JPH09225603A - Molten steel casting method - Google Patents

Molten steel casting method

Info

Publication number
JPH09225603A
JPH09225603A JP3956596A JP3956596A JPH09225603A JP H09225603 A JPH09225603 A JP H09225603A JP 3956596 A JP3956596 A JP 3956596A JP 3956596 A JP3956596 A JP 3956596A JP H09225603 A JPH09225603 A JP H09225603A
Authority
JP
Japan
Prior art keywords
molten steel
inclusions
tundish
metallic inclusions
receiving part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3956596A
Other languages
Japanese (ja)
Inventor
Wataru Yamada
亘 山田
Ikuo Sawada
郁夫 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3956596A priority Critical patent/JPH09225603A/en
Publication of JPH09225603A publication Critical patent/JPH09225603A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively remove non-metallic inclusions without reinforcing facilities such as the electromagnetic force by setting the depth of a molten steel receiving part of a tundish to the prescribed value. SOLUTION: The depth of a molten steel receiving part 6 of a tundish is >=1500mm. In the molten steel 1 to be poured from a pouring nozzle 2 in the molten steel receiving part 6, relatively large inclusions are floated at high floating speed, and are collided with smaller inclusions and coagulated. Because the molten steel receiving part 6 is deep, coagulation of fine non-metallic inclusions is promoted. Coarse non-metallic inclusions are floated and separated at a transversely long part 7 (its depth is small) provided in series next to the molten steel receiving part 6. When the depth of the molten steel receiving part 6 is >=1500mm, the separation ratio of inclusions of <=50μm in size becomes not less than 50%. The separation ratio is not affected much by the length of the transversely long part 7. The separation ratio is stable even at a non- stationary part in the terminal stage of the ladle or immediately after the ladle change, and steel of excellent quality can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼中の脱酸生成
物、スラグ等の非金属介在物を分離促進するための溶鋼
の鋳込み方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of casting molten steel for promoting the separation of deoxidation products, non-metallic inclusions such as slag in molten steel.

【0002】[0002]

【従来の技術】従来、連続鋳造において、溶湯を連鋳モ
ールドに供給する場合、取鍋に受けた溶鋼を一旦タンデ
ィッシュ内に導き、ここで溶鋼中の非金属介在物を分離
させた後連鋳モールドへ鋳込む仕組みとされ、このタン
ディッシュには、非金属介在物の分離を促進すべく各種
の堰を設けたり(例えば、特開昭62−183947号
公報)、タンディッシュ内の溶鋼の流路の水平長さの延
長を基軸としたタンディッシュの大型化(例えば、特公
平3−147号公報)によって、タンディッシュ内での
溶鋼滞留時間の延長を図る技術が開示されている。しか
しながら、これらいずれの技術も50μm径以上の比較
的大型の介在物の浮上分離を目的としており、非金属介
在物中の酸素の大部分を占める50μm径以下の微小介
在物の分離は、浮上速度が小さいためにタンディッシュ
内で分離することは困難である。
2. Description of the Related Art Conventionally, in continuous casting, when supplying molten metal to a continuous casting mold, the molten steel received in a ladle is first introduced into a tundish, where non-metallic inclusions in the molten steel are separated, and then continuously cast. This tundish is designed to be cast into a casting mold. Various types of weirs are provided in this tundish to promote the separation of non-metallic inclusions (for example, Japanese Patent Laid-Open No. 62-183947), and molten steel in the tundish A technique for extending the residence time of molten steel in the tundish is disclosed by increasing the size of the tundish centered on the extension of the horizontal length of the flow path (for example, Japanese Patent Publication No. 3-147). However, all of these techniques are aimed at levitation separation of relatively large inclusions having a diameter of 50 μm or more, and separation of minute inclusions having a diameter of 50 μm or less, which occupy most of oxygen in non-metallic inclusions, is performed at a floating speed. It is difficult to separate in the tundish due to its small size.

