JPH09226039A - Fiber-reinforced plastic member - Google Patents

Fiber-reinforced plastic member

Info

Publication number
JPH09226039A
JPH09226039A JP8033463A JP3346396A JPH09226039A JP H09226039 A JPH09226039 A JP H09226039A JP 8033463 A JP8033463 A JP 8033463A JP 3346396 A JP3346396 A JP 3346396A JP H09226039 A JPH09226039 A JP H09226039A
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
elongation
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8033463A
Other languages
Japanese (ja)
Inventor
Akihiko Kitano
彰彦 北野
Kenichi Yoshioka
健一 吉岡
Kenichi Noguchi
健一 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8033463A priority Critical patent/JPH09226039A/en
Publication of JPH09226039A publication Critical patent/JPH09226039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an FRP member which has a large resistance up to breakage and can absorb efficiently and stably energy after it reaches once breakage and exhibits a larger amt. of absorption energy than the absorption energy of a single body of a constitutional material. SOLUTION: A fiber-reinforced plastic member which has an inner layer [A] and an outer layer [B] each consisting of a fiber-reinforced plastic made of a reinforcing fiber and a resin and has an impact absorption energy being larger than the impact absorption energy of [A] alone and [B] alone, or a fiber-reinforced plastic member which has an inner layer [A] and an outer layer [B] each consisting of a fiber-reinforced plastic made of a reinforcing fiber and a resin and has a ratio of the elongation of [B] to the elongation of [A] is 0.7-0.95, is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、補強繊維と樹脂
とからなる繊維強化プラスチック(以下FRPと略す)
製の部材に関し、特に、衝撃時の吸収エネルギー性能に
優れる高衝撃FRP部材の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced plastic (hereinafter abbreviated as FRP) composed of reinforcing fibers and resin.
The present invention relates to a manufactured member, and more particularly, to a structure of a high-impact FRP member having excellent absorbed energy performance at the time of impact.

【0002】[0002]

【従来の技術】FRPは軽量、高剛性であるためスポー
ツ、航空機その他一般産業用部材として急速に普及し、
私たちの生活をより快適にしている材料の一つである
が、さらにFRPを普及させるためには、軽量、剛性だ
けでなく、衝撃時のエネルギー吸収性能をより向上させ
ることが望まれている。
2. Description of the Related Art Since FRP is lightweight and highly rigid, it has rapidly spread as a member for sports, aircraft and other general industries.
It is one of the materials that make our lives more comfortable, but in order to further spread FRP, it is desired to improve not only the weight and rigidity, but also the energy absorption performance at the time of impact. .

【0003】例えば、FRP部材が長いパイプ等の細長
形状であって曲げ衝撃を受けた場合には、中立軸付近の
補強繊維が荷重を十分に負担していない状態(曲げ応力
状態)で部材の表層から開始したクラックが部材断面を
横切って全体破壊するために、部材の剛性等の物性と、
衝撃特性(衝撃エネルギー吸収性能)とのバランスがと
りずらく、十分に実用に供されていないのが実状であ
る。
For example, when the FRP member has an elongated shape such as a long pipe and is subjected to a bending impact, the reinforcing fiber near the neutral axis does not sufficiently bear the load (bending stress state). Physical properties such as the rigidity of the member, because the crack that started from the surface layer crosses the member cross section and totally breaks,
It is difficult to achieve a good balance with the impact characteristics (impact energy absorption performance), and the fact is that it has not been put to practical use sufficiently.

【0004】FRP部材の衝撃特性を向上させるために
は、衝撃を吸収させるためのゴムやフォーム材などの緩
衝材を貼ったり、金属やプラスチックなどからなる保護
層で覆って、FRPに直接衝撃が加わらないようにす
る。これら緩衝層や保護層は、材料単体でみた場合FR
P層よりも衝撃エネルギー吸収能力の高い材料であり、
FRP層自体が吸収するエネルギーを増大させるもので
はない。
In order to improve the impact characteristics of the FRP member, a shock-absorbing material such as rubber or foam material is attached to the FRP member, or the FRP member is covered with a protective layer made of metal or plastic so that the FRP is not directly impacted. Try not to join. These buffer layers and protective layers are FR when viewed from the material alone.
It is a material with a higher impact energy absorption capacity than the P layer,
It does not increase the energy absorbed by the FRP layer itself.

【0005】吸収するエネルギーの量は、緩衝材や保護
層の厚みで調節できるが、より多くのエネルギーを吸収
させたい場合には、緩衝層や保護層の量が増え、部材の
剛性や強度が低下したり、無視できない重量増加をきた
したりする(例えば、特開平5−321010号公
報)。
The amount of energy to be absorbed can be adjusted by the thickness of the cushioning material and the protective layer. However, when it is desired to absorb more energy, the amount of the cushioning layer and the protective layer is increased and the rigidity and strength of the member are increased. It causes a decrease or an increase in weight that cannot be ignored (for example, Japanese Patent Laid-Open No. 5-321010).

【0006】FRP部材の衝撃特性を向上させる他の方
法として、マトリックス樹脂を高靭性/高伸度の樹脂に
する方策もある(例えば、特開昭60−47104号公
報)が、衝撃向上幅は上記の緩衝層や保護層に比べ小さ
く、また、樹脂を変更することで衝撃以外の特性、例え
ば高温物性、低温物性、疲労特性等が影響を受ける。例
えば、高靭性樹脂の代表的な樹脂は熱可塑性樹脂である
が、熱硬化性樹脂を熱可塑性樹脂に変更するなどという
場合には、上記の問題以外に、成形装置、成形条件、繊
維との接着等を大幅に変更する必要がある。
Another method for improving the impact properties of FRP members is to use a matrix resin having high toughness / high elongation (for example, Japanese Patent Laid-Open No. 60-47104), but the impact improvement range is It is smaller than the above-mentioned buffer layer and protective layer, and the properties other than impact, such as high temperature physical properties, low temperature physical properties, and fatigue properties, are affected by changing the resin. For example, a typical resin of high toughness resin is a thermoplastic resin, but when changing the thermosetting resin to a thermoplastic resin, in addition to the above problems, molding equipment, molding conditions, fiber Adhesion etc. need to be changed drastically.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、破壊
に至るまでの抵抗が大きく、一旦破壊に至った後には効
率よくかつ安定した状態でエネルギーを吸収でき、しか
も吸収エネルギー量が構成材単体の吸収エネルギーより
も大きいという、剛性、重量、形状、材料に制約の少な
い実用性の高い構造を有するFRP部材を提供すること
である。
DISCLOSURE OF THE INVENTION The object of the present invention is to provide a large resistance to destruction, to efficiently and stably absorb energy after destruction once, and to absorb the amount of energy of the constituent material. It is an object of the present invention to provide an FRP member having a structure with high practicality that is less than the absorbed energy of a single substance and has few restrictions on rigidity, weight, shape, and material.

