JPH09219010A - Production of perpendicular thin-film magnetic head - Google Patents
Production of perpendicular thin-film magnetic headInfo
- Publication number
- JPH09219010A JPH09219010A JP2756996A JP2756996A JPH09219010A JP H09219010 A JPH09219010 A JP H09219010A JP 2756996 A JP2756996 A JP 2756996A JP 2756996 A JP2756996 A JP 2756996A JP H09219010 A JPH09219010 A JP H09219010A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- film
- substrate
- magnetic pole
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は垂直磁気記録方式で
電算機、映像などの情報信号を磁気ディスクに記録およ
び再生にする薄膜磁気ヘッドに係わり、特に記録媒体と
の摺動特性ならび量産性に優れた垂直薄膜磁気ヘッド
(以下磁気ヘッドと略す)の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head for recording and reproducing information signals such as a computer and an image on a magnetic disk in a perpendicular magnetic recording system, and particularly to a sliding characteristic with a recording medium and mass productivity. The present invention relates to a method of manufacturing an excellent vertical thin film magnetic head (hereinafter abbreviated as magnetic head).
【0002】[0002]
【従来の技術】現在、磁気ディスク装置の大容量化、高
密度化を狙って垂直磁気記録方式の実用化が進められて
いる。この垂直磁気記録用の磁気ヘッドとして、図19
に示すように、非磁性材51を埋め込んだ磁性基板52
の上にスパッタリング、蒸着等の成膜手段より、順次に
絶縁層53a、信号コイル54、絶縁層53b、主磁極
膜厚部55および主磁極56を形成する構造の主磁極励
磁型の薄膜磁気ヘッドが、例えば,特開平4−5720
5号公報に開示されている。また、製造方法の一例が特
開平4−134605号公報に開示されている。2. Description of the Related Art At present, a perpendicular magnetic recording system is being put into practical use in order to increase the capacity and density of magnetic disk devices. As a magnetic head for this perpendicular magnetic recording, FIG.
As shown in, a magnetic substrate 52 in which a non-magnetic material 51 is embedded
A main magnetic pole excitation type thin film magnetic head having a structure in which an insulating layer 53a, a signal coil 54, an insulating layer 53b, a main magnetic pole film thickness portion 55 and a main magnetic pole 56 are sequentially formed on the above by film forming means such as sputtering and vapor deposition. However, for example, Japanese Patent Laid-Open No. 4-5720
No. 5 discloses this. An example of the manufacturing method is disclosed in Japanese Patent Laid-Open No. 4-134605.
【0003】このような薄膜磁気ヘッドは一般的にフォ
トリソ技術、真空薄膜作成技術等の半導体技術を用い
て、基板材でなるウエハ(図示せず)上に多数個形成さ
れ量産性に優れている。A large number of such thin film magnetic heads are generally formed on a wafer (not shown) made of a substrate material by using a semiconductor technique such as a photolithography technique and a vacuum thin film forming technique, and are excellent in mass productivity. .
【0004】[0004]
【発明が解決しようとする課題】磁気記録媒体上に垂直
方向に記録された磁気信号を高い分解能で再生するため
には、主磁極56の膜厚は記録ビット長と同等以下に薄
くしなければならなく、通常は1μm以下である。ま
た,トラック幅(ディスクの回転方向に略直交する方向
の主磁極の幅)もトラック幅方向の記録密度を上げるた
め10μm以下に設定される。また、良好な記録再生特
性を得るために、その磁気特性も高透磁率、低保磁力が
要求される。In order to reproduce a magnetic signal vertically recorded on a magnetic recording medium with high resolution, the film thickness of the main magnetic pole 56 must be made equal to or less than the recording bit length. However, it is usually 1 μm or less. The track width (width of the main magnetic pole in the direction substantially orthogonal to the disc rotation direction) is also set to 10 μm or less in order to increase the recording density in the track width direction. Further, in order to obtain good recording / reproducing characteristics, the magnetic characteristics are also required to have high magnetic permeability and low coercive force.
【0005】しかし、従来技術の磁気ヘッドは,一つの
基板上にコイル54,非磁性膜53a、53b等を積層
形成しているため、形成時の膜応力、熱応力等により基
板に反りを生じ、これにより主磁極形成時に高精度のパ
ターンニングを行なうことが困難となる。基板の反り量
は一般的に、基板形状に比例して大きくなることから、
基板形状を大きくして一基板当たりのヘッド生産量を増
やすことが困難になってくる。さらに、基板に主磁極磁
性膜を形成したのちに主磁極のパターニングを行なうた
め、磁性膜に磁気特性の劣化を生じた場合、基板全体の
磁気ヘッドが不良品となり歩留りが著しく悪くなってい
た。However, in the conventional magnetic head, since the coil 54, the non-magnetic films 53a and 53b, etc. are laminated on one substrate, the substrate warps due to film stress, thermal stress, etc. during formation. This makes it difficult to perform highly accurate patterning when forming the main pole. Since the warp amount of the substrate generally increases in proportion to the substrate shape,
It becomes difficult to increase the substrate shape and increase the head production amount per substrate. Further, since the main magnetic pole is patterned after the main magnetic pole magnetic film is formed on the substrate, when the magnetic characteristics of the magnetic film are deteriorated, the magnetic head on the entire substrate becomes defective and the yield is remarkably deteriorated.
【0006】また、従来の磁気ヘッドは信号コイル54
を磁気記録媒体に摺動する磁性基板の磁気記録媒体に対
して垂直な面に形成しているために、ヘッド摺動面から
サスペンションアーム接着面までの高さHを低減しょう
とすると、信号コイル54の外径を小さくする必要があ
る。これにより、コイル巻数を大きくするとコイル断面
積が小さくなり電気抵抗を増加させてしまうため、磁気
ヘッドの高さHを500μm以下にすることは困難であ
り、磁気ヘッドの小型軽量化に限界があった。The conventional magnetic head has a signal coil 54.
