JPH09227698A - Anion-exchange membrane with crosslinked structure - Google Patents

Anion-exchange membrane with crosslinked structure

Info

Publication number
JPH09227698A
JPH09227698A JP8031040A JP3104096A JPH09227698A JP H09227698 A JPH09227698 A JP H09227698A JP 8031040 A JP8031040 A JP 8031040A JP 3104096 A JP3104096 A JP 3104096A JP H09227698 A JPH09227698 A JP H09227698A
Authority
JP
Japan
Prior art keywords
exchange membrane
anion exchange
water
acid
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8031040A
Other languages
Japanese (ja)
Inventor
Ichiro Terada
一郎 寺田
Tamao Okuya
珠生 奥屋
Haruhisa Miyake
晴久 三宅
Junjiro Iwamoto
純治郎 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8031040A priority Critical patent/JPH09227698A/en
Publication of JPH09227698A publication Critical patent/JPH09227698A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lower the resistance and also to improve the ion selectivity and corrosion resistance of a specified haloalklated block copolymer by reacting it with a monoamine and a polyamine. SOLUTION: A haloalklated aromatic polysulfonic block copolymer comprising a segment of formula I [wherein Ar is represented by formulae II to IV; Y is a single bond, O, S or the like; R<1> to R<7> are each a 1 to 8C hydrocarbon group; (a) and (b) are each 0 to 4; (c) is 0 to 3; (d+e) is 0 to 7; (f+g) is 0 to 5; and R<8> and R<9> are each a 1 to 6C hydrocarbon group) and a block of formula V (wherein X is a single bond, SO2 or the like; R<10> to R<11> are each a 1 to o 5C hydrocarbon group; and (h) and (i) are each (a)), m/n being 100/1 to 1/10], is reacted with a monoamine to react 30 to 50 molar % of the haloalkyl groups. Then the reaction mixture is reacted with a polyamine to give an anion- exchange membrane having an AC specific resistance in 0.5M sulfuric acid at 25 deg.C of not higher than 300 Ω.cm and a water migration rate of not higher than 3g.cm/m<2> .h∼M at 40 deg.C from the water side to the sulfuric acid side when sulfuric acid is left to flow on one side of the membrane and water is left to flow on the other side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、架橋構造を有する
陰イオン交換膜、およびその陰イオン交換膜を用いて、
酸回収などの拡散透析や海水濃縮、酸濃縮回収などの電
気透析、有機および無機電解を行う方法に関する。
TECHNICAL FIELD The present invention relates to an anion exchange membrane having a crosslinked structure, and an anion exchange membrane using the anion exchange membrane.
The present invention relates to a method for performing diffusion dialysis such as acid recovery, seawater concentration, electrodialysis such as acid concentration recovery, and organic and inorganic electrolysis.

【0002】[0002]

【従来の技術】陰イオン交換体として、数多くの文献、
特許が報告されているが、最も実用的で有益なものとし
て、クロルメチル化スチレン(またはビニルピリジン)
−ジビニルベンゼン共重合体のアミノ化(または4級ピ
リジニューム化)陰イオン交換体がある。これらは、耐
薬品性、耐熱性、イオン交換性に加え、架橋剤であるジ
ビニルベンゼンの含有量を変えることにより、イオン交
換特性や選択透過性を制御できることから、あらゆる用
途に対し、多様な品種を合成し発展してきた。
2. Description of the Related Art As an anion exchanger, a number of documents,
Patents reported, but most practical and beneficial are chloromethylated styrene (or vinyl pyridine)
-Aminated (or quaternary pyridiniumized) anion exchangers of divinylbenzene copolymers. These products can be used in a wide variety of products for all applications, because their ion exchange properties and permselectivity can be controlled by changing the content of divinylbenzene, a crosslinking agent, in addition to chemical resistance, heat resistance, and ion exchange properties. Has been synthesized and developed.

【0003】しかしながら、新しいニーズ、例えばフッ
酸や硝酸などの酸化性の高い酸の効率的回収や酸化性金
属を含有する酸の回収、アルミ工業におけるリン酸エッ
チング廃液からのリン酸回収、工業塩並の安価な食塩を
製造するための海水濃縮、電解質や有機物を含有する液
の電解などに用いるための低抵抗で水移動速度が少な
く、しかも耐蝕性を有するイオン交換膜の要求に対し、
従来のスチレン−ジビニルベンゼン系共重合体膜では対
応できない欠点がある。すなわち抵抗を低下させるに
は、クロルメチル化スチレン(またはビニルピリジン)
含有量を増加し、架橋剤のジビニルベンゼン量を低下
し、イオン交換容量を増大させ含水率を増加させる必要
があるが、機械的強度の低下に加え選択透過性および耐
蝕性が低下し液移動量が増大するため要求される膜が得
られない。また抵抗を低下させる別の手段としては、膜
厚を薄くする必要があるが、スチレン−ジビニルベンゼ
ン系共重合体膜は、機械的強度、特に脆さがあるために
100μm以下のイオン交換膜が得られない。
However, new needs such as efficient recovery of highly oxidizing acids such as hydrofluoric acid and nitric acid, recovery of acids containing oxidizing metals, recovery of phosphoric acid from phosphoric acid etching waste liquid in the aluminum industry, industrial salts Concentration of seawater to produce ordinary inexpensive salt, low resistance and low water transfer rate for use in electrolysis of liquids containing electrolytes and organic substances, and for the demand for ion exchange membranes with corrosion resistance,
There is a drawback that conventional styrene-divinylbenzene-based copolymer membranes cannot deal with. That is, to reduce the resistance, chloromethylated styrene (or vinyl pyridine)
It is necessary to increase the content, decrease the amount of divinylbenzene in the cross-linking agent, increase the ion exchange capacity and increase the water content, but in addition to the decrease in mechanical strength, the selective permeability and corrosion resistance also decrease, and liquid transfer The required film cannot be obtained due to the increased amount. Further, as another means for lowering the resistance, it is necessary to reduce the film thickness. However, since the styrene-divinylbenzene copolymer film has mechanical strength, especially brittleness, an ion exchange film of 100 μm or less is required. I can't get it.

【0004】一方、限外濾過、逆浸透膜やガス分離膜な
どの分離膜において、機械的強度、加工性の優れたエン
プラ系プラスチックが使用されている。特に耐薬品性が
優れたポリスルホン膜は、膜内にイオン交換基を導入
し、限外濾過や逆浸透での透過性の改良や、イオン選択
透過性を付与し、イオン交換膜への適用が検討されてい
る。
On the other hand, engineering plastics having excellent mechanical strength and workability are used in ultrafiltration, separation membranes such as reverse osmosis membranes and gas separation membranes. Especially, the polysulfone membrane, which has excellent chemical resistance, has ion exchange groups introduced into the membrane to improve the permeability in ultrafiltration and reverse osmosis and to impart ion selective permeability, making it suitable for use in ion exchange membranes. Is being considered.

【0005】例えば、繰り返し単位が、式(d)からな
る繰り返し単位を持つポリスルホンのクロルメチル化物
から合成された陰イオン交換膜が、J. Membrane Scienc
e, 22 (1985) 325〜332 に記載されている。
For example, an anion exchange membrane synthesized from chloromethylated polysulfone having a repeating unit represented by the formula (d) is described in J. Membrane Scienc.
e, 22 (1985) 325-332.

【0006】[0006]

【化3】 Embedded image

【0007】しかしながら、これらのポリスルホン系イ
オン交換膜は、非架橋であり、イオン交換容量が増加
し、抵抗を低下させようとすると、イオン選択性および
耐蝕性が低下し、また水移動速度が増大するという欠点
があった。
However, these polysulfone type ion exchange membranes are non-crosslinked, and when the ion exchange capacity is increased and the resistance is lowered, the ion selectivity and the corrosion resistance are lowered, and the water transfer rate is increased. There was a drawback to do.

