite crystal grain boundaries, so it is considered that the grain boundary strength is reduced.
The reduction of impurity elements such as S and S and the miniaturization of crystal grains are also attempted.

【0004】しかし、遅れ破壊の機構は未だ解明されて
おらず、これらの対策は抜本的なものではない。とくに
実用鋼では合金元素の偏析などの材料の不均一性が避け
られないために合金成分だけでは信頼性のある対策にな
っていないのが実情である。
However, the mechanism of delayed fracture has not been clarified yet, and these countermeasures are not drastic. In particular, in practical steel, the non-uniformity of materials such as segregation of alloying elements is unavoidable, so that the alloy component alone is not a reliable measure.

【0005】さらに、主組織をマルテンサイトではな
く、ベイナイト化することも試みられており、また低炭
素のマルエージ鋼では耐避れ破壊特性がすぐれているこ
とも知られている。しかし、これらの場合には高強度を
得るために合金成分を増し、必然的に高コストになるこ
とが避けられない。
Further, it has been attempted to use bainite as the main structure instead of martensite, and it is known that maraging steel having a low carbon has excellent evasion fracture resistance. However, in these cases, it is unavoidable that the alloy component is increased in order to obtain high strength, resulting in inevitably high cost.

【0006】[0006]

【発明が解決しようとする課題】上述のように、鋼の高
強度化にともなって遅れ破壊を起こし易くなるために、
コスト面も考慮すると実用的には高強度化には限界があ
り、高力ボルトのように高強度化が規制されているのが
実情である。したがって1100MPa以上の引張り強さで耐
遅れ破壊特性にすぐれた鋼を比較的低コストで製造する
技術が必要である。本発明は鋼の主組織を高強度化に有
効でかつ容易に得られるマルテンサイトに保ちつつ、耐
遅れ破壊特性を向上させる手段を提供するものである。
As described above, as the strength of steel is increased, delayed fracture is likely to occur.
Considering cost, practically there is a limit to strengthening, and the actual situation is that strengthening is regulated like high strength bolts. Therefore, there is a need for a technology for producing steel with a tensile strength of 1100 MPa or more and excellent delayed fracture resistance at a relatively low cost. The present invention provides a means for improving delayed fracture resistance while maintaining the main structure of steel as martensite which is effective for increasing strength and is easily obtained.

【0007】[0007]

【課題を解決するための手段】以上のような課題を解決
するために、本発明者はマルテンサイト鋼の遅れ破壊形
態が旧オーステナイト結晶粒界割れであることに注目し
た。
In order to solve the above problems, the present inventor has noticed that the delayed fracture mode of martensitic steel is old austenite grain boundary cracking.

【0008】焼戻し脆性の研究によると、旧オーステナ
イト結晶粒界にはP,S,Asなどの不純物元素が偏析
し易く、破壊強度を低下させる。また、鋼の凝固過程や
溶接熱影響部などの冷却過程で、フェライトが析出する
段階で、フェライトから未変態のオーステナイトに合金
元素が濃縮されることも知られている。本発明者は、こ
れらの知見から、フェライトの析出を利用して旧オース
テナイト結晶粒界における不純物濃度を低減させること
に注目した。
According to a study of temper embrittlement, impurity elements such as P, S and As are easily segregated in the former austenite grain boundaries, which lowers the fracture strength. It is also known that alloying elements are concentrated from ferrite to untransformed austenite at the stage where ferrite precipitates during the solidification process of steel and the cooling process such as the weld heat affected zone. From these findings, the present inventor has paid attention to utilizing the precipitation of ferrite to reduce the impurity concentration in the former austenite grain boundary.

