JPH09219221A - Battery life estimating method and its device - Google Patents

Battery life estimating method and its device

Info

Publication number
JPH09219221A
JPH09219221A JP8023945A JP2394596A JPH09219221A JP H09219221 A JPH09219221 A JP H09219221A JP 8023945 A JP8023945 A JP 8023945A JP 2394596 A JP2394596 A JP 2394596A JP H09219221 A JPH09219221 A JP H09219221A
Authority
JP
Japan
Prior art keywords
battery
life
temperature
current value
battery life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8023945A
Other languages
Japanese (ja)
Inventor
Takeji Tanjiyou
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8023945A priority Critical patent/JPH09219221A/en
Publication of JPH09219221A publication Critical patent/JPH09219221A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately estimate the life of a battery in a short time without the deterioration of the battery by holding the battery in a fully charged condition at a constant voltage to estimate the life of the battery from a value for a current flowing in the battery and the temperature of the battery. SOLUTION: A battery 1 (a lithium secondary battery, e.g.) is held in a fully charged condition by using a constant voltage power supply 2. A value for a current flowing in the battery 1 is detected by a current detecting means 3 and the temperature of the battery 1 is detected by a temperature detecting means 5. The detected current value and temperature are read into a computing means 6 to estimate the life of the battery from a correlationship between a current value and a battery life memorized in the computing means 6. In this way, the life of the battery is accurately estimated in a short time in a convenient way without the deterioration of the capacity of the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電池の寿命推定方法
およびその装置に係り、特に非水電解質系二次電池の寿
命推定方法およびそれを実施する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery life estimation method and apparatus, and more particularly to a non-aqueous electrolyte secondary battery life estimation method and apparatus for implementing the same.

【0002】[0002]

【従来の技術】従来の電池の寿命は、実際に充放電を少
なくとも数十回は繰り返し、その時の充放電回数と容量
劣化率の関係から推定していた。例えば、図8に示すよ
うに、実際に充放電を少なくとも50回以上繰返し、そ
の時の充放電サイクル数(回)と放電容量(%)のデー
タから推定していた。図において、電池の充放電サイク
ル数と放電容量には相関関係があり、電池の個体差によ
り多少は異なる。この電池の個体差による放電容量の違
いは、充放電サイクルを繰り返すほど大きくなる。した
がって、充放電サイクルを少なくとも数十回は繰り返
し、その時のサイクル数と放電容量の関係をプロットす
る。この測定したサイクル数と放電容量の関係から、そ
の後の充放電サイクルに対する放電容量値を推定し、そ
の電池の寿命を判定していた。しかしながら、このよう
な従来の電池の寿命推定方法においては、少なくとも数
十回(50サイクル以上)は、実際に充放電を繰り返さ
なければ、充放電回数と容量劣化率との関係を推定する
ことができないため、寿命を推定するまでに時間がかか
り、また実際に充放電を数十回も繰り返すため、この充
放電の繰り返した分だけ電池の容量が劣化してしまうと
いう問題があった。
2. Description of the Related Art The life of a conventional battery has been estimated from the relationship between the number of times of charging and discharging and the capacity deterioration rate when charging and discharging are actually repeated at least tens of times. For example, as shown in FIG. 8, charging / discharging was actually repeated at least 50 times or more, and it was estimated from the data of the number of charging / discharging cycles (times) and the discharge capacity (%) at that time. In the figure, there is a correlation between the number of charge / discharge cycles of the battery and the discharge capacity, and it may be slightly different depending on the individual difference of the battery. The difference in discharge capacity due to the individual difference of the battery becomes larger as the charge / discharge cycle is repeated. Therefore, the charge / discharge cycle is repeated at least tens of times, and the relationship between the number of cycles and the discharge capacity at that time is plotted. From the relationship between the measured number of cycles and the discharge capacity, the discharge capacity value for the subsequent charge / discharge cycle was estimated and the life of the battery was determined. However, in such a conventional battery life estimation method, the relationship between the number of times of charge and discharge and the capacity deterioration rate can be estimated unless charge and discharge are actually repeated at least several tens of times (50 cycles or more). Therefore, it takes a long time to estimate the life, and since charging and discharging are actually repeated dozens of times, there is a problem that the capacity of the battery is deteriorated by the repeated charging and discharging.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上述
した従来技術における問題点を解消し、電池の寿命を推
定するに当り、短時間で、しかも電池容量を劣化させる
ことなく、簡便な方法で適確に寿命を推定することが可
能な電池の寿命推定方法およびそれを実施する装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art and to estimate the life of a battery, in a short time, without degrading the battery capacity, and simply. It is to provide a battery life estimation method capable of accurately estimating the life and a device for implementing the method.