【0008】これらの欠点を補う方法として、ポリスル
ホン系ポリマーのクロルメチル化物をポリアミンで反応
させた構造を持つ架橋構造を有する陰イオン交換体(特
開平2−68146号)が提案された。
As a method of compensating for these drawbacks, an anion exchanger having a crosslinked structure having a structure obtained by reacting a chloromethylated product of a polysulfone polymer with a polyamine has been proposed (JP-A-2-68146).

【0009】[0009]

【発明が解決しようとする課題】この新規な架橋構造を
有する陰イオン交換体を用いて得られた膜は、ある反応
条件では低抵抗でイオン選択性も高いものが得られた
が、水移動速度が高く、例えば膜の片側に廃酸をもう一
方に水を流して酸を回収する拡散透析による酸の回収で
は水側から廃酸側へ水が多量に移動するため廃液量が増
大し、また電気透析による電解質の濃縮回収では希釈側
から濃縮側へ水が多量に移動するため電解質の濃縮濃度
が上がらず、種々の新しいニーズに対応できるものでは
なかった。
The membrane obtained by using this anion exchanger having a novel crosslinked structure has low resistance and high ion selectivity under certain reaction conditions, but it has a low water transfer rate. High speed, for example, in the recovery of acid by diffusion dialysis in which waste acid is flown to one side and water is flown to the other side to recover the acid, a large amount of water is transferred from the water side to the waste acid side, increasing the amount of waste liquid, Further, in the concentration and recovery of the electrolyte by electrodialysis, a large amount of water moves from the dilution side to the concentration side, so that the concentration concentration of the electrolyte does not increase and it is not possible to meet various new needs.

【0010】本発明は、従来技術が有していた前述の欠
点を解消しようとするものであり、低抵抗でイオン選択
性が高く、水移動速度が小さく、さらに耐蝕性に優れた
架橋構造を有する陰イオン交換膜を提供することを目的
とする。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, and provides a crosslinked structure having a low resistance, a high ion selectivity, a low water migration speed, and an excellent corrosion resistance. It aims at providing the anion exchange membrane which has.

【0011】[0011]

【課題を解決するための手段】本発明は、一般式(a)
で表されるセグメントと一般式(b)で表されるセグメ
ントを有し、m/n=100/1〜1/10の芳香族ポ
リスルホン系ブロック共重合体のハロアルキル化物を、
モノアミンおよびポリアミンと反応させた架橋構造を有
する陰イオン交換膜であって、ハロアルキル基全体に対
してモノアミンと反応したハロアルキル基の比率が30
〜50モル%、イオン交換容量が1.0〜3.5ミリ当
量/g乾燥樹脂であって、25℃における0.5M硫酸
中の交流比抵抗が300Ω・cm以下で、膜の片側に硫
酸をもう片側に水を流したときの水側から硫酸側への水
の移動速度が40℃において3g・cm/m2 ・h・M
以下である陰イオン交換膜を提供する。
The present invention has the general formula (a):
A haloalkylated aromatic polysulfone block copolymer having a segment represented by the following formula and a segment represented by the general formula (b), wherein m / n = 100/1 to 1/10,
An anion exchange membrane having a crosslinked structure reacted with a monoamine and a polyamine, wherein the ratio of the haloalkyl group reacted with the monoamine to the whole haloalkyl group is 30.
.About.50 mol%, ion exchange capacity is 1.0 to 3.5 meq / g dry resin, AC specific resistance in 0.5 M sulfuric acid at 25.degree. C. is 300 .OMEGA.cm or less, and sulfuric acid is applied to one side of the membrane. The moving speed of water from the water side to the sulfuric acid side when flowing water to the other side at 40 ° C is 3 g · cm / m 2 · h · M
An anion exchange membrane is provided that is:

【0012】[0012]

【化4】 Embedded image

【0013】本発明の陰イオン交換膜は、分子内にイオ
ン交換基を導入するためのハロアルキル基を導入しやす
いセグメント(a)とハロアルキル基を導入しにくいセ
グメント(b)を持つ芳香族ポリスルホン系ブロック共
重合体を使用し、ブロック的に導入したハロアルキル基
をモノアミンとポリアミンで特定の比率で反応させ、低
電気抵抗と高イオン選択性および低水移動速度、耐蝕
性、高い機械的強度という相反する特性を両立させたと
ころが特徴である。
The anion exchange membrane of the present invention has an aromatic polysulfone system having a segment (a) which is easy to introduce a haloalkyl group for introducing an ion exchange group into the molecule and a segment (b) which is difficult to introduce a haloalkyl group. Using block copolymers, the block-introduced haloalkyl groups are reacted with monoamine and polyamine in a specific ratio to achieve the conflict of low electrical resistance and high ion selectivity, low water migration rate, corrosion resistance, and high mechanical strength. The feature is that both the characteristics to be achieved are compatible.

【0014】一般式(a)のmと一般式(b)のnの比
(m/n)が100/1より大きい場合は、イオン交換
基が導入されない部分による疑似架橋効果が低減して水
移動速度が増大するので不適当である。m/nが1/1
0より小さい場合は、イオン交換容量が低下して、電気
抵抗が高くなるので不適当である。m/nが5/1〜1
/5の場合は、さらに好ましい。
When the ratio of m in the general formula (a) to n in the general formula (b) (m / n) is larger than 100/1, the pseudo-crosslinking effect due to the portion where the ion-exchange group is not introduced is reduced and the water is reduced. This is unsuitable because the moving speed increases. m / n is 1/1
If it is smaller than 0, the ion exchange capacity is lowered and the electric resistance is increased, which is not suitable. m / n is 5/1 to 1
The case of / 5 is more preferable.

【0015】モノアミンと反応させるハロアルキル基と
ポリアミンと反応させるハロアルキル基との比率は、ハ
ロアルキル基全体に対してモノアミンと反応させるハロ
アルキル基が30〜50モル%が好ましい。モノアミン
と反応させるハロアルキル基の比率が50モル%より大
きいと、膜の電気抵抗は低いが水移動速度が大きいので
不適当である。モノアミンと反応させるハロアルキル基
の比率が30モル%より低いと、架橋度が高くなりすぎ
て、膜の水移動量は低下するが電気抵抗が急激に上昇す
るので不適当である。
The ratio of the haloalkyl group reacted with the monoamine to the haloalkyl group reacted with the polyamine is preferably 30 to 50 mol% of the haloalkyl group reacted with the monoamine with respect to the entire haloalkyl group. When the ratio of the haloalkyl group reacted with the monoamine is larger than 50 mol%, the electric resistance of the membrane is low but the water migration rate is high, which is unsuitable. When the ratio of the haloalkyl group reacted with the monoamine is lower than 30 mol%, the degree of cross-linking becomes too high and the water transfer amount of the membrane decreases, but the electric resistance sharply increases, which is not suitable.

【0016】陰イオン交換膜のイオン交換容量は、使用
する用途により最適な値が異なるが、通常1.0〜3.
5ミリ当量/g乾燥樹脂となるように選定するのが好ま
しい。イオン交換容量が1.0ミリ当量/g乾燥樹脂よ
り小さいと電気抵抗が高くなるので好ましくない。イオ
ン交換容量が3.5ミリ当量/g乾燥樹脂より大きいと
水移動速度が高くなるので好ましくない。
The optimum ion-exchange capacity of the anion-exchange membrane varies depending on the intended use, but is usually 1.0 to 3.
It is preferable to select so as to obtain 5 meq / g dry resin. If the ion exchange capacity is smaller than 1.0 meq / g dry resin, the electric resistance will increase, which is not preferable. If the ion exchange capacity is larger than 3.5 meq / g dry resin, the water transfer rate becomes high, which is not preferable.

【0017】陰イオン交換膜の電気抵抗は、25℃にお
ける0.5M硫酸中の交流比抵抗が300Ω・cm以下
であることが必要である。電気抵抗がこの値より大きい
場合は、拡散透析では酸の透過性が低くなり効率的な酸
の回収がおこらず、また電気透析や電解では電圧が上昇
し省エネルギープロセスとならないので不適当である。
Regarding the electric resistance of the anion exchange membrane, the AC specific resistance in 0.5 M sulfuric acid at 25 ° C. is required to be 300 Ω · cm or less. If the electric resistance is larger than this value, the acid permeability is low in the diffusion dialysis and the acid is not efficiently recovered, and the voltage is increased in the electrodialysis or electrolysis and the energy saving process is not performed, which is not suitable.