【0009】すなわち本発明は、オーステナイトから焼
き人れによってマルテンサイト変態させる際に、予めオ
ーステナイト結晶粒界に薄いフェライト相を析出させ、
オーステナイト結晶粒界における不純物元素の量を低減
させることを技術思想としている。従来の高強度化技術
では、鋼の靭性を改善するために組織を均一なマルテン
サイトとして焼戻し温度を高めることが一般的な指針で
あって、鋼の強度を低下させるフェライトの析出は避け
るというのが常識である。
That is, according to the present invention, when austenite is transformed into martensite by firing, a thin ferrite phase is preliminarily precipitated in austenite grain boundaries,
The technical idea is to reduce the amount of impurity elements in the austenite grain boundaries. In the conventional strengthening technology, it is a general guideline to increase the tempering temperature by making the structure uniform martensite in order to improve the toughness of the steel, and to avoid the precipitation of ferrite that reduces the strength of the steel. Is common sense.

【0010】本発明者はこのオーステナイト結晶粒界に
薄いフェライト相を析出させるという本発明の技術思想
をまず従来から高強度部品に使用されている機械構造用
クロム鋼SCR2に適用してみた。しかし、オーステナ
イトからの冷却速度を遅くしたり、あるいは等温変態に
よってオーステナイト結晶粒界にフェライトを析出させ
ると、その成長速度が速くてフェライトは粗大化し、鋼
の強度を維持することは実際上困難であった。
The present inventor first applied the technical idea of the present invention of precipitating a thin ferrite phase to the austenite grain boundaries to the mechanical structural chromium steel SCR2 which has been conventionally used for high strength parts. However, if the cooling rate from austenite is slowed down, or if ferrite is precipitated at the austenite grain boundaries by isothermal transformation, the growth rate is high and ferrite becomes coarse, and it is practically difficult to maintain the strength of steel. there were.

【0011】したがって、鋼の強さを低下させる作用も
持つ粒界フェライトの量を、オーステナイト結晶粒界を
清浄化するのに必要な最小限にとどめることが必須の要
件であることが判明した。そこで本発明者は種々の成分
の鋼について粒界フェライトを必要な最小限の量析出さ
せる条件を検討した。
Therefore, it has been found that it is an essential requirement that the amount of grain boundary ferrite, which also has the effect of lowering the strength of steel, be kept to the minimum necessary for cleaning the austenite grain boundaries. Therefore, the present inventor studied conditions for precipitating the minimum amount of grain boundary ferrite for steels having various components.

【0012】またオーステナイトから冷却中に粒界フェ
ライト層を析出させる方法として、 オーステナイト温度域に加熱後、連続冷却によりマル
テンサイト化し、その際の冷却速度を制御する方法、
オーステナィト温度域に加熱後、所定のフェラィト層が
析出する温度まで連統冷却し、その温度から水または油
中に焼き入れる方法、オーステナイト温度域に加熱
後、一たんA3温度以下等温変態線図の鼻温度以上の温
度まで急速に冷却して保持するなどの方法を検討した。
いずれの場合もオーステナイト結晶粒界に厚さ0.1〜10
μmのフェライト層が析出した直後に水または油中に焼
き入れることを目的とした。
As a method of precipitating a grain boundary ferrite layer from austenite during cooling, a method of heating to austenite temperature range and then martensite by continuous cooling, and controlling the cooling rate at that time,
After heating to Osutenaito temperature range, and continuous consolidation cooled to a temperature at which a predetermined Feraito layer is deposited, a method of placing baked from the temperature in water or oil, after heating to the austenite temperature region, one sputum A 3 temperature below isothermal transformation diagram We examined methods such as rapid cooling to a temperature above the nose temperature and holding.
In each case, the thickness is 0.1 to 10 at the austenite grain boundary.
The purpose was to quench in water or oil immediately after the μm ferrite layer was deposited.

【0013】鋼の成分を変化させると変態特性も変化す
るので、実工程での操作の容易さを考慮すると鋼の成分
によって方法が選択出来ることが判明した。例えば、フ
ェライト析出開始時間が5秒程で比較的短い場合には
の等温変態を用いるのがよく、鋼の焼人れ性が大きい場
合にはあるいはの方法をとることが出来る。しか
し、いずれの方法でもフェライトの成長速度を遅らせる
ことがオーステナイト結晶粒界に析出するフェライトを
安定に薄くし必要な最小限の量とするためにもっとも重
要であった。
It has been found that the method can be selected depending on the composition of the steel, considering the easiness of the operation in the actual process, because the transformation characteristics also change when the composition of the steel changes. For example, it is preferable to use the isothermal transformation when the ferrite precipitation start time is about 5 seconds and is relatively short, and when the steel has a high burntability, the following method can be used. However, in any of the methods, it was most important to delay the growth rate of ferrite in order to stably thin the ferrite precipitated at the austenite grain boundaries and reduce the required minimum amount.

