JPH09224677A - New hs gene and expression plasmid in which the gene is connected to downstream of structural gene coding different kind of genetic product and production of different kind of genetic product with transformant having the expression plasmid - Google Patents

New hs gene and expression plasmid in which the gene is connected to downstream of structural gene coding different kind of genetic product and production of different kind of genetic product with transformant having the expression plasmid

Info

Publication number
JPH09224677A
JPH09224677A JP8053653A JP5365396A JPH09224677A JP H09224677 A JPH09224677 A JP H09224677A JP 8053653 A JP8053653 A JP 8053653A JP 5365396 A JP5365396 A JP 5365396A JP H09224677 A JPH09224677 A JP H09224677A
Authority
JP
Japan
Prior art keywords
gene
base sequence
expression plasmid
seq
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8053653A
Other languages
Japanese (ja)
Other versions
JP3696322B2 (en
Inventor
Akimitsu Tanaka
昭光 田中
Hiroaki Takagi
広明 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Higeta Shoyu Co Ltd
Original Assignee
Higeta Shoyu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Higeta Shoyu Co Ltd filed Critical Higeta Shoyu Co Ltd
Priority to JP05365396A priority Critical patent/JP3696322B2/en
Priority to AU10037/97A priority patent/AU716408B2/en
Publication of JPH09224677A publication Critical patent/JPH09224677A/en
Application granted granted Critical
Publication of JP3696322B2 publication Critical patent/JP3696322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new HS gene having a specific base sequence and a homogeneous base sequence through an arbitrary base sequence and capable of transforming the bacteria of the genus Bacillus to massively secrete and produce various kinds of genetic products outside the cells. SOLUTION: This new HS gene has a base sequence of formula I and a base sequence of formula II homologous to the base sequence of formula I through a sequence comprising an arbitrary 3-20bp base sequence and disposed between both the sequences. The new HS gene can massively secrete and produce various kinds of genetic products outside cells by ligating the HS gene to the downstream of a structural gene coding the genetic products, transforming a Bacillus bacterium with the obtained expression plasmid and subsequently culturing the transformant. The HS gene is obtained by extracting the chromosomal DNA of the Bacillus bacterium, cleaving the DNA with a restriction enzyme, inserting the obtained fragment into a plasmid together with a foreign gene, expressing in host cells, selecting a cell capable of highly secreting and producing the products, and subsequently recovering the DNA placed on the downstream of the foreign gene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、バイオテクノロジ
ーに関するものである。更に詳細には、本発明は、新規
遺伝子及び該遺伝子を異種遺伝子産物をコードする構造
遺伝子の下流に連結した発現プラスミド並びに該プラス
ミドで形質転換したバチルス属細菌を培養することによ
り、異種遺伝子産物を培養物中に生成、蓄積せしめ、こ
れを採取することを特徴とする異種遺伝子産物の製造法
に関する。
TECHNICAL FIELD The present invention relates to biotechnology. More specifically, the present invention provides a novel gene, an expression plasmid in which the gene is linked downstream of a structural gene encoding a heterologous gene product, and a Bacillus bacterium transformed with the plasmid, thereby culturing the heterologous gene product. The present invention relates to a method for producing a heterologous gene product, which comprises producing and accumulating in a culture, and collecting the product.

【0002】[0002]

【従来の技術】現在、組換え体を用いた異種遺伝子産物
の生産は、食品、薬品、化粧品その他の産業において広
く利用されている。そして遺伝子組換えの宿主菌として
は大腸菌や枯草菌などの細菌や酵母、糸状菌などが使用
されている。
2. Description of the Related Art Currently, the production of heterologous gene products using recombinants is widely used in the food, pharmaceutical, cosmetics and other industries. Bacteria such as Escherichia coli and Bacillus subtilis, yeasts, filamentous fungi and the like are used as host bacteria for gene recombination.

【0003】遺伝子組換え技術は大腸菌(Escherichia
coli)の系を中心に発展してきたため、大腸菌が宿主菌
としてよく利用されている。しかし大腸菌を宿主とする
系では、生産されるペプチドや蛋白質などの異種遺伝子
産物は細胞質中または細胞の外膜と細胞質膜に囲まれた
ペリプラズム空間にとどまり、培地中へ分泌生産させる
ことは困難であった。細胞内への異種遺伝子産物の蓄積
には量的に限界があり、さらに菌体を破砕して異種遺伝
子産物を回収しなければならず、菌体内成分である核酸
などの共存物質から目的とする異種遺伝子産物を分離、
精製することが必要であった。また生産されたペプチド
や蛋白質が封入体(inclusion body)を形成するものも
あり、封入体が形成された場合再生操作を行って活性型
にする必要があるなどの欠点があった。
[0003] Gene recombination technology is based on Escherichia
coli) system for which has been developed into a center of, E. coli is often used as a host bacterium. However, in a system using Escherichia coli as a host, the produced heterologous gene products such as peptides and proteins remain in the cytoplasm or in the periplasmic space surrounded by the outer and cytoplasmic membranes of cells, and it is difficult to secrete and produce them in the medium. there were. There is a quantitative limit to the accumulation of heterologous gene products in cells, and it is necessary to crush the cells to recover the heterologous gene product. Isolate heterologous gene products,
It was necessary to purify. In addition, some of the produced peptides and proteins form an inclusion body, and when the inclusion body is formed, there is a drawback that it is necessary to perform a regeneration operation to make it an active form.

【0004】バチルス属細菌には酵素蛋白質を大量に分
泌生産するものが多く、この性質を利用した宿主ベクタ
ー系の開発が活発に行われている。バチルス属細菌、な
かでも枯草菌(Bacillus subtilis)は、遺伝学的にも
生化学的にもよく研究され、異種遺伝子産物の分泌生産
に関する研究も数多くなされている。しかし、枯草菌を
宿主とする系では菌体内外の強いプロテアーゼにより生
産したペプチドや蛋白質などの異種遺伝子産物が分解さ
れてしまうなどの問題があった。
Many Bacillus bacteria secrete and produce enzyme proteins in a large amount, and development of host vector systems utilizing this property is being actively conducted. Bacillus bacteria, especially Bacillus subtilis , are well studied both genetically and biochemically, and many studies have been conducted on secretory production of heterologous gene products. However, in a system using Bacillus subtilis as a host, there is a problem that heterologous gene products such as peptides and proteins produced by strong proteases inside and outside the cells are decomposed.