【0018】水移動速度は、陰イオン交換膜をセルには
さみ片側に硫酸水溶液をもう片側に水を向流でゆっくり
と流して、液量と硫酸濃度から計算して求める。膜の有
効面積をA(m2 )、膜の厚さをL(cm)、硫酸液供
給速度および水排出速度をv(リットル/h)、硫酸液
排出速度および水供給速度をv’(リットル/h)、供
給された硫酸液のモル濃度をC1 (M)、その比重をd
1 (g/cc)、排出された硫酸液のモル濃度をC2
(M)、その比重をd2 (g/cc)、排出された水の
硫酸のモル濃度をC3 (M)、その比重をd3 (g/c
c)とすると、水移動速度U(g・cm/m2 ・h・
M)は次式で表される。ここでΔMは膜の両側の平均的
な硫酸濃度差(M)である。
The water transfer speed is determined by sandwiching the anion exchange membrane between cells and slowly flowing a sulfuric acid aqueous solution on one side and water on the other side in a countercurrent manner, and calculating from the liquid volume and the sulfuric acid concentration. The effective area of the membrane is A (m 2 ), the thickness of the membrane is L (cm), the sulfuric acid solution supply rate and the water discharge rate are v (liter / h), and the sulfuric acid solution discharge rate and the water supply rate are v '(liter). / H), the molar concentration of the supplied sulfuric acid solution is C 1 (M), and its specific gravity is d
1 (g / cc), the molar concentration of the discharged sulfuric acid solution is C 2
(M), its specific gravity is d 2 (g / cc), the molar concentration of sulfuric acid in the discharged water is C 3 (M), and its specific gravity is d 3 (g / c).
c), the water movement speed U (g · cm / m 2 · h ·
M) is represented by the following equation. Where ΔM is the average sulfuric acid concentration difference (M) on both sides of the membrane.

【0019】[0019]

【数1】 [Equation 1]

【0020】上記水移動速度の測定において、Aおよび
v、C1 は任意に定めうるが、A/vの値が0.2〜
1.5(m2 ・h/リットル)の範囲で、またC1 は1
〜5M程度で測定するのが好ましい。
In the above measurement of the water movement speed, A, v, and C 1 can be arbitrarily determined, but the value of A / v is 0.2 to
In the range of 1.5 (m 2 · h / liter), C 1 is 1
It is preferable to measure at about 5M.

【0021】水移動速度としては、膜の片側に硫酸をも
う片側に水を流した時の水側から硫酸側への水の移動速
度が40℃において3g・cm/m2 ・h・M以下であ
ることが必要である。水の移動速度が3g・cm/m2
・h・Mより大きいと、拡散透析では廃液量が増大し、
また電気透析や電解では回収物の濃度が高くならないの
で不適当である。
As for the water transfer rate, the transfer rate of water from the water side to the sulfuric acid side when flowing sulfuric acid to one side of the membrane is 3 g · cm / m 2 · h · M or less at 40 ° C. It is necessary to be. Water movement speed is 3g · cm / m 2
・ If it is larger than h · M, the amount of waste liquid will increase in diffusion dialysis,
In addition, the concentration of the recovered substance is not increased by electrodialysis or electrolysis, which is inappropriate.

【0022】[0022]

【発明の実施の形態】本発明の陰イオン交換膜を得るに
は具体的には次のような方法が好ましい。まず一般式
(a)と(b)からなるブロック共重合体を合成する。
この共重合体にあっては、一般式(a)のセグメントお
よび一般式(b)のセグメントがそれぞれ2〜100程
度繰り返し結合している構造が好ましく、固有粘度とし
ては0.1〜3dl/g程度が適当である。
BEST MODE FOR CARRYING OUT THE INVENTION To obtain the anion exchange membrane of the present invention, the following methods are specifically preferred. First, a block copolymer having the general formulas (a) and (b) is synthesized.
In this copolymer, a structure in which the segment of the general formula (a) and the segment of the general formula (b) are repeatedly bonded to each other by about 2 to 100 is preferable, and the intrinsic viscosity is 0.1 to 3 dl / g. The degree is appropriate.

【0023】次に、この共重合体にハロアルキル基を導
入する。ハロアルキル基としてたとえばクロルメチル基
が好適である。クロルメチル基を導入する場合は、たと
えばトリクロロエタン、テトラクロロエタンなどのハロ
ゲン化炭化水素などの溶媒中で、上記ブロック共重合体
と、クロルメチルメチルエーテル、1,4−ビス(クロ
ルメトキシ)ブタン、1−クロルメトキシ−4−クロロ
ブタン、あるいはホルマリン−塩化水素系、パラホルム
アルデヒド−塩化水素系などの求核性クロルメチル化剤
を反応させる。この際、触媒として塩化スズなどを用い
ることができる。
Next, a haloalkyl group is introduced into this copolymer. A suitable example of the haloalkyl group is a chloromethyl group. When a chloromethyl group is introduced, for example, in a solvent such as a halogenated hydrocarbon such as trichloroethane or tetrachloroethane, the above block copolymer, chloromethyl methyl ether, 1,4-bis (chloromethoxy) butane, 1- A nucleophilic chlormethylating agent such as chloromethoxy-4-chlorobutane, or formalin-hydrogen chloride system or paraformaldehyde-hydrogen chloride system is reacted. At this time, tin chloride or the like can be used as a catalyst.

【0024】次にハロアルキル基と、モノアミンおよび
ポリアミンとを反応させる。その手法としては、下記
(1)〜(3)などがある。
Next, the haloalkyl group is reacted with the monoamine and polyamine. The method includes the following (1) to (3).

【0025】(1)ハロアルキル基含有ブロック共重合
体を溶媒に溶解し、モノアミンを一定量添加してハロア
ルキル基の一部を反応させた後キャスト製膜し、得られ
た膜をポリアミン溶液中に浸漬して反応させる方法、
(2)ハロアルキル基含有ブロック共重合体を溶媒に溶
解し、モノアミンとポリアミンの混合物を一定量添加し
てハロアルキル基を反応させた後キャスト製膜する方
法、(3)ハロアルキル基含有ブロック共重合体を溶媒
に溶解し、キャスト製膜した後、得られた膜をモノアミ
ンとポリアミンの混合物溶液中に浸漬して反応させる方
法。
(1) A haloalkyl group-containing block copolymer is dissolved in a solvent, a certain amount of monoamine is added to react a part of the haloalkyl groups, and then a film is formed by casting. The obtained film is placed in a polyamine solution. Method of immersing and reacting,
(2) A method in which the haloalkyl group-containing block copolymer is dissolved in a solvent, a certain amount of a mixture of monoamine and polyamine is added to react the haloalkyl groups, and then cast film formation, (3) haloalkyl group-containing block copolymer Is dissolved in a solvent to form a cast film, and the resulting film is immersed in a mixed solution of monoamine and polyamine to react.

【0026】通常は、モノアミンと反応させるハロアル
キル基と、ポリアミンと反応させるハロアルキル基の比
率を精度良くコントロールするために(1)の方法が用
いられる。
Usually, the method (1) is used to control the ratio of the haloalkyl group reacted with the monoamine and the haloalkyl group reacted with the polyamine with high accuracy.

