JPH09227225A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH09227225A
JPH09227225A JP8069144A JP6914496A JPH09227225A JP H09227225 A JPH09227225 A JP H09227225A JP 8069144 A JP8069144 A JP 8069144A JP 6914496 A JP6914496 A JP 6914496A JP H09227225 A JPH09227225 A JP H09227225A
Authority
JP
Japan
Prior art keywords
composition
dielectric
mol
compsn
acao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8069144A
Other languages
Japanese (ja)
Inventor
Okikuni Takahata
興邦 高畑
Kazuya Akiyama
和也 秋山
Akihiro Isomura
明宏 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP8069144A priority Critical patent/JPH09227225A/en
Publication of JPH09227225A publication Critical patent/JPH09227225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain superior dielectric characteristics by forming a dielectric porcelain compsn. having a compsn. represented by a specified formula. SOLUTION: Powders of starting materials such as CaCO3 , Bi2 O3 , La2 O3 and TiO2 are blended in a prescribed ratio and wet-mixed with water in a ball mill. This mixture is dried, calcined at about 900-1,200 deg.C in the air, wet- pulverized for about >=20hr in a ball mill and dried. The resultant powdery mixture is compacted in a prescribed shape and fired at about 1,000-1,400 deg.C for about 2hr in the air to obtain the objective dielectric porcelain compsn. having a compsn. represented by the formula aCaO-bBi2 O3 -cR2 O3 -dTiO2 (where R is La, Ce, Pr, Nd, Sm, Eu or Gd, a+b+c+d=100mol%, 11.8<=a<=16.8, 14.3<=b<=31.6, 0.5<=c<=15.8 and 54.6<=d<=59.6).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主にマイクロ波帯
域の通信や放送機器のフィルタ、コンデンサ等に使用さ
れる誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition mainly used for microwave band communication and broadcasting equipment filters and capacitors.

【0002】[0002]

【従来の技術】近年、通信技術の進歩により、自動車電
話やサービスが開始されたPHS等の携帯電話などの移
動体通信システム、GPS(Global Positioning Syste
m)が、急速に普及している。そのため、通信に利用さ
れる周波数帯域が拡大し、マイクロ波帯域での利用が盛
んになっている。
2. Description of the Related Art In recent years, due to advances in communication technology, mobile communication systems such as car phones and mobile phones such as PHS whose services have been started, GPS (Global Positioning System)
m) is rapidly spreading. For this reason, the frequency band used for communication has been expanded, and the use in the microwave band has become active.

【0003】古くは、このマイクロ波帯域で使用される
回路には、空洞共振器、アンテナ等が用いられていた。
しかし、これら部品は、マイクロ波の波長と同程度の大
きさになるため、自動車電話機、携帯電話機、小型GP
S装置等に適用できるような部品の小型化は不可能であ
った。
In the old days, a cavity resonator, an antenna and the like were used in the circuit used in this microwave band.
However, since these parts have the same size as the wavelength of microwaves, they can be used in automobile phones, mobile phones, small GPs, etc.
It has not been possible to reduce the size of components that can be applied to S devices and the like.

【0004】これに対し、近年、マイクロ波フィルタや
発信器の周波数安定化回路に誘電体共振器を用いること
によって、回路部品の小型化が盛んに行われている。
On the other hand, in recent years, miniaturization of circuit parts has been actively carried out by using a dielectric resonator in a frequency stabilizing circuit of a microwave filter or an oscillator.

【0005】近年の移動体通信機の小型化は、ポケット
サイズから更に掌サイズへと進んでいる。そのため、移
動体通信機に使用される部品に対する小型化要求も、更
に顕著なものとなっている。
In recent years, miniaturization of mobile communication devices has progressed from the pocket size to the palm size. Therefore, the demand for miniaturization of parts used in mobile communication devices has become more remarkable.