【0008】[0008]

【課題を解決するための手段】本発明のFRP部材は、
上記課題を解決するために次のいずれかの構成を有す
る。すなわち、補強繊維と樹脂とからなる繊維強化プラ
スチックからなる内層[A]及び外層[B]を有する部
材であって、衝撃吸収エネルギーが[A]単体及び
[B]単体の衝撃吸収エネルギーよりも高いことを特徴
とする繊維強化プラスチック製部材、補強繊維と樹脂と
からなる繊維強化プラスチックからなる内層[A]及び
外層[B]を有する部材であって、[B]の伸度と
[A]の伸度の比が0.7以上、0.95以下であるこ
とを特徴とする繊維強化プラスチック製部材、または、
補強繊維と樹脂とからなる繊維強化プラスチックからな
る内層[A]及び外層[B]を有する部材であって、
[B]の伸度と[A]の伸度の比が0.7以上、0.9
5以下であり、かつ、衝撃吸収エネルギーが[A]単体
及び[B]単体の衝撃吸収エネルギーよりも高いことを
特徴とする繊維強化プラスチック製部材である。
The FRP member of the present invention comprises:
In order to solve the above-mentioned subject, it has either of the following composition. That is, a member having an inner layer [A] and an outer layer [B] made of a fiber-reinforced plastic made of a reinforcing fiber and a resin, the impact absorption energy of which is higher than the impact absorption energy of the [A] single substance and the [B] single substance. A member made of a fiber reinforced plastic characterized by the following: a member having an inner layer [A] and an outer layer [B] made of a fiber reinforced plastic consisting of a reinforcing fiber and a resin, the elongation of [B] and [A] A fiber-reinforced plastic member having a ratio of elongation of 0.7 or more and 0.95 or less, or
A member having an inner layer [A] and an outer layer [B] made of a fiber reinforced plastic including a reinforcing fiber and a resin,
The ratio of the elongation of [B] and the elongation of [A] is 0.7 or more, 0.9
A fiber reinforced plastic member having a shock absorption energy of 5 or less and higher than the shock absorption energy of [A] alone and [B] alone.

【0009】[0009]

【発明の実施の形態】本発明のFRP部材は、補強繊維
と樹脂とからなる繊維強化プラスチックからなる内層
[A]及び外層[B]を有する部材であって、衝撃吸収
エネルギーが[A]単体及び[B]単体の衝撃吸収エネ
ルギーよりも高いことを特徴とする繊維強化プラスチッ
ク製部材であるため、軽量、高強度でありかつ極めて高
い耐衝撃性能を満足するという効果を奏する。好ましく
は、衝撃吸収エネルギーが[A]単体、[B]単体いず
れの衝撃吸収エネルギーよりも1.5倍以上高いのが良
い。
BEST MODE FOR CARRYING OUT THE INVENTION The FRP member of the present invention is a member having an inner layer [A] and an outer layer [B] made of a fiber reinforced plastic consisting of a reinforcing fiber and a resin, and shock absorbing energy of [A] alone. Further, since it is a member made of fiber reinforced plastic which is higher than the impact absorption energy of [B] alone, it is lightweight, has high strength, and has an extremely high impact resistance. Preferably, the shock absorption energy is 1.5 times or more higher than the shock absorption energy of either [A] alone or [B] alone.

【0010】本発明における衝撃吸収エネルギーを、図
1を用いて説明する。図1はFRPに衝撃を加えたとき
の荷重−変位線図である。曲線下の面積に相当する。J
ISK 7077に吸収エネルギーが定義されている
が、より詳細には、図1に示す最大荷重値までの吸収エ
ネルギーを、最大荷重前エネルギーa(右下がり斜線部
の面積)といい、全体破壊が終了するまでの吸収エネル
ギー(最大荷重前エネルギーaに最大荷重後エネルギー
b(左下がり斜線部の面積)を加えたもの)を全吸収エ
ネルギーとして両者を区別することもある。実用物で
は、部分的に破壊が生じても交換・修理等の必要がある
部材については、最大荷重前吸収エネルギーが重視さ
れ、部材が破壊することで衝撃を緩和させることを目的
とした部材においては全吸収エネルギーが重要とされる
ことが多い。
The impact absorption energy in the present invention will be described with reference to FIG. FIG. 1 is a load-displacement diagram when an impact is applied to the FRP. It corresponds to the area under the curve. J
Although the absorbed energy is defined in ISK 7077, more specifically, the absorbed energy up to the maximum load value shown in FIG. The two may be distinguished from each other by taking the absorbed energy up to (the energy before the maximum load a plus the energy after the maximum load b (the area of the downward-sloping hatched portion)) as the total absorbed energy. In practical products, for parts that need to be replaced or repaired even if partial damage occurs, the absorbed energy before the maximum load is emphasized, and the part that is intended to absorb the impact by breaking the member The total absorbed energy is often important.

【0011】FRPを構成する[A]及び[B]に用い
る補強繊維としては、例えば、炭素繊維、ガラス繊維、
炭化珪素繊維等の無機繊維、芳香族ポリアミド繊維、ポ
リエチレン繊維、ポリフェニレンベンズビスオキサゾー
ル(PBO)繊維、ポリイミド繊維等の有機繊維、ボロ
ン繊維等の金属繊維が、樹脂としては、例えば、エポキ
シ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹
脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹
脂などの熱硬化性樹脂、あるいは、ポリエチレン樹脂、
ナイロン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、
ABS樹脂、ポリブチレンテレフタレート樹脂、ポリア
セタール樹脂、ポリカーボネート等の樹脂などの熱可塑
性樹脂などが使用できる。
The reinforcing fibers used in [A] and [B] constituting the FRP are, for example, carbon fibers, glass fibers,
Inorganic fibers such as silicon carbide fibers, aromatic polyamide fibers, polyethylene fibers, polyphenylene benzbisoxazole (PBO) fibers, organic fibers such as polyimide fibers, and metal fibers such as boron fibers are examples of resins such as epoxy resin and vinyl. Thermosetting resin such as ester resin, unsaturated polyester resin, phenol resin, polyimide resin, polyurethane resin, or polyethylene resin,
Nylon resin, polypropylene resin, polyamide resin,
A thermoplastic resin such as ABS resin, polybutylene terephthalate resin, polyacetal resin, or resin such as polycarbonate can be used.

【0012】また、各層における補強繊維の形態は、一
方向に配列したフィラメント、ロービング、平織などの
織物、ランダムに配列したマットなどが挙げられる。ま
た、本発明のFRP製部材には、補強繊維以外に、少量
の充填剤、可塑材、安定材、難燃材、結晶核材、添加材
を含んでいるものも含む。
Examples of the form of the reinforcing fiber in each layer include filaments arranged in one direction, roving, woven fabric such as plain weave, and mats arranged randomly. The FRP member of the present invention also includes those containing a small amount of a filler, a plasticizer, a stabilizer, a flame retardant, a crystal nucleus material, and an additive in addition to the reinforcing fiber.