【0005】これらの欠点を解消するため、鋭意研究を
行ったところ、鵜高らはバチルス・ブレビス(Bacillus
brevis)にはプロテアーゼを生産しない菌株が多いこ
とを見いだした。その1菌株バチルス・ブレビス47
(S. Udaka and H. Yamagata,Methods in Enzymology,
217 23-33(1993))の主要菌体外タンパク質(H. Yamaga
ta et al, J. Bacteriol., 169, 1239(1987) ; 塚越規
弘、日本農芸化学会誌、 61, 68(1987)にそれぞれ“oute
r wall protein and middle wall protein”、“主要菌
体外タンパク質”として記載されている。)遺伝子のプ
ロモーターおよび該主要菌体外タンパク質の1種である
MWタンパク質(middle wall protein)のシグナルペ
プチドをコードする領域を用いて分泌ベクターを作製
し、本菌株を宿主としてα−アミラーゼ(特開昭62−
201583号公報、H. Yamagata etal, J. Bacterio
l., 169, 1239(1987))やブタペプシノーゲン(鵜高重
三、日本農芸化学会昭和62年度大会講演要旨集、p8
37−838;塚越規弘、日本農芸化学会誌、61, 68(1
987))の分泌生産に成功した。
In order to eliminate these drawbacks, diligent research has been conducted.
When I went there, Utaka and his colleagues Bacillus Brevis (Bacillus
 brevis), There are many strains that do not produce protease.
I found out. The 1 strain Bacillus brevis 47
(S. Udaka and H. Yamagata, Methods in Enzymology,
217 23-33 (1993)) major extracellular protein (H. Yamaga
ta et al, J. Bacteriol.,169, 1239 (1987); Nori Tsukakoshi
Hiroshi, Journal of Japan Society for Agricultural Chemistry, 61, 68 (1987) to “oute”
r wall protein and middle wall protein ”,“ major bacteria
Extracorporeal protein ").
Lomotor and one of the major extracellular proteins
MW protein (middle wall protein) signal
Construction of secretion vector using the region encoding peptide
Then, using this strain as a host, α-amylase (Japanese Unexamined Patent Publication No.
201583, H. Yamagata et al, J. Bacterio
l.,169, 1239 (1987)) and Butapepsinogen (Ugatakashige)
Proceedings of the 1987 Annual Meeting of the Japanese Society of Agricultural Chemistry, p8
37-838; Norihiro Tsukakoshi, Journal of the Japanese Society of Agricultural Chemistry,61, 68 (1
987)) was secreted and produced successfully.

【0006】また、高木らはバチルス・ブレビスのプロ
テアーゼを菌体外に生産しない菌株バチルス・ブレビス
HPD31(なお、この菌株はバチルス・ブレビスH1
02(FERM BP−1087)と同一菌株である)
を分離した。そしてこのバチルス・ブレビスHPD31
を宿主として耐熱性α−アミラーゼの高分泌生産(H.Ta
kagi et al, Agric. Biol. Chem., 53, 2279-2280(198
9))や山形らによるヒトEGFの高分泌生産(H. Yamag
ata et al, Proc. Nati. Acad. Sci. USA, 86,3589-359
3(1989))に成功している。
In addition, Takagi et al., A strain Bacillus brevis HPD31 that does not produce Bacillus brevis protease extracellularly (this strain is Bacillus brevis H1
02 (FERM BP-1087).
Separated. And this Bacillus Brevis HPD31
High-secretion production of thermostable α-amylase (H.
kagi et al, Agric. Biol. Chem., 53 , 2279-2280 (198
9)) and high secretory production of human EGF by Yamagata et al. (H. Yamag
ata et al, Proc. Nati. Acad. Sci. USA, 86 , 3589-359
3 (1989)) has been successful.

【0007】[0007]

【発明が解決しようとする課題】上記のように、たしか
にバチルス属細菌、特にバチルス・ブレビスを宿主菌と
する異種遺伝子産物の生産性は、他の宿主菌に比べ飛躍
的に向上してはいるが、バチルス・ブレビスをはじめ、
バチルス属細菌を宿主とする系での異種遺伝子産物生産
のためには、バチルス属細菌で複製可能な発現ベクター
を用い、適合するプロモーター、その下流にはSD配
列、翻訳開始コドンから始まる分泌シグナル配列、その
後に異種遺伝子を接続しなければならない。しかし、こ
のような従来技術では異種遺伝子産物の生産量が非常に
少ない場合も認められ、産業上適用するためにはもう一
段の技術開発が必要とされている。
As described above, the productivity of a heterologous gene product using Bacillus bacterium, particularly Bacillus brevis as a host bacterium is remarkably improved as compared with other host bacterium. However, including Bacillus Brevis,
For production of a heterologous gene product in a system in which a bacterium belonging to the genus Bacillus is used, an expression vector replicable in the bacterium belonging to the genus Bacillus is used, and a suitable promoter, downstream of which is an SD sequence, and a secretion signal sequence starting from a translation initiation codon. , Then the heterologous gene must be connected. However, in such a conventional technique, a case where the production amount of a heterologous gene product is very small is recognized, and further technical development is required for industrial application.

【0008】[0008]

【課題を解決するための手段】本発明者らは、このよう
な技術の現状に鑑み、バチルス属細菌が蛋白質を菌体外
に分泌生産するというすぐれた技術に着目し、そして更
にその生産性を高めて実験室規模から工業生産規模へと
レベルアップする目的で、バチルス・ブレビスの分泌生
産性を向上させることができる遺伝子の存在について鋭
意検討を行った。そして先ず、本発明者らは、バチルス
・ブレビスによるヒト唾液腺アミラーゼの分泌生産を検
討中、ヒト唾液腺アミラーゼをコードする構造遺伝子を
保有するプラスミドpTS7(H. Konishi, Appl. Micr
obiol. Biotechnol., 34, 297-302(1990))を1ケ所で
切断する制限酵素で切断後、同酵素で切断したバチルス
・ブレビス染色体断片と連結したプラスミドで形質転換
した50000株のバチルス・ブレビスの中から、ヒト唾液
腺アミラーゼの生産量が著しく多い株を見出した。
In view of the current state of the art, the present inventors have paid attention to an excellent technology in which a Bacillus bacterium secretes and produces a protein extracellularly, and further its productivity. For the purpose of improving the secretory productivity of Bacillus brevis with the aim of improving the production rate from the laboratory scale to the industrial production scale, the present inventors have conducted extensive studies on the existence of a gene. Firstly, the present inventors are investigating the secretory production of human salivary gland amylase by Bacillus brevis, and are carrying out plasmid pTS7 (H. Konishi, Appl. Micr) carrying a structural gene encoding human salivary gland amylase.
obiol. Biotechnol., 34 , 297-302 (1990)) was digested with a restriction enzyme that cuts at one site, and then transformed with a plasmid ligated with a Bacillus brevis chromosome fragment digested with the same enzyme. Among them, a strain which produced a remarkably large amount of human salivary gland amylase was found.

【0009】この形質転換体からプラスミドを抽出し、
遺伝子解析を行ったところ、ヒト唾液腺アミラーゼをコ
ードする構造遺伝子の下流に約150bpの遺伝子が挿
入されていることが分かった。そこでさらに本遺伝子を
取り出して塩基配列を決定し、構造解析を行ったとこ
ろ、本遺伝子には15bpの塩基対から成る配列を介し
てお互いが相補性を有する配列が存在し、mRNAに転
写された際ステム・ループ構造をとると思われた。
A plasmid was extracted from this transformant,
Genetic analysis revealed that a gene of about 150 bp was inserted downstream of the structural gene encoding human salivary gland amylase. Therefore, when this gene was further extracted and the nucleotide sequence was determined and structural analysis was performed, there was a sequence in which this gene had complementarity with each other via a sequence consisting of 15 bp base pairs, and was transcribed into mRNA. It seemed to have a distinct stem-loop structure.

