JPH09165258A - Production of dielectric porcelain composition - Google Patents

Production of dielectric porcelain composition

Info

Publication number
JPH09165258A
JPH09165258A JP7348707A JP34870795A JPH09165258A JP H09165258 A JPH09165258 A JP H09165258A JP 7348707 A JP7348707 A JP 7348707A JP 34870795 A JP34870795 A JP 34870795A JP H09165258 A JPH09165258 A JP H09165258A
Authority
JP
Japan
Prior art keywords
mol
dielectric
temperature
dielectric ceramic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7348707A
Other languages
Japanese (ja)
Inventor
Kazuya Akiyama
和也 秋山
Mitsuo Tamura
光男 田村
Akihiro Isomura
明宏 磯村
Okikuni Takahata
興邦 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7348707A priority Critical patent/JPH09165258A/en
Publication of JPH09165258A publication Critical patent/JPH09165258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric porcelain composition stably having characteristics comprising a large dielectric constant εr , a large Q×f value and a resonance frequency temperature coefficient extremely near to zero by subjecting a sintered product having a specific composition of BaO-Sm2 O3 -Bi2 O3 - TiO2 system to a hot hydrostatic pressure press treatment under specific conditions. SOLUTION: This method for producing a dielectric porcelain composition represented by a general formula: aBaO-bSm2 O3 -cBi2 O3 -dTiO2 [the units of (a), (b), (c) and (d) are mol.%; 13.6<=a<=18.6, 14.7<=(b+c)<=19.2, 64.5<=d<=69.2, 0.70<=c<=9.4; the total amount of (a) to (d) is 100mol.%], wherein the sintered dielectric porcelain is subjected to a hot hydrostatic press treatment under conditions comprising a temperature of 1,000-1,300 deg.C, a pressure of 500-1,500 atm and a time of 1-10hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主にマイクロ波帯
域用の通信機器や放送機器等に使用される誘電体共振器
等に用いられる誘電体磁器組成物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dielectric ceramic composition used for a dielectric resonator or the like which is mainly used for communication equipment or broadcasting equipment for microwave band.

【0002】[0002]

【従来の技術】近年、通信技術の進歩により、自動車電
話やサービスが開始されたPHS等の携帯電話等の移動
体通信システム、GPS(Global Positioning Syste
m)が急速に普及している。そのため、通信に利用され
る周波数帯域が拡大し、マイクロ波帯域での通信が盛ん
になっている。
2. Description of the Related Art In recent years, due to advances in communication technology, mobile communication systems such as car phones and mobile phones such as PHS whose services have started, GPS (Global Positioning System)
m) is spreading rapidly. Therefore, the frequency band used for communication has expanded, and communication in the microwave band has become popular.

【0003】古くは、このマイクロ波帯域で使用される
回路には、空洞共振器、アンテナ等が用いられていた。
しかし、これら部品は、マイクロ波の波長と同程度の大
きさになるため、自動車用電話機、携帯電話機、小型G
PS装置等に適用できるような小型の部品の製造は困難
であった。
In the old days, a cavity resonator, an antenna and the like were used in the circuit used in this microwave band.
However, since these parts are about the same size as the wavelength of microwaves, they are used in automobile phones, mobile phones, small G
It has been difficult to manufacture small parts that can be applied to PS devices and the like.

【0004】これに対し、近年、マイクロ波フィルタや
発信器の周波数安定化回路に誘電体共振器を用いること
によって、回路部品の小型化が盛んに行われ、一般化し
つつある。
On the other hand, in recent years, by using a dielectric resonator in a microwave filter or a frequency stabilizing circuit of an oscillator, miniaturization of circuit parts has been actively performed and is becoming popular.

【0005】このようなマイクロ波誘電体材料に要求さ
れる特性は、使用周波数帯域における誘電率εrが大き
いこと、共振周波数の温度係数τfができるだけ零に近
いこと、マイクロ波帯域での誘電損失tanδ(=1/
Q)が小さいことが挙げられる。尚、マイクロ波帯域で
の誘電損失tanδの大小は、一般的に、Q×fの形で
表現される(fはその時の共振周波数)。そのため、以
下、Q×fの表現を用いる。
The characteristics required of such a microwave dielectric material are that the dielectric constant ε r in the operating frequency band is large, the temperature coefficient τ f of the resonance frequency is as close to zero as possible, and the dielectric constant in the microwave band is Loss tan δ (= 1 /
Q) is small. The magnitude of the dielectric loss tan δ in the microwave band is generally expressed in the form of Q × f (f is the resonance frequency at that time). Therefore, the expression Q × f will be used below.