【0013】このようなFRP部材は、補強繊維と樹脂
とからなる繊維強化プラスチックからなる内層[A]及
び外層[B]を有する部材において、[B]の伸度と
[A]の伸度の比を0.6以上、0.95以下とするこ
とにより好適に得ることができる。これにより、前記の
ような高い衝撃吸収エネルギーを与え得る、軽量、高強
度、高剛性のFRP製部材とすることができる。
Such an FRP member is a member having an inner layer [A] and an outer layer [B] made of a fiber reinforced plastic consisting of a reinforcing fiber and a resin, and having an elongation of [B] and an elongation of [A]. It can be preferably obtained by setting the ratio to 0.6 or more and 0.95 or less. This makes it possible to provide a lightweight, high-strength, high-rigidity FRP member that can give high impact absorption energy as described above.

【0014】上記構成のFRP部材に、例えば、比較的
低速度の曲げ衝撃が加わると、部材の最外層にある
[B]が最も大きく変形する。この際、[B]の伸度
(正確には破断する時の伸度、あるいは破壊歪み)を内
層の[A]よりも小さくしておくと、破壊は確実に
[B]から開始して[A]へと進展するが、[B]と接
する箇所の[A]の伸びはまだ[A]の伸度よりも小さ
いので、破壊は[A]と[B]の層間で衝撃の方向とは
直角な方向へも進展してエネルギーを吸収するという挙
動を呈する。破壊が一度このようなモードを呈するよう
になると、[A]内でも衝撃の方向に平行な繊維の破壊
と、衝撃と垂直な方向(層間あるいは層内)の破壊が連
続的に起こり、非常に多くのエネルギーを吸収する。
When a relatively low-velocity bending impact is applied to the FRP member having the above-mentioned structure, [B] in the outermost layer of the member is most deformed. At this time, if the elongation of [B] (precisely, the elongation at break or the fracture strain) is made smaller than that of [A] of the inner layer, the fracture surely starts from [B]. Although it progresses to A], the elongation of [A] at the point of contact with [B] is still smaller than the elongation of [A], so the fracture is between the [A] and [B] layers and the direction of impact. It also behaves in such a way that it propagates in a direction at right angles and absorbs energy. Once the fracture starts to exhibit such a mode, even in [A], the fiber parallel to the impact direction and the direction perpendicular to the impact (interlayer or layer) occur continuously, which is very Absorbs a lot of energy.

【0015】したがって、[B]の伸度と[A]の伸度
の比が0.95を超えると衝撃時の破壊が[B]から開
始しないことが多く、開始したとしても、[B]から開
始した破壊は、[A]を容易に横切って(衝撃とは直角
な方向への破壊は殆どなく繊維の破壊のみとなる)しま
って、吸収するエネルギーの量が小さくなり、[B]の
伸度と[A]の伸度の比が0.6より小さいと、[B]
の破壊が、上記した[A]への連続的な破壊をへと進展
せず、やはり吸収するエネルギーの量が小さくなる。
[B]からの破壊をより確実にし、かつ吸収エネルギー
をさらに大きくするためには、[B]の伸度と[A]の
伸度の比は0.7〜0.9であることが好ましい。
Therefore, when the ratio of the elongation of [B] and the elongation of [A] exceeds 0.95, the fracture at the time of impact often does not start from [B], and even if it starts, [B] The destruction started from [A] easily crosses [A] (there is almost no destruction in the direction perpendicular to the impact, only the destruction of the fiber), and the amount of energy absorbed is small, If the ratio of the elongation and the elongation of [A] is smaller than 0.6, [B]
Destruction does not progress to the above continuous destruction to [A], and the amount of energy absorbed is also small.
The ratio of the elongation of [B] to the elongation of [A] is preferably 0.7 to 0.9 in order to more reliably destroy the material from [B] and further increase the absorbed energy. .

【0016】なお、本発明でいう伸度(破壊歪みともい
う)は、[A]、[B]それぞれを、ASTM D 3
039に従って引張試験して求めるが、[A]と[B]
が切り離せない場合には、部材を切り出して、[A]と
[B]をグラインダーなどで削り取って得られる[A]
と[B]単体を引張試験して求めてもよい。あるいは、
[A]と[B]部に歪ゲージ等を貼るなどして、部材に
荷重を与えて、伸度を測定してもよい。
The elongation (also referred to as breaking strain) in the present invention is [A] and [B] respectively ASTM D 3
The tensile test is performed according to 039, but it is [A] and [B].
If it cannot be separated, it can be obtained by cutting out the member and shaving [A] and [B] with a grinder or the like.
Alternatively, [B] may be obtained by a tensile test. Or,
The elongation may be measured by applying a load to the member by attaching a strain gauge or the like to the parts [A] and [B].

【0017】また、本発明における[B]は上述したよ
うに、破壊の開始となる役割を果たすための層であるか
ら、部材を軽量にする意味で薄ければ薄いほど好ましい
が、[B]の厚みは[A]の厚みに対し、0.01〜
0.2の範囲内であると好ましい。0.01より小さい
と、[B]の破壊が[A]に進展しない可能性があるか
らであり、0.2よりも大きいと、厚み当たりでみた場
合の吸収エネルギーが十分ではなくなる場合があるから
である。また、部材の厚みは、0.5mm以上とするこ
とが好ましい。0.5mmより薄いと、[B]の厚みが
上記の比率を満たす材料が得難いばかりか、層間の破壊
の一部が蛇行した場合に全体破壊してしまう可能性があ
るからである。
Further, since [B] in the present invention is a layer for playing a role of initiating destruction as described above, the thinner the thickness is, the more preferable it is for the purpose of reducing the weight of the member, but [B]. The thickness is 0.01 to the thickness of [A].
It is preferably in the range of 0.2. If it is less than 0.01, the destruction of [B] may not progress to [A], and if it is greater than 0.2, the absorbed energy in terms of thickness may not be sufficient. Because. The thickness of the member is preferably 0.5 mm or more. This is because if it is thinner than 0.5 mm, it is difficult to obtain a material having a thickness of [B] satisfying the above-mentioned ratio, and there is a possibility that a part of the breakage between the layers meanders and the whole breaks.

【0018】尚、[B]と[A]の伸度、厚みがともに
上記の範囲内であると、剛性、強度、及び吸収エネルギ
ーをバランスさせた高エネルギー吸収部材とすることが
できる。
When the elongations and thicknesses of [B] and [A] are both within the above ranges, a high energy absorbing member having a balance of rigidity, strength and absorbed energy can be obtained.