【0014】更に本発明者は微量元素の添加によってフ
ェライトの成長速度が抑制されることを見出し、厚さ0.
1〜10μmに安定に析出させることに成功した。そして高
強度を保ちつつ耐遅れ破壊特性が改善される効果がある
本発明の高強度鋼を発明するに至った。
The present inventor has further found that the growth rate of ferrite is suppressed by the addition of trace elements, and the thickness of
We have succeeded in stably depositing 1 to 10 μm. Then, the inventors have invented the high-strength steel of the present invention which has the effect of improving delayed fracture resistance while maintaining high strength.

【0015】すなわち、本発明は鋼の引張り強さを1100M
Pa以上にするとともに、粒界にフェライト相を析出させ
る製造工程においてフェライト相の成長が抑制されるよ
うに成分系を設計し、組織を制御したものである。
That is, according to the present invention, the tensile strength of steel is 1100M.
The composition is designed so that the growth of the ferrite phase is suppressed in the manufacturing process of precipitating the ferrite phase in the grain boundaries while controlling the structure to be Pa or more.

【0016】すなわち、本発明は重量%でC:0.20〜0.
50,Si:0.2〜2.0,Mn、Ni、CrおよびMoの一
種または二種以上をそれぞれ0.2〜3.0,Al、Nb、V
およびTiの一種または二種以上をそれぞれ0.01〜0.3
0,N:0.02以下で残余はFeと不可避不純物からなる
成分系で、主組織を焼戻しマルテンサイトととし、かつ
旧オーステナイト結晶粒界に厚さ0.1〜10μmのフェライ
ト層を析出させた、引張り強さが1100MPa〜1500MPaの高
強度鋼で耐遅れ破壊特性を改善したものである。
That is, in the present invention, C: 0.20 to 0.
50, Si: 0.2 to 2.0, one or more of Mn, Ni, Cr and Mo 0.2 to 3.0, Al, Nb and V, respectively.
And one or more of Ti 0.01 to 0.3
0, N: 0.02 or less, the remainder is a component system consisting of Fe and unavoidable impurities, the main structure is tempered martensite, and a ferrite layer with a thickness of 0.1 to 10 μm is deposited on the former austenite grain boundaries. This is a high-strength steel of 1100MPa to 1500MPa with improved delayed fracture resistance.

【0017】[0017]

【発明の実施の形態】マルテンサイトの強さは主にC量
によって決まる。本発明が対象とする1100MPa〜1500MPa
の引張り強さを得るためにC量を0.2〜0.50%とした。
また、ボルトや機械部品のような例えば10mm以上の厚さ
の機械部品をマルテンサイト組織にするためには鋼の焼
入れ性が必要であり、また本発明では工程上またマルテ
ンサイト組織の靭性を改善するために焼入れ後焼戻し処
理を施したときの強さを確保することが必要である。M
n、Ni,CrおよびMoはその目的とともにフェライ
ト変態開始時間を遅らせるために添加されるもので、一
種または二種以上をそれぞれ0.2〜3.0%とした。Mnは
また鋼の脱酸材としての効果も持つ。
BEST MODE FOR CARRYING OUT THE INVENTION The strength of martensite is mainly determined by the amount of C. 1100 MPa to 1500 MPa targeted by the present invention
C content was 0.2 to 0.50% in order to obtain the tensile strength of.
In addition, the hardenability of steel is necessary to make a mechanical part having a thickness of, for example, 10 mm or more, such as a bolt or a mechanical part, a martensitic structure, and in the present invention, the toughness of the martensitic structure is improved in the process. Therefore, it is necessary to secure the strength when tempering is performed after quenching. M
n, Ni, Cr, and Mo are added for the purpose of delaying the ferrite transformation start time, and one kind or two or more kinds are made 0.2 to 3.0% respectively. Mn also has an effect as a deoxidizer for steel.