【0006】このような誘電体磁器に要求される特性
は、使用周波数帯域における誘電率(以下、εrと呼
ぶ)が大きいこと、共振周波数の温度係数(以下、|τ
f|と呼ぶ)が十分小さいこと、マイクロ波帯域での誘
電損失[tanδ(=1/Q)と呼ぶ]が小さいことが
挙げられる。なお、tanδの大小は、共振周波数をf
とすると、一般的にQ×fの形で表現されるため、以
下、この表現を用いる。
The characteristics required of such a dielectric ceramic are that the permittivity (hereinafter referred to as εr) in the frequency band used is large, and the temperature coefficient of the resonance frequency (hereinafter referred to as | τ).
f ) is sufficiently small, and the dielectric loss in the microwave band [called tan δ (= 1 / Q)] is small. It should be noted that the magnitude of tan δ depends on the resonance frequency f
Since it is generally expressed in the form of Q × f, this expression will be used below.

【0007】また、従来から、主にIC、水晶振動子等
に用いられてきた温度補償用コンデンサは、最近になっ
て、移動体通信機のディジタル回路用バイパスコンデン
サ等としての需要が増加している。
[0007] Further, the temperature compensating capacitors which have been mainly used for ICs, crystal oscillators, etc. in the past have recently been in increasing demand as bypass capacitors for digital circuits of mobile communication devices. There is.

【0008】[0008]

【発明が解決しようとする課題】従来、マイクロ波用、
あるいはコンデンサ用の誘電体磁器組成物としては、B
a(Zn1/3,Ta2/3)O3系、BaO−TiO2系、Z
rO2−SnO2−TiO2系、BaO−希土類酸化物−
TiO2系、(Pb,Ca)ZrO3等の材料が知られて
いる。
SUMMARY OF THE INVENTION Conventionally, for microwaves,
Alternatively, as a dielectric ceramic composition for a capacitor, B
a (Zn 1/3 , Ta 2/3 ) O 3 system, BaO—TiO 2 system, Z
rO 2 -SnO 2 -TiO 2 system, BaO-rare earth oxide -
Materials such as TiO 2 series and (Pb, Ca) ZrO 3 are known.

【0009】しかし、これまでに開示されている組成を
有する材料では、マイクロ波帯域において、εrが大き
いほど、Q×fが小さいという傾向があった。
However, in the materials having the compositions disclosed so far, there is a tendency that the larger εr is, the smaller Q × f is in the microwave band.

【0010】その欠点を解決するために、本発明者等
は、BaO−La23−Sm23−Bi23−TiO2
系において、十分大きなQ×f、εr>110、十分小
さな|τf|を有する磁器組成物が得られること提案し
た(特願平5−275360号)。
In order to solve the drawback, the present inventors have found that BaO--La 2 O 3 --Sm 2 O 3 --Bi 2 O 3 --TiO 2
It was proposed that a porcelain composition having a sufficiently large Q × f, εr> 110, and a sufficiently small | τf | can be obtained in the system (Japanese Patent Application No. 5-275360).

【0011】しかし、移動体通信の普及に伴い、通信機
の小型化、高性能化を更に進めるために、εr,Q×f
がより大きく、|τf|がより小さい材料が望まれる。
However, with the spread of mobile communication, in order to further miniaturize and improve the performance of communication devices, εr, Q × f
Is desired and a material having a smaller | τf | is desired.

【0012】そこで、本発明の技術的課題は、εr、Q
×fが大きく、並びに|τf| が十分小さい特性が得ら
れる誘電体磁器組成物を提供することにある。
Therefore, the technical problem of the present invention is that εr, Q
It is an object of the present invention to provide a dielectric ceramic composition having a large xf and a sufficiently small | τf |.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者等は、一般式がaCaO−bBi23
cR23−dTiO2(但し、RはLa,Ce,Pr,
Nd,Sm,Eu,Gdのうち少なくとも一種)で表さ
れる誘電体磁器に着目して種々検討を行った結果、1
1.8≦a≦16.8、14.3≦b≦31.6、0.5≦
c≦15.8、54.6≦d≦59.6の範囲内のモル比
で、かつ、a+b+c+d=100モル%である時に、
高い誘電率、及び大きなQ×f、また実用上、十分小さ
な|τf|が得られることを見い出した。
In order to solve the above problems SUMMARY OF THE INVENTION The present inventors have found that the general formula aCaO-bBi 2 O 3 -
cR 2 O 3 -dTiO 2 (wherein R is La, Ce, Pr,
As a result of various studies focusing on the dielectric ceramics represented by at least one of Nd, Sm, Eu, and Gd), 1
1.8 ≦ a ≦ 16.8, 14.3 ≦ b ≦ 31.6, 0.5 ≦
When the molar ratio is within the range of c ≦ 15.8, 54.6 ≦ d ≦ 59.6 and a + b + c + d = 100 mol%,
It has been found that a high dielectric constant, a large Q × f, and a practically small | τf | can be obtained.