Is formed on a surface of the magnetic substrate that slides on the magnetic recording medium perpendicular to the magnetic recording medium. Therefore, if the height H from the head sliding surface to the suspension arm bonding surface is reduced, the signal coil It is necessary to reduce the outer diameter of 54. As a result, when the number of turns of the coil is increased, the cross-sectional area of the coil is reduced and the electrical resistance is increased. Therefore, it is difficult to set the height H of the magnetic head to 500 μm or less, and there is a limit to downsizing and weight reduction of the magnetic head. It was
【0007】さらに、主磁極と信号コイルが同一面上に
形成されているため、摺動面形状(磁気ディスクと接触
する面の形状)にもこれにより制約を受ける。Further, since the main magnetic pole and the signal coil are formed on the same surface, the shape of the sliding surface (the shape of the surface contacting the magnetic disk) is also restricted by this.
【0008】高密度記録化を行なうためには磁気ディス
クとのスペーシング量を限りなく小さくする必要が有
る。このためには、磁気ヘッドと磁気ディスクの当接圧
力を大きくすればよいが、単に磁気ヘッドの押し付け荷
重を大きくすると磁気ディスクを傷つけやすくなり、さ
らに磁気ヘッドの磨耗寿命も短くなるため,磁気ヘッド
の重量低減、接触面積の極小化を図る必要がある。しか
し、従来の磁気ヘッドでは先に述べた理由によりいずれ
も限界が有るため、走行性能ならび高性能の磁気ヘッド
が得にくいという問題があった。本発明の目的は、垂直
磁気記録において摺動性に優れ、かつ高歩留りの量産性
の良い垂直磁気記録用薄膜磁気ヘッドの製造方法を提供
することにある。In order to achieve high-density recording, it is necessary to make the spacing with respect to the magnetic disk as small as possible. For this purpose, it is sufficient to increase the contact pressure between the magnetic head and the magnetic disk, but if the pressing load of the magnetic head is simply increased, the magnetic disk is easily damaged and the wear life of the magnetic head is shortened. It is necessary to reduce the weight and minimize the contact area. However, since the conventional magnetic heads have limitations due to the reasons described above, there is a problem in that it is difficult to obtain a running performance and a high performance magnetic head. It is an object of the present invention to provide a method of manufacturing a thin film magnetic head for perpendicular magnetic recording, which has excellent slidability in perpendicular magnetic recording and has a high yield and good mass productivity.
【0009】[0009]
【課題を解決するための手段】上記した目的を達成する
ために本発明の磁気ヘッドの製造方法は、磁性基板から
なる第一の基板に非磁性膜を形成する工程、前記非磁性
膜面に磁性膜を埋込むための溝を複数、所定の間隔で平
行に少なくとも磁性基板に到達しない深さに形成する工
程、前記非磁性膜面の溝内に少なくとも溝が埋まる厚さ
磁性膜を形成する工程、前記磁性膜面を研磨し溝内膜以
外を除去する工程、前記溝形成面に主磁極となる磁性薄
膜を所定の厚さ形成する工程、前記磁性薄膜を物理的、
化学的手法により所定のトラック幅、デプス(スロート
ハイト)を持ち、かつそのパターンを二分する中心線が
溝内膜と非磁性膜の境界線に略直交し、少なくともデプ
ス=0の位置が溝内膜外にあるように所定の形状に主磁
極を複数個配列してパターンニングする工程、前記基板
を所定の位置で切断しコアブロックを得る工程、前記コ
イル基板と突き合わせる面を研磨する工程、前記コアブ
ロックのトラック部を中心として所定の摺動幅になるよ
うに研磨面に略垂直な方向に一対のV字状溝ならび所定
幅の主磁極形成コアを得るための切り欠けをV字状溝の
底面にそれぞれ複数加工する工程、前記工程で得たブロ
ックの研磨面に略台形状溝と略長方形状の溝を所定の位
置に加工し主磁極形成コアブロックを得る工程、前記磁
性基板上に信号コイルを形成した第2の基板に前記コア
ブロックを主磁極の位置を合わせて磁気ヘッドが多数個
配列したブロックを得る工程、前記ブロックを所定位置
で切断し1個の磁気ヘッドを得ることを特徴とする。In order to achieve the above object, a method of manufacturing a magnetic head according to the present invention comprises a step of forming a non-magnetic film on a first substrate composed of a magnetic substrate, and a step of forming a non-magnetic film on the non-magnetic film surface. Forming a plurality of grooves for burying the magnetic film in parallel at a predetermined interval at least to a depth that does not reach the magnetic substrate, and forming a magnetic film having a thickness that fills at least the groove in the groove of the non-magnetic film surface. A step of polishing the magnetic film surface to remove a portion other than the inner film in the groove, a step of forming a magnetic thin film to be a main magnetic pole in a predetermined thickness on the groove forming surface, the magnetic thin film physically,
It has a predetermined track width and depth (throat height) by a chemical method, and the center line that divides the pattern is almost orthogonal to the boundary line between the inner film of the groove and the non-magnetic film, and at least the position of depth = 0 is in the groove. A step of arranging a plurality of main magnetic poles in a predetermined shape so as to be outside the film and patterning, a step of cutting the substrate at a predetermined position to obtain a core block, a step of polishing a surface abutting with the coil substrate, A pair of V-shaped grooves and a V-shaped cutout for obtaining a main magnetic pole forming core having a predetermined width in a direction substantially perpendicular to the polishing surface so as to have a predetermined sliding width around the track portion of the core block. A step of processing a plurality of bottom surfaces of the groove, a step of processing a substantially trapezoidal groove and a substantially rectangular groove in predetermined positions on the polished surface of the block obtained in the above step to obtain a main magnetic pole forming core block, on the magnetic substrate Signal to A step of obtaining a block in which a plurality of magnetic heads are arranged by aligning the positions of main magnetic poles of the core block on a second substrate having a ruled portion, and the block is cut at a predetermined position to obtain one magnetic head. And