【0018】添加量は製品の大きさによって必要な焼入
れ性と、変態特性によって定められる。添加量の下限は
焼入れ性の確保のために、また上限は合金コストの上昇
とともに、フェライト変態開始が遅くなり過ぎて実際工
程で支障が生ずることを防ぐために設けたものである。
The amount added is determined by the hardenability required for the size of the product and the transformation characteristics. The lower limit of the addition amount is provided to ensure hardenability, and the upper limit is provided to prevent the ferrite transformation from starting too late and causing trouble in the actual process as the alloy cost increases.

【0019】Siは鋼の脱酸材として0.2%以上必要で
あるが、鋼の強化元索として利用できる。しかし多すぎ
ると靭性を劣化するために2.0%を上限とした。Al,
Nb、VおよびTiは鋼の脱酸材として作用するととも
に、微細な炭化物あるいは窒化物として析出する。これ
らの微細折出物は、マルテンサイト変態に先立ってオー
ステナイト粒界に析出したフェライトの成長を抑制し、
フェライト層を薄く保つための製造工程条件を安定化す
る作用がある。そのために必要な添加量として0.01%を
下限とし、また多すぎると鋼の靭性を劣化するために0.
3%を上限とした。
Si is required as a deoxidizing material for steel in an amount of 0.2% or more, but it can be used as a reinforcement for steel. However, if too much, the toughness deteriorates, so 2.0% was made the upper limit. Al,
Nb, V and Ti act as a deoxidizing agent for steel, and precipitate as fine carbides or nitrides. These fine protrusions suppress the growth of ferrite precipitated at the austenite grain boundaries prior to the martensitic transformation,
It has the effect of stabilizing the manufacturing process conditions for keeping the ferrite layer thin. Therefore, 0.01% is set as the lower limit for the addition amount, and if it is too large, the toughness of the steel deteriorates.
The upper limit was 3%.

【0020】NはAl、Nb、VおよびTiなどを窒化
物として析出させるために必要であるが、多すぎると製
鋼上の困難さを伴なうとともに鋼の靭性を劣化するため
に0.02%を上限とした。P,S,Sn,Asなどの不純
物元索は旧オーステナイト結晶粒界に偏析し、遅れ破壊
感受性を増加させるために不可避的に低減することが望
ましい。
N is necessary for precipitating Al, Nb, V, Ti and the like as nitrides, but if it is too much, it causes difficulty in steelmaking and deteriorates the toughness of the steel. The upper limit was set. The impurities such as P, S, Sn and As segregate in the former austenite grain boundaries, and it is desirable to inevitably reduce them in order to increase the delayed fracture susceptibility.

【0021】本発明の特徴とするところは鋼の成分系と
組織の組み合わせであって、組織は製造工程条件によっ
ても制御される。特徴とする組織は主組織が焼戻しマル
テンサイトであって旧オーステナイト結晶粒界にフェラ
イトが薄く析出していることである。オーステナイト結
晶粒界に形成する本発明のフェライト層はオーステナイ
ト結晶粒界の不純物濃度を減少させることが目的である
が、一方フェライトの量が多くなると鋼全体の強度が低
下する。このためフェライトは厚さ0.1〜10μmとした。
The feature of the present invention is the combination of the composition system and the structure of steel, and the structure is also controlled by the manufacturing process conditions. The characteristic structure is that the main structure is tempered martensite and ferrite is thinly precipitated at the former austenite grain boundaries. The purpose of the ferrite layer of the present invention formed at the austenite grain boundaries is to reduce the impurity concentration in the austenite grain boundaries, but on the other hand, when the amount of ferrite increases, the strength of the steel as a whole decreases. Therefore, the thickness of the ferrite is set to 0.1 to 10 μm.