【0027】本発明において使用するポリアミン化合物
としては、エチレンジアミン、ジエチレントリアミン、
トリエチレンテトラミン、テトラエチレンペンタミン、
ポリエチレンイミン、フェニレンジアミン等の1〜2級
アミンからなるポリアミン化合物や、N,N,N’N’
−テトラメチルジアミノメタン、N,N,N’N’−テ
トラメチル−1,2−ジアミノエタン、N,N,N’
N’−テトラメチル−1,3−ジアミノプロパン、N,
N,N’N’−テトラメチル−1,6−ジアミノヘキサ
ン、N,N,N’N’−テトラメチルベンジジン、p,
p’−テトラメチルジアミノジフェニルメタン、ポリビ
ニルピリジン、ポリクロルメチレンの1〜2級アミノ化
物が使用される。なかでも一般式(c)からなる3級ア
ミンを分子末端に2個有するジアミンは、入手が容易な
こと、アミノ化反応性が高いこと、メチレン基の数を変
えることにより膜物性の制御が容易に行えることなどか
ら特に好ましいポリアミン化合物として使用できる。
The polyamine compound used in the present invention includes ethylenediamine, diethylenetriamine,
Triethylenetetramine, tetraethylenepentamine,
Polyamine compounds composed of primary and secondary amines such as polyethyleneimine and phenylenediamine, and N, N, N'N '
-Tetramethyldiaminomethane, N, N, N'N'-tetramethyl-1,2-diaminoethane, N, N, N '
N'-tetramethyl-1,3-diaminopropane, N,
N, N'N'-tetramethyl-1,6-diaminohexane, N, N, N'N'-tetramethylbenzidine, p,
P'-tetramethyldiaminodiphenylmethane, polyvinyl pyridine, and the primary and secondary amination products of polychloromethylene are used. Among them, the diamine having two tertiary amines represented by the general formula (c) at the molecular end is easily available, has high amination reactivity, and the physical properties of the film can be easily controlled by changing the number of methylene groups. It can be used as a particularly preferable polyamine compound because it can be carried out.

【0028】[0028]

【化5】 Embedded image

【0029】モノアミンとしては、3級アミンが好まし
い。具体的には、トリメチルアミン、トリエチルアミ
ン、トリブチルアミンなどのトリアルキルアミン、N,
N−ジメチルアニリン、N−メチルピロールなどの芳香
族アミン、N−メチルピロリジン、N−メチルモルホリ
ンなどの複素環アミン、トリエタノールアミンなどのア
ルコールアミンが例示される。なかでもトリメチルアミ
ンは、低抵抗の膜が得られるので特に好ましい。
The monoamine is preferably a tertiary amine. Specifically, trialkylamines such as trimethylamine, triethylamine and tributylamine, N,
Examples thereof include aromatic amines such as N-dimethylaniline and N-methylpyrrole, heterocyclic amines such as N-methylpyrrolidine and N-methylmorpholine, and alcohol amines such as triethanolamine. Among them, trimethylamine is particularly preferable because a film having low resistance can be obtained.

【0030】本発明の陰イオン交換膜は、低電気抵抗と
高イオン選択性および低水移動速度、耐蝕性、高い機械
的強度という相反する特性を両立させたため、薄い膜厚
で高い特性を有する。膜厚は厳密には、用途および使用
条件で決定されるが、5〜80μm程度が好ましい。必
要に応じて、他の素材と複層して用いることもできる。
The anion exchange membrane of the present invention has low electric resistance, high ion selectivity, low water migration rate, corrosion resistance, and high mechanical strength, which are contradictory characteristics, and therefore has a high thickness and high characteristics. . Strictly speaking, the film thickness is determined depending on the application and use conditions, but it is preferably about 5 to 80 μm. If necessary, it can be used as a multilayer with other materials.

【0031】本発明の架橋構造を有する陰イオン交換膜
は、陰イオン交換膜の片側に酸を含有する溶液を接触
し、もう一方に水もしくは反対側より濃度の低い酸溶液
を接触せしめ、酸を含有する溶液から酸を選択的に拡散
透析させる酸の回収方法に好ましく使用できる。
In the anion exchange membrane having a crosslinked structure of the present invention, a solution containing an acid is brought into contact with one side of the anion exchange membrane, and water or an acid solution having a lower concentration than that of the opposite side is brought into contact with the other side of the anion exchange membrane. It can be preferably used in a method for recovering an acid in which the acid is selectively subjected to diffusion dialysis from a solution containing.

【0032】拡散透析による酸の回収方法として具体的
には、陰イオン交換膜と厚さ0.5〜5mmのスペーサ
ーネットを交互に配置して酸の原液側と水側の区画を交
互に複数作り、そこに酸を含有する原液と水を膜有効面
積1m2 に対して0.7〜5リットル/hの速度で供給
することが好ましい。操作温度は25〜60℃が好まし
い。25℃より低いと酸の透過速度が減少し、60℃よ
り高いとセルやスペーサーの材質に耐熱性が要求され高
価になるので好ましくない。
Specifically, as a method of recovering the acid by diffusion dialysis, anion exchange membranes and spacer nets having a thickness of 0.5 to 5 mm are alternately arranged, and a plurality of acid stock solution side and water side compartments are alternately arranged. It is preferable to prepare and supply the stock solution containing acid and water to the membrane effective area of 1 m 2 at a rate of 0.7 to 5 liter / h. The operating temperature is preferably 25 to 60 ° C. If the temperature is lower than 25 ° C, the acid permeation rate is decreased, and if the temperature is higher than 60 ° C, the heat resistance is required for the material of the cell or the spacer, which is not preferable.

【0033】また本発明の架橋構造を有する陰イオン交
換膜は、陰極と陽極の間に陽イオン交換膜または水素イ
オン交換膜と陰イオン交換膜とを交互に配列させ、電解
質溶液を通液しながら電圧を印加し電気透析する電解質
の濃縮回収方法に好ましく使用できる。
In the anion exchange membrane having a crosslinked structure of the present invention, cation exchange membranes or hydrogen ion exchange membranes and anion exchange membranes are alternately arranged between the cathode and the anode, and the electrolyte solution is passed through. However, it can be preferably used in a method of concentrating and recovering an electrolyte in which voltage is applied and electrodialysis is performed.

【0034】電気透析による電解質の濃縮回収方法とし
て具体的には、陽極を備える陽極室と陰極を備える陰極
室との間に、複数枚の陽イオン交換膜と陰イオン交換膜
とを交互に配置して、陽極側が陰イオン交換膜で区画さ
れ陰極側が陽イオン交換膜で区画された脱塩室と、陽極
側が陽イオン交換膜で区画され陰極側が陰イオン交換膜
で区画された濃縮室とを交互に2〜300組程度配置す
る。脱塩室には電解質を含有する原液を原液タンクから
循環させ、濃縮室には濃縮された電解質を回収するため
の電解質液を循環しながら電流を流すことにより濃縮回
収を行うことができる。各ユニットセルには、限界電流
密度以下の電流値となるように0.2〜2V程度の電圧
を印加することが好ましい。
As a method for concentrating and recovering the electrolyte by electrodialysis, specifically, a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode. Then, a desalting chamber in which the anode side is partitioned by the anion exchange membrane and the cathode side is partitioned by the cation exchange membrane, and a concentrating chamber in which the anode side is partitioned by the cation exchange membrane and the cathode side is partitioned by the anion exchange membrane. About 2 to 300 sets are alternately arranged. Concentration and recovery can be carried out by circulating an undiluted solution containing an electrolyte from the undiluted solution tank in the desalting chamber, and supplying an electric current while circulating an electrolytic solution for recovering the concentrated electrolyte in the concentrating chamber. It is preferable to apply a voltage of about 0.2 to 2 V to each unit cell so that the current value is not more than the limiting current density.

【0035】さらに本発明の架橋構造を有する陰イオン
交換膜は、陰極と陽極の間に、陰極側に陽イオン交換膜
と陽極側に陰イオン交換膜を、または陰イオン交換膜の
みを配置させ、電解質または有機物含有溶液を通液しな
がら電圧を印加し電解する電解反応に好ましく使用でき
る。
Further, in the anion exchange membrane having a crosslinked structure of the present invention, a cation exchange membrane on the cathode side and an anion exchange membrane on the anode side, or an anion exchange membrane alone is arranged between the cathode and the anode. It can be preferably used for an electrolytic reaction in which a voltage is applied to electrolyze while passing a solution containing an electrolyte or an organic substance.