【0010】本発明の磁気ヘッドの製造方法では主磁極
コアと信号コイルを別工程で製造した後、互いに接合し
ているので、それぞれ良好な特性を示す組み合わせが容
易に出来るため記録再生特性が良く、かつ特性ばらつき
も小さくでき、総合歩留まりが向上する。また、主磁極
コアの形状が信号コイルに影響を受けることがないた
め、磁気ディスクとの接触面積ならび接触面形状を容易
に最適化出来るため、摺動特性の良好な薄膜磁気ヘッド
が得られる。さらに、主磁極が複数個配列したコアブロ
ックをコイル基板に接合することにより、容易に複数の
磁気ヘッドが得られ量産性にも優れている。In the method of manufacturing a magnetic head of the present invention, since the main magnetic pole core and the signal coil are manufactured in separate steps and then bonded to each other, it is possible to easily make a combination exhibiting good characteristics, so that the recording / reproducing characteristics are good. In addition, the variation in characteristics can be reduced and the overall yield is improved. Further, since the shape of the main magnetic pole core is not affected by the signal coil, the contact area with the magnetic disk and the contact surface shape can be easily optimized, so that a thin film magnetic head having good sliding characteristics can be obtained. Further, by bonding a core block in which a plurality of main magnetic poles are arranged to a coil substrate, a plurality of magnetic heads can be easily obtained and mass productivity is excellent.
【0011】[0011]
【発明の実施の形態】以下、本発明による薄膜磁気ヘッ
ドの種々の製造方法を実施例によって詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Various methods for manufacturing a thin film magnetic head according to the present invention will be described in detail below with reference to embodiments.
【0012】(実施例1)本発明の第一の製造方法の各
工程の説明を図1ないし図13に示す。(Embodiment 1) An explanation of each step of the first manufacturing method of the present invention is shown in FIGS.
【0013】図1は高透磁率フェライトからなる基板1
1に,スパッタリング法,真空蒸着法、イオンプレーテ
ィング法の薄膜製造手法により非磁性セラミック膜12
をその厚さが10〜100μmの範囲内に入るように被
着する工程である。(以下、図1に対応する工程を工程
1、図2に対応する工程を工程2等とする)本実施例で
は厚さ1.0mmの基板11上に膜厚40μmの非磁性
セラミック膜12を形成した。FIG. 1 shows a substrate 1 made of high-permeability ferrite.
1. Non-magnetic ceramic film 12 by thin film manufacturing method such as sputtering method, vacuum deposition method and ion plating method.
Is a step of depositing so that its thickness falls within the range of 10 to 100 μm. (Hereinafter, the step corresponding to FIG. 1 is referred to as step 1, the step corresponding to FIG. 2 is referred to as step 2, etc.) In this embodiment, a nonmagnetic ceramic film 12 having a thickness of 40 μm is formed on a substrate 11 having a thickness of 1.0 mm. Formed.
【0014】ここで、高透磁率フェライト基板11はM
n−Znフェライト、Ni−Znフェライトの単結晶も
しくは多結晶からなり磁気回路の一部を形成する。非磁
性セラミック膜12は、Al2O3、2MgO−Si
O2、MgO−SiO2、等の熱膨張係数が高透磁率フェ
ライトに近く、成膜性の良好な材料からなる。The high permeability ferrite substrate 11 is M
It is made of single crystal or polycrystal of n-Zn ferrite or Ni-Zn ferrite and forms a part of the magnetic circuit. The non-magnetic ceramic film 12 is made of Al 2 O 3 , 2MgO-Si.
O 2, MgO-SiO 2, the thermal expansion coefficient is close to high permeability ferrite etc., made of a material having good film-forming properties.
【0015】工程2は高透磁率フェライト基板11上に
被着した非磁性セラミック膜12に溝13を互いに平行
しかつ所定の間隔で複数本加工する工程である。溝13
の深さは非磁性セラミック膜内に溝が入るようにし、そ
の底面が高透磁率フェライト基板に達しないものとす
る。溝13は先端が略U字状もしくは略台形状に整形さ
れたメタルボンド砥石またはレジンボンド砥石を用いて
高速ダイシングソーで加工する。もしくは、フォトリソ
技術、エッチング技術等の半導体技術を用いて溝を加工
することも可能である。本実施例では略台形状の砥石を
用いて、深さ30μmの溝を1.2mmピッチで加工し
た。Step 2 is a step of processing a plurality of grooves 13 in the non-magnetic ceramic film 12 deposited on the high-permeability ferrite substrate 11 in parallel with each other at a predetermined interval. Groove 13
The depth is such that a groove is formed in the non-magnetic ceramic film, and the bottom surface thereof does not reach the high-permeability ferrite substrate. The groove 13 is processed with a high-speed dicing saw using a metal bond grindstone or a resin bond grindstone whose tip is shaped into a substantially U shape or a substantially trapezoidal shape. Alternatively, it is possible to process the groove by using a semiconductor technique such as a photolithography technique or an etching technique. In this example, a substantially trapezoidal grindstone was used to form grooves having a depth of 30 μm at a pitch of 1.2 mm.