【0014】即ち、本発明は、一般式が、aCaO−b
Bi23−cR23−dTiO2(但し、RはLa,C
e,Pr,Nd,Sm,Eu,Gdのうちの少なくとも
一種)で表され、11.8≦a≦16.8、14.3≦b
≦31.6、0.5≦c≦15.8、54.6≦d≦59.
6の範囲内のモル比で、a+b+c+d=100モル%
であることを特徴とする誘電体磁器組成物である。
That is, in the present invention, the general formula is aCaO-b
Bi 2 O 3 -cR 2 O 3 -dTiO 2 (where R is La, C
e, Pr, Nd, Sm, Eu, Gd) and 11.8 ≦ a ≦ 16.8, 14.3 ≦ b
≤31.6, 0.5 ≤ c ≤ 15.8, 54.6 ≤ d ≤ 59.
In the molar ratio within the range of 6, a + b + c + d = 100 mol%
The dielectric porcelain composition is characterized by

【0015】一般に、誘電体磁器を用いた同軸型共振器
の共振周波数f0は、共振がTEM(λ/4)モードの
場合、次の式1で表される。
Generally, the resonance frequency f 0 of a coaxial resonator using a dielectric ceramic is expressed by the following equation 1 when the resonance is in the TEM (λ / 4) mode.

【0016】 f0=c/{4L(εr)1/2}・・・・・・・・・・(1)F 0 = c / {4L (εr) 1/2 } (1)

【0017】ここで、cは光速、Lは同軸型共振器の長
さである。式1から明らかなように、ある一定の共振周
波数f0に対して、Lとεrは反比例の関係にある。即
ち、式1は、誘電率が高い誘電体磁器を用いるほど、同
軸型共振器の長さを短くすることができ、部品の小型化
に寄与することを示している。
Here, c is the speed of light and L is the length of the coaxial resonator. As is clear from Equation 1, L and εr are in inverse proportion to each other with respect to a certain resonance frequency f 0 . That is, Expression 1 indicates that the use of a dielectric porcelain having a high dielectric constant can shorten the length of the coaxial resonator, which contributes to downsizing of components.

【0018】また、誘電体磁器を用いたコンデンサの容
量Cは、次の式2で表される。
The capacitance C of the capacitor using the dielectric ceramic is expressed by the following equation 2.

【0019】C=(ε0・εr・S)/d・・・・・・・・・・(2)C = (ε 0 · ε r · S) / d (2)

【0020】ここで、ε0は真空の誘電率、S,dは、
それぞれコンデンサの面積、厚さである。式2から明ら
かなように、ある一定の容量Cに対して、Sとεrは反
比例の関係にある。即ち、式2は、誘電率が高い誘電体
磁器を用いるほど、コンデンサの面積を減少でき、部品
の小型化に寄与することを示している。
Here, ε 0 is the dielectric constant of vacuum, and S and d are
These are the area and thickness of the capacitor, respectively. As is clear from Expression 2, S and εr are in inverse proportion to a certain capacity C. That is, Expression 2 shows that the use of a dielectric ceramic having a high dielectric constant can reduce the area of the capacitor, which contributes to miniaturization of parts.

【0021】[0021]

【発明の実施の形態】以下、実施例に基づいて、本発明
の詳細を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on Examples.

