JPH09227515A - Production of n-chlorosuccinimide - Google Patents

Production of n-chlorosuccinimide

Info

Publication number
JPH09227515A
JPH09227515A JP6726896A JP6726896A JPH09227515A JP H09227515 A JPH09227515 A JP H09227515A JP 6726896 A JP6726896 A JP 6726896A JP 6726896 A JP6726896 A JP 6726896A JP H09227515 A JPH09227515 A JP H09227515A
Authority
JP
Japan
Prior art keywords
chlorosuccinimide
succinimide
reaction
chlorine gas
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6726896A
Other languages
Japanese (ja)
Inventor
Keiichi Ikeda
恵一 池田
Kenji Yagi
健司 八木
Yasuo Niimi
保雄 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Soda Co Ltd
Original Assignee
Hokkaido Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Soda Co Ltd filed Critical Hokkaido Soda Co Ltd
Priority to JP6726896A priority Critical patent/JPH09227515A/en
Publication of JPH09227515A publication Critical patent/JPH09227515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyrrole Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To economically and advantageously produce a high-purity N- chlorosuccinimide useful as a germicide or a chlorinating agent for a reactional reagent in high yield without causing pollution. SOLUTION: Chlorine gas is blown into an aqueous solution of succinimide under stirring and reacted therewith, preferably at 15-25 deg.C for 3-5hr to afford the objective N-chlorosuccinimide. The concentration of the succinimide in the aqueous solution at this time is preferably 10-15wt.% and the blowing rate of the chlorine gas blown into the aqueous solution is preferably 0.24-0.4mol/hr based on 1mol succinimide. The objective compound is obtained without forming by-products of salts such as t-butyl acetate and without producing waste liquors as an industrial wastes according to the reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、塩素化剤として反
応試薬に使用され、また近年殺菌剤の分野で有望視され
ているN−クロロスクシンイミドの製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing N-chlorosuccinimide, which is used as a chlorinating agent in a reaction reagent and which has recently been promising in the field of bactericides.

【0002】[0002]

【従来の技術】従来、N−クロロスクシンイミドの製造
法としては、スクシンイミドを次亜塩素酸のエステルま
たは次亜塩素酸のアルカリ金属塩などの塩素化剤を用
い、酢酸あるいは無機酸溶媒中で低温で塩素化する方法
が知られてる。例えば、ジャーナルオブアメリカンソサ
エティ(JACS)Vol 76,3857(195
4)によると、塩素化剤として次亜塩素酸t−ブチルを
用い、酢酸溶媒中でスクシンイミドと0℃で反応させ、
31%の収率でN−クロロスクシンイミドを得ている。
またベリヒテ(Ber.)Vol 34,4213(1
901)によると、次亜塩素酸カリウムを用い、酢酸溶
媒中でスクシンイミドと0℃で反応させ、85%の収率
でN−クロロスクシンイミドを得ている。さらに、特開
平4−282,362号公報によると、塩素化剤として
次亜塩素酸ソーダ等を用い、塩酸等の無機酸溶媒中でス
クシンイミドと10℃以下で反応させ、85%の収率で
N−クロロスクシンイミドを得ている。
2. Description of the Related Art Conventionally, as a method for producing N-chlorosuccinimide, succinimide is used at a low temperature in acetic acid or an inorganic acid solvent by using a chlorinating agent such as an ester of hypochlorous acid or an alkali metal salt of hypochlorous acid. A method of chlorinating is known. For example, Journal of American Society (JACS) Vol 76, 3857 (195
According to 4), using t-butyl hypochlorite as a chlorinating agent and reacting with succinimide in an acetic acid solvent at 0 ° C.,
N-chlorosuccinimide is obtained with a yield of 31%.
In addition, Berich Vol 34, 4213 (1
According to 901), potassium hypochlorite is used to react with succinimide in an acetic acid solvent at 0 ° C. to obtain N-chlorosuccinimide in a yield of 85%. Further, according to JP-A-4-282,362, sodium hypochlorite or the like is used as a chlorinating agent and reacted with succinimide in an inorganic acid solvent such as hydrochloric acid at 10 ° C. or lower to give a yield of 85%. N-chlorosuccinimide is obtained.