【0016】工程3は工程2で加工した溝13内に磁気
回路の一部となる第1の金属軟磁性膜14を埋め込む工
程である。金属軟磁性膜14はFe−Si合金、Fe−
Al−Si合金、Fe−Ni合金等の結晶質合金または
Co−Nb−Zr合金、Co−Ta−Zr合金等の非晶
質合金が用いられる。まず、溝形成面に金属軟磁性膜1
4をスパッタリング法、真空蒸着法で少なくとも溝が埋
まる厚さ形成する。次に機械研削、研磨により溝以外に
被着した部分の金属軟磁性膜を除去し、図3に示す基板
を得る。ここで研磨面の仕上げは鏡面研磨面とする。具
体的には、Co−Nb−Zr合金を45μmの厚さ高周
波スパッタリング装置を用いて溝形成面に被着し、1〜
6μm粒径のダイヤモンド砥粒で被着面を5μm研磨し
て不要部分の金属磁性膜を除去し、深さ40μmの溝内
に金属軟磁性膜14が埋め込まれた基板を製造する。Step 3 is a step of embedding the first metal soft magnetic film 14 which becomes a part of the magnetic circuit in the groove 13 processed in Step 2. The metal soft magnetic film 14 is made of Fe-Si alloy, Fe-
A crystalline alloy such as an Al-Si alloy or a Fe-Ni alloy or an amorphous alloy such as a Co-Nb-Zr alloy or a Co-Ta-Zr alloy is used. First, the metal soft magnetic film 1 is formed on the groove forming surface.
4 is formed by sputtering or vacuum evaporation to a thickness so that at least the groove is filled. Next, the metal soft magnetic film on the portion other than the groove is removed by mechanical grinding and polishing to obtain the substrate shown in FIG. Here, the finish of the polished surface is a mirror-polished surface. Specifically, a Co—Nb—Zr alloy is deposited on the groove formation surface using a high frequency sputtering device having a thickness of 45 μm, and
The surface to be adhered is polished by 5 μm with diamond abrasive grains having a particle size of 6 μm to remove the unnecessary portion of the metal magnetic film, and a substrate having the metal soft magnetic film 14 embedded in the groove having a depth of 40 μm is manufactured.
【0017】工程4は工程3で製造した基板の研磨面に
主磁極となる第2の金属軟磁性膜15を被着する工程で
ある。第2の金属磁性膜15は工程3で被着した第一の
金属軟磁性膜14と同組成の合金でも良いが、磁気ヘッ
ドの性能等から異なる組成の金属軟磁性膜を被着しても
良い。また、この工程で被着する第2の金属軟磁性膜の
膜厚は少なくとも記録媒体に記録される記録ビット長と
同等以下にする必要があり、そのことから膜厚は1μm
以下とする。金属軟磁性膜15の被着は工程3と同じ手
法を用いて行なわれるが、真空蒸着法では膜厚の制御が
困難であることから、スパッタリング法が適している。
ただし、膜厚ならび金属軟磁性膜組成の制御が可能であ
れば他の薄膜製造方法を用いても良く、本特許は被着方
法を限定するものではない。具体的には、Co−Nb−
Zr合金を高周波スパッタリング装置を用いて、0.2
μmの厚さ被着した。Step 4 is a step of depositing the second metal soft magnetic film 15 serving as a main pole on the polished surface of the substrate manufactured in Step 3. The second metal magnetic film 15 may be an alloy having the same composition as the first metal soft magnetic film 14 deposited in step 3, but a metal soft magnetic film having a different composition may be deposited depending on the performance of the magnetic head. good. In addition, the film thickness of the second metal soft magnetic film deposited in this step must be at least equal to or less than the recording bit length recorded on the recording medium, which is why the film thickness is 1 μm.
The following is assumed. The deposition of the metal soft magnetic film 15 is performed using the same method as in step 3, but the sputtering method is suitable because it is difficult to control the film thickness by the vacuum evaporation method.
However, other thin film manufacturing methods may be used as long as the thickness and the composition of the metal soft magnetic film can be controlled, and this patent does not limit the deposition method. Specifically, Co-Nb-
Using a high frequency sputtering device, the Zr alloy was 0.2
Deposited to a thickness of μm.
【0018】工程5は工程4で被着した第2の金属軟磁
性膜を所定の主磁極形状に加工する工程である。第2の
金属軟磁性膜15をフォトリソ技術、イオンミリング技
術またはケミカルエッチング等の半導体製造技術を用い
て、基板上に複数個の主磁極16が所定の間隔で配列す
るように加工を行なう。Step 5 is a step of processing the second metal soft magnetic film deposited in step 4 into a predetermined main pole shape. The second metal soft magnetic film 15 is processed by a photolithography technique, an ion milling technique, or a semiconductor manufacturing technique such as chemical etching so that the plurality of main magnetic poles 16 are arranged at predetermined intervals on the substrate.