【0022】(実施例1)まず、CaCO3,Bi
23,La23,TiO2の各粉末を各組成に応じて秤
量した後、純水を用い、イットリア安定化ジルコニアボ
ール(以下、単にジルコニアボールと呼ぶ)により、樹
脂製のボールミルで20時間以上湿式混合し、混合物を
得た。次に、この混合物を乾燥させた後、大気中にて9
00〜1200℃の温度で約4時間仮焼し、仮焼物を得
た。仮焼物は、ジルコニアボールで20時間以上湿式粉
砕した後、乾燥させた。以上のようにして得られた粉末
を、直径15mm、厚さ約6mmの円盤状に成形し、大
気中にて1000〜1400℃の温度で約2時間焼結
し、表1に示す組成の誘電体磁器組成物を得た。
(Example 1) First, CaCO 3 , Bi
2 O 3 , La 2 O 3 , and TiO 2 powders are weighed according to each composition, and then pure water is used to make a yttria-stabilized zirconia ball (hereinafter simply referred to as zirconia ball) in a resin ball mill. Wet mixing was performed for 20 hours or more to obtain a mixture. Then, the mixture is dried and then dried in the atmosphere at 9
It was calcined at a temperature of 00 to 1200 ° C. for about 4 hours to obtain a calcined product. The calcined product was wet-ground for 20 hours or more with zirconia balls and then dried. The powder obtained as described above is formed into a disk shape having a diameter of 15 mm and a thickness of about 6 mm, and is sintered in the atmosphere at a temperature of 1000 to 1400 ° C. for about 2 hours to obtain a dielectric composition shown in Table 1. A body porcelain composition was obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】なお、表1で、組成は、aCaO−bBi
23−cLa23−dTiO2(a,b,c及びdはモ
ル%、a+b+c+d=100モル%)のように表わし
た。
In Table 1, the composition is aCaO-bBi.
2 O 3 -cLa 2 O 3 -dTiO 2 (a, b, c and d are mol%, a + b + c + d = 100 mol%) was expressed as.

【0025】次に、各組成の誘電体磁器について、誘電
体共振器により、εr、Q×f、τfを測定した。τf
は、+20〜+60℃の温度範囲での共振周波数fの差
より、次式3によって求めた。
Next, εr, Q × f, and τf of the dielectric ceramics of each composition were measured by the dielectric resonator. τf
Was calculated by the following equation 3 from the difference of the resonance frequency f in the temperature range of +20 to + 60 ° C.

【0026】 τf={f(60℃)−f(20℃)}/{40×f(20℃)}・・・・・(3)Τf = {f (60 ° C.) − F (20 ° C.)} / {40 × f (20 ° C.)} (3)

【0027】それらの測定結果を上記表1に示した。な
お、共振周波数は、2.2〜3.8GHzであった。
The measurement results are shown in Table 1 above. The resonance frequency was 2.2 to 3.8 GHz.

【0028】(実施例2)CaCO3,Bi23,Ce2
3,TiO2の各粉末を各組成に応じて秤量し、実施例
1と同様の方法で、表2に示す組成の誘電体磁器組成物
を得た。
Example 2 CaCO 3 , Bi 2 O 3 and Ce 2
Each powder of O 3 and TiO 2 was weighed according to each composition, and in the same manner as in Example 1, a dielectric ceramic composition having the composition shown in Table 2 was obtained.

【0029】[0029]

【表2】 [Table 2]

【0030】なお、上記表2で、組成は、aCaO−b
Bi23−cCe23−dTiO2(a,b,c及びd
はモル%、a+b+c+d=100モル%)のように表
わした。
In Table 2, the composition is aCaO-b.
Bi 2 O 3 -cCe 2 O 3 -dTiO 2 (a, b, c and d
Is represented by mol%, a + b + c + d = 100 mol%).

【0031】次に、各組成の誘電体磁器について、実施
例1と同様の測定を行ったところ、上記表2に示す測定
結果を得た。
Next, with respect to the dielectric porcelain having each composition, the same measurement as in Example 1 was performed, and the measurement results shown in Table 2 above were obtained.

【0032】(実施例3)CaCO3,Bi23,Pr2
3,TiO2の各粉末を各組成に応じて秤量し、実施例
1と同様の方法で、表3に示す組成の誘電体磁器組成物
を得た。
(Example 3) CaCO 3 , Bi 2 O 3 , Pr 2
Each powder of O 3 and TiO 2 was weighed according to each composition, and in the same manner as in Example 1, a dielectric ceramic composition having the composition shown in Table 3 was obtained.