【0003】しかしながら、前記の方法では、大量の酢
酸あるいは無機酸を溶媒として用いる必要があり、しか
も大きな反応熱が発生するにもかかわらず、10℃以下
の低温で反応しなければN−クロロスクシンイミドの収
率が低下する。従って、この製法を工業的規模で実施し
ようとすれば、反応熱の除去及び反応温度保持のために
特別の冷却設備(チラーユニット)が必要となり、設備
費が過大になるという問題があった。また、N−クロロ
スクシンイミド中には、反応で副生し、洗浄操作では除
去しきれない酢酸t−ブチル、酢酸カリウム、NaCl
等が不純物として残留し、品質上好ましくないばかり
か、N−クロロスクシンイミドを分離した残液は溶媒と
して使用した酢酸あるいは無機酸の他にこれらの不純物
も含有しており、廃水としては公害防止上問題がある。
However, in the above-mentioned method, it is necessary to use a large amount of acetic acid or an inorganic acid as a solvent, and although a large heat of reaction is generated, N-chlorosuccinimide must be used unless the reaction is carried out at a low temperature of 10 ° C. or lower. Yield is reduced. Therefore, if this production method is to be carried out on an industrial scale, a special cooling facility (chiller unit) is required to remove the reaction heat and maintain the reaction temperature, which causes a problem of excessive facility cost. Further, in N-chlorosuccinimide, t-butyl acetate, potassium acetate, NaCl, which is a by-product of the reaction and cannot be completely removed by the washing operation,
Etc. remain as impurities, which is not preferable in terms of quality, and the residual liquid from which N-chlorosuccinimide has been separated contains these impurities in addition to acetic acid or inorganic acid used as a solvent. There's a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、スクシンイ
ミドを塩素化してN−クロロスクシンイミドを製造する
方法において、経済的に有利でかつ公害を生じることの
ない方法により、高収率で高純度のN−クロロスクシン
イミドを製造する方法を提供することをその課題とす
る。
DISCLOSURE OF THE INVENTION The present invention relates to a method for producing N-chlorosuccinimide by chlorinating succinimide, which is economically advantageous and does not cause pollution, and thus provides a high yield and high purity. It is an object of the present invention to provide a method for producing N-chlorosuccinimide.

【0005】[0005]

【課題を解決するための手段】本発明者らは、N−クロ
ロスクシンイミドの製造方法について鋭意研究を行った
結果、溶媒として酸類を使用せず、スクシンイミドを水
中で塩素ガスと反応させることにより常温付近の反応で
も色相のよい高純度のN−クロロスクシンイミドを高収
率で製造でき、しかも反応系から廃水の出ない製造方法
を見いだし、本発明を完成するに至った。
Means for Solving the Problems As a result of earnest studies on a method for producing N-chlorosuccinimide, the present inventors have studied the room temperature by reacting succinimide with chlorine gas in water without using acids as a solvent. The present invention has been completed by finding a production method capable of producing high-purity N-chlorosuccinimide having a good hue in a high yield even in the reaction in the vicinity and producing no waste water from the reaction system.

【0006】即ち、本発明によれば、水中でスクシンイ
ミドと塩素ガスを反応させることを特徴とするN−クロ
ロスクシンイミドの製造方法が提供される。
That is, according to the present invention, there is provided a method for producing N-chlorosuccinimide, which comprises reacting succinimide with chlorine gas in water.

【0007】[0007]

【発明の実施の形態】本発明で反応原料として用いるス
クシンイミドは、市販品無水物であってもよく、また、
コハク酸又は無水コハク酸とアンモニア水を用いて製造
した含水スクシンイミドであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The succinimide used as a reaction raw material in the present invention may be a commercially available anhydrous product, and
It may be a hydrous succinimide produced using succinic acid or succinic anhydride and aqueous ammonia.