【0036】電解による電解反応として具体的には、陽
極を備える陽極室と陰極を備える陰極室との間に、陰極
側に陽イオン交換膜と陽極側に陰イオン交換膜を、また
は陰イオン交換膜のみを配置させ、中間室または陰極室
に電解質または有機物含有溶液を通液しながら電圧を印
加し電解することにより電解反応を行うことができる。
電極間に印加する電圧は行う電解反応により異なるが、
電解反応が十分におこる0.2〜10V程度の電圧を印
加することが好ましい。
Specifically, as the electrolytic reaction by electrolysis, a cation exchange membrane on the cathode side and an anion exchange membrane on the anode side, or anion exchange is provided between the anode chamber having the anode and the cathode chamber having the cathode. An electrolytic reaction can be performed by disposing only a membrane and applying a voltage to electrolyze while passing a solution containing an electrolyte or an organic substance through an intermediate chamber or a cathode chamber.
The voltage applied between the electrodes varies depending on the electrolytic reaction performed,
It is preferable to apply a voltage of about 0.2 to 10 V at which the electrolytic reaction sufficiently occurs.

【0037】[0037]

【実施例】【Example】

例1 特開昭61−168629号に記載された合成法と同様
にして、4,4’−ジフェノール0.36モルとジクロ
ロジフェニルスルホン0.396モルとを反応させ、芳
香族ポリスルホンのユニットからなるm=10のプリカ
ーサー0.36モルを合成し、次いで該プリカーサー
0.36モルとジクロロジフェニルスルホン0.324
モルと硫化ナトリウム0.378モルとを反応させ、化
6で示される芳香族ポリスルホン−ポリチオエーテルス
ルホン共重合体を220g得た。ただし、m=n=10
である。この芳香族ポリスルホン−ポリチオエーテルス
ルホン共重合体の固有粘度は0.50dl/gであっ
た。
Example 1 0.36 mol of 4,4′-diphenol and 0.396 mol of dichlorodiphenyl sulfone were reacted in the same manner as in the synthesis method described in JP-A-61-168629 to obtain a unit of aromatic polysulfone. 0.36 mol of a precursor of m = 10 was synthesized, and then 0.36 mol of the precursor and 0.324 of dichlorodiphenyl sulfone were synthesized.
Moles were reacted with 0.378 mol of sodium sulfide to obtain 220 g of an aromatic polysulfone-polythioether sulfone copolymer represented by Chemical formula 6. However, m = n = 10
It is. The intrinsic viscosity of this aromatic polysulfone-polythioether sulfone copolymer was 0.50 dl / g.

【0038】[0038]

【化6】 [Chemical 6]

【0039】次に、該共重合体75gを1,1,2,2
−テトラクロロエタン1020mlに溶解し、クロルメ
チルメチルエーテル400gおよび無水塩化スズ4.5
gをさらに添加して温度110℃に加熱して4時間かけ
てクロルメチル化反応を行った。反応終了後、メチルア
ルコール5000mlを用いて反応生成物を沈殿させ、
これを洗浄し、クロルメチル化共重合体を85g得た。
得られたクロルメチル化共重合体のクロロメチル基の導
入率は、1繰返し単位に約1.9個で、すべてトリメチ
ルアミンで反応させた場合のイオン交換容量は2.2ミ
リ当量/g乾燥樹脂であった。
Next, 75 g of the copolymer was added to 1,1,2,2
-Dissolved in 1020 ml of tetrachloroethane, 400 g of chloromethyl methyl ether and 4.5 of anhydrous tin chloride
g was further added, and the mixture was heated to a temperature of 110 ° C. and the chloromethylation reaction was carried out for 4 hours. After the reaction was completed, the reaction product was precipitated using 5000 ml of methyl alcohol,
This was washed to obtain 85 g of a chloromethylated copolymer.
The introduction ratio of chloromethyl groups in the obtained chloromethylated copolymer was about 1.9 per repeating unit, and the ion exchange capacity when reacted with trimethylamine was 2.2 meq / g dry resin. there were.

【0040】このクロルメチル化共重合体50gをN,
N−ジメチルホルムアミド300mlに溶解した15重
量%溶液を3バッチ調製した。冷却下に撹拌しながら温
度0℃で1NのトリメチルアミンのN,N−ジメチルホ
ルムアミド溶液を、53ml、48ml、37mlをゆ
っくりと滴下し、その後10gの2−メトキシエタノー
ルを添加し、イオン交換容量が1.0ミリ当量/g乾燥
樹脂の溶液Aを413ml、0.9ミリ当量/g乾燥樹
脂の溶液Bを408ml、0.7ミリ当量/g乾燥樹脂
の溶液Cを397ml得た。
50 g of this chloromethylated copolymer was added to N,
Three batches of 15 wt% solution dissolved in 300 ml of N-dimethylformamide were prepared. 53 ml, 48 ml, and 37 ml of 1N trimethylamine N, N-dimethylformamide solution were slowly added dropwise with stirring at a temperature of 0 ° C. under cooling, and then 10 g of 2-methoxyethanol was added, and the ion exchange capacity was 1 413 ml of solution A of 0.0 meq / g dry resin, 408 ml of solution B of 0.9 meq / g dry resin, and 397 ml of solution C of 0.7 meq / g dry resin were obtained.

【0041】各溶液を60℃で2時間キャスト製膜し、
厚み50μmの膜を得た。得られた膜を1NのN,N,
N’N’−テトラメチル−1,2−ジアミノエタンのメ
タノール溶液に50℃で4時間浸漬して架橋膜を得た。
これらの膜のモノアミンと反応したハロアルキル基の比
率は、溶液A、B、Cから得られたものについて、それ
ぞれ45、41、32モル%であった。またこれらの膜
の25℃における0.5M硫酸中の交流比抵抗および4
0℃における水の移動速度は、それぞれ抵抗値150、
200、300Ω・cm、水移動速度1.80、1.7
0、1.25g・cm/m2 ・h・Mであった。
Each solution was cast at 60 ° C. for 2 hours to form a film,
A film having a thickness of 50 μm was obtained. The obtained film was treated with 1N N, N,
A crosslinked film was obtained by immersing in a methanol solution of N′N′-tetramethyl-1,2-diaminoethane at 50 ° C. for 4 hours.
The proportions of haloalkyl groups reacted with monoamines in these membranes were 45, 41 and 32 mol% for the solutions A, B and C, respectively. The AC resistivity of these films in 25M sulfuric acid at 25 ° C and 4
The moving speed of water at 0 ° C. is a resistance value of 150,
200, 300 Ω · cm, water movement speed 1.80, 1.7
It was 0 and 1.25 g · cm / m 2 · h · M.

【0042】例2 ポリアミンとしてN,N,N’N’−テトラメチル−
1,3−ジアミノプロパンを用いた他は例1と同様にし
て架橋構造を有する膜を得た。得られた膜の25℃にお
ける0.5M硫酸中の交流比抵抗および40℃における
水の移動速度は、それぞれ抵抗値120、160、26
0Ω・cm、水移動速度2.10、2.00、1.75
g・cm/m2 ・h・Mであった。
Example 2 N, N, N'N'-tetramethyl-as polyamine
A film having a crosslinked structure was obtained in the same manner as in Example 1 except that 1,3-diaminopropane was used. The AC specific resistance of 0.5 M sulfuric acid at 25 ° C. and the migration rate of water at 40 ° C. of the obtained membrane were 120, 160 and 26, respectively.
0 Ω · cm, water movement speed 2.10, 2.00, 1.75
It was g · cm / m 2 · h · M.

【0043】例3 ポリアミンとしてN,N,N’N’−テトラメチル−
1,6−ジアミノヘキサンを用いた他は例1と同様にし
て架橋構造を有する膜を得た。得られた膜の25℃にお
ける0.5M硫酸中の交流比抵抗および40℃における
水の移動速度は、それぞれ抵抗値100、120、20
0Ω・cm、水移動速度2.40、2.30、2.00
g・cm/m2 ・h・Mであった。
Example 3 N, N, N'N'-tetramethyl-as polyamine
A film having a crosslinked structure was obtained in the same manner as in Example 1 except that 1,6-diaminohexane was used. The alternating current specific resistance of 0.5 M sulfuric acid at 25 ° C. and the moving speed of water at 40 ° C. of the obtained membrane were 100, 120 and 20 respectively.
0Ω · cm, water movement speed 2.40, 2.30, 2.00
It was g · cm / m 2 · h · M.