【0033】[0033]

【表3】 [Table 3]

【0034】なお、上記表3で、組成は、aCaO−b
Bi23−cPr23−dTiO2(a,b,c及びd
はモル%、a+b+c+d=100モル%)のように表
わした。
In Table 3, the composition is aCaO-b.
Bi 2 O 3 -cPr 2 O 3 -dTiO 2 (a, b, c and d
Is represented by mol%, a + b + c + d = 100 mol%).

【0035】次に、各組成の誘電体磁器について、実施
例1と同様の測定を行ったところ、上記表3に示す測定
結果を得た。
Next, the same measurement as in Example 1 was carried out for the dielectric ceramics of each composition, and the measurement results shown in Table 3 above were obtained.

【0036】(実施例4)CaCO3,Bi23,Nd2
3,TiO2の各粉末を各組成に応じて秤量し、実施例
1と同様の方法で、表4に示す組成の誘電体磁器組成物
を得た。
Example 4 CaCO 3 , Bi 2 O 3 and Nd 2
Each powder of O 3 and TiO 2 was weighed according to each composition, and a dielectric ceramic composition having a composition shown in Table 4 was obtained in the same manner as in Example 1.

【0037】[0037]

【表4】 [Table 4]

【0038】なお、表4で、組成は、aCaO−bBi
23−cNd23−dTiO2(a,b,c及びdはモ
ル%、a+b+c+d=100モル%)のように表わし
た。
In Table 4, the composition is aCaO-bBi.
2 O 3 -cNd 2 O 3 -dTiO 2 (a, b, c and d are mol%, a + b + c + d = 100 mol%) was expressed as.

【0039】次に、各組成の誘電体磁器について、実施
例1と同様の測定を行ったところ、上記表4に示す測定
結果を得た。
Next, the same measurement as in Example 1 was carried out for the dielectric ceramics of each composition, and the measurement results shown in Table 4 above were obtained.

【0040】(実施例5)CaCO3,Bi23,Sm2
3,TiO2の各粉末を各組成に応じて秤量し、実施例
1と同様の方法で、表5に示す組成の誘電体磁器組成物
を得た。
Example 5 CaCO 3 , Bi 2 O 3 and Sm 2
Each powder of O 3 and TiO 2 was weighed according to each composition, and in the same manner as in Example 1, a dielectric ceramic composition having the composition shown in Table 5 was obtained.

【0041】[0041]

【表5】 [Table 5]

【0042】なお、表5で、組成は、aCaO−bBi
23−cSm23−dTiO2(a,b,c及びdはモ
ル%、a+b+c+d=100モル%)のように表わし
た。
In Table 5, the composition is aCaO-bBi.
2 O 3 -cSm 2 O 3 -dTiO 2 (a, b, c and d are mol%, a + b + c + d = 100 mol%).

【0043】次に、各組成の誘電体磁器について、実施
例1と同様の測定を行ったところ、上記表5に示す測定
結果を得た。
Next, with respect to the dielectric porcelain having each composition, the same measurement as in Example 1 was performed, and the measurement results shown in Table 5 were obtained.

【0044】(実施例6)CaCO3,Bi23,Eu2
3,TiO2の各粉末を各組成に応じて秤量し、実施例
1と同様の方法で、表6に示す組成の誘電体磁器組成物
を得た。
Example 6 CaCO 3 , Bi 2 O 3 and Eu 2
Each powder of O 3 and TiO 2 was weighed according to each composition, and a dielectric ceramic composition having a composition shown in Table 6 was obtained in the same manner as in Example 1.

【0045】[0045]

【表6】 [Table 6]

【0046】なお、表6で、組成は、aCaO−bBi
23−cEu23−dTiO2(a,b,c及びdはモ
ル%、a+b+c+d=100モル%)のように表わし
た。
In Table 6, the composition is aCaO-bBi.
2 O 3 -cEu 2 O 3 -dTiO 2 (a, b, c and d are mol%, a + b + c + d = 100 mol%) was expressed as.

【0047】次に、各組成の誘電体磁器について、実施
例1と同様の測定を行ったところ、表6に示す測定結果
を得た。
Next, the same measurements as in Example 1 were carried out for the dielectric ceramics of each composition, and the measurement results shown in Table 6 were obtained.