【0019】さらに、[A]の補強繊維として連続の炭
素繊維を使用すると、少量の補強繊維量で部材をより軽
量、高剛性にできて適用範囲が広がるので好ましい。ま
た、補強繊維量は前記したように破壊を連続的に進展さ
せるためにほぼ一定であることが好ましい。最も好まし
いのは、炭素繊維をほぼ一定量含有するシート材(例え
ばUDプリプレグ)を積層したもので、繊維重量含有率
が35〜80%のものである。35%未満であると部材
としても剛性が不足するし、85%を超えると厚物成形
などの場合にボイドが残留しやすく、部材の疲労強度等
が低下することがあるからである。炭素繊維は高強度で
もあるため繊維を破壊するのに要するエネルギーが大き
いという特徴があり、連続繊維であると繊維が抜けたり
せずに確実に破断するという効果をあわせもつ。また、
炭素繊維強化プラスチックは部材の耐環境性(耐酸性、
耐溶剤性)、疲労特性を向上させる役割もあわせもつ。
Further, it is preferable to use continuous carbon fiber as the reinforcing fiber of [A] because a small amount of reinforcing fiber can make the member lighter and more rigid and the range of application can be expanded. Further, it is preferable that the amount of the reinforcing fiber is substantially constant in order to continuously progress the fracture as described above. Most preferred is a laminate of sheet materials (for example, UD prepreg) containing carbon fibers in a substantially constant amount, and having a fiber weight content of 35 to 80%. This is because if it is less than 35%, the rigidity of the member is insufficient, and if it exceeds 85%, voids are likely to remain in the case of thick molding and the fatigue strength of the member may decrease. Since carbon fiber is also high in strength, it has a characteristic that a large amount of energy is required to break the fiber, and a continuous fiber also has an effect of reliably breaking without the fiber coming off. Also,
Carbon fiber reinforced plastics have environmental resistance (acid resistance,
It also has the role of improving solvent resistance) and fatigue characteristics.

【0020】尚、炭素繊維とは、ポリアクリルニトリル
(PAN)繊維やピッチを原料として、製造されるいわ
ゆる炭素繊維、あるいはグラファイト繊維のことで、繊
維径は通常5〜10μmであるが、中でも高伸度炭素繊
維であるPAN系の炭素繊維が好ましく、さらには、弾
性率が200GPa〜400GPaのものが剛性とのバ
ランスの上でより好ましい。
The carbon fiber is a so-called carbon fiber or graphite fiber produced by using polyacrylonitrile (PAN) fiber or pitch as a raw material, and the fiber diameter is usually 5 to 10 μm, but it is particularly high. PAN-based carbon fibers that are ductile carbon fibers are preferable, and those having an elastic modulus of 200 GPa to 400 GPa are more preferable in terms of balance with rigidity.

【0021】さらに、[A]内での破壊をより効果的に
層間へ進展させるために、[A]の層間剪断強度(本強
度はASTM D 3518によって測定できる)は5
0MPa〜140MPaであることが好ましい。層間剪
断強度が50MPaより低いと、構造メンバー部材とし
ての剪断強度が十分ではない可能性があり、140MP
aよりも大きいと層間での破壊の進展が進みにくくなる
可能性があるからである。また、層間剪断強度はボイド
等の欠陥の量が影響するので、生産性の面からは、部材
の層間剪断強度はコントロールしやすい70〜120M
Paとするとより好ましい。
Further, in order to more effectively propagate the fracture in [A] to the layers, the interlaminar shear strength of [A] (this strength can be measured by ASTM D 3518) is 5
It is preferably 0 MPa to 140 MPa. If the interlaminar shear strength is lower than 50 MPa, the shear strength as a structural member member may not be sufficient,
This is because if it is larger than a, there is a possibility that the progress of fracture between layers may be difficult to proceed. In addition, since the interlaminar shear strength is affected by the amount of defects such as voids, the interlaminar shear strength of the member is easily controlled from 70 to 120 M from the viewpoint of productivity.
More preferably, it is Pa.

【0022】層間強度をコントロールする具体的な方法
としては、繊維の表面処理(表面の官能基)を変更す
る、繊維を被覆しているサイジング剤を変更する、層間
に接着あるいは、離型用のフィルムを挿入したり、コー
ティングを施したりするなどの手段を用いることができ
る。
Specific methods for controlling the interlaminar strength include changing the surface treatment (functional group on the surface) of the fiber, changing the sizing agent coating the fiber, adhering between layers, or releasing. Means such as inserting a film or applying a coating can be used.

【0023】次に、[B]は上記した衝撃による破壊の
開始(トリガー)部位という役割をはたすものであるこ
とに加え、部材の剛性に大きく影響する層であるから、
[B]の補強繊維は[B]の厚みを薄くしても弾性率を
維持しやすい連続、あるいは長繊維(長繊維とは50c
mより長い繊維のこと)のロービング、あるいはクロス
形態であることが好ましく、さらに、[B]が連続ある
いは長繊維のマット構造のFRPであると、伸度が繊維
の種類だけでなく配列、交差状態によって伸度を設計で
きるのでより好ましい。
Next, [B] is a layer that plays a role of a trigger (trigger) site for the above-described impact-induced destruction, and is a layer that greatly affects the rigidity of the member,
Reinforcing fibers of [B] are continuous or long fibers (long fibers are 50 c
(a fiber longer than m) is preferably in the form of a roving or a cloth, and when [B] is an FRP having a mat structure of continuous or long fibers, the elongation is not only the type of fiber but also the arrangement and crossing. It is more preferable because the elongation can be designed depending on the state.

【0024】マット材とは、繊維を無方向または配向を
もたせて均一に積み重ね、必要に応じて結合材で接着し
たマット状のものであり、コンティニュアスストランド
マット、チョップドストランドマット、サーフェシング
マット、ラミマット、ニードルパンチマット等がこれに
あたるが、本発明では、ニット、不織布、ペーパー形
態、フェルト、メッシュ、シート形態のものも含む。
[0024] The mat material is a mat-like material in which fibers are non-directionally or evenly stacked and evenly bonded with a binding material, and a continuous strand mat, a chopped strand mat, a surfacing mat. Examples thereof include a lami mat and a needle punch mat, but in the present invention, knit, non-woven fabric, paper form, felt, mesh and sheet forms are also included.

【0025】なお、[B]は衝撃による破壊の開始(ト
リガー)部位という役割を果たすものであることから、
表面性状を落とすことにはなるが、[B]の表面に破壊
の開始となる亀裂などの欠陥を故意に導入しても差し支
えない。この場合、亀裂の深さは[B]の厚みの1/1
00〜1/4の程度のものが、[B]からの破壊を確実
に生じさせることと部材の品位とをバランスさせる上で
好ましい。
Since [B] plays a role of a start (trigger) site of destruction by impact,
Although the surface quality will be deteriorated, it may be possible to intentionally introduce defects such as cracks that start the destruction on the surface of [B]. In this case, the crack depth is 1/1 of the thickness of [B]
The range of about 0 to 1/4 is preferable from the viewpoint of reliably causing the breakage from [B] and the quality of the member.