【0003】微小介在物をタンディッシュ内で分離する
方法としては、微細気泡吹き込みにより介在物を捕捉し
て分離する技術(例えば特開平2−115323号公
報)や、電磁攪拌により、遠心分離と乱流凝集を組み合
わせて、分離する方法(例えば特開平4−327345
号公報)が開示されている。しかしながら、気泡吹き込
みによる方法では、50μm以下の微細介在物の捕捉に
必要な微細気泡を吹き込む技術が無いために、微小介在
物の分離は困難である。また、電磁攪拌による方法では
溶鋼中の酸化物系非金属介在物の分離を対象とした場合
に、電磁力により効果的に攪拌できる領域が限られてい
るために、鋳造速度が大きくなった場合には、その効果
が希薄になってくるという問題を持っている。
As a method for separating the small inclusions in the tundish, a technique for capturing and separating the inclusions by blowing fine bubbles (for example, Japanese Patent Laid-Open No. 2-115323) or centrifugal separation and turbulence by electromagnetic stirring. A method of separating and combining flow aggregation (for example, JP-A-4-327345).
Gazette). However, with the method of blowing bubbles, it is difficult to separate the fine inclusions because there is no technique for blowing the fine bubbles necessary for capturing the fine inclusions of 50 μm or less. In addition, when the method using electromagnetic stirring is targeted for the separation of oxide-based non-metallic inclusions in molten steel, the area that can be effectively stirred by electromagnetic force is limited. Has a problem that its effect becomes less diluted.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上のよう
な問題点を解決するもので、取鍋溶鋼が注入され連続鋳
造モールドに流出するタンディッシュにおいて、50μ
m以下の微小非金属介在物の分離除去を効率的かつ経済
的に行うための溶鋼中の非金属介在物除去方法を提供す
ることを目的としている。
DISCLOSURE OF THE INVENTION The present invention solves the problems as described above. In a tundish in which molten steel ladle is poured and flows out into a continuous casting mold, 50 μm is used.
An object of the present invention is to provide a method for removing non-metallic inclusions in molten steel for efficiently and economically separating and removing fine non-metallic inclusions of m or less.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、溶鋼の連続鋳造において、取鍋に受けた溶鋼を、
タンディッシュを介して連続鋳造用モールドに鋳込むに
際し、該タンディッシュにおける該溶鋼の受湯部分の深
さを1500mm以上にすることによって、該タンディッ
シュ内で非金属介在物を凝集させて粗大化し、浮上分離
を促進して、非金属介在物の少ない溶鋼をモールド内に
供給することを特徴とする連続鋳造における溶鋼の鋳込
み方法である。
The gist of the present invention is that in continuous casting of molten steel, the molten steel received in a ladle is
When pouring into a mold for continuous casting through a tundish, by setting the depth of the molten steel receiving portion of the tundish to 1500 mm or more, nonmetallic inclusions are aggregated and coarsened in the tundish. A method for casting molten steel in continuous casting, characterized in that the floating steel is promoted to supply molten steel containing less non-metallic inclusions into a mold.

【0006】[0006]

【発明の実施の形態】図1に堰を設けた従来型の横に長
いタンディッシュ(以下横長タンディッシュと呼ぶ)の
一例を示した。図1に示した横長タンディッシュにおい
て水モデル、流体解析シミュレーションおよび非金属介
在物の凝集分離反応の数値シミュレーションを行なった
結果、図2に示すように、非金属介在物の分離率は、1
50μm径以上のものでほぼ100%であるのに対し、
50μm径以下の微小非金属介在物は最高で20%以上
であるという結論を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a conventional horizontally long tundish provided with a weir (hereinafter referred to as a horizontally long tundish). As a result of performing a water model, a fluid analysis simulation, and a numerical simulation of a coagulation separation reaction of nonmetallic inclusions in the horizontal tundish shown in FIG. 1, as shown in FIG.
While it is almost 100% for those with a diameter of 50 μm or more,
It was concluded that the fine non-metallic inclusions having a diameter of 50 μm or less account for at most 20%.