【0004】[0004]

【課題を解決するための手段】本発明は、上記本発明の
目的を達成するために、特許請求の範囲に記載のような
構成とするものである。すなわち、本発明は請求項1に
記載のように、電池を満充電状態で定電圧に保持し、上
記電池に流れる電流値と電池の温度を求め、上記電流値
と温度と電池寿命との相関関係から寿命を推定する電池
の寿命推定方法とするものである。また、本発明は請求
項2に記載のように、請求項1において、電池の温度を
30〜35℃の範囲内の一定温度に保持する電池の寿命
推定方法とするものである。また、本発明は請求項3に
記載のように、請求項1において、電池に流れる電流値
は、電流の変動がなく安定した状態の電流値を用いる電
池の寿命推定方法とするものである。また、本発明は請
求項4に記載のように、請求項1ないし請求項3のいず
れか1項において、電池は非水電解質系の二次電池の寿
命推定方法とするものである。また、本発明は請求項5
に記載のように、電池を満充電状態で定電圧に保持する
定電圧保持手段と、上記満充電電圧で電池に流れる電流
値を検出する電流検出手段と、上記電池の温度を検出す
る温度検出手段と、上記電流検出手段と温度検出手段の
検出結果に基づき、電池に流れる電流値と電池の温度と
電池の寿命との相関関係から、上記電池の寿命を推定す
る演算手段を少なくとも備えた電池の寿命推定装置とす
るものである。また、本発明は請求項6に記載のよう
に、請求項5において、電池を一定温度に保持する温度
保持装置を備えた電池の寿命推定装置とするものであ
る。また、本発明は請求項7に記載のように、請求項5
または請求項6の電池の寿命推定装置の電流検出手段に
おいて、電池に流れる電流値が一定となったときの電流
を検出した後、電池を定電圧に保持する定電圧保持手段
を停止する手段を有する電池の寿命推定装置とするもの
である。また、本発明は請求項8に記載のように、請求
項5ないし請求項7のいずれか1項記載の電池の寿命推
定装置において、少なくとも充電器を切り替え可能に設
けた電気自動車用電池の寿命を推定する手段を有する電
池の寿命推定装置とするものである。また、本発明は請
求項9に記載のように、請求項5ないし請求項8のいず
れか1項において、電池は非水電解質系の二次電池の寿
命推定装置とするものである。このように、本発明の電
池の寿命推定方法および装置は、電池を満充電状態で定
電圧に保ち、その時流れる電流値と電池温度から寿命を
推定することが可能であるので、短時間で、しかも電池
容量を劣化させることなく寿命を推定することができ
る。
In order to achieve the above-mentioned object of the present invention, the present invention has a structure as described in the claims. That is, according to the present invention, as described in claim 1, the battery is maintained at a constant voltage in a fully charged state, the current value flowing in the battery and the temperature of the battery are obtained, and the correlation between the current value, the temperature and the battery life is This is a battery life estimation method for estimating the life from the relationship. Further, as described in claim 2, the present invention provides the battery life estimation method according to claim 1, wherein the battery temperature is maintained at a constant temperature within the range of 30 to 35 ° C. Further, as described in claim 3, the present invention provides the method of estimating the life of a battery according to claim 1, wherein the current value flowing through the battery is a current value in a stable state without fluctuation of the current. Further, as described in claim 4, the present invention is the method of estimating the life of a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3. In addition, the present invention provides claim 5
As described in, constant voltage holding means for holding the battery at a constant voltage in a fully charged state, current detection means for detecting a current value flowing in the battery at the fully charged voltage, and temperature detection for detecting the temperature of the battery. Means, and a battery including at least a calculating means for estimating the life of the battery from the correlation between the current value flowing in the battery, the temperature of the battery and the life of the battery based on the detection results of the current detecting means and the temperature detecting means. The life estimation device of Further, as described in claim 6, the present invention provides the battery life estimation device according to claim 5, which is provided with a temperature holding device for holding the battery at a constant temperature. In addition, the present invention, as described in claim 7,
Alternatively, in the current detecting means of the battery life estimating apparatus according to claim 6, means for stopping the constant voltage holding means for holding the battery at a constant voltage after detecting the current when the current value flowing in the battery becomes constant. This is an apparatus for estimating the life of a battery that it has. Further, according to the present invention, as described in claim 8, in the battery life estimation device according to any one of claims 5 to 7, at least the life of the battery for an electric vehicle provided with a switchable charger. And a battery life estimation device having means for estimating Further, as described in claim 9, the present invention provides the life estimation device for a non-aqueous electrolyte secondary battery according to any one of claims 5 to 8. As described above, the battery life estimation method and device of the present invention keeps the battery at a constant voltage in a fully charged state, and since it is possible to estimate the life from the current value flowing at that time and the battery temperature, in a short time, Moreover, the life can be estimated without degrading the battery capacity.