【0044】例4 例1で得られた膜のうち、モノアミンと反応したハロア
ルキル基の比率が45モル%で、25℃における0.5
M硫酸中の交流比抵抗が150Ω・cm、40℃におけ
る水の移動速度が1.80g・cm/m2 ・h・Mの膜
をセルに組み、片側に3M硫酸と30g/リットルの濃
度の鉄イオンを含有する液体を、もう一方に水を膜有効
面積1m2 あたりに2リットル/hの速度で向流で流し
拡散透析法による酸の回収を行った。酸回収率は85%
で廃液量は1.0倍で増加しなかった。
Example 4 Of the film obtained in Example 1, the proportion of haloalkyl groups reacted with monoamine was 45 mol% and the ratio was 0.5 at 25 ° C.
A membrane with AC specific resistance in M sulfuric acid of 150 Ω · cm and water migration speed at 40 ° C of 1.80 g · cm / m 2 · h · M was assembled in a cell, and 3 M sulfuric acid and a concentration of 30 g / liter were provided on one side. On the other hand, water containing iron ions was flowed in countercurrent at a rate of 2 liter / h per 1 m 2 of the membrane effective area to recover the acid by the diffusion dialysis method. Acid recovery rate is 85%
The amount of waste liquid was 1.0 times and did not increase.

【0045】例5 例3で得られた膜のうち、モノアミンと反応したハロア
ルキル基の比率が32モル%で、25℃における0.5
M硫酸中の交流比抵抗が200Ω・cm、40℃におけ
る水の移動速度が2.00g・cm/m2 ・h・Mの膜
をセルに組み、片側に3M硫酸と30g/リットルの濃
度の鉄イオンを含有する液体を、もう一方に水を膜有効
面積1m2 あたりに1.8リットル/hの速度で向流で
流し拡散透析法による酸の回収を行った。酸回収率は8
5%で廃液量は1.0倍で増加しなかった。
Example 5 Of the film obtained in Example 3, the proportion of haloalkyl groups reacted with monoamine was 32 mol%, and 0.5% at 25 ° C. was used.
A membrane with an AC specific resistance in M sulfuric acid of 200 Ω · cm and a water transfer rate of 2.00 g · cm / m 2 · h · M at 40 ° C was assembled in a cell, and 3 M sulfuric acid and a concentration of 30 g / liter were provided on one side. On the other hand, water containing iron ions was allowed to flow countercurrently at a rate of 1.8 liter / h per 1 m 2 of the membrane effective area to recover the acid by the diffusion dialysis method. Acid recovery rate is 8
At 5%, the amount of waste liquid did not increase by 1.0 times.

【0046】例6(比較例) 例1で得られたクロロメチル化共重合体50gをN,N
−ジメチルホルムアミド各300mlに溶解した15重
量%溶液を2バッチ調製した。冷却下に撹拌しながら温
度0℃で1NのトリメチルアミンのN,N−ジメチルホ
ルムアミド溶液の108mlおよび86mlをゆっくり
と滴下し、その後53gおよび26gの2−メトキシエ
タノールを添加し、イオン交換容量が2.0ミリ当量/
g乾燥樹脂の溶液Dを511ml、1.6ミリ当量/g
乾燥樹脂の溶液Eを462ml得た。
Example 6 (Comparative Example) 50 g of the chloromethylated copolymer obtained in Example 1 was added to N, N
Two batches of a 15% by weight solution dissolved in 300 ml each of dimethylformamide were prepared. 108 ml and 86 ml of 1N trimethylamine in N, N-dimethylformamide solution was slowly added dropwise with stirring under cooling at a temperature of 0 ° C., and then 53 g and 26 g of 2-methoxyethanol were added, and the ion exchange capacity was 2. 0 meq /
g dry resin solution D, 511 ml, 1.6 meq / g
462 ml of solution E of dry resin was obtained.

【0047】各溶液を60℃で2時間キャスト製膜し、
厚み50μmの膜を得た。得られた膜を1NのN,N,
N’N’−テトラメチル−1,2−ジアミノエタンのメ
タノール溶液に50℃で4時間浸漬して架橋膜を得た。
これらの膜のモノアミンと反応したハロアルキル基の比
率は、溶液D、Eから得られたものについて、それぞれ
91、73モル%であった。またこれらの膜の25℃に
おける0.5M硫酸中の交流比抵抗および40℃におけ
る水の移動速度は、それぞれ抵抗値50、70Ω・c
m、水移動速度4.00、3.20g・cm/m2 ・h
・Mであった。
Each solution was cast into a film at 60 ° C. for 2 hours,
A film having a thickness of 50 μm was obtained. The obtained film was treated with 1N N, N,
A crosslinked film was obtained by immersing in a methanol solution of N′N′-tetramethyl-1,2-diaminoethane at 50 ° C. for 4 hours.
The proportions of haloalkyl groups reacted with monoamines in these films were 91 and 73 mol% for the solutions D and E, respectively. The specific resistance of AC of 0.5 M sulfuric acid at 25 ° C. and the moving speed of water at 40 ° C. of these films were 50 and 70 Ω · c, respectively.
m, water movement speed 4.00, 3.20 g · cm / m 2 · h
・ It was M.

【0048】例7(比較例) 例6で得られた膜のうち、モノアミンと反応したハロア
ルキル基の比率が73モル%で、25℃における0.5
M硫酸中の交流比抵抗が70Ω・cm、40℃における
水の移動速度が4.50g・cm/m2 ・h・Mの膜を
セルに組み、片側に3M硫酸と30g/リットルの濃度
の鉄イオンを含有する液体を、もう一方に水を膜有効面
積1m2 あたりに2リットル/hの速度で向流で流し拡
散透析法による酸の回収を行った。酸回収率は80%
で、廃液量は1.2倍に増加した。
Example 7 (Comparative Example) In the film obtained in Example 6, the proportion of haloalkyl groups reacted with monoamine was 73 mol%, and 0.5 at 25 ° C.
An alternating current resistance in M sulfuric acid is 70 Ω · cm, and a moving speed of water at 40 ° C is 4.50 g · cm / m 2 · h · M. On the other hand, water containing iron ions was flowed in countercurrent at a rate of 2 liter / h per 1 m 2 of the membrane effective area to recover the acid by the diffusion dialysis method. 80% acid recovery
Therefore, the amount of waste liquid increased 1.2 times.

【0049】例8 例2で得られた膜のうち、モノアミンと反応したハロア
ルキル基の比率が41モル%で、25℃における0.5
M硫酸中の交流比抵抗が160Ω・cm、40℃におけ
る水の移動速度が2.00g・cm/m2 ・h・Mの膜
と水素イオン選択透過膜(旭硝子社製、商品名セレミオ
ンHSV)とを各5枚交互にセルに組み、水素イオン選
択透過膜の選択透過層側に1.8M硫酸と15g/リッ
トルの濃度のアルミを含有する原液を供給し、もう一方
に水を流し、ユニットあたり0.5Vの電圧を印加して
電流を0.05A/cmで流し電気透析法で硫酸の濃縮
回収を行った。液の供給は、線速度が5cm/秒になる
ようにタンクより循環し、原液は有効膜面積1m2 あた
りに2リットル/hの速度で新たな原液供給を行うとと
もに0.8リットル/hの速度で抜き出しを行った。ま
た水側は有効膜面積1m2 あたりに0.6リットル/h
の速度で水供給を行うとともに1.8リットル/hの速
度で抜き出しを行った。電流効率は30%で、濃縮濃度
は2.5Mであった。
Example 8 In the film obtained in Example 2, the proportion of haloalkyl groups reacted with monoamine was 41 mol%, and 0.5 at 25 ° C. was used.
Membrane with AC specific resistance of 160 Ω · cm in M sulfuric acid and water migration speed of 2.00 g · cm / m 2 · h · M at 40 ° C and hydrogen ion selective permeable membrane (Asahi Glass Co., Ltd., trade name Selemion HSV) Each of the 5 cells was alternately assembled in a cell, and a stock solution containing 1.8 M sulfuric acid and aluminum having a concentration of 15 g / liter was supplied to the selective permeation layer side of the hydrogen ion selective permeation membrane, and water was flown to the other side to form a unit. A voltage of 0.5 V per unit was applied and a current was passed at 0.05 A / cm to concentrate and recover sulfuric acid by electrodialysis. The solution is circulated from the tank so that the linear velocity is 5 cm / sec, and the stock solution is newly supplied at a rate of 2 liter / h per 1 m 2 of the effective membrane area and 0.8 liter / h. Extraction was performed at a speed. On the water side, 0.6 l / h per 1 m 2 of effective membrane area
Water was supplied at a rate of 1, and withdrawal was performed at a rate of 1.8 liters / hour. The current efficiency was 30% and the concentration concentration was 2.5M.