【0007】ここで、非金属介在物の分離率とは、各々
の径の非金属介在物において定義され、取鍋から流入し
てくる溶鋼中の非金属介在物量をaとし、モールドへ流
出する溶鋼中の非金属介在物量をbとすると、 (a−b)/a×100(%) で定義されるタンディッシュ内の介在物除去能力を示す
量である。すなわち、50μm径以下の非金属介在物
は、それ自身では、浮上速度が極めて小さいために、タ
ンディッシュ内で浮上分離する事が出来ず、凝集して粗
大化して初めて浮上分離する機会を得るが、横長の形状
のタンディッシュでは、微小非金属介在物の凝集が充分
には行われていないことを示す。
Here, the separation rate of non-metallic inclusions is defined by the non-metallic inclusions of each diameter, and the amount of non-metallic inclusions in the molten steel flowing from the ladle is defined as a and flows out to the mold. Letting b be the amount of non-metallic inclusions in the molten steel, this is the amount showing the ability to remove inclusions in the tundish defined by (ab) / a × 100 (%). That is, non-metallic inclusions having a diameter of 50 μm or less cannot float and separate themselves in the tundish because they have a very low floating speed, but they have an opportunity to float and separate only after they aggregate and become coarse. In the horizontally long tundish, it is shown that the fine nonmetallic inclusions are not sufficiently aggregated.

【0008】同じく、水モデルの実験と凝集・粗大化の
反応の数値シミュレーションより、電磁攪拌等による強
制対流が無い場合には、タンディッシュ内での非金属介
在物の凝集は主にストークス凝集によって生じるという
知見を得た。ストークス凝集とは、溶鋼中の比較的大き
な介在物がより速い浮上速度で浮上する際に、比較的小
さな浮上速度の小さい介在物と衝突して凝集する凝集機
構をいう。すなわち、横長タンディッシュで微小非金属
介在物の分離率が低いのは、浴深が小さいために比較的
大型の非金属介在物が初期に短い経路で浮上してしまう
ため、比較的小さな非金属介在物との衝突頻度が小さく
なり、小さな非金属介在物の粗大化の機会を低く抑えて
しまっている事に起因している。
Similarly, from the water model experiment and the numerical simulation of the reaction of agglomeration / coarsening, when there is no forced convection due to electromagnetic stirring or the like, the agglomeration of non-metallic inclusions in the tundish is mainly due to Stokes agglomeration. I obtained the knowledge that it will occur. Stokes agglomeration refers to an agglomeration mechanism in which, when a relatively large inclusion in molten steel floats at a higher levitation speed, it collides with an inclusion having a relatively small levitation speed and agglomerates. That is, the separation rate of minute non-metallic inclusions in the horizontal tundish is low because the relatively large non-metallic inclusions float up in a short path in the initial stage due to the small bath depth. This is because the frequency of collision with inclusions is reduced, and the chance of coarsening small non-metallic inclusions is kept low.

【0009】この知見から、微小非金属介在物の分離に
対しては、タンディッシュにおいて比較的大きな非金属
介在物が残存する取鍋からの溶鋼の受湯部分に近い領域
で浴深の大きい部分を設けることにより、微小非金属介
在物の凝集を促進できるという考えに至った。
From this finding, for the separation of minute non-metallic inclusions, in the tundish where the relatively large non-metallic inclusions remain, the part near the molten steel receiving part from the ladle where the bath depth is large Therefore, the inventors have come to the idea that the provision of the can promote the aggregation of minute non-metallic inclusions.

【0010】上記構成を有する本発明の非金属介在物の
少ない清浄鋼の製造方法によれば、タンディッシュ受湯
部分の浴深の大きな領域において、通常は除去すること
ができなかった小さな非金属介在物を、ストークス凝集
を利用して粗大化することによって分離除去することが
できる。そのため、取鍋からタンディッシュへ注湯する
連続鋳造において、定常部はもちろん鍋注湯末期や鍋交
換直後においては、モールドへ非金属介在物の少ない清
浄な溶鋼を供給することができる。
According to the method for producing clean steel having less non-metallic inclusions of the present invention having the above-mentioned structure, a small non-metal which cannot be normally removed in a large bath depth region of the tundish receiving portion. The inclusions can be separated and removed by coarsening using Stokes aggregation. Therefore, in continuous casting in which molten metal is poured from the ladle to the tundish, clean molten steel with a small amount of non-metallic inclusions can be supplied to the mold not only in the steady part but also at the end of the pot pouring or immediately after the pan is replaced.