【0010】そこで本遺伝子をヒト唾液腺アミラーゼ以
外の異種遺伝子産物をコードする構造遺伝子の下流に連
結し、宿主菌に組み込んで該異種遺伝子産物を生産させ
たところ、異種遺伝子産物の生産量が増加することが分
かった。さらに、詳しく検討したところ、異種遺伝子産
物の生産量を増加させるには、3〜20bpの任意の塩
基対からなる配列を介して、お互いが相補性を有する配
列番号1と配列番号2の配列があればよい、という有用
な知見を新たに得た。本発明は、これらの有用新知見に
基づき更に研究の結果、遂に完成されたものである。
Therefore, when this gene is ligated downstream of a structural gene encoding a heterologous gene product other than human salivary gland amylase and incorporated into a host bacterium to produce the heterologous gene product, the production amount of the heterologous gene product increases. I found out. Furthermore, as a result of detailed examination, in order to increase the production amount of the heterologous gene product, the sequences of SEQ ID NO: 1 and SEQ ID NO: 2 which have complementarity with each other are inserted through a sequence consisting of arbitrary base pairs of 3 to 20 bp. I have gained new useful knowledge that it is all right. The present invention was finally completed as a result of further research based on these useful new findings.

【0011】なお、以後、この3〜20bpの任意の塩
基対からなる配列を介して、お互いが相補性を示す配列
表の配列番号1(下記表1)と配列番号2(下記表2)
の配列を有する遺伝子をHS遺伝子と称する。
[0011] In the following, SEQ ID NO: 1 (Table 1 below) and SEQ ID NO: 2 (Table 2 below) in the sequence listing showing complementarity with each other through the sequence consisting of any base pair of 3 to 20 bp.
The gene having the sequence of is referred to as HS gene.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】すなわち本発明は、新規HS遺伝子及び該
HS遺伝子を異種遺伝子産物をコードする構造遺伝子の
下流に連結した発現プラスミド並びに該プラスミドで形
質転換したバチルス属細菌を培養することにより、異種
遺伝子産物を培養物中に生成、蓄積せしめ、これを採取
することを特徴とする異種遺伝子産物の製造法に関す
る。以下、本発明について詳しく説明する。
That is, the present invention provides a novel HS gene, an expression plasmid in which the HS gene is linked downstream of a structural gene encoding a heterologous gene product, and a Bacillus bacterium transformed with the plasmid, thereby culturing the heterologous gene product. The present invention relates to a method for producing a heterologous gene product, which comprises producing and accumulating in a culture, and collecting this. Hereinafter, the present invention will be described in detail.

【0015】[0015]

【発明の実施の形態】本発明のHS遺伝子は、3〜20
bpの任意の塩基対から成る配列を介してお互いが相補
性を有する配列番号1と配列番号2の配列を有する遺伝
子であり、この相補性を有する配列を介する3〜20b
pの配列は、アデニン、グアニン、シトシン、チミンか
ら選ばれる任意の塩基配列であればよい。具体的には1
5bpの塩基対を介して配列番号1と配列番号2の配列
が連結された配列番号3(下記表3)の遺伝子などが挙
げられる。また異種遺伝子産物の生産にはHS遺伝子の
ほかにHS遺伝子の5′末端や3′末端に塩基対が付加
された遺伝子も用いることもできる。具体的には配列番
号3で示されるHS遺伝子の5′末端に86bp、3′
末端に24bpの塩基対が付加された配列番号4(下記
表4)で示される遺伝子などを用いることが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION The HS gene of the present invention comprises 3 to 20 genes.
It is a gene having the sequences of SEQ ID NO: 1 and SEQ ID NO: 2 which are complementary to each other via a sequence consisting of any base pair of bp, and 3 to 20b via this complementary sequence.
The sequence of p may be any base sequence selected from adenine, guanine, cytosine and thymine. Specifically 1
Examples include the gene of SEQ ID NO: 3 (Table 3 below) in which the sequences of SEQ ID NO: 1 and SEQ ID NO: 2 are linked via a 5 bp base pair. In addition to the HS gene, a gene in which a base pair is added to the 5'end or 3'end of the HS gene can also be used for production of a heterologous gene product. Specifically, 86 bp at the 5'end of the HS gene shown in SEQ ID NO: 3 and 3 '
The gene shown in SEQ ID NO: 4 (Table 4 below) having a base pair of 24 bp added to the end can be used.

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】HS遺伝子は、目的異種遺伝子産物をコー
ドする構造遺伝子の下流に連結する。この場合、構造遺
伝子に直結してもよいが、上記の配列番号4で示される
遺伝子のように数〜数十bpの塩基対を介して連結して
もよい。
The HS gene is linked downstream of the structural gene encoding the desired heterologous gene product. In this case, it may be directly linked to the structural gene, or may be linked via a base pair of several to several tens of bp like the gene shown in SEQ ID NO: 4 above.

【0019】本発明で分泌生産する異種遺伝子産物は真
核、原核何れの生物由来の遺伝子でもよく、ヒト、動
物、鳥類、魚類、微生物その他各種生物由来の遺伝子産
物(酵素、ホルモン、インターフェロン、免疫グロブリ
ン、その他生理活性ペプチド、蛋白質など)の生産に適
用できる。例えばヒト上皮細胞増殖因子(hEGF)な
どの遺伝子産物の生産に適用できる。
The heterologous gene product secreted and produced in the present invention may be a gene derived from any eukaryotic or prokaryotic organism, and gene products derived from humans, animals, birds, fish, microorganisms and various other organisms (enzymes, hormones, interferons, immunity). Globulin, other bioactive peptides, proteins, etc.). For example, it can be applied to the production of gene products such as human epidermal growth factor (hEGF).

【0020】本発明で分泌生産する異種遺伝子産物をコ
ードする構造遺伝子とその下流に連結した本発明のHS
遺伝子を宿主菌内に導入、保持させるベクターは、宿主
内で複製可能なプラスミドを利用することができる。例
えば枯草菌(バチルス・ズブチリス)の系ではpUB1
10やそれらの派生体が使用でき、バチルス・ブレビス
を宿主とする系では、pNU200(鵜高重三、日本農
芸化学会誌、61、669(1987))、pHY700(S. Ebisu
et al, Biosci. Biotech. Biochem., 56, 812-813(199
2))、pHT110(特開平6−133782)やこれ
らの派生体などのプラスミドを使用できる。
The structural gene encoding the heterologous gene product secreted and produced by the present invention and the HS of the present invention linked downstream thereof
As a vector for introducing and retaining the gene in the host bacterium, a plasmid that can be replicated in the host can be used. For example, in the Bacillus subtilis system, pUB1
10 and their derivatives can be used, and in the system using Bacillus brevis as a host, pNU200 (Ushige Shigezo, Journal of the Japan Society for Agricultural Chemistry, 61 , 669 (1987)), pHY700 (S. Ebisu
et al, Biosci. Biotech. Biochem., 56 , 812-813 (199
2)), pHT110 (Japanese Patent Laid-Open No. 6-133782) and plasmids such as derivatives thereof can be used.