【0006】又、従来から、主にコイル、IC、水晶振
動子等に用いられてきた温度補償用コンデンサは、最近
になって、移動体通信機のデジタル回路用バイパスコン
デンサ等としての需要が増加している。
Further, the temperature compensating capacitors which have been used mainly for coils, ICs, crystal oscillators, etc., have been increasing in demand recently as bypass capacitors for digital circuits of mobile communication devices. doing.

【0007】これまで、マイクロ波用、あるいは、コン
デンサ用の誘電体磁器組成物としては、Ba(Z
1/3、Ta2/3)O3系、BaO−TiO2系、ZrO2
SnO2−TiO2系、BaO−希土類酸化物−TiO2
系、(Pb、Ca)ZrO3系等の材料が知られてい
る。
So far, Ba (Z) has been used as a dielectric ceramic composition for microwaves or capacitors.
n 1/3 , Ta 2/3 ) O 3 system, BaO—TiO 2 system, ZrO 2
SnO 2 -TiO 2 system, BaO- rare earth oxide -TiO 2
Materials such as those based on (Pb, Ca) ZrO 3 system are known.

【0008】しかし、これまでに開示されている組成の
材料では、マイクロ波帯域において、εrが大きいほど
Q×fが小さいという傾向があった。
However, the materials having the compositions disclosed so far tended to have a smaller Q × f as the ε r increased in the microwave band.

【0009】その欠点を解決するために、本発明者ら
は、十分大きな無負荷Qと誘電率εr>110と、実用
上、十分小さな温度係数τfを合わせ持つ組成として、
BaO−La23−Sm23−Bi23−TiO2を特
願平5−275360号に提案した。
In order to solve the drawback, the present inventors have proposed a composition having a sufficiently large unloaded Q, a dielectric constant ε r > 110, and a temperature coefficient τ f that is sufficiently small in practical use.
The BaO-La 2 O 3 -Sm 2 O 3 -Bi 2 O 3 -TiO 2 was proposed in Japanese Patent Application No. 5-275360.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、それら
の誘電体磁器組成物は、組成、特に、Bi23量によっ
ては、仮焼物の平均粒径が1.20μm以上となると、
緻密な焼結体を形成せず、εr、Q×fが劣化するとい
う問題があった。更に、このような焼結体は、空隙が多
く、水分を吸収しやすくなったり、機械的強度が弱くな
る等、信頼性を大きく劣化させてしまうという問題があ
る。
However, these dielectric porcelain compositions, when the average particle size of the calcined product becomes 1.20 μm or more, depending on the composition, particularly the amount of Bi 2 O 3 ,
There is a problem that ε r and Q × f are deteriorated without forming a dense sintered body. Further, such a sintered body has many voids, which makes it easy to absorb water, weakens mechanical strength, and the like, which causes a problem that reliability is greatly deteriorated.

【0011】又、ジルコニアボールを用いボールミルで
仮焼物の湿式粉砕を長時間行った場合、仮焼物の平均粒
径を1.20μmより小さくでき、緻密な焼結体を形成
できるが、ジルコニアが混入することにより、εr、Q
×f、τfが劣化するという問題がある。
Further, when wet calcining the calcined product with a ball mill using zirconia balls for a long time, the average particle size of the calcined product can be made smaller than 1.20 μm and a dense sintered body can be formed, but zirconia is mixed. To obtain ε r , Q
There is a problem that xf and τ f deteriorate.

【0012】そこで、本発明の技術的課題は、誘電率ε
r、Q×f値が大きく、並びに共振周波数の温度係数τf
ができるだけ零に近い特性を安定して得られる誘電体磁
器組成物の製造方法を提供することにある。
Therefore, the technical problem of the present invention is that the dielectric constant ε
r , Q × f value is large, and the temperature coefficient of resonance frequency τ f
It is an object of the present invention to provide a method for producing a dielectric ceramic composition, which can stably obtain characteristics as close to zero as possible.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者は、焼結体を1000〜1300℃の温
度で、500〜1500気圧の圧力で、1〜10時間H
IP処理することにより、仮焼物の平均粒径が1.20
μm以上であっても、誘電率εr Q×f値が大きく、並
びに共振周波数の温度係数τfが零に近い誘電体磁器組
成物が得られることを見だした。
In order to solve the above-mentioned problems, the inventor of the present invention has developed a sintered body at a temperature of 1000 to 1300 ° C. and a pressure of 500 to 1500 atm for 1 to 10 hours.
By the IP treatment, the average particle size of the calcined product is 1.20.
It was found that a dielectric ceramic composition having a large dielectric constant ε r Q × f value and a temperature coefficient τ f of resonance frequency close to zero can be obtained even when the thickness is μm or more.