【0022】この範囲は遅れ破壊特性を改善するために
効果があることが実験的の求められたものであり、また
実工程においてフェライト層の厚さを管理するととも
に、強度を安定に維持する上で必要なものである。また
焼き入れ後に所定の強度を得るためと靱性を改善するた
めに、通常の焼き入れ・焼き戻し処理に相当する焼き戻
し処理を行なう。
It has been experimentally sought that this range is effective for improving delayed fracture characteristics, and in addition to controlling the thickness of the ferrite layer in the actual process, maintaining the strength stably. Is what you need. Further, in order to obtain a predetermined strength and to improve the toughness after quenching, a tempering process corresponding to a normal quenching / tempering process is performed.

【0023】[0023]

【実施例】【Example】

1) 表1の供試鋼Aを1050℃で1h加熱後550℃の鉛浴
に焼き入れ、30秒保持後水焼き入れし、さらに、350℃
で1hの焼き戻し処理を行なった。金属組織は図1に示
すように主組織はマルテンサイトであり、旧オーステナ
イト結晶粒界に厚さが約5μmのフェライト層が析出し
ている。この試料の引張り強さは1303MPa、伸びは12%
であった。
1) Sample steel A in Table 1 was heated at 1050 ° C for 1 hour, then quenched in a lead bath at 550 ° C, held for 30 seconds, water-quenched, and further 350 ° C.
Then, it was tempered for 1 h. As shown in FIG. 1, the main structure of the metal structure is martensite, and a ferrite layer having a thickness of about 5 μm is deposited at the former austenite grain boundaries. Tensile strength of this sample is 1303MPa, elongation is 12%
Met.

【0024】比較のために、同一成分鋼を1050℃で1h
加熱後水焼き入れ、420℃で焼き戻して引張り強さ1285M
Pa,伸び41%を得た。比較材には旧オーステナイト結晶
粒界にフェライトの析出は認められなかった。
For comparison, same-strength steel at 1050 ° C. for 1 h
After heating, water quenching and tempering at 420 ℃, tensile strength 1285M
Pa, elongation 41% was obtained. No precipitation of ferrite was observed at the former austenite grain boundaries in the comparative material.

【0025】本発明と比較材の二種の試料を50℃の20%
チオシアン酸アンモニウム水溶液中で定荷重遅れ破壊試
験を行なった。その結果が図2である。明らかに旧オー
ステナイト結晶粒界にフェライト層を析出させることに
より、破断限界応力の上昇、一定応力での破断時間の増
加など大幅な耐遅れ破壊特性の改善が見られた。
Two samples of the present invention and the comparative material were tested at 20% at 50 ° C.
A constant load delayed fracture test was conducted in an ammonium thiocyanate aqueous solution. The result is shown in FIG. Obviously, by precipitating the ferrite layer on the grain boundaries of the former austenite, the delayed fracture resistance was greatly improved by increasing the fracture limit stress and increasing the fracture time at constant stress.

【0026】[0026]

【表1】 供試鋼の成分(重量%) [Table 1] Composition of test steel (% by weight)

【0027】2) 表1の供試鋼Bを1050℃で1h加熱
後600℃の鉛浴に焼き入れ、30秒保持後水焼き人れし、
さらに330℃で1hの焼き戻し処理を行なった。金属組織
は主組織はマルテンサイトであり、旧オーステナイト結
晶粒界に厚さが約3μmのフェライト層が析出してい
る。この試料の引張り強さは1352MPa,伸びは15%であ
った。
2) The steel B to be tested in Table 1 was heated at 1050 ° C. for 1 hour, quenched in a lead bath at 600 ° C., kept for 30 seconds, and then water-baked.
Further, tempering treatment was performed at 330 ° C. for 1 hour. The main structure of the metal structure is martensite, and a ferrite layer having a thickness of about 3 μm is precipitated at the former austenite grain boundaries. The tensile strength of this sample was 1352 MPa and the elongation was 15%.

【0028】比較のために、同一成分鋼を1050℃で1h
加熱後水焼き入れ、420℃で焼き戻して引張り強さ1421M
Pa,伸び11%を得た。比較材には旧オーステナイト結晶
粒界にフェライトの析出は認められなかった。
For comparison, steel of the same composition was heated at 1050 ° C. for 1 h.
After heating, quenching with water and tempering at 420 ℃, tensile strength 1421M
Pa, elongation 11% was obtained. No precipitation of ferrite was observed at the former austenite grain boundaries in the comparative material.