【0048】(実施例7)CaCO3,Bi23,Gd2
3,TiO2の各粉末を各組成に応じて秤量し、実施例
1と同様の方法で、表7に示す組成の誘電体磁器組成物
を得た。
Example 7 CaCO 3 , Bi 2 O 3 and Gd 2
Each powder of O 3 and TiO 2 was weighed according to each composition, and in the same manner as in Example 1, a dielectric ceramic composition having the composition shown in Table 7 was obtained.

【0049】[0049]

【表7】 [Table 7]

【0050】なお、表7で、組成は、aCaO−bBi
23−cGd23−dTiO2(a,b,c及びdはモ
ル%、a+b+c+d=100モル%)のように表わし
た。
In Table 7, the composition is aCaO-bBi.
2 O 3 -cGd 2 O 3 -dTiO 2 (a, b, c and d are mol%, a + b + c + d = 100 mol%).

【0051】次に、各組成の誘電体磁器について、実施
例1と同様の測定を行ったところ、上記表7に示す測定
結果を得た。
Next, the same measurements as in Example 1 were carried out for the dielectric ceramics of each composition, and the measurement results shown in Table 7 above were obtained.

【0052】表1〜表7から明らかなように、一般式が
aCaO−bBi23−cR23−dTiO2(RはL
a,Ce,Pr,Nd,Sm,Eu,Gdのうちいずれ
か一種)で表される化合物において、0.5≦R23
15.8モル%の場合、誘電率εrが80以上と実用上、
十分大きな値を示している。R23が0.5モル%未満
の場合、十分緻密な焼結体を得ることが困難であるた
め、本発明の範囲から除外される。R23が0.5モル
%以上となると、十分緻密な焼結体が得られるため、誘
電率εrの値は増加する。R23が15.8モル%を越え
ると、εrは急激に低下して、80を下回るため、本発
明の範囲から除外される。
As is clear from Tables 1 to 7, the general formula is aCaO-bBi 2 O 3 -cR 2 O 3 -dTiO 2 (R is L
a, Ce, Pr, Nd, Sm, Eu, or Gd), 0.5 ≦ R 2 O 3
In the case of 15.8 mol%, the dielectric constant εr is 80 or more for practical use,
It shows a sufficiently large value. When R 2 O 3 is less than 0.5 mol%, it is difficult to obtain a sufficiently dense sintered body, and thus it is excluded from the scope of the present invention. When R 2 O 3 is 0.5 mol% or more, a sufficiently dense sintered body is obtained, so that the value of the dielectric constant εr increases. When R 2 O 3 exceeds 15.8 mol%, εr sharply decreases and falls below 80, so that it is excluded from the scope of the present invention.

【0053】なお、移動体通信用の部品としての更なる
小型化に対応するためには、εrは100以上、即ち、
23≦12モル%であれば尚望ましい。また、R23
組成量に関わらず、表1〜表7全ての組成域において、
実用上、十分大きなQ×f値、また十分小さなτfが得
られている。
In order to support further miniaturization as a mobile communication component, εr is 100 or more, that is,
More preferably, R 2 O 3 ≦ 12 mol%. Also, R 2 O 3
Regardless of the composition amount, in all composition ranges of Table 1 to Table 7,
In practice, a sufficiently large Q × f value and a sufficiently small τf have been obtained.

【0054】又、CaOを11.8〜16.8モル%、B
23を14.3〜31.6モル%、TiO2を54.6〜
59.6モル%としたのは、その範囲外であると、十分
緻密な焼結体を得ることができず、εr,τf等の誘電特
性が劣化するからである。
Further, 11.8 to 16.8 mol% of CaO and B
i 2 O 3 is 14.3 to 31.6 mol%, and TiO 2 is 54.6 to
The reason why the content is 59.6 mol% is that if it is out of this range, a sufficiently dense sintered body cannot be obtained, and the dielectric properties such as εr and τf deteriorate.