【0014】即ち、本発明によれば、一般式が、aBa
O−bSm23−cBi23−dTiO2(ただし、
a,b,c、及びdの単位はモル%)で、13.6≦a
≦18.6、14.7≦(b+c)≦19.2、64.5≦
d≦69.2、0.70≦c≦9.4の範囲内にあり、a
+b+c+d=100モル%で示される誘電体磁器組成
物の製造方法において、焼結して得られた誘電体磁器を
1000〜1300℃の温度で、500〜1500気圧
の圧力で、1〜10時間、HIP処理することを特徴と
する誘電体磁器組成物の製造方法が得られる。
That is, according to the present invention, the general formula is aBa
O-bSm 2 O 3 -cBi 2 O 3 -dTiO 2 ( However,
The units of a, b, c, and d are mol%), and 13.6 ≦ a
≤18.6, 14.7≤ (b + c) ≤19.2, 64.5≤
d ≦ 69.2, 0.70 ≦ c ≦ 9.4, and a
In the method for producing a dielectric ceramic composition represented by + b + c + d = 100 mol%, the dielectric ceramic obtained by sintering is heated at a temperature of 1000 to 1300 ° C. and a pressure of 500 to 1500 atm for 1 to 10 hours, A method for producing a dielectric ceramic composition characterized by HIP treatment is obtained.

【0015】又、本発明によれば、一般式が、aBaO
−bSm23−cBi23−eLa23−dTiO
2(ただし、a,b,c,d、及びeの単位はモル%)
で、13.6≦a≦18.6、14.7≦(b+c+e)
≦19.2、64.5≦d≦69.2、0.70≦c≦9.
4、0.20≦e≦6.0の範囲内にあり、a+b+c+
e+d=100モル%で示される誘電体磁器組成物の製
造方法において、焼結して得られた誘電体磁器を100
0〜1300℃の温度で、500〜1500気圧の圧力
で、1〜10時間HIP処理することを特徴とする誘電
体磁器組成物の製造方法が得られる。
According to the present invention, the general formula is aBaO.
-BSm 2 O 3 -cBi 2 O 3 -eLa 2 O 3 -dTiO
2 (However, the units of a, b, c, d, and e are mol%)
, 13.6 ≦ a ≦ 18.6, 14.7 ≦ (b + c + e)
≤19.2, 64.5 ≤ d ≤ 69.2, 0.70 ≤ c ≤ 9.
4, within the range of 0.20 ≦ e ≦ 6.0, a + b + c +
In the method for producing a dielectric ceramic composition represented by e + d = 100 mol%, 100% of the dielectric ceramic obtained by sintering is used.
The method for producing a dielectric ceramic composition is characterized in that HIP treatment is carried out at a temperature of 0 to 1300 ° C. and a pressure of 500 to 1500 atm for 1 to 10 hours.

【0016】又、本発明によれば、一般式が、aBaO
−fSrO−bSm23−cBi23−dTiO2(た
だし、a,b,c,d、及びfの単位はモル%)で、1
3.6≦(a+f)≦18.6、14.7≦(b+c)≦
19.2、64.5≦d≦69.2、0.10≦f≦5.
5、0.70≦c≦9.4、a+f+b+c+d=100
モル%で示される誘電体磁器組成物の製造方法におい
て、焼結して得られた誘電体磁器を1000〜1300
℃の温度で、500〜1500気圧の圧力で、1〜10
時間HIP処理することを特徴とする誘電体磁器組成物
の製造方法が得られる。
According to the present invention, the general formula is aBaO.
-FSrO-bSm 2 O 3 -cBi 2 O 3 -dTiO 2 ( however, a, b, c, d, and the unit of f is mol%), the 1
3.6 ≦ (a + f) ≦ 18.6, 14.7 ≦ (b + c) ≦
19.2, 64.5 ≤ d ≤ 69.2, 0.10 ≤ f ≤ 5.
5, 0.70 ≦ c ≦ 9.4, a + f + b + c + d = 100
In the method for producing a dielectric ceramic composition represented by mol%, the dielectric ceramic obtained by sintering is 1000 to 1300.
1 to 10 at a temperature of ℃ and a pressure of 500 to 1500 atm.
A method for producing a dielectric ceramic composition characterized by performing HIP treatment for a time is obtained.