【0008】本発明の方法を好ましく実施するには、ス
クシンイミドの水溶液中に、撹拌下、塩素ガスを吹込
む。反応温度は0〜35℃、好ましくは15〜25℃で
ある。35℃を超えると、N−クロロスクシンイミドの
分解が起るため、収率が著しく低下するとともに、水溶
液中に吹込んだ塩素ガスの一部が反応に関与せずに飛散
してしまう。反応時間は、通常、2時間以上、好ましく
は3〜5時間である。水溶液中のスクシンイミドの濃度
は、5〜25重量%、好ましくは10〜15重量%であ
る。また、この水溶液中に吹込む塩素ガスの吹込み速度
は、水溶液中に含まれるスクシンイミド1モル当り、
0.1〜0.6モル/時、好ましくは0.24〜0.4
モル/時である。塩素ガスの吹込み速度がこの範囲より
低くなると反応に長時間を要するため経済的でなく、一
方、前記範囲を超えると、塩素ガスが反応に関与しない
まま飛散するので好ましくない。
To preferably carry out the method of the present invention, chlorine gas is blown into an aqueous solution of succinimide with stirring. The reaction temperature is 0 to 35 ° C, preferably 15 to 25 ° C. When the temperature exceeds 35 ° C, the N-chlorosuccinimide is decomposed, so that the yield is significantly reduced, and a part of chlorine gas blown into the aqueous solution is scattered without participating in the reaction. The reaction time is generally 2 hours or longer, preferably 3 to 5 hours. The concentration of succinimide in the aqueous solution is 5 to 25% by weight, preferably 10 to 15% by weight. In addition, the blowing rate of chlorine gas blown into this aqueous solution was as follows, per mol of succinimide contained in the aqueous solution:
0.1 to 0.6 mol / hour, preferably 0.24 to 0.4
Mol / hour. If the blowing rate of chlorine gas is lower than this range, the reaction takes a long time, which is not economical. On the other hand, if it exceeds the above range, chlorine gas scatters without participating in the reaction, which is not preferable.

【0009】前記の反応操作により、スクシンイミドは
水中で塩素と反応し、N−クロロスクシンイミドが生成
されるが、このN−クロロスクシンイミドは、反応終了
後、反応液中に結晶として析出する。反応液を固液分離
することによりN−クロロスクシンイミドの結晶を分離
回収することができる。
By the above-mentioned reaction operation, succinimide reacts with chlorine in water to produce N-chlorosuccinimide, and this N-chlorosuccinimide is deposited as crystals in the reaction solution after the reaction is completed. Crystals of N-chlorosuccinimide can be separated and collected by solid-liquid separating the reaction solution.

【0010】本発明においては、塩素化剤として塩素ガ
スを用いるため、従来法とは異なり、酢酸−t−ブチル
や、酢酸カリウム、塩化ナトリウム等の塩類の副生はな
い。このため、得られるN−クロロスクシンイミドの結
晶の洗浄も容易で、高純度の製品を収率よく得ることが
できる。また、N−クロロスクシンイミドの結晶を分離
した後の濾液は、反応で副生する塩酸を含有するが、こ
のものは、副生塩酸として有効利用することができる。
従って、本発明の場合には、産業廃棄物としての廃液が
生じないので、本発明は、公害防止の観点からも、すぐ
れた技術と言うことができる。
In the present invention, since chlorine gas is used as the chlorinating agent, unlike the conventional method, there is no by-product of salts such as tert-butyl acetate, potassium acetate and sodium chloride. Therefore, the obtained crystals of N-chlorosuccinimide can be easily washed, and a high-purity product can be obtained in good yield. Further, the filtrate after separating the crystals of N-chlorosuccinimide contains hydrochloric acid that is a by-product of the reaction, and this can be effectively used as a by-product hydrochloric acid.
Therefore, in the case of the present invention, since a waste liquid as industrial waste is not generated, the present invention can be said to be an excellent technique from the viewpoint of pollution prevention.

【0011】また、本発明の場合、スクシンイミドと塩
素ガスとの反応により生じる発熱量が小さく、特別の冷
却設備の使用は必要とされない。本発明者らの計算によ
ると、例えば、次亜塩素酸ナトリウム1モルを塩酸中で
スクシンイミド1モルと反応させるときには470キロ
ジュールの発熱を生じるのに対し、本発明により塩素1
モルを水中でスクシンイミド1モルと反応させるときに
は、230キロジュールと著しく低い発熱量である。
Further, in the case of the present invention, the amount of heat generated by the reaction between succinimide and chlorine gas is small, and it is not necessary to use special cooling equipment. According to the calculation of the present inventors, for example, when 1 mol of sodium hypochlorite is reacted with 1 mol of succinimide in hydrochloric acid, an exothermic heat of 470 kJ is generated, whereas according to the present invention, 1 mol of chlorine is generated.
When moles are reacted with 1 mole of succinimide in water, it has a remarkably low heating value of 230 kilojoules.