【0055】[0055]

【発明の効果】以上、説明したように、本発明によれ
ば、εr,Q×fが大きく、|τf|が小さな誘電体磁器
組成物が得られる。
Effect of the Invention] As described above, according to the present invention, .epsilon.r, Q × f is large, | tau f | small dielectric ceramic composition is obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式が、aCaO−bBi23−cR
23−dTiO2(但し、RはLa,Ce,Pr,N
d,Sm,Eu,Gdのうちの少なくとも一種)で表さ
れ、11.8≦a≦16.8、14.3≦b≦31.6、
0.5≦c≦15.8、54.6≦d≦59.6の範囲内の
モル比で、a+b+c+d=100モル%であることを
特徴とする誘電体磁器組成物。
1. The general formula is aCaO-bBi 2 O 3 -cR.
2 O 3 -dTiO 2 (where R is La, Ce, Pr, N
d, Sm, Eu, at least one of Gd), 11.8 ≦ a ≦ 16.8, 14.3 ≦ b ≦ 31.6,
A dielectric porcelain composition, wherein a + b + c + d = 100 mol% at a molar ratio in the range of 0.5 ≦ c ≦ 15.8 and 54.6 ≦ d ≦ 59.6.
JP8069144A 1996-02-28 1996-02-28 Dielectric porcelain composition Pending JPH09227225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8069144A JPH09227225A (en) 1996-02-28 1996-02-28 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8069144A JPH09227225A (en) 1996-02-28 1996-02-28 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH09227225A true JPH09227225A (en) 1997-09-02

Family

ID=13394172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8069144A Pending JPH09227225A (en) 1996-02-28 1996-02-28 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH09227225A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145662A (en) * 2001-01-05 2002-05-22 Sumitomo Special Metals Co Ltd Dielectric porcelain composition for microwave
JP2002145660A (en) * 2000-11-06 2002-05-22 Sumitomo Special Metals Co Ltd Dielectric ceramics composition for microwave
WO2006013981A1 (en) * 2004-08-06 2006-02-09 Nippon Tungsten Co., Ltd. Dielectric ceramic composition and dielectric ceramic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145660A (en) * 2000-11-06 2002-05-22 Sumitomo Special Metals Co Ltd Dielectric ceramics composition for microwave
JP4609744B2 (en) * 2000-11-06 2011-01-12 日立金属株式会社 Dielectric porcelain composition for microwave
JP2002145662A (en) * 2001-01-05 2002-05-22 Sumitomo Special Metals Co Ltd Dielectric porcelain composition for microwave
JP4655254B2 (en) * 2001-01-05 2011-03-23 日立金属株式会社 Dielectric porcelain composition for microwave
WO2006013981A1 (en) * 2004-08-06 2006-02-09 Nippon Tungsten Co., Ltd. Dielectric ceramic composition and dielectric ceramic

Similar Documents

Publication Publication Date Title
JPH09118562A (en) Ceramic dielectric for high-frequency wave
JPH09227225A (en) Dielectric porcelain composition
JP3220360B2 (en) Alumina porcelain composition and method for producing the same
KR0173185B1 (en) Dielectric ceramic composition for high frequency
JP3311928B2 (en) Alumina sintered body for high frequency
JPH11130528A (en) Dielectric ceramic composition and dielectric resonator produced by using the composition
JP2003146752A (en) Dielectric ceramic composition
JPH09169564A (en) Dielectric ceramic composition and production thereof
KR100234017B1 (en) Dielectric ceramic composition
JPH107457A (en) Dielectric porcelain composition
JP2899909B2 (en) Microwave dielectric porcelain composition
JPH0952760A (en) Dielectric ceramic composition
JPH07114824A (en) Dielectric ceramic composition
JPH1029863A (en) Dielectric porcelain composition
JPH09208303A (en) Dielectric ceramic composition and its production
JPH08310859A (en) Microwave dielectric porcelain composition
JPH09165258A (en) Production of dielectric porcelain composition
JP2691302B2 (en) Dielectric porcelain composition
JP3777075B2 (en) Dielectric porcelain
JP2759283B2 (en) Dielectric porcelain composition
KR100261550B1 (en) Microwave dielectric materials
KR100234019B1 (en) Dielectric ceramic compositions
JP2001220218A (en) Dielectric ceramic composition
JPH06333420A (en) Dielectric ceramic material
JPS61156603A (en) Dielectric ceramics