【0005】[0005]

【発明の効果】本発明は請求項1に記載のように、電池
を満充電状態で定電圧に保持し、上記電池に流れる電流
値と電池の温度を求め、上記電流値と温度と電池寿命と
の相関関係から寿命を推定するものである。このような
電池の寿命推定方法とすることにより、従来の数十回に
及ぶ充放電サイクルを繰返し、その時のサイクル数と放
電容量の関係から電池寿命を推定する方法に比べ、電池
の容量を劣化させることなく、短時間で、適確に電池寿
命を推定できる効果がある。また、本発明は請求項2に
記載のように、請求項1において、電池の温度を30〜
35℃の範囲内で一定の温度に保持し電池寿命を推定す
る方法とするものである。この温度範囲における電池の
電流値は電池の寿命を判定するうえで適正な電流値を示
すので、上記請求項1の共通の効果に加え、適確に電池
寿命を推定できる効果がある。また、本発明は請求項3
に記載のように、請求項1において、電池に流れる電流
値は、電流値の変動がなく安定した後の電流値を用いる
電池の寿命推定方法とするものである。このように、電
池に流れる電流の変動がなく安定した状態となってから
の電流値を用いることにより、電池寿命を適正に判定す
ることができるので、上記請求項1の共通の効果に加
え、適確に電池寿命を推定できる効果がある。また、本
発明は請求項4に記載のように、請求項1ないし請求項
3のいずれか1項において、電池は非水電解質系の二次
電池の寿命推定方法とするものであり、充電が可能な広
範囲の電池に適用できる効果がある。また、本発明は請
求項5に記載のように、電池を満充電状態で定電圧に保
持する定電圧保持手段と、上記満充電電圧で電池に流れ
る電流値を検出する電流検出手段と、上記電池の温度を
検出する温度検出手段と、上記電流検出手段と温度検出
手段の検出結果に基づき、電池に流れる電流値と電池の
温度と電池の寿命との相関関係から、上記電池の寿命を
推定する演算手段を少なくとも備えた電池の寿命推定装
置とするものである。このような構成とすることによ
り、上記請求項1に記載の電池の寿命推定方法を効率良
く実施することができると共に、請求項1と同様に、電
池の容量を劣化させることなく、短時間で、適確に電池
寿命を推定できる効果がある。また、本発明は請求項6
に記載のように、請求項5において、電池を一定温度に
保持する温度保持装置を備えた電池の寿命推定装置とす
るものである。このような構成とすることにより、上記
請求項2に記載の寿命推定方法を効率良く実施すること
ができ、請求項2と同様に、電池の寿命を判定するうえ
で適正な電流値を得ることができ、適確に電池寿命を推
定できる効果がある。また、本発明は請求項7に記載の
ように、請求項5または請求項6の電池の寿命推定装置
の電流検出手段において、電池に流れる電流が一定とな
ったときの電流値を検出した後、電池を定電圧に保持す
る定電圧保持装置を停止する手段を有する電池の寿命推
定装置とするものである。このような構成とすることに
より、電池の寿命推定装置の操作を簡易化することがで
き、また電池の寿命推定装置の自動化を行える効果があ
る。また、本発明は請求項8に記載のように、請求項5
ないし請求項7のいずれか1項記載の電池の寿命推定装
置において、少なくとも充電器を切り替え可能に設けた
電気自動車用電池の寿命を推定する手段を有する電池の
寿命推定装置とするものである。このように、充電器と
組み合わせることにより、充電後、継続して電池の寿命
を判断できる効果がある。また、本発明は請求項9に記
載のように、請求項5ないし請求項8のいずれか1項に
おいて、電池は非水電解質系の二次電池の寿命推定装置
とするものである。このような装置とすることにより、
充電可能な広範囲の二次電池に適用できる効果がある。
According to the present invention, as described in claim 1, the battery is kept at a constant voltage in a fully charged state, the current value flowing in the battery and the battery temperature are obtained, and the current value, the temperature and the battery life are calculated. The life is estimated from the correlation with. By using such a battery life estimation method, the capacity of the battery is degraded compared to the conventional method of estimating the battery life from the relationship between the number of cycles and the discharge capacity at the time of repeating dozens of charge / discharge cycles. It is possible to accurately estimate the battery life in a short time without performing the above. Further, according to the present invention, as described in claim 2, in the battery of claim 1, the temperature of the battery is 30 to
This is a method of estimating the battery life by maintaining a constant temperature within the range of 35 ° C. Since the current value of the battery in this temperature range shows an appropriate current value for judging the life of the battery, there is an effect that the battery life can be accurately estimated in addition to the common effect of claim 1. In addition, the present invention relates to claim 3
As described above, in claim 1, the current value flowing through the battery is a method of estimating the life of the battery using the current value after the current value has stabilized without fluctuation. As described above, since the battery life can be properly determined by using the current value after the current flowing through the battery is stable and has no fluctuation, in addition to the common effect of claim 1, There is an effect that the battery life can be accurately estimated. Further, according to the present invention, as described in claim 4, in any one of claims 1 to 3, the battery is a method for estimating the life of a non-aqueous electrolyte secondary battery, and charging is performed. It has the effect of being applicable to a wide range of possible batteries. Further, according to the present invention, as described in claim 5, a constant voltage holding means for holding the battery at a constant voltage in a fully charged state, a current detection means for detecting a current value flowing in the battery at the fully charged voltage, Based on the temperature detection means for detecting the temperature of the battery and the detection results of the current detection means and the temperature detection means, the life of the battery is estimated from the correlation between the current value flowing in the battery, the temperature of the battery and the life of the battery. The battery life estimating apparatus is provided with at least a calculating means for With such a configuration, the battery life estimation method according to claim 1 can be efficiently performed, and similarly to claim 1, the battery capacity is not deteriorated in a short time. There is an effect that the battery life can be accurately estimated. In addition, the present invention provides claim 6
According to the fifth aspect of the present invention, the battery life estimation device is provided with a temperature holding device that holds the battery at a constant temperature. With such a configuration, the life estimation method according to claim 2 can be efficiently performed, and like the claim 2, an appropriate current value can be obtained in determining the life of the battery. This has the effect of accurately estimating the battery life. Further, according to the present invention, as described in claim 7, in the current detecting means of the battery life estimating apparatus according to claim 5 or 6, after detecting the current value when the current flowing through the battery becomes constant. A battery life estimating device having means for stopping a constant voltage holding device for holding a battery at a constant voltage. With such a configuration, the operation of the battery life estimation device can be simplified, and the battery life estimation device can be automated. Further, the present invention, as described in claim 8,
The battery life estimating apparatus according to any one of claims 7 to 7, wherein the battery life estimating apparatus has a means for estimating the life of an electric vehicle battery in which at least a charger is switchably provided. In this way, by combining with the charger, there is an effect that the life of the battery can be continuously determined after charging. Further, as described in claim 9, the present invention provides the life estimation device for a non-aqueous electrolyte secondary battery according to any one of claims 5 to 8. By using such a device,
It has an effect that it can be applied to a wide range of rechargeable batteries.