【0012】[0012]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0013】実施例1 温度計、撹拌棒、塩素ガス吹込み管及びコンデンサーを
備えた四つ口フラスコを用意し、そのコンデンサー出口
に塩素吸収塔をホースで連結した。前記フラスコに、市
販品スクシンイミド(純度99.96%):49.9g
(0.5モル)及びイオン交換水:448.9gを仕込
み、冷却槽内にフラスコをセットした。冷却槽に水道水
を流してフラスコを冷却しながら撹拌し、スクシンイミ
ドを溶解した。フラスコ内の温度を20℃に保ちながら
塩素ガスを毎分45mlの速度でフラスコ内に吹込み、
スクシンイミドと塩素を反応させた。反応時間は5時間
であり、42.6g(0.6モル)の塩素を使用した。
その後、フラスコ内の温度を20℃に保持しながら30
分間熟成させ、この間にフラスコ内に残存する塩素ガス
を窒素ガスでパージした。フラスコ内の結晶を濾過し、
湿潤結晶85g、濾液447gを得た。湿潤結晶は20
℃のイオン交換水250gで洗浄し、その後同結晶を1
00℃で乾燥することにより、N−クロロスクシンイミ
ド54.5gを得た。収率は81.0%、純度は99.
2%、NaCl含有量は10ppm、融点は149〜1
51℃であった。また分離した濾液中の塩酸濃度は5.
1%であった。
Example 1 A four-necked flask equipped with a thermometer, a stirring rod, a chlorine gas injection tube and a condenser was prepared, and a chlorine absorption tower was connected to the condenser outlet with a hose. In the flask, commercially available succinimide (purity 99.96%): 49.9 g
(0.5 mol) and ion-exchanged water: 448.9 g were charged, and the flask was set in the cooling tank. Tap water was poured into the cooling tank to stir while cooling the flask to dissolve the succinimide. While keeping the temperature in the flask at 20 ° C., chlorine gas was blown into the flask at a rate of 45 ml / min,
Succinimide was reacted with chlorine. The reaction time was 5 hours and 42.6 g (0.6 mol) of chlorine was used.
Then, while maintaining the temperature in the flask at 20 ° C, 30
The mixture was aged for a minute, and the chlorine gas remaining in the flask during this was purged with nitrogen gas. Filter the crystals in the flask,
85 g of wet crystals and 447 g of filtrate were obtained. 20 wet crystals
Wash with 250 g of ion-exchanged water at ℃,
By drying at 00 ° C., 54.5 g of N-chlorosuccinimide was obtained. The yield is 81.0% and the purity is 99.
2%, NaCl content 10 ppm, melting point 149-1
It was 51 ° C. The hydrochloric acid concentration in the separated filtrate was 5.
1%.

【0014】実施例2 塩素ガス吹込み速度を毎分75mlとし、反応時間を3
時間としたほかは実施例1と同様に実験を行った。得ら
れたN−クロロスクシンイミドの収率は82.1%、純
度は98.8%、NaCl含有量14ppm、融点は1
49〜151℃であった。また分離した濾液中の塩酸濃
度は5.2%であった。
Example 2 The chlorine gas blowing rate was 75 ml / min, and the reaction time was 3
An experiment was conducted in the same manner as in Example 1 except that the time was set. The yield of the obtained N-chlorosuccinimide was 82.1%, the purity was 98.8%, the NaCl content was 14 ppm, and the melting point was 1.
It was 49-151 degreeC. The hydrochloric acid concentration in the separated filtrate was 5.2%.

【0015】実施例3 コハク酸とアンモニア水より合成した含水スクシンイミ
ド(含水率16%、0.5モル)を利用したほかは実施
例1と同様にして実験を行った。得られたN−クロロス
クシンイミドの収率は80.5%、純度は99.2%、
NaCl含有量10ppm、融点は149〜151℃で
あった。また分離した濾液中の塩酸濃度は5.4%であ
った。
Example 3 An experiment was carried out in the same manner as in Example 1 except that hydrous succinimide (water content 16%, 0.5 mol) synthesized from succinic acid and aqueous ammonia was used. The yield of the obtained N-chlorosuccinimide was 80.5%, and the purity was 99.2%.
The NaCl content was 10 ppm, and the melting point was 149 to 151 ° C. The hydrochloric acid concentration in the separated filtrate was 5.4%.