【0021】これらのプラスミドを構築する方法として
は、公知の方法が適宜用いられ、例えばモレキュラー・
クローニング、ア・ラボラトリーマニュアル第2版、コ
ールド・スプリング・ハーバー・ラボラトリー(Molecu
lar Cloning 2nd ed., A Laboratory Manual, Cold Spr
ing Harbor Laboratory, 1989)に記載の方法などが例
示される。
As a method for constructing these plasmids, known methods are appropriately used.
Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory (Molecu
lar Cloning 2nd ed., A Laboratory Manual, Cold Spr
ing Harbor Laboratory, 1989) and the like.

【0022】本発明において宿主菌として用いる細菌
は、バチルス属に属する細菌であればよいが、枯草菌や
バチルス・ブレビス、バチルス・チョーシネンシス(Ba
cilluschoshinensis)などが好適に使用できる宿主菌を
形質転換する方法は公知の方法で良く、例えば、Takaha
shiらの方法(Takahashi et al, J. Bacteriol., 156,
1130(1983))またはTakagiらの方法(H. Takagi et al,
Agric. Biol. Chem., 53, 3099-3100(1989))などが例
示される。
The bacterium used as a host bacterium in the present invention may be any bacterium belonging to the genus Bacillus, but Bacillus subtilis, Bacillus brevis, Bacillus choshinensis ( Ba
Cillus choshinensis ) and the like can be suitably used for transforming a host bacterium by a known method, for example, Takaha
Shi's method (Takahashi et al, J. Bacteriol., 156 ,
1130 (1983)) or the method of Takagi et al. (H. Takagi et al,
Agric. Biol. Chem., 53 , 3099-3100 (1989)) and the like.

【0023】得られた形質転換体の培養に用いる培地
は、形質転換体が生育して目的とする異種遺伝子産物を
生産しうるものであれば如何なるものでもよい。該培地
に含有される炭素源としては、例えばグルコース、シュ
ークロース、グリセロール、澱粉、デキストリン、糖
蜜、尿素、有機酸などが用いられる。また窒素源として
は、カゼイン、ポリペプトン、肉エキス、酵母エキス、
カザミノ酸、グリシンなどの有機窒素源、硫酸アンモニ
ウムなどの無機窒素源などが用いられる。その他、塩化
カリウム、リン酸一カリウム、リン酸二カリウム、塩化
ナトリウム、硫酸マグネシウムなどの無機塩が必要に応
じて培地に加えられる。栄養要求性を示す菌はその生育
に必要な栄養物質を培地に添加すればよい。該栄養物質
としては、アミノ酸類、ビタミン類、核酸などが挙げら
れる。
The medium used for culturing the obtained transformant may be any medium as long as the transformant can grow and produce the desired heterologous gene product. Examples of carbon sources contained in the medium include glucose, sucrose, glycerol, starch, dextrin, molasses, urea, organic acids and the like. As the nitrogen source, casein, polypeptone, meat extract, yeast extract,
Organic nitrogen sources such as casamino acid and glycine, inorganic nitrogen sources such as ammonium sulfate, etc. are used. In addition, inorganic salts such as potassium chloride, monopotassium phosphate, dipotassium phosphate, sodium chloride, and magnesium sulfate are added to the medium as needed. For auxotrophic bacteria, nutrient substances necessary for their growth may be added to the medium. Examples of the nutritional substance include amino acids, vitamins, nucleic acids and the like.

【0024】また、培養に際して必要があれば、培地に
抗生物質例えばペニシリン、エリスロマイシン、クロラ
ムフェニコール、バシトラシン、D−サイクロセリン、
アンピシリン、ネオマイシンなどを加える。更に必要に
より、消泡剤例えば大豆油、ラード油、各種界面活性剤
などを加えてもよい。培地の初発pHは5.0〜9.
0、さらに好ましくは6.5〜7.5である。培養温度
は通常15℃〜42℃、さらに好ましくは24℃〜37
℃であり、培養時間は通常16〜166時間、さらに好
ましくは24〜96時間である。
If necessary for the culture, antibiotics such as penicillin, erythromycin, chloramphenicol, bacitracin, D-cycloserine, may be added to the medium.
Add ampicillin, neomycin, etc. Further, if necessary, a defoaming agent such as soybean oil, lard oil, and various surfactants may be added. The initial pH of the medium is 5.0-9.
0, and more preferably 6.5 to 7.5. The culture temperature is usually 15 ° C to 42 ° C, more preferably 24 ° C to 37 ° C.
C., and the culture time is usually 16 to 166 hours, more preferably 24 to 96 hours.

【0025】本発明で、形質転換体を前記の条件で培養
することによって、培養物中に異種遺伝子産物が生成、
蓄積される。このようにして得られた異種遺伝子産物は
公知の方法により、例えば膜処理、硫安分画法、クロマ
トグラフィーなど(蛋白質・核酸の基礎実験法、南江
堂、(1985))で精製することができる。本発明では、H
S遺伝子を目的とする異種遺伝子産物をコードする構造
遺伝子の下流に連結することによって様々な異種遺伝子
産物を高レベルで安定して生産することが可能となっ
た。
In the present invention, a heterologous gene product is produced in the culture by culturing the transformant under the above conditions,
Stored. The heterologous gene product thus obtained can be purified by known methods, for example, by membrane treatment, ammonium sulfate fractionation method, chromatography and the like (basic experimental method for proteins and nucleic acids, Nankodo, (1985)). In the present invention, H
By linking the S gene to the downstream of the structural gene encoding the desired heterologous gene product, various heterologous gene products can be stably produced at a high level.

【0026】以下本発明を実施例により更に詳しく説明
するが、これは例示的なものであり、本発明はこれに限
定されるものではない。
The present invention will be described in more detail with reference to the following examples, which are merely illustrative and the present invention is not limited thereto.