【0017】又、本発明によれば、一般式が、aBaO
−fSrO−bSm23−cBi23−eLa23−d
TiO2(ただし、a,b,c,d,e、及びfの単位
はモル%)で、13.6≦(a+f)≦18.6、14.
7≦(b+c+e)≦19.2、64.5≦d≦69.
2、0.10≦f≦5.5、0.70≦c≦9.4、0.2
0≦e≦6.0の範囲内にあり、a+f+b+c+e+
d=100モル%で示される誘電体磁器組成物の製造方
法において、焼結して得られた誘電体磁器を1000〜
1300℃の温度で、500〜1500気圧の圧力で、
1〜10時間HIP処理することを特徴とする誘電体磁
器組成物の製造方法が得られる。
According to the present invention, the general formula is aBaO.
-FSrO-bSm 2 O 3 -cBi 2 O 3 -eLa 2 O 3 -d
TiO 2 (however, the units of a, b, c, d, e, and f are mol%), and 13.6 ≦ (a + f) ≦ 18.6, 14.
7 ≦ (b + c + e) ≦ 19.2, 64.5 ≦ d ≦ 69.
2, 0.10 ≤ f ≤ 5.5, 0.70 ≤ c ≤ 9.4, 0.2
Within the range of 0 ≦ e ≦ 6.0, a + f + b + c + e +
In the method for producing a dielectric ceramic composition represented by d = 100 mol%, the dielectric ceramic obtained by sintering is 1000 to
At a temperature of 1300 ° C. and a pressure of 500 to 1500 atm,
A method for producing a dielectric ceramic composition is obtained, which comprises performing HIP treatment for 1 to 10 hours.

【0018】[0018]

【発明の実施の形態】以下、実施例に基づいて、本発明
の実施の形態の詳細を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the embodiments of the present invention will be described below based on Examples.

【0019】(実施例1)まず、BaCO3、Sm
23、Bi23、TiO2の各粉末を各組成に応じて秤
量した後、純水を用い、ジルコニアボールにて樹脂製の
ボールミルで20時間湿式混合し、混合物を得た。
Example 1 First, BaCO 3 , Sm
Each powder of 2 O 3 , Bi 2 O 3 and TiO 2 was weighed according to each composition, and then pure water was wet mixed with a zirconia ball in a resin ball mill for 20 hours to obtain a mixture.

【0020】次に、この混合物を乾燥させた後、大気中
にて1200℃の温度で約4時間仮焼し、仮焼物を得
た。次に、上記のボールミルで20時間湿式粉砕した。
Next, this mixture was dried and then calcined in the atmosphere at a temperature of 1200 ° C. for about 4 hours to obtain a calcined product. Next, it was wet-milled for 20 hours with the above ball mill.

【0021】これを、直径15mm,厚さ約6mmの円
盤状に成形し、大気中にて1250〜1375℃の温度
で約2時間焼結することによって、焼結体を得た。
This was molded into a disk shape having a diameter of 15 mm and a thickness of about 6 mm, and was sintered in the atmosphere at a temperature of 1250 to 1375 ° C. for about 2 hours to obtain a sintered body.

【0022】次いで、この焼結体をアルゴンガス雰囲気
中で1000〜1300℃の温度で、1000気圧の圧
力で、2時間HIP処理した。更に、このHIP処理さ
れた焼結体を大気中で1200℃の温度で熱処理し、表
1に示す組成の誘電体磁器を得た。
Next, this sintered body was subjected to HIP treatment for 2 hours at a temperature of 1000 to 1300 ° C. and a pressure of 1000 atm in an argon gas atmosphere. Further, the HIP-treated sintered body was heat-treated at a temperature of 1200 ° C. in the atmosphere to obtain a dielectric ceramic having the composition shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】なお、組成は、aBaO−bSm23−c
Bi23−dTiO2(a+b+c+d=100モル
%)のように表わした。
The composition is aBaO-bSm 2 O 3 -c.
It is expressed as Bi 2 O 3 -dTiO 2 (a + b + c + d = 100 mol%).