【0011】[0011]

【実施例】図3に本発明による非金属介在物の少ない清
浄鋼を鋳造し得るタンディッシュの構成図の一例を示
す。図3の例では、注入部6の浴深を大きく取ることに
よってストークス凝集による微小介在物の凝集を促進
し、これと直列に浴深の小さい横長部7を設けて、粗大
化した非金属介在物の浮上分離を行っている。図3にお
いて、注入部の浴深(H1)と横長部の長さ(L1)を
図4に示した各種の条件で変化させて介在物の除去率を
実測したところ、図4(a)に示す通り、50μm以下
の介在物の分離率は、L1の変化に関係なく、H1が1
500mm以上でほぼ50%以上の高い値が得られた。こ
れはすなわち、注湯部の浴深を大きくすることによっ
て、微小非金属介在物の凝集が促進されたことを示され
ている。
EXAMPLE FIG. 3 shows an example of a block diagram of a tundish capable of casting a clean steel having less non-metallic inclusions according to the present invention. In the example of FIG. 3, by increasing the bath depth of the injection part 6, the agglomeration of fine inclusions by Stokes agglomeration is promoted, and a horizontally elongated part 7 having a small bath depth is provided in series with this to increase the coarse nonmetallic inclusion. Floating separation of objects. In FIG. 3, when the bath depth (H1) of the injection part and the length (L1) of the laterally long part were changed under various conditions shown in FIG. 4, the removal rate of inclusions was actually measured. As shown, the separation rate of inclusions of 50 μm or less is such that H1 is 1 regardless of changes in L1.
A high value of almost 50% or more was obtained at 500 mm or more. This means that, by increasing the bath depth of the pouring portion, the aggregation of fine non-metallic inclusions was promoted.

【0012】又、図4(b)において100μm以上の
比較的大型の非金属介在物の場合、その分離率は、L1
に依存し、L1が2000mmより小さくなると、H1の
値を1500mmより大きくした場合、分離率が従来の横
長タンディッシュにおける値よりも小さくなっている。
これは、注湯部で凝集・粗大化した微小介在物が、横長
部が短いために完全には浮上分離しきれなかったことに
起因している。よって、図3で示した構成の本発明によ
る非金属介在物の少ない溶鋼を得る清浄鋼の製造方法の
例においても、横長部の長さを大きくすることは、粗大
化した非金属介在物を浮上分離するために必要な要素と
なるが、この代替として、既に開示されている他の粗大
非金属介在物分離技術、例えば、気泡による非金属介在
物分離技術に置き換えても本発明の効果は失われない。
Further, in the case of a relatively large nonmetallic inclusion having a size of 100 μm or more in FIG. 4B, the separation rate is L1.
When L1 is smaller than 2000 mm, the separation rate is smaller than that in the conventional horizontally long tundish when the value of H1 is larger than 1500 mm.
This is because the fine inclusions aggregated and coarsened in the pouring part could not be completely floated and separated because the laterally long part was short. Therefore, also in the example of the method for producing clean steel according to the present invention having the configuration shown in FIG. 3 for obtaining molten steel with less non-metallic inclusions, increasing the length of the laterally elongated portion can reduce coarse non-metallic inclusions. Although it is a necessary element for floating separation, the effect of the present invention can be obtained even if it is replaced with another coarse nonmetallic inclusion separation technology already disclosed, for example, a nonmetallic inclusion separation technology using bubbles as an alternative. Not lost

【0013】[0013]

【発明の効果】以上説明したように、本発明の非金属介
在物の少ない溶鋼を得る清浄鋼の製造方法によれば、電
磁力等の過大な設備増強をすることなく、鋼板の欠陥の
原因となる非金属介在物を効果的に除去することが出
来、定常注入部はもちろん、取鍋末期や鍋交換直後の非
定常部においても安定して高品質な鋼材を製造すること
が出来る。
As described above, according to the method for producing clean steel of the present invention, which obtains molten steel with less non-metallic inclusions, the cause of defects in the steel sheet can be achieved without excessive facility enhancement such as electromagnetic force. It is possible to effectively remove the non-metallic inclusions, which can produce stable and high-quality steel products not only in the steady pouring part, but also in the non-steady part at the end of the ladle or immediately after the pan is replaced.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来型横長タンディッシュの一例を示す図。FIG. 1 is a view showing an example of a conventional horizontal tundish.

【図2】図1の従来型タンディッシュにおける介在物の
分離率をシミュレーション計算により求めた結果を示す
図。
FIG. 2 is a diagram showing a result of a simulation calculation of a separation rate of inclusions in the conventional tundish of FIG.