【0016】実施例4 反応温度を35℃にしたほかは実施例1と同様にして実
験を行った。得られたN−クロロスクシンイミドの収率
は61.1%、純度は99.2%、NaCl含有量11
ppm、融点は148〜151℃であった。また分離し
た濾液中の塩酸濃度は4.9%であった。
Example 4 An experiment was conducted in the same manner as in Example 1 except that the reaction temperature was 35 ° C. The yield of the obtained N-chlorosuccinimide was 61.1%, the purity was 99.2%, and the content of NaCl was 11.
ppm, melting point was 148 to 151 ° C. The hydrochloric acid concentration in the separated filtrate was 4.9%.

【0017】比較例1 温度計、撹拌棒、コンデンサー、次亜塩素酸ソーダ注入
口を備えた四つ口フラスコに、市販品スクシンイミド
(純度99.96%):99.1g(1モル)及び20
%塩酸:200.6g(1.1モル)を仕込み、冷却槽
内にフラスコをセットし撹拌してスクシンイミドを溶解
した。発生する反応熱を除去するために冷却恒温循環装
置で冷却水を冷却槽内に循環してフラスコ内の温度を2
0℃に保持しながら次亜塩素酸ソーダ(有効塩素10.
7%)662.7g(1モル)を定量ポンプでフラスコ
内に注入した。注入時間は3時間であった。20℃で3
0分間熟成を行いフラスコ内の結晶を濾過し、湿潤結晶
149.5g、濾液801.9gを得た。湿潤結晶は2
0℃のイオン交換水500gで洗浄し、その後同結晶を
真空乾燥器に入れ、5〜10トール、70℃で乾燥し
た。得られたN−クロロスクシンイミドは79.3gで
あった。収率は58.4%、純度は98.3%、NaC
l含有量は200ppm、融点は148〜151℃であ
った。
Comparative Example 1 A four-necked flask equipped with a thermometer, a stir bar, a condenser, and a sodium hypochlorite injection port was placed in a commercially available succinimide (purity 99.96%): 99.1 g (1 mol) and 20.
% Hydrochloric acid: 200.6 g (1.1 mol) was charged, the flask was set in the cooling tank and stirred to dissolve succinimide. In order to remove the generated heat of reaction, the cooling water is circulated in the cooling tank by the cooling constant temperature circulation device to increase the temperature in the flask to 2
Sodium hypochlorite (available chlorine 10.
662.7 g (1 mol) of 7%) was injected into the flask with a metering pump. The injection time was 3 hours. 3 at 20 ° C
The mixture was aged for 0 minutes and the crystals in the flask were filtered to obtain 149.5 g of wet crystals and 801.9 g of filtrate. 2 wet crystals
The crystals were washed with 500 g of ion-exchanged water at 0 ° C., and then the crystals were placed in a vacuum dryer and dried at 5 to 10 Torr and 70 ° C. The obtained N-chlorosuccinimide was 79.3 g. Yield 58.4%, purity 98.3%, NaC
The l content was 200 ppm, and the melting point was 148 to 151 ° C.

【0018】比較例2 反応温度を10℃、洗浄用イオン交換水の温度を10℃
としたほかは、比較例1と同様に行った。得られたN−
クロロスクシンイミドの収率は79.3%、純度は9
8.8%、NaCl含有量は210ppm、融点は14
8〜151℃であった。
Comparative Example 2 The reaction temperature was 10 ° C. and the temperature of ion-exchange water for cleaning was 10 ° C.
The same procedure as in Comparative Example 1 was carried out except that The obtained N-
The yield of chlorosuccinimide is 79.3%, and the purity is 9
8.8%, NaCl content 210ppm, melting point 14
It was 8 to 151 ° C.