【0026】[B]の補強繊維が[A]の補強繊維より
も伸度が大きい場合には、[B]を長繊維のランダム配
列マットとすることで、補強繊維同士を交差させること
で[B]の伸度を補強繊維の伸度よりも小さくすること
ができる。また、[B]の補強繊維よりも伸度の小さい
樹脂を[B]のマトリックスとすることで[B]の伸度
を補強繊維の伸度よりも低下させることもできる(この
場合、[B]の補強繊維の量は少なくすると伸度を低下
させる効果が増す)。また、[B]の線膨張係数を
[A]よりも大きくして[B]層中に引張の熱歪を残留
させることでも伸度を低下させることができる。この場
合、[B]の樹脂の線膨張係数の大きくしたり、[B]
層の厚みを薄くする程[B]の伸度は小さくすることが
できる。また、上記のように欠陥やボイドをあらかじめ
[B]に導入しておくことでも[B]の伸度を低下させ
ることができる。
When the reinforcing fiber of [B] has a higher elongation than the reinforcing fiber of [A], [B] is a random array mat of long fibers so that the reinforcing fibers are crossed with each other. The elongation of B] can be made smaller than that of the reinforcing fiber. Further, the elongation of [B] can be made lower than that of the reinforcing fiber by using a resin having a smaller elongation than that of the reinforcing fiber of [B] as the matrix of [B] (in this case, [B] ] The effect of lowering the elongation is increased when the amount of the reinforcing fiber is small). Further, the elongation can also be reduced by making the linear expansion coefficient of [B] larger than that of [A] so that the tensile thermal strain remains in the [B] layer. In this case, increase the linear expansion coefficient of the resin [B],
The elongation of [B] can be reduced as the layer thickness is reduced. Also, the elongation of [B] can be reduced by introducing defects or voids into [B] in advance as described above.

【0027】尚、マット中の補強繊維がランダム配列し
た構造を有すると、[B]の伸度は面内で等しくなり、
部材の支持条件が異なってもほぼ一定の衝撃変形で破壊
が開始して好ましい。
When the reinforcing fibers in the mat have a random arrangement, the elongations of [B] are equal in the plane,
Even if the supporting conditions of the members are different, it is preferable that the fracture starts with a substantially constant impact deformation.

【0028】[B]に用いる補強繊維として好ましいの
は、軽量である炭素繊維であるが、比較的低廉で、各種
の豊富な補強形態のものが得られるのはガラス繊維であ
る。ガラス繊維には、各種の表面処理が可能であり、伸
度もコントロールしやすい。ガラス繊維とは、酸化珪素
を主成分とするいわゆるEガラス、Cガラス、Sガラス
などの繊維状ガラスのことで、繊維径は通常5〜20μ
m程度である。
Although carbon fiber, which is lightweight, is preferable as the reinforcing fiber used in [B], glass fiber is relatively inexpensive and can be obtained in various reinforcing forms. Various surface treatments can be applied to glass fiber, and the elongation can be easily controlled. The glass fibers are so-called E-glass, C-glass, S-glass, and other fibrous glass containing silicon oxide as a main component, and the fiber diameter is usually 5 to 20 μm.
m.

【0029】特に、[B]が連続のガラス繊維マット
層、[A]が連続の炭素繊維からなる場合には、部材を
より高剛性、軽量、高強度にすることが可能であり、実
施例に示すように曲げ衝撃時の吸収エネルギーは飛躍的
に向上することができる。
In particular, when [B] is a continuous glass fiber mat layer and [A] is a continuous carbon fiber, the member can have higher rigidity, lighter weight and higher strength. As shown in, the absorbed energy at the time of bending impact can be dramatically improved.

【0030】次に、本発明のFRP製部材の形状は、円
筒状、柱状、あるいは平板状のいずれか1つであると好
ましい。円筒や平板の部材は成形が比較的容易で、層構
造にしやすいという利点ばかりか、長尺(細長)形状で
使用することが多いので実用下では曲げ衝撃を受け易
く、本発明の効果が生かし易いからである。図2〜4に
一例としてそれら部材の基本形状を示す。本発明はテー
パーのついた円筒や、円筒の頂部を円錐状あるいは球面
状に形成した円筒、さらには、楕円断面の円筒、フラン
ジ部を備えた円筒、さらには柱状部材、波板形状の部材
にも適用できる。また、[B]は[A]に対し、両外側
にある場合、片外側にある場合のいずれでもよい。
Next, the FRP member of the present invention preferably has a cylindrical shape, a columnar shape, or a flat plate shape. A cylindrical or flat plate member is relatively easy to form and has an advantage of being easy to form a layered structure. In addition, since it is often used in a long (slender) shape, it is easily subjected to bending impact in practical use, and the effect of the present invention can be utilized. Because it is easy. 2 to 4 show the basic shapes of these members as an example. INDUSTRIAL APPLICABILITY The present invention is applicable to a tapered cylinder, a cylinder in which the top of the cylinder is formed into a conical shape or a spherical shape, a cylinder with an elliptical cross section, a cylinder with a flange portion, a columnar member, and a corrugated member. Can also be applied. Further, [B] may be on both outsides or one outside of [A].

【0031】より具体的には、円筒部材として、スポー
ツ用具の部材である、釣竿用の円筒、ゴルフシャフト用
の円筒、スキーのストック用の円筒、テニスやバトミン
トンやスカッシュのラケットのフレーム、テントフレー
ム等の各種ポール等が、一般産業用として圧力容器の外
殻、トラス材などの構造用の円筒/パイプ等が例として
挙げられる。平板部材としては建築用の部材として使用
される引き抜き材、形材(パイプ、角パイプ、アング
ル、チャンネンル、C型、T型、Iビーム、平板、バ
ー、支柱、桁材などと称される)等が例として挙げられ
る。これら円筒、平板部材はいずれも軽量、剛性、強度
に加え、高い衝撃吸収エネルギーが必要とされている部
材であるからである。また、作業用等のヘルメット帽体
も本発明の効果が生かせる用途である。
More specifically, the cylindrical member, which is a member of sports equipment, is a cylinder for a fishing rod, a cylinder for a golf shaft, a cylinder for ski poles, a racket frame for tennis, badminton or squash, a tent frame. For example, various types of poles, etc., such as outer shells of pressure vessels for general industry, and cylinders / pipes for structures such as truss materials are cited. As a flat plate member, a drawing material used as a building member, a shape member (referred to as a pipe, a square pipe, an angle, a channel, a C type, a T type, an I beam, a flat plate, a bar, a pillar, a girder material, etc.) Etc. are mentioned as an example. This is because these cylinders and flat plate members are members that require high impact absorption energy in addition to light weight, rigidity, and strength. Further, a helmet hat body for work is also an application in which the effect of the present invention can be utilized.

【0032】本発明のFRP製部材を製造するための成
形法としては、公知のあらゆる成形法が利用できる。例
えば、フィラメントワインド法(FW)、シートワイン
ド法、シートレイアップ法、シートラップ法、テープワ
インド法、テープラッピング法、ハンドレイアップ法、
シートモールディング法(SMC)、スタンピング成形
法、レジンインジェクションモールディング(RIM)
法等々である。尚、部材の成形において、[A]部と
[B]部を同時に一体成形してもよいし、[A]部と
[B]部を別々に成形してから接着接合しても差し支え
ない。
As a molding method for manufacturing the FRP member of the present invention, any known molding method can be used. For example, filament winding method (FW), sheet winding method, sheet layup method, sheet wrap method, tape winding method, tape wrapping method, hand layup method,
Sheet molding method (SMC), stamping molding method, resin injection molding (RIM)
The law and so on. In forming the member, the [A] part and the [B] part may be integrally formed at the same time, or the [A] part and the
There is no problem even if the [B] parts are separately molded and then adhesively joined.