【0025】次に、各組成の誘電体磁器について、誘電
体共振器法により、誘電率εr、Q×f値、共振周波数
の温度係数τfを測定した。
Next, with respect to the dielectric porcelain having each composition, the dielectric constant ε r , the Q × f value, and the temperature coefficient τ f of the resonance frequency were measured by the dielectric resonator method.

【0026】共振周波数の温度係数τfは、+20〜+
60℃の温度範囲での共振周波数fの差より、次式によ
って求めた。 τf=[f(60℃)−f(20℃)]/[40×f
(20℃)] なお、共振周波数は、2.2〜3.2GHzであった。
The temperature coefficient τ f of the resonance frequency is +20 to +
It was calculated from the difference of the resonance frequency f in the temperature range of 60 ° C. by the following formula. τ f = [f (60 ° C.) − f (20 ° C.)] / [40 × f
(20 ° C.)] The resonance frequency was 2.2 to 3.2 GHz.

【0027】次に、仮焼物の平均粒径の測定を、レーザ
光式粒度分析計にて行った。それらの測定結果を表1に
示した。
Next, the average particle size of the calcined product was measured with a laser beam particle size analyzer. The measurement results are shown in Table 1.

【0028】(実施例2)BaCO3、Sm23、Bi2
3、La23、TiO2の各粉末を各組成に応じて秤量
し、実施例1に示したのと同様の方法で焼結体を得た。
次いで、この焼結体をアルゴンガス雰囲気中で1000
〜1300℃の温度で、1000気圧の圧力で、2時間
HIP処理した。更に、このHIP処理された焼結体を
大気中で1200℃の温度で熱処理し、表2に示す組成
の誘電体磁器を得た。
(Example 2) BaCO 3 , Sm 2 O 3 , Bi 2
Powders of O 3 , La 2 O 3 , and TiO 2 were weighed according to each composition, and a sintered body was obtained by the same method as shown in Example 1.
Then, this sintered body is heated to 1000 in an argon gas atmosphere.
HIP treatment was performed at a temperature of ˜1300 ° C. and a pressure of 1000 atm for 2 hours. Further, the HIP-treated sintered body was heat-treated in the atmosphere at a temperature of 1200 ° C. to obtain a dielectric ceramic having a composition shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】なお、組成は、aBaO−bSm23−c
Bi23−eLa23−dTiO2(a+b+e+d=
100モル%)のように表わした。
The composition is aBaO-bSm 2 O 3 -c.
Bi 2 O 3 -eLa 2 O 3 -dTiO 2 (a + b + e + d =
100 mol%).

【0031】次に、各組成の誘電体磁器の特性と仮焼物
の平均粒径について、実施例1に示したものと同様の測
定を行った。表2に、それらの測定結果を示した。
Next, the characteristics of the dielectric porcelain of each composition and the average particle size of the calcined product were measured in the same manner as in Example 1. Table 2 shows the measurement results.

【0032】(実施例3)BaCO3、SrO、Sm2
3、Bi23、TiO2の各粉末を各組成に応じて秤量
し、実施例1に示したのと同様の方法で焼結体を得た。
次いで、この焼結体をアルゴンガス雰囲気中で1000
〜1300℃の温度で、1000気圧の圧力で、2時間
HIP処理した。更に、このHIP処理された焼結体を
大気中で1200℃の温度で熱処理し、表3に示す組成
の誘電体磁器を得た。
Example 3 BaCO 3 , SrO, Sm 2 O
Powders of 3 , 3 , Bi 2 O 3 and TiO 2 were weighed according to each composition, and a sintered body was obtained by the same method as shown in Example 1.
Then, this sintered body is heated to 1000 in an argon gas atmosphere.
HIP treatment was performed at a temperature of ˜1300 ° C. and a pressure of 1000 atm for 2 hours. Further, the HIP-treated sintered body was heat-treated in the atmosphere at a temperature of 1200 ° C. to obtain a dielectric ceramic having a composition shown in Table 3.