【0006】[0006]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〈第1の実施の形態〉図1は、本実施の形態で例示する
電池の寿命推定装置の構成を示す模式図である。まず、
装置の構成について説明する。1は電池であり、例え
ば、リチウム2次電池を示す。2は、電池1を満充電状
態で定電圧に保持する定電圧保持手段(定電圧電源)で
ある。3は、電池1に流れる電流値を検出する電流検出
手段であり、4は、電池1の端子電圧を検出する電圧検
出手段であり、5は、電池温度を検出する温度検出手段
である。また、6は演算手段であり、例えば、記憶装置
を有するコンピュータやアナログ回路等で構成されてい
る。なお、電流検出手段3および電圧検出手段4は、単
に充電回路の電流や、電圧を演算装置6に送る抵抗と結
線からなる回路となし、演算手段6において入力した電
流値、電圧値を判断する構成としてもよい。また、7
は、演算手段6で求めた推定寿命を表示する表示手段で
ある。この他に、電池が寿命となっている時は、電池寿
命を報知する報知手段を設けてもよい。図2は、電池の
推定寿命を表示する方法を示すフローチャートである。
図において、まず、ステップS1では、定電圧電源2で
電池1を満充電電圧に保持する。ステップS2では、電
池1に流れる電流値Iおよび温度検出手段5で検出した
電池の温度Tが演算手段6に読み込まれる。続いて、ス
テップS3で、演算手段6に記憶されている電池に流れ
る電流値Iと電池寿命の相関関係から、電池寿命を推定
する。図3に、正極にLiCoO2を用いたリチウム2
次電池の、各雰囲気温度(30℃と40℃)における電
流値(mA)と電池寿命〔充放電1回当りの容量劣化率
(%)〕との関係を示す。図3における電流値Iは、電
流値Iが一定となった時の値である。電池温度Tが30
℃の時には、電池が放電状態であっても電流値Iは1〜
3時間程度でほぼ一定となる。以上のようにして求めら
れた推定寿命は、ステップS4で推定寿命表示手段(ま
たは電池寿命報知手段)7で表示される。以上説明した
ように、本発明の電池の寿命推定方法によれば、電池を
満充電状態で定電圧に保持して、電池を一定の温度Tと
なし、その時に流れる電流値Iより寿命を推定すること
ができる構成としているので、電池の充放電を数十回繰
返す必要がなく、短時間で、電池を劣化させることなく
寿命を適確に推定することができる。
<First Embodiment> FIG. 1 is a schematic diagram showing a configuration of a battery life estimation device exemplified in the present embodiment. First,
The configuration of the device will be described. Reference numeral 1 denotes a battery, for example, a lithium secondary battery. Reference numeral 2 is a constant voltage holding means (constant voltage power supply) for holding the battery 1 at a constant voltage in a fully charged state. 3 is a current detecting means for detecting the value of the current flowing in the battery 1, 4 is a voltage detecting means for detecting the terminal voltage of the battery 1, and 5 is a temperature detecting means for detecting the battery temperature. Further, reference numeral 6 denotes a computing means, which is configured by, for example, a computer having a storage device, an analog circuit, or the like. The current detecting means 3 and the voltage detecting means 4 are simply circuits for connecting the current and voltage of the charging circuit to the arithmetic unit 6 and consisting of resistors and wires, and judge the current value and voltage value inputted in the arithmetic means 6. It may be configured. Also, 7
Is a display unit for displaying the estimated life calculated by the calculation unit 6. In addition to this, when the battery is at the end of its life, an informing means for informing the life of the battery may be provided. FIG. 2 is a flowchart showing a method of displaying the estimated life of the battery.
In the figure, first, in step S1, the constant voltage power supply 2 holds the battery 1 at a full charge voltage. In step S2, the current value I flowing through the battery 1 and the temperature T of the battery detected by the temperature detecting means 5 are read by the calculating means 6. Then, in step S3, the battery life is estimated from the correlation between the current value I flowing in the battery and the battery life stored in the calculation means 6. In FIG. 3, lithium 2 using LiCoO 2 for the positive electrode
The relationship between the current value (mA) at each ambient temperature (30 ° C. and 40 ° C.) and the battery life [capacity deterioration rate (%) per charge / discharge cycle] of the next battery is shown. The current value I in FIG. 3 is a value when the current value I becomes constant. Battery temperature T is 30
When the temperature is ℃, the current value I is 1 to 1
It becomes almost constant in about 3 hours. The estimated life obtained as described above is displayed by the estimated life display means (or the battery life notification means) 7 in step S4. As described above, according to the battery life estimation method of the present invention, the battery is kept at a constant voltage in a fully charged state to maintain the battery at a constant temperature T, and the life is estimated from the current value I flowing at that time. Since it is possible to perform charging and discharging of the battery several tens of times, it is possible to accurately estimate the service life in a short time without degrading the battery.