【0019】図5(b)は主磁極形状を示す基板正面図
である。主磁極16は先端部に所定のトラック幅Twと
初期デプスGdを持ち、他の部分は磁気回路の効率を良
くするために少なくともトラック幅よりも幅広くなって
いる。トラック幅Twは記録媒体上の記録密度等から設
定するが少なくとも10μm以下である。また、初期デ
プスGdは特に限定するものではないが、5μm以下に
設定すると後工程の加工精度等の影響を受けて、デプス
精度が悪くなりやすくなるため、少なくとも5μm以上
に設定するのが望ましい。さらに、Gd=0μmの位置
が磁気回路効率の点から少なくとも、溝内に埋め込んだ
第一の金属磁性膜14以外の部分にくる位置に主磁極1
6を配置する。また、主磁極の中心線(図示せず)が非
磁性セラミック膜12と溝内に埋め込んだ第一の金属軟
磁性膜14との境界線と略直交するように形成する。具
体的には、トラック幅を2.0μm、初期デプスを20
0μmの形状に主磁極16を形成した。FIG. 5B is a front view of the substrate showing the shape of the main pole. The main pole 16 has a predetermined track width Tw and an initial depth Gd at its tip, and the other portions are at least wider than the track width in order to improve the efficiency of the magnetic circuit. Although the track width Tw is set based on the recording density on the recording medium, it is at least 10 μm or less. Further, the initial depth Gd is not particularly limited, but if it is set to 5 μm or less, the depth accuracy is likely to deteriorate due to the influence of the processing accuracy of the subsequent process, etc., so it is desirable to set it to at least 5 μm or more. Further, from the viewpoint of magnetic circuit efficiency, the position of Gd = 0 μm is at least at a position other than the portion other than the first metal magnetic film 14 embedded in the groove.
6 is arranged. Further, the center line (not shown) of the main pole is formed so as to be substantially orthogonal to the boundary line between the non-magnetic ceramic film 12 and the first metal soft magnetic film 14 embedded in the groove. Specifically, the track width is 2.0 μm and the initial depth is 20 μm.
The main pole 16 was formed in a shape of 0 μm.
【0020】工程6は工程5の基板を機械加工でそれぞ
れA−A´、B−B´、C−C´、D−D´で切断し主
磁極が形成された複数の主磁極コアブロック(以下、コ
アブロックと略す)を製造する工程である。切断は工程
2と同様にメタルボンド砥石またはレジンボンド砥石を
用いて,高速ダイシングソー装置によって行なう。In step 6, a plurality of main magnetic pole core blocks each having a main magnetic pole formed by cutting the substrate of step 5 by AA ', BB', CC ', and DD' by machining ( Hereinafter, it is a step of manufacturing a core block). The cutting is performed by a high-speed dicing saw device using a metal bond grindstone or a resin bond grindstone as in the step 2.
【0021】工程7はコアブロック17の切断面18を
研磨加工する工程である。研磨加工は後工程でコイル基
板との突き合わせ面となる、トラック形成側の切断面に
対抗する側の切断面18について行なう。加工は1〜6
μm粒径のダイヤモンド研磨砥粒を用いるが、加工面精
度によってはそれ以外の粒径のダイヤモンド研磨砥粒を
用いてもよい。さらに、必要面精度が得られるならばS
iC研磨砥粒、Al2O3研磨砥粒等の他の研磨砥粒を用
いても良い。なお、研磨面は鏡面仕上げ面とする。ま
た,コアブロック17の平行度等の形状精度向上のた
め、両切断面を研磨加工してもよい。Step 7 is a step of polishing the cut surface 18 of the core block 17. The polishing process is performed on the cut surface 18 on the side that opposes the cut surface on the track forming side, which will be the abutting surface with the coil substrate in a later step. Processing 1-6
Although diamond abrasive grains having a grain size of μm are used, diamond abrasive grains having other grain sizes may be used depending on the precision of the processed surface. Furthermore, if the required surface accuracy is obtained, S
Other polishing grains such as iC polishing grains and Al 2 O 3 polishing grains may be used. The polished surface is a mirror finished surface. In addition, in order to improve the shape accuracy such as the parallelism of the core block 17, both cut surfaces may be polished.
【0022】工程8はコアブロック17から、所定形状
の個々の主磁極コアを得るための主磁極16をはさんで
一対のV字状溝19とU字状溝20の加工を行なう工程
である。V字状溝19の加工はトラック部の記録媒体と
の接触幅を設定するために、U字状溝20の加工は主磁
極コア幅を設定するために行なうものである。まずV字
状溝加工について説明する。Step 8 is a step of processing a pair of V-shaped groove 19 and U-shaped groove 20 from the core block 17 with the main magnetic pole 16 sandwiched between the main magnetic poles 16 to obtain individual main magnetic pole cores having a predetermined shape. . The V-shaped groove 19 is processed to set the contact width of the track portion with the recording medium, and the U-shaped groove 20 is processed to set the main magnetic pole core width. First, the V-shaped groove processing will be described.
【0023】図8(b)は溝加工状態を示す溝断面図で
ある。このV字状溝19加工によってトラック部と記録
媒体の接触幅W1を設定する。加工は先端を開き角度θ
にV字状に成形した、メタルもしくはレジンボンド砥石
を用いて、高速ダイシングソー装置で行ない、主磁極1
6のトラック中心が接触幅W1のほぼ中心となる位置に
一つの主磁極について一対のV字状溝加工を行なう。こ
こで、角度θを小さくすると加工時の砥石磨耗が大きく
なり、それにより溝形状がコアブロック内で変化し接触
幅W1のばらつきが大きくなる。また、開き角度θを大
きくすると砥石磨耗に関しては有利であるが、溝深さに
対する接触幅W1の変化も大きくなり、接触幅W1のば
らつきを小さくするためには高加工精度が必要となる、
このことから,開き角度θは60゜〜120゜の範囲内
に入るようにする。また、接触幅W1はトラック幅が1
0μm以下と小さいために、それを大きくするとトラッ
ク幅Tw対接触幅W1の比率が大きくなりトラック部の
みを安定して記録媒体に接触させることが困難となり、
安定した記録再生が出来なくなる。逆に接触幅W1を小
さくすると主磁極16の磨耗速度が速くなり、長寿命化
が困難となる。さらに、溝加工時の欠け等の影響を受け
やすくなり歩留りが低下する。このことから、接触幅は
10μm〜100μmの範囲内で設定する。次にU字状
溝加工について説明する。FIG. 8B is a groove sectional view showing a groove processing state. By processing the V-shaped groove 19, the contact width W1 between the track portion and the recording medium is set. Machining opens the tip angle θ
Using a metal or resin-bonded grindstone formed into a V-shape in a high-speed dicing saw device, the main magnetic pole 1
A pair of V-shaped grooves is formed on one main magnetic pole at a position where the track center of 6 is substantially the center of the contact width W1. Here, if the angle θ is made small, the abrasion of the grindstone at the time of processing becomes large, so that the groove shape changes in the core block and the variation of the contact width W1 becomes large. Further, increasing the opening angle θ is advantageous in terms of grindstone wear, but changes in the contact width W1 with respect to the groove depth also increase, and high machining accuracy is required to reduce variations in the contact width W1.