【0029】この二種の試料を50℃の20%チオシアン酸
アンモニウム水溶液中で定荷重遅れ破壊試験を行なっ
た。その結果が図3である。明らかに旧オーステナイト
結晶粒界にフェライト層を析出させることにより、大幅
な耐遅れ破壊特性の改善が見られた。
The two samples were subjected to a constant load delayed fracture test in a 20% ammonium thiocyanate aqueous solution at 50 ° C. The result is shown in FIG. Apparently, the delayed fracture resistance was significantly improved by precipitating the ferrite layer on the former austenite grain boundaries.

【0030】3) 表1の供試鋼Cを1100℃で10分加熱
後冷却速度6℃/sで570℃まで連続冷却した後その温度か
ら水焼入れを行ない、さらに250℃で1hの焼戻し処理を
行なった。金属組織は主組織はマルテンサイトであり、
旧オーステナイト結晶粒界に厚さが約8μmのフェライト
層が析出している。この試料の引張り強さは1380MPa,
伸びは13%であった。
3) The test steel C in Table 1 was heated at 1100 ° C. for 10 minutes, continuously cooled at a cooling rate of 6 ° C./s to 570 ° C., water-quenched at that temperature, and further tempered at 250 ° C. for 1 hour. Was done. The main structure of the metal structure is martensite,
A ferrite layer with a thickness of approximately 8 μm is deposited at the former austenite grain boundaries. The tensile strength of this sample is 1380MPa,
The growth was 13%.

【0031】比較のために、同一成分鋼を1100℃で10分
加熱後水焼き入れ、350℃で焼き戻して引張り強さ1380M
Pa,伸び11%を得た。比較材には旧オーステナイト結晶
粒界にフェライトの析出は認められなかった。
For comparison, steels of the same composition were heated at 1100 ° C. for 10 minutes, water-quenched and tempered at 350 ° C. to obtain a tensile strength of 1380M.
Pa, elongation 11% was obtained. No precipitation of ferrite was observed at the former austenite grain boundaries in the comparative material.

【0032】この二種の試料を50℃の20%チオシアン酸
アンモニウム水溶液中で定荷重遅れ破壊試験を行なっ
た。その結果が図4である。明らかに旧オーステナイト
結晶粒界にフェライト層を析出させることにより、大幅
な耐遅れ破壊特性の改善が見られた。
The two samples were subjected to a constant load delayed fracture test in a 20% ammonium thiocyanate aqueous solution at 50 ° C. FIG. 4 shows the result. Apparently, the delayed fracture resistance was significantly improved by precipitating the ferrite layer on the former austenite grain boundaries.

【0033】[0033]

【発明の効果】本発明によると、引張強さが1100MPa以
上の高強度であり、かつ耐遅れ破壊特性にすぐれた鋼を
低コストで製造する事ができる。
According to the present invention, a steel having a high tensile strength of 1100 MPa or more and excellent delayed fracture resistance can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】旧オーステナイト粒界にフェライトを析出させ
た供試鋼Aの金属組織の図。
FIG. 1 is a diagram of a metallurgical structure of a sample steel A in which ferrite is precipitated in a prior austenite grain boundary.

【図2】供試鋼Aの遅れ破壊特性を示す図。FIG. 2 is a diagram showing a delayed fracture characteristic of Sample Steel A.

【図3】供試鋼Bの遅れ破壊特性を示す図。FIG. 3 is a diagram showing a delayed fracture characteristic of Sample Steel B.