【0027】[0027]

【実施例1】 HS遺伝子を含む遺伝子(HS′遺伝子)のクロー
ニング及びその解析バチルス・ブレビス HPD31
(FERM BP−1087)の染色体DNAをSaito,
Miuraの方法(Saito, H. and Miura, K., Biochem. Bi
ophys. Acta., 72, 639(1964))により抽出した後、制
限酵素HindIIIで消化し断片化した。次にヒト唾液
腺アミラーゼをコードする構造遺伝子を有するプラスミ
ドpTS7(H. Konishi, Appl. Microbiol. Biotechno
l., 34, 297-302(1990))をHindIIIで処理し、更に
アルカリフォスファターゼで5′末端を脱リン酸化した
後、0.8%ハイアガロースゲル電気泳動に供し、6.
1kbのDNA断片をGene clean(Bio 101, USA)を用
いて回収、先に断片化した染色体DNAとT4リガーゼ
を用いて連結し、プラスミドpTS7HSを得た。
Example 1 Cloning and Analysis of Gene Containing HS Gene (HS 'Gene) Bacillus brevis HPD31
The chromosomal DNA of (FERM BP-1087) was designated Saito,
Miura's method (Saito, H. and Miura, K., Biochem. Bi
Ophys. Acta., 72 , 639 (1964)) and then digested with the restriction enzyme HindIII to fragment. Next, a plasmid pTS7 (H. Konishi, Appl. Microbiol. Biotechno) having a structural gene encoding human salivary gland amylase
l., 34 , 297-302 (1990)) was treated with HindIII, and the 5'end was dephosphorylated with alkaline phosphatase, and then subjected to 0.8% hyagarose gel electrophoresis, and 6.
The 1 kb DNA fragment was recovered using Gene clean (Bio 101, USA) and ligated with the previously fragmented chromosomal DNA using T4 ligase to obtain plasmid pTS7HS.

【0028】得られたプラスミドpTS7HSでバチル
ス・ブレビス HPD31をエレクトロポレーション法
(H. Takagi et al, Agric. Biol. Chem., 53, 3099-31
00(1989))によって形質転換した。形質転換体からのヒ
ト唾液腺アミラーゼの高分泌生産株の選択は1.0%澱
粉を含むT2プレート培地(澱粉1%、ペプトン1%、
肉エキス0.5%、酵母エキス0.2%、グルコース1
%、寒天1.5%、pH7.0)に培養後0.2%I2
−KI溶液を噴霧し、コロニーの周りが透明になるかど
うか(澱粉が分解された際生じるハロ)を確認して行っ
た。
Bacillus brevis HPD31 was electroporated with the obtained plasmid pTS7HS (H. Takagi et al, Agric. Biol. Chem., 53 , 3099-31).
00 (1989)). The selection of the highly secreted human salivary amylase-producing strain from the transformant was carried out by using T2 plate medium containing 1.0% starch (starch 1%, peptone 1%,
Meat extract 0.5%, yeast extract 0.2%, glucose 1
%, Agar 1.5%, pH 7.0) and 0.2% I 2 after culturing
-The KI solution was sprayed, and it was confirmed whether or not the periphery of the colony became transparent (halo generated when the starch was decomposed).

【0029】その結果約50000個のハロを生じるコ
ロニーを得、その中からプラスミドpTS7を保有する
バチルス・ブレビスHPD31株(pTS7株)の2倍
以上の大きさのハロを形成する株を見い出し、その株を
HS株とした。
As a result, colonies producing about 50,000 halos were obtained, from which a strain forming a halo having a size twice or more that of the Bacillus brevis HPD31 strain (pTS7 strain) carrying the plasmid pTS7 was found. The strain was designated as HS strain.

【0030】ここで得られたHS株とpTS7株をT2
Em液体培地にそれぞれ接種し、30℃で2日間振とう
培養した後、培養上清中に含まれるヒト唾液腺アミラー
ゼ量を可溶性澱粉を基質としたSaitoの方法(Saito et
al, Agric. Biol. Chem., 155, 290(1973))でアミラー
ゼ活性を測定し求めた。その結果、下記の表13に示さ
れる表Aに示す様にHS株はpTS7株の約8倍量のヒ
ト唾液腺アミラーゼを生産していた。
The HS strain and the pTS7 strain obtained here were treated with T2.
After inoculating each to Em liquid medium and culturing with shaking at 30 ° C. for 2 days, the amount of human salivary gland amylase contained in the culture supernatant was determined by the method of Saito using soluble starch as a substrate (Saito et al.
al, Agric. Biol. Chem., 155 , 290 (1973)), and amylase activity was measured and determined. As a result, as shown in Table A shown in Table 13 below, the HS strain produced about 8 times as much human salivary amylase as the pTS7 strain.

【0031】[0031]

【表13】 [Table 13]

【0032】HS株よりアルカリ抽出法(Birnoboim.
H. C. and Doly J., Nucleic AcidsRes., 7, 1513(197
9))でプラスミドpTS7HSを抽出し、HindIII
で切断後5%アクリルアミドゲル電気泳動に供した。そ
の結果、pTS7HSにはプラスミドpTS7のHin
dIIIサイトに約150bpの遺伝子が挿入されている
ことが確認された。
Alkali extraction method from HS strain (Birnoboim.
HC and Doly J., Nucleic AcidsRes., 7 , 1513 (197
The plasmid pTS7HS was extracted with 9)) and HindIII
After cutting with, the sample was subjected to 5% acrylamide gel electrophoresis. As a result, pTS7HS contained Hin of plasmid pTS7.
It was confirmed that a gene of about 150 bp was inserted at the dIII site.

【0033】ここで得られた遺伝子の塩基配列を解析し
たところ、配列番号4で示す157塩基対から成る遺伝
子であることが分かった。またこの配列を基に構造解析
を行った結果、5′末端から数えて87番目から102
番目及び118番目から133番目までの2つの領域
は、RNAに転写された際ステム構造をとると思われる
相補性を有する配列(パリンドローム構造)が存在して
いた。また、この配列には配列番号4に示すアミノ酸配
列からなる蛋白質をコードするオープンリーディングフ
レームが存在した。この157塩基対から成る遺伝子を
HS′遺伝子とした。
Analysis of the base sequence of the gene thus obtained revealed that the gene has 157 base pairs shown in SEQ ID NO: 4. Also, as a result of structural analysis based on this sequence, from the 87th position to the 102nd position counted from the 5'end.
The 2nd region from the 1st position to the 118th position to the 133rd position had a sequence having a complementarity (palindromic structure) which seems to have a stem structure when transcribed into RNA. In addition, an open reading frame encoding a protein having the amino acid sequence shown in SEQ ID NO: 4 was present in this sequence. The gene consisting of 157 base pairs was designated as HS 'gene.

【0034】HS′遺伝子を用いたhEGFの分泌生
産 プラスミドpTS7HS上のHS′遺伝子を下記の表5
に示される配列番号5のPrimer HSM1と下記
の表6に示される配列番号6のPrimerHSRVを
用いてPCR法にて増幅した(Primer HSM1
によりHS′遺伝子の5′側のHindIIIサイトはB
amHIサイトに変換される。本遺伝子をHS′Bとし
た。)。増幅したHS′B遺伝子をBamHI、Hin
dIIIで処理し、5%アクリルアミドゲル電気泳動に供
し、HS′B遺伝子断片を電気溶出法(Molecular Clon
ing 2nd ed., A Laboratory Manual, Cold Spring Harb
or Laboratory, 1989)にて回収した。
Secretion production of hEGF using the HS 'gene The HS' gene on the plasmid pTS7HS is shown in Table 5 below.
SEQ ID NO: 5 shown in SEQ ID NO: 5 and Primer HSRV of SEQ ID NO: 6 shown in Table 6 below were used to amplify by PCR (Primer HSM1).
As a result, the HindIII site on the 5'side of the HS 'gene is B
Converted to amHI site. This gene was designated as HS'B. ). The amplified HS'B gene was replaced with BamHI, Hin
treated with dIII and subjected to 5% acrylamide gel electrophoresis, and the HS'B gene fragment was electroeluted (Molecular Clon).
ing 2nd ed., A Laboratory Manual, Cold Spring Harb
or Laboratory, 1989).