【0033】[0033]

【表3】 [Table 3]

【0034】なお、組成は、aBaO−fSrO−bS
23−cBi23−dTiO2(a+f+b+c+d
=100モル%)のように表わした。
The composition is aBaO-fSrO-bS.
m 2 O 3 -cBi 2 O 3 -dTiO 2 (a + f + b + c + d
= 100 mol%).

【0035】次に、各組成の誘電体磁器の特性と仮焼物
の平均粒径について、実施例1に示したものと同様の測
定を行った。表3に、それらの測定結果を示した。
Next, the characteristics of the dielectric porcelain of each composition and the average particle size of the calcined material were measured in the same manner as in Example 1. Table 3 shows the measurement results.

【0036】(実施例4)BaCO3、SrO、Sm2
3、Bi23、La23、TiO2の各粉末を各組成に応
じて秤量し、実施例1に示したのと同様の方法で焼結体
を得た。次いで、この焼結体をアルゴンガス雰囲気中で
1000〜1300℃の温度で、1000気圧の圧力
で、2時間HIP処理した。更に、このHIP処理され
た焼結体を大気中で1200℃の温度で熱処理し、表4
に示す組成の誘電体磁器を得た。
Example 4 BaCO 3 , SrO, Sm 2 O
Each powder of 3 , Bi 2 O 3 , La 2 O 3 , and TiO 2 was weighed according to each composition, and a sintered body was obtained by the same method as shown in Example 1. Next, this sintered body was HIP-treated for 2 hours at a pressure of 1000 atm at a temperature of 1000 to 1300 ° C. in an argon gas atmosphere. Further, this HIP-treated sintered body was heat-treated in the atmosphere at a temperature of 1200 ° C.
A dielectric ceramic having the composition shown in was obtained.

【0037】[0037]

【表4】 [Table 4]

【0038】なお、組成は、aBaO−fSrO−bS
23−cBi23−eLa23−dTiO2(a+f
+b+c+e+d=100モル%)のように表わした。
The composition is aBaO-fSrO-bS.
m 2 O 3 -cBi 2 O 3 -eLa 2 O 3 -dTiO 2 (a + f
+ B + c + e + d = 100 mol%).

【0039】次に、各組成の誘電体磁器の特性と仮焼物
の平均粒径について、実施例1に示したものと同様の測
定を行った。表4に、それらの測定結果を示した。
Next, the characteristics of the dielectric porcelain of each composition and the average particle diameter of the calcined material were measured in the same manner as in Example 1. Table 4 shows the measurement results.

【0040】上記、表1〜4より明らかなように、焼結
して得られた誘電体磁器を1000〜1300℃の温度
で、500〜1500気圧の圧力で、1〜10時間HI
P処理することにより、仮焼物の平均粒径が1.20μ
m以上であっても、誘電率εr、Q×f値が大きく、並
びに共振周波数の温度係数τfが零に近くなる。
As is clear from Tables 1 to 4 above, the dielectric ceramics obtained by sintering are HI at a temperature of 1000 to 1300 ° C. and a pressure of 500 to 1500 atm for 1 to 10 hours.
By P treatment, the average particle size of the calcined product is 1.20μ
Even if it is more than m, the permittivity ε r and Q × f value are large, and the temperature coefficient τ f of the resonance frequency is close to zero.

【0041】これに対し、本発明の試料以外の比較例で
は、HIP処理を行っていない試料やHIP温度が90
0℃より低い場合には、緻密な焼結体が得られず、
εr、Q×f共に低い値しか得られない。又、HIP温
度が1300℃を越えると、Q×fは劣化し、εrも若
干劣化する。
On the other hand, in the comparative examples other than the sample of the present invention, the sample not subjected to the HIP treatment and the HIP temperature of 90%.
If the temperature is lower than 0 ° C, a dense sintered body cannot be obtained,
Only low values can be obtained for both ε r and Q × f. Further, when the HIP temperature exceeds 1300 ° C., Q × f deteriorates and ε r also deteriorates slightly.