For this reason, the opening angle θ is set within the range of 60 ° to 120 °. The contact width W1 is 1 track width.
Since it is as small as 0 μm or less, if it is made large, the ratio of the track width Tw to the contact width W1 becomes large and it becomes difficult to bring only the track portion into stable contact with the recording medium.
Stable recording and playback cannot be performed. On the contrary, if the contact width W1 is made small, the wear speed of the main magnetic pole 16 becomes fast, and it becomes difficult to extend the life. In addition, it is susceptible to chipping during grooving, which reduces the yield. Therefore, the contact width is set within the range of 10 μm to 100 μm. Next, the U-shaped groove processing will be described.
【0024】U字状溝20加工は主磁極コア幅W2を設
定するために行なうものであり、加工は先端を平坦にし
たメタルもしくはレジンボンド砥石を用いて、高速ダイ
シングソー装置で行なう。主磁極コア幅W2はヘッド性
能、インダクタンス等から決定されるが、少なくとも接
触幅W1よりは大きくする必要があることは言うまでも
ない。また、U字状溝19は個々の主磁極コア21がコ
アブロック17から切り離さない深さで、かつ次工程で
述べるが主磁極コア21の長さよりも深く加工し、複数
の主磁極コア21がくし歯状につながったコアブロック
とする。The U-shaped groove 20 is processed to set the main magnetic pole core width W2, and the processing is performed with a high-speed dicing saw device using a metal or a resin bond grindstone having a flat tip. The main magnetic pole core width W2 is determined by the head performance, inductance, etc., but it goes without saying that it needs to be at least larger than the contact width W1. Further, the U-shaped groove 19 is processed to a depth such that the individual main magnetic pole cores 21 are not separated from the core block 17 and deeper than the length of the main magnetic pole cores 21 as described in the next step, so that the plurality of main magnetic pole cores 21 are combed. The core block is connected in a tooth shape.
【0025】具体的には、接触幅W1を50μm、コア
幅W2を100μm、角度θを60°、U字状溝の深さ
を0.8mmで主磁極コアの加工を行なった。Specifically, the main magnetic pole core was processed with a contact width W1 of 50 μm, a core width W2 of 100 μm, an angle θ of 60 °, and a U-shaped groove depth of 0.8 mm.
【0026】工程9は各主磁極コア21のコイル基板と
の突き合わせ面18側にコイル形成部の逃がし用台形状
溝22と、主磁極コア21の長さを設定するためのU字
状溝23の加工を行なう工程である。溝加工は個々の主
磁極コアについて行なうため、工程8で加工したV字状
溝19の加工方向に直交する方向に加工を行なう。図9
(b)は溝加工状態を示す溝断面図である。まず、逃が
し用溝22について説明する。In step 9, a relief trapezoidal groove 22 of the coil forming portion is provided on the side of the main magnetic pole core 21 that abuts against the coil substrate, and a U-shaped groove 23 for setting the length of the main magnetic pole core 21. This is a process of processing. Grooving is performed on each of the main magnetic pole cores, so that the V-shaped grooves 19 processed in step 8 are processed in a direction orthogonal to the machining direction. FIG.
(B) is a groove cross-sectional view showing a groove processing state. First, the escape groove 22 will be described.
【0027】逃がし用溝加工は先端を略台形形状に成形
したメタルもしくはレジンボンドの砥石を用いて、高速
ダイシングソー装置で行なう。溝形状は磁気ヘッドの記
録再生特性、インダクタンス、コイル形状等によって設
定されるが、溝位置はその先端が第一の金属軟磁性膜1
4を切断しないようにする。また、溝深さは深くすると
インダクタンス低減に効果はあるが、それにより主磁極
コアも厚くする必要があり、磁気ヘッドの小型軽量化が
困難となる。従って溝深さは100μm以下に設定す
る。一方、U字状溝23は先に述べたように主磁極コア
の長さlを設定するために加工するものであり、したが
ってその位置は主磁極から設定したコア長さlの距離位
置とする。また、溝深さは逃がし用溝22ならび最終的
な主磁極コア厚よりも深くかつコアを切り離さない深さ
とする。さらに、溝幅はコイル基板の接続電極よりも大
きくし、後工程のコイル基板との接合時に接続電極が溝
23内に入るようにする。The relief groove is processed by a high-speed dicing saw device using a metal or resin-bonded grindstone whose tip is formed into a substantially trapezoidal shape. The groove shape is set according to the recording / reproducing characteristics of the magnetic head, the inductance, the coil shape, etc., but the tip of the groove position is the first metal soft magnetic film 1
Do not cut 4. Further, if the groove depth is increased, it is effective in reducing the inductance, but it is also necessary to increase the thickness of the main magnetic pole core, which makes it difficult to reduce the size and weight of the magnetic head. Therefore, the groove depth is set to 100 μm or less. On the other hand, the U-shaped groove 23 is processed to set the length 1 of the main magnetic pole core as described above, and therefore its position is the distance position of the set core length 1 from the main magnetic pole. . The groove depth is deeper than the escape groove 22 and the final main magnetic pole core thickness and does not separate the core. Further, the groove width is made larger than that of the connecting electrode of the coil substrate so that the connecting electrode can enter the groove 23 at the time of joining with the coil substrate in a later step.