【0019】[0019]

【発明の効果】本発明によれば、従来法に比較して不純
物含有量の少ない高純度のN−クロロスクシンイミドを
高収率で得ることができる。しかも、本発明の場合に
は、公害となるような廃水の生成はなく、その上、反応
に際しての発熱も、従来法と比べて少なく、特別の冷却
装置の使用は必要とされない。
According to the present invention, high-purity N-chlorosuccinimide containing less impurities as compared with the conventional method can be obtained in high yield. Moreover, in the case of the present invention, there is no generation of waste water that causes pollution, and the heat generation during the reaction is smaller than that in the conventional method, and the use of a special cooling device is not required.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水中でスクシンイミドと塩素ガスを反応
させることを特徴とするN−クロロスクシンイミドの製
造方法。
1. A method for producing N-chlorosuccinimide, which comprises reacting succinimide with chlorine gas in water.
【請求項2】 スクシンイミドの水溶液中に塩素ガスを
吹込むことを特徴とするN−クロロスクシンイミドの製
造方法。
2. A method for producing N-chlorosuccinimide, which comprises blowing chlorine gas into an aqueous solution of succinimide.
JP6726896A 1996-02-28 1996-02-28 Production of n-chlorosuccinimide Pending JPH09227515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6726896A JPH09227515A (en) 1996-02-28 1996-02-28 Production of n-chlorosuccinimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6726896A JPH09227515A (en) 1996-02-28 1996-02-28 Production of n-chlorosuccinimide

Publications (1)

Publication Number Publication Date
JPH09227515A true JPH09227515A (en) 1997-09-02

Family

ID=13340052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6726896A Pending JPH09227515A (en) 1996-02-28 1996-02-28 Production of n-chlorosuccinimide

Country Status (1)

Country Link
JP (1) JPH09227515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204931B2 (en) 2004-07-16 2007-04-17 Truox, Inc. Stable composition with enhanced biocidal and virucidal effect
CN114805120A (en) * 2022-05-23 2022-07-29 江苏瑞达环保科技有限公司 Synthesis process of m-cyanomethyl benzoate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204931B2 (en) 2004-07-16 2007-04-17 Truox, Inc. Stable composition with enhanced biocidal and virucidal effect
CN114805120A (en) * 2022-05-23 2022-07-29 江苏瑞达环保科技有限公司 Synthesis process of m-cyanomethyl benzoate

Similar Documents

Publication Publication Date Title
CN114477100A (en) Method for preparing sulfuryl fluoride by sulfuryl chloride fluorination method
ES2216540T3 (en) PROCEDURE FOR OBTAINING ORTO-RENTED BENZOIC ACID DERIVATIVES.
JPH08508231A (en) Method for producing anhydrous magnesium chloride
JPH09227515A (en) Production of n-chlorosuccinimide
JP2001002416A (en) Production of ethylene glycol soluble germanium dioxide and dissolving method thereof
JPH05504931A (en) Manufacturing method of lithium hypochlorite
JP4370023B2 (en) Method for producing rhodium(I) 2,4-pentanedionate dicarbonyl
JP3394980B2 (en) Method for producing free hydroxylamine aqueous solution
JP3235914B2 (en) Method for producing 4,5-dichlorophthalic acid or a salt thereof
JP2563484B2 (en) Gas phase chlorination of pyridine
JPH09227104A (en) Production of tribasic magnesium hypochlorite
JPH02117641A (en) Method for producing carboxylic acid ether mixture
JP4301766B2 (en) Method for producing dibenzoyltartaric acid and acid anhydrides thereof
JPH0575734B2 (en)
JPH0662498B2 (en) Method for producing 2,3,5,6-tetrafluoro-4-hydroxybenzoic acid
JPH03167153A (en) Method for producing 3,5-diiodosalicylic acid
JPH03176455A (en) Production of copper formate
JP3965787B2 (en) Process for producing 2-chloro-5-hydroxypyridine
JPH04282362A (en) Production of n-chlorosuccinic imide
JPH09202751A (en) Method for producing di-t-butyl dicarbonate
JPH10316646A (en) Production of high-purity crystalline o-methyliso urea acetate and crystalline o-methylisourea acetate obtained by the same
JPH04342404A (en) Production of sodium azide
JP2003040830A (en) Method for producing 1,4-dihydroxy-2-naphthoic acid and its alkali metal salt and new crystal of 1,4-dihydroxy-2- naphthoic acid
JPH02282345A (en) Production of 2,4,5-trifluorobenzoic acid
JPS62164660A (en) Production of methyl 2-sulfamidobenzoate