【図4】供試鋼Cの遅れ破壊特性を示す図。FIG. 4 is a diagram showing a delayed fracture characteristic of a test steel C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.20〜0.50,Si:0.2〜
2.0,Mn、Ni、CrおよびMoの一種または二種以
上をそれぞれ0.2〜3.0,Al、Nb、VおよびTiの一
種または二種以上をそれぞれ0.01〜0.30,N:0.02以下
で残余はFeと不可避不純物からなり、主組織が焼戻し
マルテンサイトで旧オーステナイト結晶粒界に厚さ0.1
〜10μmのフェライト層を有し、引張り強さが1100 MPa
〜1500 MPaであることを特徴とする耐遅れ破壊特性にす
ぐれた高強度鋼。
1. C: 0.20-0.50, Si: 0.2-
2.0, one or more of Mn, Ni, Cr and Mo are 0.2 to 3.0 respectively, one or more of Al, Nb, V and Ti are 0.01 to 0.30 respectively, and N: 0.02 or less, and the balance is inevitable with Fe. It consists of impurities, the main structure is tempered martensite, and the thickness is 0.1 at the former austenite grain boundaries.
Has a ferrite layer of ~ 10μm and a tensile strength of 1100 MPa
A high-strength steel with excellent delayed fracture resistance characterized by a pressure of up to 1500 MPa.
JP2878396A 1996-02-16 1996-02-16 High strength steel excellent in delayed fracture resistance Pending JPH09227983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2878396A JPH09227983A (en) 1996-02-16 1996-02-16 High strength steel excellent in delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2878396A JPH09227983A (en) 1996-02-16 1996-02-16 High strength steel excellent in delayed fracture resistance

Publications (1)

Publication Number Publication Date
JPH09227983A true JPH09227983A (en) 1997-09-02

Family

ID=12258025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2878396A Pending JPH09227983A (en) 1996-02-16 1996-02-16 High strength steel excellent in delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPH09227983A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065301A (en) * 2008-09-12 2010-03-25 Nippon Steel Corp High-strength steel excellent in corrosion resistance at coating in seashore area, and method of producing the same
JP2011026641A (en) * 2009-07-23 2011-02-10 Sumitomo Metal Ind Ltd Non-heat treated steel for induction hardening
CN104164620A (en) * 2014-07-25 2014-11-26 合肥市瑞宏重型机械有限公司 Alloy steel for part cutting and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065301A (en) * 2008-09-12 2010-03-25 Nippon Steel Corp High-strength steel excellent in corrosion resistance at coating in seashore area, and method of producing the same
JP2011026641A (en) * 2009-07-23 2011-02-10 Sumitomo Metal Ind Ltd Non-heat treated steel for induction hardening
CN104164620A (en) * 2014-07-25 2014-11-26 合肥市瑞宏重型机械有限公司 Alloy steel for part cutting and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2021169941A1 (en) Chain steel for use in mine and manufacturing method therefor
KR102470965B1 (en) Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
EP2412840B1 (en) High-strength and high-ductility steel for spring, method for producing same, and spring
WO2007074984A9 (en) High-strength steel bolt having excellent resistance for delayed fracture and method for producing the same
CN111511936B (en) Wire rod for cold heading, worked product using the same, and method for manufacturing the same
CN111748739B (en) Heat-resistant spring steel with tensile strength of more than 2100MPa and production method thereof
CN112011725A (en) Steel plate with excellent low-temperature toughness and manufacturing method thereof
JP2004137542A (en) Method for manufacturing hot-forged member of microalloyed steel
JP3036416B2 (en) Hot forged non-heat treated steel having high fatigue strength and method for producing forged product
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP4316361B2 (en) Cooled and annealed bainite steel parts and method for manufacturing the same
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
CN111218616B (en) Low-temperature-resistant high-toughness high-strength low-alloy round steel and preparation method thereof
JPH09227983A (en) High strength steel excellent in delayed fracture resistance
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH10287957A (en) High strength pc steel bar and its manufacture
JPH1192860A (en) Steel having ultrafine ferritic structure
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
RU2813064C1 (en) Method for producing high-strength steel sheet
RU2801655C1 (en) Steel for chains of mining equipment and method for its manufacture
JP3692565B2 (en) Method for producing B-added high-strength steel
JPH04131323A (en) Production of heat treatment saving type high tensile steel wire having excellent fatigue resistance and wear resistance
JPH11293401A (en) B-containing steel excellent in cold workability and delayed fracture resistance, its production and bolt