【0028】具体的には、台形状溝22はその先端位置
が主磁極から40μmとし、深さ50μmで加工を行な
い、U字状溝23は主磁極コア長さlが400μmとな
る位置に幅0.3mm、深さ0.9mmの溝加工を行な
った。Specifically, the trapezoidal groove 22 is processed at a tip position of 40 μm from the main pole and a depth of 50 μm, and the U-shaped groove 23 has a width at a position where the main magnetic pole core length 1 is 400 μm. Grooves having a depth of 0.3 mm and a depth of 0.9 mm were formed.
【0029】工程10はコアブロック17とコイル基板
24を所定の位置で接合する工程である。コイル基板2
4は、基板上にフォトリソ技術、薄膜形成技術、エッチ
ング技術等の半導体製造技術で導体コイル、電極等を形
成したものである。図10(b)はコイル基板の外観
を、(c)はE−E´の断面を示した図である。Step 10 is a step of joining the core block 17 and the coil substrate 24 at a predetermined position. Coil board 2
Reference numeral 4 denotes a substrate on which conductor coils, electrodes and the like have been formed by a semiconductor manufacturing technique such as a photolithography technique, a thin film forming technique and an etching technique. FIG. 10B is an external view of the coil substrate, and FIG. 10C is a cross-sectional view taken along line EE ′.
【0030】本特許ではその製造方法、条件等の詳細に
ついては述べないが、例えば製造方法の一例としては、
鏡面研磨加工をしたフェライト等の磁性基板25上にS
iO2、Al2O3等の非磁性膜26を高周波スパッタリ
ング装置等を用いて形成し、さらに非磁性膜26上にS
iO2等の非磁性膜を絶縁材としてCu等の導体膜を所定
の巻回数にコイル27を形成しコイル基板24を得る。
また、同時に外部接続のための接続電極28もコイル形
成と同時に形成する。なお、コイル基板のコイル中心部
と接続電極とコイル間の一部分の非磁性膜を所定形状に
除去して、フェライト基板25を露出させ主磁極コアと
の突き合わせ面部分とする。Although details of the manufacturing method, conditions, etc. are not described in this patent, for example, as an example of the manufacturing method,
S is placed on a magnetic substrate 25 such as ferrite that is mirror-polished.
A non-magnetic film 26 such as iO 2 or Al 2 O 3 is formed by using a high frequency sputtering device or the like, and S is formed on the non-magnetic film 26.
The coil 27 is formed by using a non-magnetic film such as iO 2 as an insulating material and a conductor film such as Cu in a predetermined number of turns to obtain a coil substrate 24.
At the same time, the connection electrode 28 for external connection is formed at the same time when the coil is formed. The coil center portion of the coil substrate, the non-magnetic film between the connection electrode and the coil are removed to a predetermined shape, and the ferrite substrate 25 is exposed to form a butt surface portion with the main magnetic pole core.
【0031】コイル中心部のフェライト露出部分に主磁
極コアの主磁極形成側の突き合わせ面を合わせて、コイ
ル基板と主磁極コアの接合を行ない、磁気ヘッドが複数
個配列したヘッドブロック29を得る。接合にはエポキ
シ樹脂系接着剤、シアノアクリレート系接着剤等の有機
樹脂接着剤を主磁極コアのコイル逃げ溝内22に充填し
接合する樹脂接合方法を用いるか、少なくとも片側の突
き合わせ面にたとえばPbO−SiO2系低融点ガラス
薄膜を高周波スパッタリング装置等を用いて1μm以下
の膜厚形成し、そのガラス薄膜を加熱溶融することによ
り互いを接合するガラス接合方法を用いても良い。いず
れの接合方法でも接合強度を得るために接合面以外に補
強用の接合剤充填溝等を設けても良い。また、他の接合
方法としてAu、Al等の金属薄膜を突き合わせ面に形
成し、互いを加圧して接合する金属接合方法を用いても
ヘッドブロックを得ることができる。The abutting surface of the main magnetic pole core on the main magnetic pole forming side is aligned with the exposed ferrite portion of the central portion of the coil, and the coil substrate and the main magnetic pole core are joined to obtain a head block 29 in which a plurality of magnetic heads are arranged. For joining, a resin joining method is used in which an organic resin adhesive such as an epoxy resin adhesive or a cyanoacrylate adhesive is filled into the coil clearance groove 22 of the main magnetic pole core and joined, or at least one abutting surface is made of, for example, PbO. It is also possible to use a glass bonding method in which a --SiO 2 -based low melting point glass thin film is formed to a film thickness of 1 μm or less using a high frequency sputtering device and the glass thin films are heated and melted to bond each other. In any joining method, in order to obtain joining strength, a joining agent filling groove for reinforcement may be provided in addition to the joining surface. Alternatively, the head block can be obtained by using another metal joining method in which a metal thin film such as Au or Al is formed on the abutting surfaces and they are pressed together to join.
【0032】具体的には、コイル巻回数20Tのコイル
基板にコアブロックをエポキシ樹脂接着材を用いて接合
した。Specifically, a core block was bonded to a coil substrate having a coil winding number of 20 T using an epoxy resin adhesive.