【0007】〈第2の実施の形態〉図4は、本実施の形
態で例示する電池の寿命推定装置の構成を示す模式図で
ある。図4において、1〜7までの構成は、第1の実施
の形態と同様であり、本実施の形態では、電池を一定温
度Tに保持する温度保持装置8が設けられている。図5
は、電池の推定寿命を表示する方法を示すフローチャー
トである。まず、ステップS1で、電池を30〜35℃
の範囲の一定の温度に保持する。これは、電池の温度が
30℃未満では定電圧保持時における電池に流れる電流
値Iが小さいため、電池の寿命を的確に推定することが
難しいからである。また、電池温度が高すぎると電池寿
命推定中(定電圧保持中)に、わずかではあるが電池の
容量が劣化するという問題が生じる。この電池の容量を
劣化させないためには電池温度は低い方が適しており、
結果として、電池温度は30〜35℃の範囲が好まし
い。図6に、電池温度Tと、その時流れる安定時の電流
値Iの関係を示す。なお、ステップS2以降は、第1の
実施の形態で述べたステップS1〜S4と同様である。
<Second Embodiment> FIG. 4 is a schematic diagram showing the structure of a battery life estimating apparatus exemplified in the present embodiment. In FIG. 4, the configuration from 1 to 7 is the same as that of the first embodiment, and in this embodiment, a temperature holding device 8 that holds the battery at a constant temperature T is provided. FIG.
3 is a flowchart showing a method for displaying an estimated life of a battery. First, in step S1, the battery is placed at 30 to 35 ° C.
Hold at a constant temperature in the range. This is because when the temperature of the battery is lower than 30 ° C., the current value I flowing through the battery when the constant voltage is held is small, and it is difficult to accurately estimate the life of the battery. Further, if the battery temperature is too high, there is a problem that the capacity of the battery is slightly deteriorated during the battery life estimation (while the constant voltage is held). In order not to deteriorate the capacity of this battery, the lower battery temperature is more suitable,
As a result, the battery temperature is preferably in the range of 30 to 35 ° C. FIG. 6 shows the relationship between the battery temperature T and the stable current value I flowing at that time. Note that step S2 and subsequent steps are the same as steps S1 to S4 described in the first embodiment.