【図3】本発明による清浄鋼を得るためのタンディッシ
ュの一例を示す図。
FIG. 3 is a diagram showing an example of a tundish for obtaining clean steel according to the present invention.

【図4】タンディッシュ注湯部浴深およびタンディッシ
ュ長さ介在物分離率の関係を示す図。
FIG. 4 is a view showing a relationship between a bath depth of a tundish pouring portion and a tundish length inclusion separation rate.

【符号の説明】[Explanation of symbols]

1 溶鋼 2 注入ノズル 3 耐火物堰 4 従来型横長タンディッシュ 5 流出ノズル 6 注湯部(微小介在物凝集領域) 7 横長部(粗大介在物浮上域) 1 Molten Steel 2 Injection Nozzle 3 Refractory Weir 4 Conventional Horizontal Tundish 5 Outflow Nozzle 6 Pouring Part (Aggregation Area of Small Inclusions) 7 Horizontal Length (Floating Area of Coarse Inclusions)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼の連続鋳造において、取鍋に受けた
溶鋼を、タンディッシュを介して連続鋳造用モールドに
鋳込むに際し、該タンディッシュにおける該溶鋼の受湯
部分の深さを1500mm以上にすることによって、該タ
ンディッシュ内で非金属介在物を凝集させて粗大化し、
浮上分離を促進して、非金属介在物の少ない溶鋼をモー
ルド内に供給することを特徴とする連続鋳造における溶
鋼の鋳込み方法。
1. In continuous casting of molten steel, when the molten steel received in a ladle is cast into a mold for continuous casting through a tundish, the depth of the molten metal receiving portion of the tundish is set to 1500 mm or more. By doing so, the non-metallic inclusions are aggregated and coarsened in the tundish,
A method for casting molten steel in continuous casting, characterized in that the molten steel containing less non-metallic inclusions is supplied into a mold by promoting floating separation.
JP3956596A 1996-02-27 1996-02-27 Molten steel casting method Withdrawn JPH09225603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3956596A JPH09225603A (en) 1996-02-27 1996-02-27 Molten steel casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3956596A JPH09225603A (en) 1996-02-27 1996-02-27 Molten steel casting method

Publications (1)

Publication Number Publication Date
JPH09225603A true JPH09225603A (en) 1997-09-02

Family

ID=12556609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3956596A Withdrawn JPH09225603A (en) 1996-02-27 1996-02-27 Molten steel casting method

Country Status (1)

Country Link
JP (1) JPH09225603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254028A (en) * 2007-04-05 2008-10-23 Nippon Steel Corp Tundish for continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254028A (en) * 2007-04-05 2008-10-23 Nippon Steel Corp Tundish for continuous casting

Similar Documents

Publication Publication Date Title
JP4714539B2 (en) Tundish for continuous casting
JP2006035272A (en) Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP4271551B2 (en) Continuous casting equipment for high cleanliness steel by tundish
JP4220840B2 (en) Method for removing inclusions in tundish and weir used therefor
JPH09225603A (en) Molten steel casting method
JPH09295109A (en) Method for continuously casting clean molten metal
JP3093890B2 (en) Continuous pouring method and apparatus in which mixing of nonmetallic inclusions is suppressed
JP5206584B2 (en) Tundish for continuous casting and continuous casting method
JP4998705B2 (en) Steel continuous casting method
JP3264238B2 (en) Tundish for casting clean steel
JP4448452B2 (en) Steel continuous casting method
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
JP3464856B2 (en) Tundish for continuous casting of high cleanliness steel
JP2000202603A (en) Method for continuously casting molten steel
JP4319072B2 (en) Tundish with excellent inclusion levitation
JPH10328794A (en) Method for removing inclusion in tundish for continuous casting
JP2019018241A (en) Tundish for continuous casting
JP2002079355A (en) Method for continuously casting steel
JP2002205150A (en) Method for continuously casting steel
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2000061596A (en) Method for continuously casting steel
JPS6264461A (en) Device for accelerating flotation of inclusion in molten steel
JPS63157745A (en) Promoting method for removing inclusion in molten steel
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JPH04365809A (en) Device for removing non-metallic inclusion in molten metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506