【0050】例9(比較例) 例8において、例6で得られた膜のうち、モノアミンと
反応したハロアルキル基の比率が73モル%で、25℃
における0.5M硫酸中の交流比抵抗が70Ω・cm、
40℃における水の移動速度が3.20g・cm/m2
・h・Mの膜を用いた他は同様にして硫酸の濃縮回収を
行った。電流効率は15%で低く、濃縮濃度は1.9M
とわずかに濃縮されたのみであった。
Example 9 (Comparative Example) In Example 8, in the film obtained in Example 6, the proportion of haloalkyl groups reacted with monoamine was 73 mol% and the temperature was 25 ° C.
AC resistivity in 0.5M sulfuric acid at 70 Ω · cm,
The movement speed of water at 40 ° C is 3.20 g · cm / m 2.
-Sulfuric acid was concentrated and recovered in the same manner except that the h.M membrane was used. Current efficiency is as low as 15% and concentration is 1.9M
And was only slightly concentrated.

【0051】例10 例3で得られた膜のうち、モノアミンと反応したハロア
ルキル基の比率が41モル%で、25℃における0.5
M硫酸中の交流比抵抗が160Ω・cm、40℃におけ
る水の移動速度が2.25g・cm/m2 ・h・Mの膜
と陽イオン交換膜(旭硝子社製、商品名セレミオンCM
T)とを陽極と陰極の間に配置し、セルを60℃に保温
し、中間室に25%硫酸ナトリウム水溶液を、陽極室お
よび陰極室に水を流し、極間に5Vの電圧を印加して電
解を行った。液の供給は、線速度が5cm/秒になるよ
うにタンクより循環し、原液は有効膜面積1m2 あたり
に2リットル/hの速度で新たな原液供給を、また水は
有効膜面積1m2 あたりに0.5リットル/hの速度で
供給した。陽極側で得られた硫酸濃度は15%であっ
た。
Example 10 In the film obtained in Example 3, the proportion of haloalkyl groups reacted with monoamine was 41 mol%, and 0.5 at 25 ° C. was used.
Membrane and cation-exchange membrane (trade name: Selemion CM, manufactured by Asahi Glass Co., Ltd.) having an AC specific resistance in M sulfuric acid of 160 Ω · cm and a moving speed of water at 40 ° C of 2.25 g · cm / m 2 · h · M.
T) is placed between the anode and the cathode, the cell is kept at 60 ° C., 25% sodium sulfate aqueous solution is flown in the intermediate chamber, water is flown in the anode chamber and the cathode chamber, and a voltage of 5 V is applied between the electrodes. Electrolysis was performed. The solution is circulated from the tank so that the linear velocity is 5 cm / sec, the stock solution is a new stock solution supply at a rate of 2 liter / h per 1 m 2 of effective membrane area, and the water is 1 m 2 of effective membrane area. Was supplied at a rate of 0.5 liter / h. The sulfuric acid concentration obtained on the anode side was 15%.

【0052】例11(比較例) 例10において、例6で得られた膜のうち、モノアミン
と反応したハロアルキル基の比率が91モル%で、25
℃における0.5M硫酸中の交流比抵抗が50Ω・c
m、40℃における水の移動速度が4.00g・cm/
2 ・h・Mの膜と陽イオン交換膜(旭硝子社製、商品
名セレミオンCMT)を用いた他は同様にして電解を行
った。陽極室で得られた硫酸濃度は5%と低い値であっ
た。
Example 11 (Comparative Example) In Example 10, in the film obtained in Example 6, the proportion of haloalkyl groups reacted with monoamine was 91 mol% and 25
AC resistivity in 0.5M sulfuric acid at 50 ℃ is 50Ω ・ c
m, the moving speed of water at 40 ° C is 4.00 g · cm /
Electrolysis was performed in the same manner except that a m 2 · h · M membrane and a cation exchange membrane (manufactured by Asahi Glass Co., Ltd., trade name Selemion CMT) were used. The sulfuric acid concentration obtained in the anode chamber was a low value of 5%.

【0053】例12(比較例) 例1で得られたクロロメチル化共重合体各々50gを
N,N−ジメチルホルムアミド300mlに溶解して1
5重量%溶液を調製した。冷却下に撹拌しながら温度0
℃で1NのトリメチルアミンのN,N−ジメチルホルム
アミド溶液の27mlをゆっくりと滴下し、その後10
gの2−メトキシエタノールを添加し、イオン交換容量
が0.5ミリ当量/g乾燥樹脂の溶液Fを387ml得
た。
Example 12 (Comparative Example) 50 g of each chloromethylated copolymer obtained in Example 1 was dissolved in 300 ml of N, N-dimethylformamide to prepare 1
A 5% by weight solution was prepared. Temperature 0 with stirring under cooling
27 ml of a 1N solution of trimethylamine in N, N-dimethylformamide was slowly added dropwise at 10 ° C., then 10
g of 2-methoxyethanol was added to obtain 387 ml of a solution F of an ion exchange capacity of 0.5 meq / g dry resin.

【0054】この溶液Fを60℃で2時間キャスト製膜
し、厚み50μmの膜を得た。得られた膜を1NのN,
N,N’N’−テトラメチル−1,3−ジアミノプロパ
ンのメタノール溶液に50℃で24時間浸漬して架橋膜
を得た。これらの膜のモノアミンと反応したハロアルキ
ル基の比率は、23モル%であった。またこの膜の25
℃における0.5M硫酸中の交流比抵抗および40℃に
おける水の移動速度は、抵抗値3200Ω・cm、水移
動速度0.2g・cm/m2 ・h・Mであり、抵抗が非
常に高い膜であった。
The solution F was cast at 60 ° C. for 2 hours to form a film having a thickness of 50 μm. The obtained film was treated with 1N N,
It was immersed in a methanol solution of N, N′N′-tetramethyl-1,3-diaminopropane at 50 ° C. for 24 hours to obtain a crosslinked film. The proportion of haloalkyl groups reacted with monoamines in these films was 23 mol%. In addition, 25 of this film
The AC specific resistance in 0.5 M sulfuric acid at 40 ° C. and the moving speed of water at 40 ° C. are a resistance value of 3200 Ω · cm and a moving speed of water of 0.2 g · cm / m 2 · h · M, and the resistance is very high. It was a membrane.

【0055】例13(比較例) 例8において、例12で得られたモノアミンと反応した
ハロアルキル基の比率が23モル%で、25℃における
0.5M硫酸中の交流比抵抗が3200Ω・cm、40
℃における水の移動速度が0.2g・cm/m2 ・h・
Mの膜を用いた他は同様にして硫酸の濃縮回収を行っ
た。この膜の場合、抵抗が高いため例8の場合と同様に
電流を0.03A/cm2 流し運転するためにはユニッ
トあたり1.2Vと高い電圧を印加する必要があった。
電流効率は30%で、濃縮濃度は2.6Mであった。
Example 13 (Comparative Example) In Example 8, the proportion of haloalkyl groups reacted with the monoamine obtained in Example 12 was 23 mol%, and the alternating current specific resistance in 0.5 M sulfuric acid at 25 ° C. was 3200 Ω · cm. 40
The moving speed of water at ℃ is 0.2g · cm / m 2 · h ·
Sulfuric acid was concentrated and recovered in the same manner except that the M membrane was used. In the case of this film, since the resistance was high, it was necessary to apply a high voltage of 1.2 V per unit in order to operate the film at 0.03 A / cm 2 as in the case of Example 8.
The current efficiency was 30%, and the concentration concentration was 2.6M.