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】次いで、バチルス・ブレビス HP926
(FERM BP−5382)が保有するプラスミドp
HT926より調製したプラスミドpHT110EGF
(特開平6-133782)をBamHIとHindIIIで処理
し、0.8%アガロースゲル電気泳動に供し、3.5k
bの断片をGene clean(Bio 101, USA)を用いて回収
後、先に得たHS′B遺伝子断片とT4リガーゼを用い
て連結しプラスミドpHT110EGF−HS′Bを得
た。バチルス・ブレビス HPD31への導入は、と
同様の方法で行い、pHT110EGF−HS′Bを保
有するバチルス・ブレビス HPD31/pHT110
EGF−HS′B株を得た。
Next, Bacillus brevis HP926
The plasmid p carried by (FERM BP-5382)
Plasmid pHT110EGF prepared from HT926
(JP-A-6-133782) was treated with BamHI and HindIII, subjected to 0.8% agarose gel electrophoresis, and then subjected to 3.5 k
The fragment of b was recovered using Gene clean (Bio 101, USA) and ligated with the previously obtained HS'B gene fragment using T4 ligase to obtain a plasmid pHT110EGF-HS'B. Bacillus brevis HPD31 / pHT110 carrying pHT110EGF-HS'B was introduced into Bacillus brevis HPD31 in the same manner as in.
An EGF-HS'B strain was obtained.

【0038】ここで得たバチルス・ブレビス HPD3
1/pHT110EGF−HS′Bを2SLE液体培地
(ペプトン4%、酵母エキス0.5%、グルコース2
%、MgSO4 0.01%、FeSO4 0.001
%、MnSO4 0.001%、ZnSO4 0.000
1%、エリスロマイシン10μg/ml、pH7.2)
を3ml分注した試験管に植菌し、30℃で3日間振と
う培養後、その培養上清中のhEGF量をHPLC(カ
ラム:C18−100A、径4mm×長さ250mm、
バッファー:0.1%TFA/H2O、0.1%TFA
/50%アセトニトリル、リニアグラジエント、検出:
UV276nm)で分析し、市販EGF(フナコシ
(株)社製)を標準品として同条件でHPLCを行った
時のピーク面積と比較して生産量を求めた。その結果、
下記の表14に示される表Bに示すようにバチルス・ブ
レビス HPD31/pHT110EGF−HS′Bは
バチルス・ブレビス HPD31/pHT110EGF
の約1.4倍量のhEGFを生産していた。
Bacillus brevis HPD3 obtained here
1 / pHT110EGF-HS'B in 2SLE liquid medium (peptone 4%, yeast extract 0.5%, glucose 2
%, MgSO 4 0.01%, FeSO 4 0.001
%, MnSO 4 0.001%, ZnSO 4 0.000
1%, erythromycin 10 μg / ml, pH 7.2)
Was inoculated into a test tube into which 3 ml was dispensed, and after shaking culture at 30 ° C. for 3 days, the amount of hEGF in the culture supernatant was measured by HPLC (column: C18-100A, diameter 4 mm × length 250 mm,
Buffer: 0.1% TFA / H 2 O, 0.1% TFA
/ 50% acetonitrile, linear gradient, detection:
UV276 nm) was used for analysis, and the amount of production was determined by comparison with the peak area when HPLC was performed under the same conditions using commercially available EGF (manufactured by Funakoshi Co., Ltd.) as a standard product. as a result,
Bacillus brevis HPD31 / pHT110EGF-HS'B is Bacillus brevis HPD31 / pHT110EGF as shown in Table B shown in Table 14 below.
It produced about 1.4 times the amount of hEGF.

【0039】[0039]

【表14】 [Table 14]

【0040】[0040]

【実施例2:HS′遺伝子の構造が異種遺伝子産物生産
に与える影響】配列番号6のPrimer HSRVと
下記表7に示される配列番号7のPrimer HSS
を用いて、PCRにて変異HS′遺伝子HSSを作製し
た。同様に配列番号6のPrimer HSRVと下記
の表8に示される配列番号8のPrimer HSFS
を用いて変異HS′遺伝子HSFS、配列番号6のPr
imer HSRVと下記の表9に示される配列番号9
のPrimer HS3を用いて変異HS′遺伝子HS
3、配列番号6のPrimer HSRVと下記の表1
0に示される配列番号10のPrimer HS20を
用いて変異HS′遺伝子HS20を作製した。
[Example 2: Effect of structure of HS 'gene on production of heterologous gene product] Primer HSRV of SEQ ID NO: 6 and Primer HSS of SEQ ID NO: 7 shown in Table 7 below
Was used to prepare a mutant HS 'gene HSS by PCR. Similarly, Primer HSRV of SEQ ID NO: 6 and Primer HSFS of SEQ ID NO: 8 shown in Table 8 below.
Using the mutant HS 'gene HSFS, Pr of SEQ ID NO: 6
imager HSRV and SEQ ID NO: 9 shown in Table 9 below.
HS 'gene HS using Primer HS3 of
3, Primer HSRV of SEQ ID NO: 6 and Table 1 below
The mutant HS ′ gene HS20 was prepared using Primer HS20 of SEQ ID NO: 10 shown in 0.

【0041】[0041]

【表7】 [Table 7]

【0042】[0042]

【表8】 [Table 8]

【0043】[0043]

【表9】 [Table 9]

【0044】[0044]

【表10】 [Table 10]

【0045】HSSは、5′末端から配列番号1のHS
までが10bpであり、配列番号4のHS′遺伝子より
も76bp短くなっている。HSFSはフレームシフト
によってHS′遺伝子がコードする27のアミノ酸から
なる蛋白質は翻訳されない。HS3、HS20は、RN
Aに転写された際、ステム・ループのループがそれぞれ
3bp、20bp(配列番号4のHS′遺伝子は15b
p)となっている。
HSS is the HS of SEQ ID NO: 1 from the 5'end.
Up to 10 bp, which is 76 bp shorter than the HS 'gene of SEQ ID NO: 4. In HSFS, a protein consisting of 27 amino acids encoded by the HS 'gene is not translated due to frame shift. HS3 and HS20 are RN
When transcribed into A, the stem loop loops are 3 bp and 20 bp, respectively (the HS 'gene of SEQ ID NO: 4 is 15 bp).
p).