【0033】[0033]

【実施例】【Example】

(実施例1)東レ((株))製の炭素繊維T700S
(伸度2.0%、弾性率230GPa、糸径7μm)が
一方向に配列したエポキシ樹脂プリプレグ(厚さ145
μm、繊維目付=150g/m2 、繊維重量含有率=6
7%)を12枚積層し、さらにその積層物の両面に、旭
ファイバーグラス社製の連続ガラス繊維マット(コンテ
ィニュアスストランドマット SM3600E、繊維目
付=30g/m2 )を積層し、さらにエポキシ樹脂フィ
ルム(樹脂目付=50g/m2 )を2枚ずつ積層したも
のをオートクレーブにて130℃で成形して層構造を有
する厚さ1.89mmFRP平板を得た。
(Example 1) Carbon fiber T700S manufactured by Toray Industries, Inc.
(Elongation 2.0%, elastic modulus 230 GPa, thread diameter 7 μm) arranged in one direction epoxy resin prepreg (thickness 145
μm, fiber basis weight = 150 g / m 2 , fiber weight content = 6
7%), 12 layers of continuous glass fiber mat (Continuous Strand Mat SM3600E, fiber weight = 30 g / m 2 ) made by Asahi Fiber Glass Co., Ltd., and epoxy resin on both sides. A laminate of two films (resin weight = 50 g / m 2 ) was molded in an autoclave at 130 ° C to obtain a 1.89 mm thick FRP flat plate having a layer structure.

【0034】炭素繊維からなる層の厚み([A]に相
当)は1.75mm、マット層の厚み([B]に相当)
は上下面とも等しく0.07mmであった。
The thickness of the carbon fiber layer (corresponding to [A]) is 1.75 mm, and the thickness of the mat layer (corresponding to [B]).
Was 0.07 mm on both upper and lower surfaces.

【0035】本FRP平板から、幅10mm、長さ60
mmのシャルピー試験用試験片を切り出し、3点曲げ試
験及びシャルピー衝撃試験を行った。
From this FRP flat plate, width 10 mm, length 60
mm test pieces for Charpy test were cut out and subjected to a three-point bending test and a Charpy impact test.

【0036】3点曲げ試験の条件は、以下の通りとし
た。
The conditions of the three-point bending test were as follows.

【0037】 試験機:インストロン4201試験機 試料幅:12.7mm スパン距離:60mm 付加速度:2.0mm/min 試験温度:25℃ シャルピー衝撃試験の条件は、以下の通りである。Tester: Instron 4201 tester Sample width: 12.7 mm Span distance: 60 mm Addition speed: 2.0 mm / min Test temperature: 25 ° C. Charpy impact test conditions are as follows:

【0038】 試験機:米倉製作所製計装化シャルピー試験機-300CS 支点間距離:60mm ハンマ刃の重量:5.275kgf・cm ハンマ刃の半径:2mm ハンマ刃の角度:30゜ ハンマ持ち上げ角度:143.5゜ ハンマの空振り角度:134.0゜ 打撃点でのハンマ速度:3.65m/sec 試験片:ノッチなしフラットワイズ試験片 試験片幅;10.0±1.0mm 試験温度:25℃ 曲げ強度、曲げ弾性率、最大荷重前吸収エネルギー、全
吸収エネルギーは表1のとおりであり、吸収エネルギー
は絶対値で比べても、厚みあたりの換算値で比べても、
後述の比較例の約2倍であった。
Tester: Instrumentation Charpy tester manufactured by Yonekura Seisakusho-300CS Distance between fulcrums: 60 mm Weight of hammer blade: 5.275 kgf · cm Hammer blade radius: 2 mm Hammer blade angle: 30 ° Hammer lifting angle: 143 0.5 ° Hammer swing angle: 134.0 ° Hammer speed at striking point: 3.65 m / sec Specimen: flatwise test specimen without notch Specimen width: 10.0 ± 1.0 mm Test temperature: 25 ° C Bending The strength, flexural modulus, absorbed energy before maximum load, and total absorbed energy are shown in Table 1, and the absorbed energy is compared in absolute value or in converted value per thickness,
It was about twice that of the comparative example described later.

【0039】また、上記とは別に、内層([A])と、
外層([B])の伸度を求めるために、上記と同一の炭
素繊維/エポキシプリプレグを8枚積層したものと、上
記と同一の連続繊維ガラスマットとエポキシ樹脂フィル
ムをそれぞれ、11枚と22枚を積層して得られたFR
P板より、試験片を切り出し、ASTM D3039に
準じて引張試験した。結果は、[A]は2.0%、
[B]は1.5%(従って、[B]と[A]の伸度の比
は0.75)であった。
Separately from the above, an inner layer ([A]),
In order to obtain the elongation of the outer layer ([B]), eight sheets of the same carbon fiber / epoxy prepreg as described above were laminated, and the same continuous fiberglass mat and epoxy resin film as the above were 11 sheets and 22 sheets, respectively. FR obtained by stacking sheets
A test piece was cut out from the P plate and subjected to a tensile test according to ASTM D3039. The result is that [A] is 2.0%,
[B] was 1.5% (thus, the elongation ratio of [B] and [A] was 0.75).

【0040】(実施例2)実施例1において、マットを
上下2枚づつ、樹脂フィルムを上下4枚ずつ積層した他
は実施例1と同様にして試験片を切り出し、曲げ及びシ
ャルピー衝撃試験した。結果を表1に示す。実施例1同
様、吸収エネルギーは絶対値で比べても、厚みあたりの
換算値で比べても、後述の比較例の約2.5倍であっ
た。
Example 2 A test piece was cut out and subjected to a bending and Charpy impact test in the same manner as in Example 1 except that two mats were laminated on the upper side and four resin films were laminated on the upper side. The results are shown in Table 1. Similar to Example 1, the absorbed energy was about 2.5 times that of the Comparative Example described later, both in terms of absolute value and in terms of converted value per thickness.

【0041】(実施例3)実施例1において、炭素繊維
/エポキシ樹脂プリプレグを12枚積層する代わりに、
炭素繊維/エポキシ樹脂プリプレグを6枚積層した後、
樹脂フィルムを1枚、その後にマットを1枚、さらにそ
の後に樹脂フィルムを1枚、さらにその後に炭素繊維/
エポキシ樹脂プリプレグを6枚積層した他は実施例1と
同様にして成形板を作製、試験片を切り出し、曲げ及び
シャルピー衝撃試験した。結果を表1に示す。吸収エネ
ルギーは絶対値で比べても、厚みあたりの換算値で比べ
ても、後述の比較例の約1.3倍であった。
Example 3 Instead of laminating 12 carbon fiber / epoxy resin prepregs in Example 1,
After stacking 6 carbon fiber / epoxy resin prepregs,
1 resin film, then 1 mat, then 1 resin film, then 1 carbon fiber /
A molded plate was prepared in the same manner as in Example 1 except that six epoxy resin prepregs were laminated, and test pieces were cut out and subjected to bending and Charpy impact tests. The results are shown in Table 1. The absorbed energy was about 1.3 times that of the Comparative Example described later, both in terms of absolute value and in terms of converted value per thickness.