【0008】〈第3の実施の形態〉図7に、本実施の形
態で例示する電池の寿命推定装置の構成を示す。本実施
の形態は、電気自動車用組電池に関するものである。図
7において、電池の寿命推定装置の1〜7の構成は、第
1の実施の形態で例示した図1の寿命推定装置の構成と
同じであり、本実施の形態では、充電器9と、充電器9
と残存寿命計(寿命推定装置)11との切り替えスイッ
チ10が設けられている。このように、充電器9と組み
合わせることにより、充電後、継続して電池の寿命を推
定することが可能となる。まず、電気自動車に電池を搭
載する前に、各モジュールごとに、第1の実施の形態ま
たは第2の実施の形態で示した方法により電池寿命を推
定する。この段階で電池寿命が短いと判断されるものに
ついては電池を交換する。次に、電池を充電する際、電
気自動車のユーザが電池の残存寿命を知りたいときは、
充電器9に備え付けられている残存寿命計11の切り替
えスイッチ10を入れる。切り替えスイッチ10を入れ
ることによって、充電器9から残存寿命計11の電源に
切り替わり、電池に微小電流を流すことが可能となる。
これにより電池の寿命を推定することができ、その残存
寿命は充電器9に表示される。以上説明したように、本
発明の電池の寿命推定方法によれば、電池を満充電状態
で定電圧に保持して、電池を一定の温度Tとなし、その
時に流れる電流値Iより寿命を推定することができる構
成としているので、従来のように電池の充放電回数を数
十回繰返す必要もなく、短時間で、電池を劣化させるこ
となく寿命を適確に推定することができる効果がある。
また、上記の各実施の形態は、上記本発明の共通の効果
に加えて、電池の寿命を推定するだけでなく、検出時の
電池容量を推定することができ、電池寿命が判定できる
効果がある。
<Third Embodiment> FIG. 7 shows the configuration of a battery life estimating apparatus exemplified in the present embodiment. This embodiment relates to an assembled battery for an electric vehicle. In FIG. 7, the configurations 1 to 7 of the battery life estimation device are the same as the configurations of the life estimation device of FIG. 1 illustrated in the first embodiment, and in this embodiment, a charger 9 and Charger 9
A switch 10 for switching between the remaining life meter (life estimation device) 11 is provided. In this way, by combining with the charger 9, it becomes possible to continuously estimate the life of the battery after charging. First, before the battery is mounted on the electric vehicle, the battery life is estimated for each module by the method described in the first embodiment or the second embodiment. If the battery life is judged to be short at this stage, replace the battery. Next, when charging the battery, if the user of the electric vehicle wants to know the remaining life of the battery,
The changeover switch 10 of the remaining life meter 11 provided in the charger 9 is turned on. By turning on the changeover switch 10, it becomes possible to switch from the charger 9 to the power source of the remaining life meter 11, and to supply a minute current to the battery.
Thereby, the life of the battery can be estimated, and the remaining life is displayed on the charger 9. As described above, according to the battery life estimation method of the present invention, the battery is kept at a constant voltage in a fully charged state to maintain the battery at a constant temperature T, and the life is estimated from the current value I flowing at that time. Since there is no need to repeat the charging and discharging times of the battery several tens of times as in the conventional case, there is an effect that the life can be accurately estimated in a short time without degrading the battery. .
In addition to the common effects of the present invention, each of the above-described embodiments can estimate not only the battery life but also the battery capacity at the time of detection, and the battery life can be determined. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態で例示した電池の寿
命推定装置の構成を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a battery life estimation device exemplified in a first embodiment of the present invention.

【図2】本発明の第1の実施の形態で例示した電池の寿
命推定方法を示すフローチャート。
FIG. 2 is a flowchart showing a battery life estimation method exemplified in the first embodiment of the present invention.

【図3】本発明の第1の実施の形態で例示した正極にL
iCoO2を用いたリチウム2次電池の各温度における
電流値と電池寿命の関係を示すグラフ。
FIG. 3 shows the positive electrode illustrated in the first embodiment of the present invention with L
graph showing the relationship between the current value and the battery life at each temperature of the lithium secondary battery using ICoO 2.

【図4】本発明の第2の実施の形態で例示した電池の寿
命推定装置の構成を示す模式図。
FIG. 4 is a schematic diagram showing a configuration of a battery life estimation device exemplified in the second embodiment of the present invention.

【図5】本発明の第2の実施の形態で例示した電池の寿
命推定方法を示すフローチャート。
FIG. 5 is a flowchart showing a battery life estimation method exemplified in the second embodiment of the present invention.

【図6】本発明の第2の実施の形態で例示した電池温度
と安定時の電流値との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the battery temperature and the stable current value illustrated in the second embodiment of the present invention.