【0042】[0042]

【発明の効果】以上に説明した通り、本発明によれば、
焼結体を1000〜1300℃の温度で、500〜15
00気圧の圧力で、1〜10時間HIP処理することに
より、仮焼物の平均粒径が1.20μm以上であって
も、誘電率εr、Q×f値が大きく、並びに共振周波数
の温度係数τfが零に近い誘電体磁器組成物の製造方法
が得られる。
As described above, according to the present invention,
Sinter the sintered body at a temperature of 1000 to 1300 ° C. for 500 to 15
By HIPing at a pressure of 00 atm for 1 to 10 hours, even if the average particle size of the calcined product is 1.20 μm or more, the dielectric constant ε r and Q × f value are large, and the temperature coefficient of the resonance frequency is high. A method for producing a dielectric ceramic composition having τ f close to zero can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高畑 興邦 宮城県仙台市太白区郡山6丁目7番1号 株式会社トーキン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kokuni Takahata 6-7-1, Koriyama, Taichiro-ku, Sendai-shi, Miyagi Tokin Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式が、aBaO−bSm23−cB
23−dTiO2(ただし、a,b,c、及びdの単
位はモル%)で、13.6≦a≦18.6、14.7≦
(b+c)≦19.2、64.5≦d≦69.2、0.70
≦c≦9.4の範囲内にあり、a+b+c+d=100
モル%で示される誘電体磁器組成物の製造方法におい
て、焼結して得られた誘電体磁器を1000〜1300
℃の温度で、500〜1500気圧の圧力で、1〜10
時間、熱間静水圧プレス(Hot Isostatic Press、以下H
IPと記す)処理することを特徴とする誘電体磁器組成
物の製造方法。
1. The general formula is aBaO-bSm 2 O 3 -cB.
i 2 O 3 -dTiO 2 (however, the units of a, b, c, and d are mol%), and 13.6 ≦ a ≦ 18.6, 14.7 ≦
(B + c) ≦ 19.2, 64.5 ≦ d ≦ 69.2, 0.70
Within the range of ≦ c ≦ 9.4, a + b + c + d = 100
In the method for producing a dielectric ceramic composition represented by mol%, the dielectric ceramic obtained by sintering is 1000 to 1300.
1 to 10 at a temperature of ℃ and a pressure of 500 to 1500 atm.
Time, Hot Isostatic Press (hereinafter H
A process for producing a dielectric ceramic composition, characterized by performing a treatment.
【請求項2】 一般式が、aBaO−bSm23−cB
23−eLa23−dTiO2(ただし、a,b,
c,d、及びeの単位はモル%)で、13.6≦a≦1
8.6、14.7≦(b+c+e)≦19.2、64.5≦
d≦69.2、0.70≦c≦9.4、0.20≦e≦6.
0の範囲内にあり、a+b+c+e+d=100モル%
で示される誘電体磁器組成物の製造方法において、焼結
して得られた誘電体磁器を1000〜1300℃の温度
で、500〜1500気圧の圧力で、1〜10時間HI
P処理することを特徴とする誘電体磁器組成物の製造方
法。
2. The general formula is aBaO-bSm 2 O 3 -cB.
i 2 O 3 -eLa 2 O 3 -dTiO 2 ( however, a, b,
The units of c, d, and e are mol%), and 13.6 ≦ a ≦ 1
8.6, 14.7 ≦ (b + c + e) ≦ 19.2, 64.5 ≦
d ≦ 69.2, 0.70 ≦ c ≦ 9.4, 0.20 ≦ e ≦ 6.
In the range of 0, a + b + c + e + d = 100 mol%
In the method for producing a dielectric porcelain composition represented by, the dielectric porcelain obtained by sintering is HI at a temperature of 1000 to 1300 ° C. and a pressure of 500 to 1500 atm for 1 to 10 hours.
A method for producing a dielectric ceramic composition, which comprises performing P treatment.
【請求項3】 一般式が、aBaO−fSrO−bSm
23−cBi23−dTiO2(ただし、a,b,c,
d、及びfの単位はモル%)で、13.6≦(a+f)
≦18.6、14.7≦(b+c)≦19.2、64.5≦
d≦69.2、0.10≦f≦5.5、0.70≦c≦9.
4、a+f+b+c+d=100モル%で示される誘電
体磁器組成物の製造方法において、焼結して得られた誘
電体磁器を1000〜1300℃の温度で、500〜1
500気圧の圧力で、1〜10時間HIP処理すること
を特徴とする誘電体磁器組成物の製造方法。
3. The general formula is aBaO-fSrO-bSm.
2 O 3 -cBi 2 O 3 -dTiO 2 (provided that a, b, c,
The units of d and f are mol%), and 13.6 ≦ (a + f)
≤18.6, 14.7≤ (b + c) ≤19.2, 64.5≤
d ≦ 69.2, 0.10 ≦ f ≦ 5.5, 0.70 ≦ c ≦ 9.
4, in the method for producing a dielectric ceramic composition represented by a + f + b + c + d = 100 mol%, the dielectric ceramic obtained by sintering is heated at a temperature of 1000 to 1300 ° C. to 500 to 1
A method for producing a dielectric ceramic composition, which comprises HIPing at a pressure of 500 atm for 1 to 10 hours.
【請求項4】 一般式が、aBaO−fSrO−bSm
23−cBi23−eLa23−dTiO2(ただし、
a,b,c,d,e、及びfの単位はモル%)で、1
3.6≦(a+f)≦18.6、14.7≦(b+c+
e)≦19.2、64.5≦d≦69.2、0.10≦f≦
5.5、0.70≦c≦9.4、0.20≦e≦6.0の範
囲内にあり、a+f+b+c+e+d=100モル%で
示される誘電体磁器組成物の製造方法において、焼結し
て得られた誘電体磁器を1000〜1300℃の温度
で、500〜1500気圧の圧力で、1〜10時間HI
P処理することを特徴とする誘電体磁器組成物の製造方
法。
4. The general formula is aBaO-fSrO-bSm.
2 O 3 -cBi 2 O 3 -eLa 2 O 3 -dTiO 2 (however,
units of a, b, c, d, e, and f are mol%), and 1
3.6 ≦ (a + f) ≦ 18.6, 14.7 ≦ (b + c +
e) ≤ 19.2, 64.5 ≤ d ≤ 69.2, 0.10 ≤ f ≤
5.5, 0.70 ≤ c ≤ 9.4, 0.20 ≤ e ≤ 6.0, within the range of a + f + b + c + e + d = 100 mol% The obtained dielectric porcelain was HI at a temperature of 1000 to 1300 ° C. and a pressure of 500 to 1500 atm for 1 to 10 hours.
A method for producing a dielectric ceramic composition, which comprises performing P treatment.
JP7348707A 1995-12-18 1995-12-18 Production of dielectric porcelain composition Pending JPH09165258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7348707A JPH09165258A (en) 1995-12-18 1995-12-18 Production of dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7348707A JPH09165258A (en) 1995-12-18 1995-12-18 Production of dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH09165258A true JPH09165258A (en) 1997-06-24