【0056】[0056]

【発明の効果】本発明の陰イオン交換膜は、低抵抗で高
いイオン選択性と耐蝕性を有し、さらに水移動速度が低
いため、拡散透析の場合の廃液量の増加が少なく、また
電気透析や電解における濃縮濃度の向上が発現される。
EFFECT OF THE INVENTION The anion exchange membrane of the present invention has low resistance, high ion selectivity and corrosion resistance, and further has a low water transfer rate, so that the increase in the amount of waste liquid in the case of diffusion dialysis is small and the anion exchange membrane is low An improvement in concentrated concentration in dialysis and electrolysis is exhibited.

フロントページの続き (72)発明者 岩元 純治郎 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内Front page continuation (72) Inventor Junjiro Iwamoto 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Central Research Laboratory, Asahi Glass Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一般式(a)で表されるセグメントと一般
式(b)で表されるセグメントを有し、m/n=100
/1〜1/10の芳香族ポリスルホン系ブロック共重合
体のハロアルキル化物を、モノアミンおよびポリアミン
と反応させた架橋構造を有する陰イオン交換膜であっ
て、ハロアルキル基全体に対してモノアミンと反応した
ハロアルキル基の比率が30〜50モル%、25℃にお
ける0.5M硫酸中の交流比抵抗が300Ω・cm以下
で、膜の片側に硫酸をもう片側に水を流したときの水側
から硫酸側への水の移動速度が40℃において3g・c
m/m2 ・h・M以下である陰イオン交換膜。 【化1】
1. A segment represented by the general formula (a) and a segment represented by the general formula (b), wherein m / n = 100.
An anion exchange membrane having a cross-linked structure in which a haloalkylated aromatic polysulfone-based block copolymer of / 1 to 1/10 is reacted with a monoamine and a polyamine. The ratio of the groups is 30 to 50 mol%, the AC specific resistance in 0.5 M sulfuric acid at 25 ° C. is 300 Ω · cm or less, and the sulfuric acid is passed from one side of the membrane to the other side when water is passed from the water side to the sulfuric acid side. Water moving speed is 3g ・ c at 40 ℃
Anion exchange membrane having m / m 2 · h · M or less. Embedded image
【請求項2】ポリアミンが、一般式(c)で表される請
求項1の陰イオン交換膜。 【化2】
2. The anion exchange membrane according to claim 1, wherein the polyamine is represented by the general formula (c). Embedded image
【請求項3】陰イオン交換膜の片側に酸を含有する溶液
を接触し、もう一方に水もしくは反対側より濃度の低い
酸溶液を接触せしめ、酸を含有する溶液から酸を選択的
に拡散透析させる酸の回収において、該陰イオン交換膜
として、請求項1または2の陰イオン交換膜を用いる酸
の回収方法。
3. A solution containing an acid is brought into contact with one side of the anion exchange membrane, and water or an acid solution having a lower concentration than the opposite side is brought into contact with the other side of the anion exchange membrane to selectively diffuse the acid from the solution containing the acid. A method for recovering an acid using the anion exchange membrane according to claim 1 or 2 as the anion exchange membrane in recovering an acid to be dialyzed.
【請求項4】陰極と陽極の間に陽イオン交換膜または水
素イオン交換膜と陰イオン交換膜とを交互に配列させ、
電解質溶液を通液しながら電圧を印加し電気透析する電
解質の濃縮回収において、該陰イオン交換膜として、請
求項1または2の陰イオン交換膜を用いる電解質の回収
方法。
4. A cation exchange membrane or a hydrogen ion exchange membrane and an anion exchange membrane are alternately arranged between the cathode and the anode,
A method of recovering an electrolyte, wherein the anion exchange membrane according to claim 1 or 2 is used as the anion exchange membrane in the concentration and recovery of an electrolyte in which a voltage is applied and electrodialysis is performed while passing an electrolyte solution.
【請求項5】陰極と陽極の間に、陰極側に陽イオン交換
膜と陽極側に陰イオン交換膜を、または陰イオン交換膜
のみを配置させ、電解質または有機物含有溶液を通液し
ながら電圧を印加し電解する電解反応において、該陰イ
オン交換膜として、請求項1または2の陰イオン交換膜
を用いる電解方法。
5. A cation exchange membrane on the cathode side and an anion exchange membrane on the anode side, or only an anion exchange membrane are arranged between the cathode and the anode, and a voltage is applied while passing a solution containing an electrolyte or an organic substance. An electrolysis method in which the anion exchange membrane according to claim 1 or 2 is used as the anion exchange membrane in an electrolysis reaction of applying and electrolyzing.
JP8031040A 1996-02-19 1996-02-19 Anion-exchange membrane with crosslinked structure Pending JPH09227698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8031040A JPH09227698A (en) 1996-02-19 1996-02-19 Anion-exchange membrane with crosslinked structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8031040A JPH09227698A (en) 1996-02-19 1996-02-19 Anion-exchange membrane with crosslinked structure

Publications (1)

Publication Number Publication Date
JPH09227698A true JPH09227698A (en) 1997-09-02

Family

ID=12320381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8031040A Pending JPH09227698A (en) 1996-02-19 1996-02-19 Anion-exchange membrane with crosslinked structure

Country Status (1)

Country Link
JP (1) JPH09227698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367086A1 (en) * 2001-07-30 2003-12-03 Asahi Glass Engineering Co.,Ltd. Anion exchanger and process for producing anion exchange membrane
CN117567729A (en) * 2024-01-19 2024-02-20 固碳新能源科技(苏州)有限公司 Ion-conducting polymer and preparation method thereof, ion-conducting cross-linked substance and preparation method thereof, anion exchange membrane and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367086A1 (en) * 2001-07-30 2003-12-03 Asahi Glass Engineering Co.,Ltd. Anion exchanger and process for producing anion exchange membrane
CN117567729A (en) * 2024-01-19 2024-02-20 固碳新能源科技(苏州)有限公司 Ion-conducting polymer and preparation method thereof, ion-conducting cross-linked substance and preparation method thereof, anion exchange membrane and application thereof

Similar Documents

Publication Publication Date Title
Strathmann Electrodialysis and related processes
EP1367086B1 (en) Anion exchanger and process for producing anion exchange membrane
Xu Ion exchange membranes: State of their development and perspective
JP2003096219A (en) Anion exchange membrane
Nagarale et al. Recent developments on ion-exchange membranes and electro-membrane processes
EP2627436B1 (en) Process for making a monomer solution for making cation exchange membranes
Kumar et al. Recent developments in ion-exchange membranes and their applications in electrochemical processes for in situ ion substitutions, separation and water splitting
Davis Donnan dialysis
JP2522356B2 (en) Anion exchanger having a novel crosslinked structure
KR101710195B1 (en) Bipolar Membrane for Water-Splitting Electrodialysis Process
Strathmann Electrodialytic membrane processes and their practical application
JPH09227698A (en) Anion-exchange membrane with crosslinked structure
JP4027184B2 (en) Method for producing anion exchange membrane
JPH0722710B2 (en) Anion exchanger
JPH0813326B2 (en) New acid recovery method
JP2003038965A (en) Anion exchanger and anion exchange membrane
JPH06172559A (en) Anion-exchange film selecting monovalent anion
CN112546872B (en) Preparation method of monovalent selective cation exchange membrane
EP0315510A2 (en) Ion-transport selective membranes
EP0556827B1 (en) Method for hydrogen ion-selective electrodialysis
JP2828690B2 (en) Multi-layer anion exchange membrane
JPH10156148A (en) Recovering method of trifluoromethane sulfonic acid
JPH04202440A (en) Improved anion-exchange membrane, production thereof, and method for recovering acid
JP3337566B2 (en) Electrodialysis method
JP3126422B2 (en) Acid diffusion dialysis method