【0042】[A]層の厚みは1.95mm、[B]層
の厚みは0.07mmであった。また、[A]のみを引
張試験した結果、伸度は2.0%であった(従って、
[B]と[A]の伸度の比は0.75)。
The thickness of the [A] layer was 1.95 mm, and the thickness of the [B] layer was 0.07 mm. Further, as a result of conducting a tensile test on only [A], the elongation was 2.0% (hence,
The elongation ratio of [B] and [A] is 0.75).

【0043】(比較例1、2)実施例と同一の炭素繊維
プリプレグのみを13枚積層したCFRP成形板、及び
実施例と同一のマット材と樹脂フィルムのみを28枚積
層したGFRP成形板より、実施例1と全く同様にして
試験片を切り出し、CFRP単体およびGFRP単体の
曲げ及びシャルピー衝撃試験した。結果を表1に示す。
(Comparative Examples 1 and 2) From the CFRP molded plate in which only 13 carbon fiber prepregs identical to those in Examples were laminated and the GFRP molded plate in which only 28 matte materials and resin films identical to those in Examples were laminated, Test pieces were cut out in exactly the same manner as in Example 1 and subjected to bending and Charpy impact tests of CFRP alone and GFRP alone. The results are shown in Table 1.

【0044】実施例1、2、3いずれの場合にも吸収エ
ネルギーは、[A]単体および[B]単体いずれの場合
よりも著しく増大している。とくに、実施例1のFRP
は、CFRP単体よりもわずかではあるが軽量であり、
かつ、衝撃の吸収エネルギーはCFRP単体よりも2倍
以上であり、かつ、曲げ強度、曲げ剛性ともにCFRP
単体と遜色はないという、これまでに例のない極めて優
れた性能を有するものである。
In any of Examples 1, 2, and 3, the absorbed energy is remarkably increased as compared with either of [A] alone or [B] alone. In particular, the FRP of Example 1
Is slightly lighter than CFRP alone,
Moreover, the absorbed energy of impact is more than twice that of CFRP alone, and both bending strength and bending rigidity are CFRP.
It is as good as a simple substance and has extremely excellent performance that has never been seen before.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】以上説明したように、本発明のFRP製
部材は、衝撃時の吸収エネルギーが[A]単体及び
[B]単体の吸収エネルギーよりも飛躍的に高くするこ
とができるので、FRPをより一層軽量、高性能にでき
る。
As described above, the FRP member of the present invention can dramatically increase the absorbed energy at the time of impact as compared with the absorbed energy of [A] simple substance and [B] simple substance. Can be made even lighter and have higher performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】FRPに衝撃を加えたときの変位−荷重線図で
ある。
FIG. 1 is a displacement-load diagram when an impact is applied to an FRP.

【図2】本発明の一実施態様に係る円筒状のFRP製部
材の概略図である。
FIG. 2 is a schematic view of a cylindrical FRP member according to an embodiment of the present invention.

【図3】本発明の一実施態様に係る平板状のFRP製部
材の概略図である。
FIG. 3 is a schematic view of a flat FRP member according to an embodiment of the present invention.

【図4】本発明の一実施態様に係るテーパを有する円筒
状のFRP製部材の概略図である。
FIG. 4 is a schematic view of a cylindrical FRP member having a taper according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:[A]層 2:[B]層 3:[B]の表面に導入した半球状欠陥 4:[B]の表面に導入した線状亀裂 1: [A] layer 2: [B] layer 3: hemispherical defect introduced on the surface of [B] 4: linear crack introduced on the surface of [B]

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】補強繊維と樹脂とからなる繊維強化プラス
チックからなる内層[A]及び外層[B]を有する部材
であって、衝撃吸収エネルギーが[A]単体及び[B]
単体の衝撃吸収エネルギーよりも高いことを特徴とする
繊維強化プラスチック製部材。
1. A member having an inner layer [A] and an outer layer [B] made of a fiber reinforced plastic consisting of a reinforcing fiber and a resin, the impact absorption energy of which is [A] simple substance and [B].
A fiber reinforced plastic member characterized by having a higher impact absorption energy than a single unit.
【請求項2】補強繊維と樹脂とからなる繊維強化プラス
チックからなる内層[A]及び外層[B]を有する部材
であって、[B]の伸度と[A]の伸度の比が0.6以
上、0.95以下であることを特徴とする繊維強化プラ
スチック製部材。
2. A member having an inner layer [A] and an outer layer [B] made of a fiber reinforced plastic composed of a reinforcing fiber and a resin, wherein the ratio of the elongation of [B] to the elongation of [A] is 0. A member made of fiber reinforced plastic, which is not less than 0.6 and not more than 0.95.
【請求項3】補強繊維と樹脂とからなる繊維強化プラス
チックからなる内層[A]及び外層[B]を有する部材
であって、[B]の伸度と[A]の伸度の比が0.6以
上、0.95以下であり、かつ、衝撃吸収エネルギーが
[A]単体及び[B]単体の衝撃吸収エネルギーよりも
高いことを特徴とする繊維強化プラスチック製部材。
3. A member having an inner layer [A] and an outer layer [B] made of a fiber reinforced plastic composed of a reinforcing fiber and a resin, wherein the ratio of the elongation of [B] to the elongation of [A] is 0. A fiber-reinforced plastic member having a shock absorption energy of 0.6 or more and 0.95 or less and higher than the shock absorption energy of [A] alone and [B] alone.
【請求項4】衝撃吸収エネルギーが[A]単体、[B]
単体いずれの衝撃吸収エネルギーよりも1.5倍以上高
いことを特徴とする請求項1または請求項3に記載の繊
維強化プラスチック製部材。
4. Impact absorption energy is [A] simple substance, [B]
The fiber-reinforced plastic member according to claim 1 or 3, which is 1.5 times or more higher than the impact absorption energy of any of the single substances.
【請求項5】[B]の厚みと[A]厚みの比が0.01
〜0.2であることを特徴とする請求項1〜4のいずれ
かに記載の繊維強化プラスチック製部材。
5. The ratio of the thickness of [B] to the thickness of [A] is 0.01.
It is-0.2, The fiber-reinforced plastic member in any one of Claims 1-4 characterized by the above-mentioned.
【請求項6】[A]部が繊維および層間が破壊して衝撃
エネルギーを吸収することを特徴とする請求項1〜5の
いずれかに記載の繊維強化プラスチック製部材。
6. The fiber-reinforced plastic member according to claim 1, wherein the [A] portion absorbs impact energy by breaking the fiber and the interlayer.
【請求項7】[A]を構成する補強繊維が連続繊維の炭
素繊維であることを特徴とする請求項1〜6に記載の繊
維強化プラスチック製部材。
7. The fiber-reinforced plastic member according to claim 1, wherein the reinforcing fiber constituting [A] is a continuous carbon fiber.
【請求項8】[A]の層間剪断強度が50MPa以上、
140MPa以下であることを特徴とする請求項1〜7
のいずれかに記載の繊維強化プラスチック製部材。
8. The interlaminar shear strength of [A] is 50 MPa or more,
It is 140 MPa or less, It is characterized by the above-mentioned.
A member made of a fiber-reinforced plastic according to any one of 1.
【請求項9】[B]における補強繊維が連続、あるいは
長繊維であることを特徴とする請求項1〜8のいずれか
に記載の繊維強化プラスチック製部材。
9. The fiber-reinforced plastic member according to claim 1, wherein the reinforcing fibers in [B] are continuous or long fibers.
【請求項10】[B]における補強繊維がマット状であ
ることを特徴とする請求項1〜9のいずれかに記載の繊
維強化プラスチック製部材。
10. The fiber-reinforced plastic member according to claim 1, wherein the reinforcing fibers in [B] are mat-shaped.
【請求項11】[B]を構成する補強繊維が連続繊維の
炭素繊維またはガラス繊維であることを特徴とする請求
項1〜10のいずれかに記載の繊維強化プラスチック製
部材。
11. The fiber-reinforced plastic member according to claim 1, wherein the reinforcing fibers constituting [B] are carbon fibers or glass fibers which are continuous fibers.
【請求項12】部材の形状が円筒状、柱状、または板状
の部材のいずれか1つであることを特徴とする請求項1
〜10のいずれかに記載の繊維強化プラスチック製部
材。
12. The member is one of a cylindrical member, a column member, and a plate member.
10. A member made of fiber reinforced plastic according to any one of 10 to 10.
JP8033463A 1996-02-21 1996-02-21 Fiber-reinforced plastic member Pending JPH09226039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8033463A JPH09226039A (en) 1996-02-21 1996-02-21 Fiber-reinforced plastic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8033463A JPH09226039A (en) 1996-02-21 1996-02-21 Fiber-reinforced plastic member