Family

ID=18398828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7348707A Pending JPH09165258A (en) 1995-12-18 1995-12-18 Production of dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH09165258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092694A1 (en) * 1998-06-04 2001-04-18 Sumitomo Special Metals Company Limited Microwave dielectric ceramic composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092694A1 (en) * 1998-06-04 2001-04-18 Sumitomo Special Metals Company Limited Microwave dielectric ceramic composition
EP1092694A4 (en) * 1998-06-04 2003-05-02 Sumitomo Spec Metals Microwave dielectric ceramic composition

Similar Documents

Publication Publication Date Title
KR100360974B1 (en) Method for Preparing Dielectric Ceramic Compositions
JPH09165258A (en) Production of dielectric porcelain composition
JP3113829B2 (en) Dielectric porcelain composite
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP3311928B2 (en) Alumina sintered body for high frequency
JP2003146752A (en) Dielectric ceramic composition
JPH09169564A (en) Dielectric ceramic composition and production thereof
JP3375450B2 (en) Dielectric porcelain composition
JP3214308B2 (en) Dielectric porcelain composition
JPH09227225A (en) Dielectric porcelain composition
KR100234017B1 (en) Dielectric ceramic composition
KR100339097B1 (en) Compositions of Microwave Dielectrics and Production Method thereof
JP3235410B2 (en) Dielectric porcelain composition
JPH107457A (en) Dielectric porcelain composition
KR101130675B1 (en) Dielectric material and method for fabricating the same
JP4484297B2 (en) Dielectric porcelain composition
JPH09208303A (en) Dielectric ceramic composition and its production
JPH10188675A (en) Microwave dielectric porcelain composition
JP3125590B2 (en) High frequency dielectric ceramic composition
KR100399800B1 (en) High quality ceramic dielectric composition
JPH08245262A (en) Dielectric porcelain composition
JP3239707B2 (en) Dielectric porcelain composition
KR0134532B1 (en) Dielectric ceramic composition for high frequency waves
JPH08310859A (en) Microwave dielectric porcelain composition
KR100261550B1 (en) Microwave dielectric materials