【図7】本発明の第3の実施の形態で例示した電気自動
車用組電池の寿命推定装置の構成を示す模式図。
FIG. 7 is a schematic diagram showing the configuration of a battery life estimation device for an electric vehicle, which is exemplified in the third embodiment of the invention.

【図8】従来の充放電サイクル数と放電容量から電池寿
命を推定する方法を示すグラフ。
FIG. 8 is a graph showing a conventional method for estimating battery life from the number of charge / discharge cycles and discharge capacity.

【符号の説明】[Explanation of symbols]

1…電池 2…定電圧保持手段(定電圧電源) 3…電
流検出手段 4…電圧検出手段 5…温度検出手段 6…演算手段 7…推定寿命表示手段(電池寿命報知手段) 8…温度
保持装置 9…充電器 10…切り替えスイッチ 11…残存寿命計
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Constant voltage holding means (constant voltage power supply) 3 ... Current detection means 4 ... Voltage detection means 5 ... Temperature detection means 6 ... Calculation means 7 ... Estimated life display means (battery life notification means) 8 ... Temperature holding device 9 ... Charger 10 ... Changeover switch 11 ... Remaining life meter

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】電池を満充電状態で定電圧に保持し、上記
電池に流れる電流値と電池の温度を求め、上記電流値と
温度と電池寿命との相関関係から電池寿命を推定するこ
とを特徴とする電池の寿命推定方法。
1. A method of holding a battery at a constant voltage in a fully charged state, obtaining a current value flowing through the battery and a battery temperature, and estimating the battery life from the correlation between the current value, the temperature and the battery life. Characteristic battery life estimation method.
【請求項2】請求項1において、電池の温度を30〜3
5℃の範囲内の一定温度に保持することを特徴とする電
池の寿命推定方法。
2. The battery according to claim 1, wherein the temperature of the battery is 30 to 3
A battery life estimation method, characterized in that the battery is maintained at a constant temperature within a range of 5 ° C.
【請求項3】請求項1において、電池に流れる電流値
は、電流の変動がなく安定した状態の電流値を用いるこ
とを特徴とする電池の寿命推定方法。
3. The battery life estimation method according to claim 1, wherein the current value flowing in the battery is a current value in a stable state without fluctuation of the current.
【請求項4】請求項1ないし請求項3のいずれか1項に
おいて、電池は非水電解質系の二次電池であることを特
徴とする電池の寿命推定方法。
4. The method of estimating the life of a battery according to claim 1, wherein the battery is a non-aqueous electrolyte secondary battery.
【請求項5】電池を満充電状態で定電圧に保持する定電
圧保持手段と、上記満充電電圧で電池に流れる電流値を
検出する電流検出手段と、上記電池の温度を検出する温
度検出手段と、上記電流検出手段と温度検出手段の検出
結果に基づき、電池に流れる電流値と電池の温度と電池
の寿命との相関関係から、上記電池の寿命を推定する演
算手段を少なくとも備えたことを特徴とする電池の寿命
推定装置。
5. A constant voltage holding means for holding a battery at a constant voltage in a fully charged state, a current detecting means for detecting a current value flowing in the battery at the fully charged voltage, and a temperature detecting means for detecting a temperature of the battery. And, based on the detection results of the current detection means and the temperature detection means, at least a calculation means for estimating the battery life from the correlation between the current value flowing in the battery, the battery temperature, and the battery life. Characteristic battery life estimation device.
【請求項6】請求項5において、電池を一定温度に保持
する温度保持装置を備えたことを特徴とする二次電池の
寿命推定装置。
6. A life estimation device for a secondary battery according to claim 5, further comprising a temperature holding device for holding the battery at a constant temperature.
【請求項7】請求項5または請求項6の電池の寿命推定
装置の電流検出手段において、電池に流れる電流値が一
定となったときの電流値を検出した後、電池を定電圧に
保持する定電圧保持装置を停止する手段を有することを
特徴とする電池の寿命推定装置。
7. The battery life estimating device according to claim 5 or 6, wherein the current detecting means of the battery life estimating device holds the battery at a constant voltage after detecting the current value when the current value flowing through the battery becomes constant. A battery life estimation device having means for stopping the constant voltage holding device.
【請求項8】請求項5ないし請求項7のいずれか1項記
載の電池の寿命推定装置において、少なくとも充電器を
切り替え可能に設けた電気自動車用電池の寿命を推定す
る手段を有することを特徴とする電池の寿命推定装置。
8. The battery life estimating device according to claim 5, further comprising means for estimating the life of an electric vehicle battery provided with at least a switchable charger. Battery life estimation device.
【請求項9】請求項5ないし請求項8のいずれか1項に
おいて、電池は非水電解質系の二次電池であることを特
徴とする電池の寿命推定装置。
9. The battery life estimation device according to claim 5, wherein the battery is a non-aqueous electrolyte secondary battery.
JP8023945A 1996-02-09 1996-02-09 Battery life estimating method and its device Pending JPH09219221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8023945A JPH09219221A (en) 1996-02-09 1996-02-09 Battery life estimating method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8023945A JPH09219221A (en) 1996-02-09 1996-02-09 Battery life estimating method and its device