Publications (1)

Publication Number Publication Date
JPH09226039A true JPH09226039A (en) 1997-09-02

Family

ID=12387246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8033463A Pending JPH09226039A (en) 1996-02-21 1996-02-21 Fiber-reinforced plastic member

Country Status (1)

Country Link
JP (1) JPH09226039A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223743A (en) * 2003-01-20 2004-08-12 Toyobo Co Ltd Method for manufacturing impact absorbing body
JP2005238837A (en) * 2004-01-29 2005-09-08 Toray Ind Inc Frp laminate structure
JP2005289056A (en) * 2004-03-09 2005-10-20 Toray Ind Inc Impact resistant fiber reinforced plastic and multi-layered structure
JP2007527098A (en) * 2003-10-22 2007-09-20 シーティーシー ケーブル コーポレイション Aluminum conductor composite core reinforced cable and manufacturing method thereof
JP4686955B2 (en) * 1999-12-17 2011-05-25 東レ株式会社 Impact energy absorbing member
JP2012532791A (en) * 2009-07-10 2012-12-20 ジョンソン コントロールズ テクノロジー カンパニー Vehicle seat backrest structure
JP2016169276A (en) * 2015-03-12 2016-09-23 東レ株式会社 Carbon fiber composite material and method for producing the same
JP2017217812A (en) * 2016-06-07 2017-12-14 日産自動車株式会社 Member made from fiber-reinforced resin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686955B2 (en) * 1999-12-17 2011-05-25 東レ株式会社 Impact energy absorbing member
JP2004223743A (en) * 2003-01-20 2004-08-12 Toyobo Co Ltd Method for manufacturing impact absorbing body
JP2007527098A (en) * 2003-10-22 2007-09-20 シーティーシー ケーブル コーポレイション Aluminum conductor composite core reinforced cable and manufacturing method thereof
JP2005238837A (en) * 2004-01-29 2005-09-08 Toray Ind Inc Frp laminate structure
JP2005289056A (en) * 2004-03-09 2005-10-20 Toray Ind Inc Impact resistant fiber reinforced plastic and multi-layered structure
JP2012532791A (en) * 2009-07-10 2012-12-20 ジョンソン コントロールズ テクノロジー カンパニー Vehicle seat backrest structure
US8864239B2 (en) 2009-07-10 2014-10-21 Johnson Controls Technology Company Vehicle seat back rest structure
JP2016169276A (en) * 2015-03-12 2016-09-23 東レ株式会社 Carbon fiber composite material and method for producing the same
JP2017217812A (en) * 2016-06-07 2017-12-14 日産自動車株式会社 Member made from fiber-reinforced resin

Similar Documents

Publication Publication Date Title
US7087296B2 (en) Energy absorbent laminate
US5614305A (en) Impact and perforation resistant composite structures
KR102006511B1 (en) Composite laminate having improved impact strength and the use thereof
JP5011613B2 (en) Preform and molding method
JP2006515809A (en) Three-dimensional knitted spacer woven sandwich composite
Aktaş et al. Impact and post impact (CAI) behavior of stitched woven–knit hybrid composites
JPH09226039A (en) Fiber-reinforced plastic member
JPH0575575B2 (en)
US6647856B1 (en) Turbine compressor armor shield
Gavaskar et al. Torsional and compression properties of cylindrical glass fiber reinforced polymer composite
JP4402477B2 (en) Tubular laminate comprising non-woven fabric and method for producing the same
JP4712408B2 (en) Dry hybrid reinforcing fiber tendon
JP2004081230A (en) Golf club shaft
JPH05208465A (en) Sandwich panel
Goutham et al. Influence of glass fibre hybridization on the open hole tensile properties of pineapple leaf fiber/epoxy composites
JP3582804B2 (en) Unidirectional reinforced fiber material for repair and reinforcement of concrete structures, repair and reinforcement method for concrete structures, and its repair and reinforcement structure
US10702753B2 (en) Strengthening ball bats and other composite structures with nano-additives
Ukyam et al. Dynamic Flexural Modulus and Low-Velocity Impact Response of Supercomposite TM Laminates with Vertical Z-Axis Milled Carbon Fiber Reinforcement
JP5239350B2 (en) Prepreg and fiber reinforced composite materials
Padmanabhan et al. Crashworthiness test on hollow section structural (HSS) frame by metal fiber laminates with various geometrical shapes-Review
JP2002347148A (en) Tubular body made of fiber-reinforced composite material and golf club shaft constituted by using the same
Paine et al. Improved impact damage resistance in adaptive shape memory alloy hybrid composite materials
Sohn et al. Impact damage resistance of carbon fibre/epoxy composite laminates containing short Kevlar fibres
Chakilam et al. Quasi-static punching damage analysis of hybrid composites using radiography testing method
JPH0939125A (en) Tubular body of fiber reinforced plastic