【0046】作製した4種の変異HS′遺伝子をそれぞ
れHindIIIとBamHIで切断後、5%アクリルア
ミドゲル電気泳動に供し、電気溶出法にて変異HS′遺
伝子をそれぞれ回収した。得られた断片を実施例1と同
様の方法にてプラスミドpHT110EGFに挿入し、
pHT110EGF−HSS,pHT110EGF−H
SFS,pHT110EGF−HS3,pHT110E
GF−HS20を構築した。
The four kinds of mutant HS 'genes thus prepared were cleaved with HindIII and BamHI, respectively, subjected to 5% acrylamide gel electrophoresis, and the mutant HS' genes were recovered by electroelution. The obtained fragment was inserted into the plasmid pHT110EGF in the same manner as in Example 1,
pHT110EGF-HSS, pHT110EGF-H
SFS, pHT110EGF-HS3, pHT110E
GF-HS20 was constructed.

【0047】各々のプラスミドでバチルス・ブレビス
HPD31を形質転換し、実施例1と同様の方法で培養
し、培養上清中のhEGF量を測定した。その結果を表
Bに示すが、ここで作製した4種の変異HS′遺伝子
は、配列番号4のHS′遺伝子を使用したときと同程度
のhEGFを生産していた。このことから、異種遺伝子
産物の分泌生産性の向上は、27アミノ酸残基よりなる
ペプチドが影響を与えるのではなく、HS′遺伝子上の
パリンドローム構造が重要であると考えられ、また、H
S′遺伝子がmRNAに転写された際のステム・ループ
のループとなる部分は3〜20bpであればよいことが
分かった。
Bacillus brevis with each plasmid
HPD31 was transformed and cultured in the same manner as in Example 1, and the amount of hEGF in the culture supernatant was measured. The results are shown in Table B. The four mutant HS 'genes produced here produced about the same amount of hEGF as when the HS' gene of SEQ ID NO: 4 was used. From this, it is considered that the improvement of the secretory productivity of the heterologous gene product is not affected by the peptide consisting of 27 amino acid residues, but that the palindromic structure on the HS 'gene is important.
It was found that the loop-forming portion of the stem loop when the S ′ gene was transcribed into mRNA was 3 to 20 bp.

【0048】[0048]

【実施例3:HS遺伝子(HS′遺伝子のパリンドロー
ム構造領域)の異種遺伝子産物生産に与える影響】実施
例2の検討結果から、異種遺伝子産物の分泌生産向上に
は、HS′遺伝子のパリンドローム構造が重要であると
考えられた。そこでHS′遺伝子のパリンドローム構造
領域のみ(配列番号3)をpHT110EGFのhEG
F遺伝子の下流に挿入し、hEGF生産性を確認した。
[Example 3: Effect of HS gene (palindromic structural region of HS 'gene) on production of heterologous gene product] From the results of the examination of Example 2, the palindrome of HS' gene is shown to be improved in secretory production of a heterologous gene product. The structure was considered important. Therefore, only the palindromic structural region of the HS 'gene (SEQ ID NO: 3) was added to hT of pHT110EGF.
It was inserted downstream of the F gene to confirm hEGF productivity.

【0049】下記の表11に示される配列番号11のP
rimer STEMと下記の表12に示される配列番
号12のPrimer STEMRVを用い、HS′遺
伝子上のパリンドローム構造領域(HS遺伝子)を増幅
した。得られたHS遺伝子をPstIで処理後T4DN
Aポリメラーゼを反応させてHS遺伝子断片を平滑化
し、10%アクリルアミドゲルに供し、約60bpの断
片を回収した。次いでpHT110EGFをBamH
I、HindIIIで処理後、T4DNAポリメラーゼに
て平滑化し、アルカリフォスファターゼで処理後、アガ
ロースゲル電気泳動に供し、3.5kbの断片をGene c
leanを用いて回収、先に得たHS遺伝子とT4リガーゼ
を用いて連結し、プラスミドpHT110EGF−HS
を構築した。バチルス・ブレビスへの導入は実施例1と
同様の方法にて行い、また挿入されたHS遺伝子の方向
性はDNAシークエンスを行い確認した。
P of SEQ ID NO: 11 shown in Table 11 below
The palindromic structural region (HS gene) on the HS ′ gene was amplified using the primer STEM and Primer STEMRV of SEQ ID NO: 12 shown in Table 12 below. The obtained HS gene was treated with PstI to give T4DN.
The HS gene fragment was blunted by reacting with A polymerase and subjected to 10% acrylamide gel to recover a fragment of about 60 bp. Then pHT110EGF was added to BamH
After treatment with I and HindIII, blunting with T4 DNA polymerase, treatment with alkaline phosphatase and subjecting to agarose gel electrophoresis, the 3.5 kb fragment was cleaved with Gene c.
Recovered using lean, ligated with the previously obtained HS gene using T4 ligase, and plasmid pHT110EGF-HS
Was built. The introduction into Bacillus brevis was performed by the same method as in Example 1, and the orientation of the inserted HS gene was confirmed by DNA sequencing.

【0050】[0050]

【表11】 [Table 11]

【0051】[0051]

【表12】 [Table 12]

【0052】得られた形質転換体を実施例1と同様の方
法で培養し、hEGF生産量を測定した結果、表Bに示
すようにpHT110EGF−HSはpHT110EG
F−HS′と同程度、またpHT110EGFに比べ、
1.3倍量のhEGFを生産していた。
The resulting transformants were cultured in the same manner as in Example 1 and the hEGF production was measured. As a result, as shown in Table B, pHT110EGF-HS was pHT110EG.
Similar to F-HS 'and compared to pHT110EGF
It produced 1.3 times the amount of hEGF.

【0053】[0053]

【発明の効果】本発明により、新規HS遺伝子が新たに
開発された。この新規HS遺伝子は、異種遺伝子産物を
コードする構造遺伝子の下流に連結することができ、こ
のようにして調製した新規発現プラスミドは、これを用
いてバチルス属細菌を形質転換し、得られた形質転換体
を培養することによって、各種の異種遺伝子産物を大量
にしかも菌体外に分泌生産せしめることができる。
Industrial Applicability According to the present invention, a novel HS gene has been newly developed. This novel HS gene can be ligated downstream of a structural gene encoding a heterologous gene product, and the novel expression plasmid thus prepared is used to transform Bacillus bacteria to obtain the trait obtained. By culturing the transformant, various heterologous gene products can be secreted and produced extracellularly in a large amount.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 1/21 C12R 1:08) (54)【発明の名称】 新規HS遺伝子及び該遺伝子を異種遺伝子 産物をコードする構造 遺伝子の下流に連結 した発現プラスミド並びに該発現プラスミ ドを保有する形質転換体を用いた異種遺伝 子産物の製造法─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location (C12N 1/21 C12R 1:08) (54) [Title of the invention] New HS gene and its gene Expression plasmid linked to downstream of structural gene encoding heterologous gene product and method for producing heterologous gene product using transformant carrying the expression plasmid