Publications (1)

Publication Number Publication Date
JPH09219221A true JPH09219221A (en) 1997-08-19

Family

ID=12124690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8023945A Pending JPH09219221A (en) 1996-02-09 1996-02-09 Battery life estimating method and its device

Country Status (1)

Country Link
JP (1) JPH09219221A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086255A (en) * 2001-09-12 2003-03-20 Toyota Motor Corp State estimating method of secondary battery
US6586940B2 (en) 2000-03-13 2003-07-01 Nippon Telegraph And Telephone Corporation Capacity estimation method, degradation estimation method and degradation estimation apparatus for lithium-ion cells, and lithium-ion batteries
DE102005032507A1 (en) * 2004-07-14 2006-02-16 General Motors Corp., Detroit Ultracapacitor service life prediction
DE10164771B4 (en) * 2000-03-13 2006-07-20 Nippon Telegraph And Telephone Corp. Capacity estimation method and apparatus for lithium ion cells and lithium ion batteries
JP2014120821A (en) * 2012-12-13 2014-06-30 Panasonic Corp State display program and supply server program for external apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586940B2 (en) 2000-03-13 2003-07-01 Nippon Telegraph And Telephone Corporation Capacity estimation method, degradation estimation method and degradation estimation apparatus for lithium-ion cells, and lithium-ion batteries
DE10164771B4 (en) * 2000-03-13 2006-07-20 Nippon Telegraph And Telephone Corp. Capacity estimation method and apparatus for lithium ion cells and lithium ion batteries
DE10164770B4 (en) * 2000-03-13 2006-07-20 Nippon Telegraph And Telephone Corp. Lithium-ion cell capacity estimation for electronic devices, involves estimating capacity of cell based on elapsed time from time when charge voltage reaches specified value to time when charge condition is changed
DE10164772B4 (en) * 2000-03-13 2006-09-07 Nippon Telegraph And Telephone Corp. Capacity estimation method, degradation estimation method, and degradation estimation apparatus for lithium ion cells and lithium ion batteries
JP2003086255A (en) * 2001-09-12 2003-03-20 Toyota Motor Corp State estimating method of secondary battery
DE102005032507A1 (en) * 2004-07-14 2006-02-16 General Motors Corp., Detroit Ultracapacitor service life prediction
DE102005032507B4 (en) * 2004-07-14 2009-04-16 General Motors Corp., Detroit Ultracapacitor service life prediction
JP2014120821A (en) * 2012-12-13 2014-06-30 Panasonic Corp State display program and supply server program for external apparatus

Similar Documents

Publication Publication Date Title
CN109586373B (en) Battery charging method and device
US10310024B2 (en) Methods and apparatus for measuring battery characteristics
EP1049231B1 (en) Parameter measuring method, charge/discharge control method and apparatus and life predicting method for secondary batteries and power storage apparatus using the same
JP3285720B2 (en) Method and apparatus for detecting deterioration of assembled battery
US6563318B2 (en) Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said detecting device
JP3669673B2 (en) Electrochemical element degradation detection method, remaining capacity detection method, and charger and discharge control device using the same
JPH10172616A (en) Charging device
KR20020064998A (en) System and method for determining battery state-of-health
JP2003059544A5 (en)
US20140111214A1 (en) Electric storage condition detecting apparatus
JPH11329512A (en) Secondary battery capacity deterioration judging method and its judging device
WO2019058613A1 (en) Rechargeable battery short circuit prediction device and rechargeable battery short circuit prediction method
JP2000121710A (en) Battery control device for backup power supply and method for diagnosing deterioration of secondary battery
JP3192794B2 (en) Lead storage battery deterioration judgment method and deterioration judgment device
CN112677747B (en) Power battery heating method and battery management system
JP4588614B2 (en) Battery cell short detection method and apparatus
US20230029223A1 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
JPWO2019131741A1 (en) Rechargeable battery abnormality detection device and rechargeable battery abnormality detection method
JPH09243717A (en) Method of detecting residual capacity of battery, and device therefor
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JPH09219221A (en) Battery life estimating method and its device
JP2010008133A (en) Portable charger, and deterioration diagnosis method of secondary battery used therefor
JP3225812B2 (en) Battery status management device
WO2023027049A1 (en) Correcting method, computer program, correcting apparatus, and electricity storage device
JPH11344544A (en) Method for measuring battery capacity of battery pack