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 任意の塩基配列を介してお互いが相補性
を有する配列番号1と配列番号2の塩基配列を有するこ
とを特徴とするHS遺伝子。
1. An HS gene having the nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2 which are complementary to each other via an arbitrary nucleotide sequence.
【請求項2】 任意の塩基配列が、アデニン、グアニ
ン、シトシン、チミンから選ばれる任意の3〜20bp
の塩基配列であることを特徴とする請求項1に記載のH
S遺伝子。
2. An arbitrary nucleotide sequence selected from adenine, guanine, cytosine, and thymine.
H of claim 1, wherein the H sequence is
S gene.
【請求項3】 配列番号3の塩基配列で示される請求項
1又は請求項2に記載のHS遺伝子。
3. The HS gene according to claim 1 or 2, which is represented by the nucleotide sequence of SEQ ID NO: 3.
【請求項4】 異種遺伝子産物をコードする構造遺伝子
の下流に請求項1〜請求項3のいずれか1項に記載のH
S遺伝子を連結してなること、を特徴とする発現プラス
ミド。
4. The H according to any one of claims 1 to 3, downstream of a structural gene encoding a heterologous gene product.
An expression plasmid comprising a S gene linked thereto.
【請求項5】 請求項4に記載の発現プラスミドを保有
するバチルス属細菌を培養することにより、異種遺伝子
産物を培養物中に生成、蓄積せしめ、これを採取するこ
と、を特徴とする異種遺伝子産物の製造法。
5. A heterologous gene characterized by culturing a bacterium belonging to the genus Bacillus carrying the expression plasmid according to claim 4 to produce and accumulate a heterologous gene product in the culture, and to collect the heterologous gene product. Product manufacturing method.
【請求項6】 異種遺伝子産物がヒト上皮細胞増殖因子
であることを特徴とする請求項5に記載の製造法。
6. The method according to claim 5, wherein the heterologous gene product is human epidermal growth factor.
JP05365396A 1996-02-19 1996-02-19 A novel HS gene, an expression plasmid in which the gene is linked downstream of a structural gene encoding a heterologous gene product, and a method for producing a heterologous gene product using a transformant having the expression plasmid Expired - Lifetime JP3696322B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05365396A JP3696322B2 (en) 1996-02-19 1996-02-19 A novel HS gene, an expression plasmid in which the gene is linked downstream of a structural gene encoding a heterologous gene product, and a method for producing a heterologous gene product using a transformant having the expression plasmid
AU10037/97A AU716408B2 (en) 1996-02-19 1997-01-06 Novel HS gene, expression plasmid in which HS gene is ligated downstream of structural gene encoding foreign gene PR product, and process for producing foreign gene product using transformant containing the expression of plasmid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05365396A JP3696322B2 (en) 1996-02-19 1996-02-19 A novel HS gene, an expression plasmid in which the gene is linked downstream of a structural gene encoding a heterologous gene product, and a method for producing a heterologous gene product using a transformant having the expression plasmid

Publications (2)

Publication Number Publication Date
JPH09224677A true JPH09224677A (en) 1997-09-02
JP3696322B2 JP3696322B2 (en) 2005-09-14

Family

ID=12948840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05365396A Expired - Lifetime JP3696322B2 (en) 1996-02-19 1996-02-19 A novel HS gene, an expression plasmid in which the gene is linked downstream of a structural gene encoding a heterologous gene product, and a method for producing a heterologous gene product using a transformant having the expression plasmid

Country Status (2)

Country Link
JP (1) JP3696322B2 (en)
AU (1) AU716408B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005045005A1 (en) * 2003-11-11 2007-05-17 ヒゲタ醤油株式会社 Novel Brevibacillus choshinensis and method for producing protein using the microorganism as a host
US7332331B2 (en) 2001-02-14 2008-02-19 Higeta Shoyu Co., Ltd. Plasmid shuttle vector between Escherichia coli and Brevibacillus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332331B2 (en) 2001-02-14 2008-02-19 Higeta Shoyu Co., Ltd. Plasmid shuttle vector between Escherichia coli and Brevibacillus
JPWO2005045005A1 (en) * 2003-11-11 2007-05-17 ヒゲタ醤油株式会社 Novel Brevibacillus choshinensis and method for producing protein using the microorganism as a host
US7655452B1 (en) 2003-11-11 2010-02-02 Higeta Shoyu Co., Ltd. Brevibacillus choshinensis and process for prodcuing protein wtih use of the microbe as host

Also Published As

Publication number Publication date
AU1003797A (en) 1997-08-28
JP3696322B2 (en) 2005-09-14
AU716408B2 (en) 2000-02-24

Similar Documents

Publication Publication Date Title
EP1391502B1 (en) Host microorganisms
KR100857748B1 (en) Plasmid shuttle vector between escherichia coli and bacteria of genus brevibacillus
EP0438200B1 (en) Method for the expression of heterologous genes in the yeast Pichia pastoris, expression vectors and transformed microorganisms
EP2206788B1 (en) Recombinant microorganism
JP2727391B2 (en) High expression vector, microorganism carrying the high expression vector, and method for producing useful substance using the microorganism
US5612192A (en) DNA base sequence containing regions involved in the production and secretion of a protein, recombinant DNA including the whole or a part of the DNA base sequence, and method of producing proteins by use of the recombinant DNA
EP2451954B1 (en) Modified promoter
JPH09224677A (en) New hs gene and expression plasmid in which the gene is connected to downstream of structural gene coding different kind of genetic product and production of different kind of genetic product with transformant having the expression plasmid
US4783415A (en) Gene coding for signal peptides and utilization thereof
JP3734593B2 (en) Novel expression plasmid vector and method for producing heterologous gene product using Bacillus bacteria containing the expression plasmid vector
US5084383A (en) Bacillus subtilis strain whose extracellular protease activities are reduced, method for obtaining the strain and method for secreting proteins by using the strain
KR100407835B1 (en) Regulatory Genes for Nitrile Hydratase Gene Expression
EP1680502B1 (en) Recombinant microorganism
US4585739A (en) Plasmid for foreign gene expression in B. subtilis
JPH05284973A (en) Recombinant plasmid and process for secreting and producing foreign protein using the plasmid as vector
EP1721976B1 (en) Modified promoter
JP6791623B2 (en) Recombinant microorganisms and their use
KR102613936B1 (en) Kexin enzyme with reduced autolysis and production method thereof
JPH0638741A (en) Production of flounder growth hormone
AU699075B2 (en) Transformed microorganism and process for producing foreign gene product using the transformed microorganism
JP2537764B2 (en) High expression vector, Bacillus bacterium, and method for producing peptide or protein
JP3520322B2 (en) Novel plasmid pPS1M2 and its derivatives from psychrotrophic bacteria
JP2004129576A (en) Method for producing hyperthermostable endoglucanase
JPH09173070A (en) Plasmid, microorganism containing plasmid transduced thereinto, their production and use thereof
JPH11266866A (en) Host bacterium effective for gene recombination and production of different kind of genetic product with the host bacterium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term