【0033】工程11はヘッドブロックのコアブロック
17ならびコイル基板24をスライス加工してヘッドブ
ロック29を所定厚さにするとともに、主磁極コアを個
々に分割するものである。加工はレジンもしくはメタル
ボンドの砥石を用いて、高速ダイシングソー装置で行な
う。図11は加工位置を示すヘッドブロック29の側面
図で、コアブロック17のF−F´、コイル基板24の
G−G´を加工して、それぞれ所定の厚さに薄板加工す
る。ここで、コアブロック17の加工は主磁極のギャッ
プデプスGdを決めるためのものであり、加工位置F−
F´は所定のギャップデプスが得られる位置で加工す
る。したがって、加工はギャップデプスの精度が得ら
れ、さらに加工面が記録媒体との対抗面となるため良好
な面粗さが得られるように、砥粒の粒径が10μm以下
の砥石を用いて加工を行なう。また、この加工により主
磁極コアの最終的なコア厚t1が決まり、工程9で加工
したU字状溝部23を切断することにより主磁極コアを
個々に分離する。In step 11, the core block 17 of the head block and the coil substrate 24 are sliced so that the head block 29 has a predetermined thickness and the main magnetic pole core is divided into individual pieces. Processing is performed with a high-speed dicing saw device using a resin or metal bond grindstone. FIG. 11 is a side view of the head block 29 showing a processing position. FF ′ of the core block 17 and GG ′ of the coil substrate 24 are processed to be thin plates each having a predetermined thickness. Here, the processing of the core block 17 is for determining the gap depth Gd of the main magnetic pole, and the processing position F-
F ′ is processed at a position where a predetermined gap depth can be obtained. Therefore, processing is performed using a grindstone with a grain size of 10 μm or less so that the accuracy of the gap depth can be obtained and that the surface to be machined is a surface facing the recording medium and thus good surface roughness can be obtained. Do. Further, the final core thickness t1 of the main magnetic pole core is determined by this processing, and the U-shaped groove 23 processed in step 9 is cut to separate the main magnetic pole cores individually.
【0034】一方、コイル基板24側の加工は主として
磁気ヘッド全体の重量を決めるためのものである。コイ
ル基板の厚さt2を薄くすれば重量も小さく出来るが、
コイル基板上の非磁性薄膜等の内部応力により加工時に
コイル基板が反ってくるため、加工精度が悪くなる。ま
た、厚さt2を厚くすると磁気ヘッド重量が大きくな
り、接触荷重増加により記録媒体を傷つけやすくなる。
また、これを防止するために、高精度の荷重制御機構が
必要となる。以上の理由により、コイル基板の厚さt2
は0.05〜0.5mmの範囲内で設定する。On the other hand, the processing on the coil substrate 24 side is mainly for determining the weight of the entire magnetic head. Although the weight can be reduced by reducing the thickness t2 of the coil substrate,
The internal stress of the non-magnetic thin film or the like on the coil substrate causes the coil substrate to warp during processing, resulting in poor processing accuracy. Further, if the thickness t2 is increased, the weight of the magnetic head is increased and the contact load is increased, so that the recording medium is easily damaged.
Moreover, in order to prevent this, a highly accurate load control mechanism is required. For the above reasons, the thickness t2 of the coil substrate is
Is set within the range of 0.05 to 0.5 mm.
【0035】具体的には、主磁極コアの厚さt1が0.
1mm、コイル基板の厚さt2が0.3mmになるよう
にスライス加工を行なった。Specifically, the thickness t1 of the main magnetic pole core is 0.
Slice processing was performed so that the thickness t1 of the coil substrate was 1 mm and the thickness t2 of the coil substrate was 0.3 mm.
【0036】図12はスライス加工後のヘッドブロック
29を示す外観図であり、個々の主磁極コア21がコイ
ル基板24に接合された複数の磁気ヘッドが配列された
ヘッドブロック30が得られる。このヘッドブロック3
0をH−H´で切断して図13に示す磁気ヘッド31と
する。FIG. 12 is an external view showing the head block 29 after slicing, and a head block 30 in which a plurality of magnetic heads in which individual main magnetic pole cores 21 are bonded to the coil substrate 24 are arranged is obtained. This head block 3
0 is cut by H-H 'to obtain a magnetic head 31 shown in FIG.
【0037】本発明では、主磁極コアとコイル基板を別
工程で作成し互いを接合して磁気ヘッドを得るため、個
々に工程管理が可能であり最適な組み合わせにより磁気
ヘッドの歩留りを向上させることができる。また、別工
程により主磁極コアを製造するため、コア幅、長さ、記
録媒体との当接面の形状等を従来以上に任意にかつ容易
に変えることが可能である。このことから、主磁極コア
の形状を最適化することにより記録媒体との当接が良好
な磁気ヘッドが得ることができる。さらに、主磁極、コ
イルが複数個配列したブロックから磁気ヘッドを得るた
めに、量産性にも優れている。In the present invention, the main magnetic pole core and the coil substrate are formed in separate steps and joined to each other to obtain the magnetic head, so that the steps can be controlled individually and the yield of the magnetic head can be improved by the optimum combination. You can Further, since the main magnetic pole core is manufactured by a separate process, the core width, length, shape of the contact surface with the recording medium, etc. can be arbitrarily and easily changed more than ever before. Therefore, by optimizing the shape of the main magnetic pole core, it is possible to obtain a magnetic head that is in good contact with the recording medium. Further, since the magnetic head is obtained from a block in which a plurality of main magnetic poles and coils are arranged, mass productivity is excellent.
【0038】(実施例2)次に本発明の他の実施例につ
いて説明する。図1ないし図13に示す実施例では図1
0に示す工程において、図10(c)のコイル基板断面
図に示すように、フェライト基板上に非磁性膜を形成
し、その上に複数の導体コイル、接続電極等を半導体技
術で作成したコイル基板を用いており、量産性に優れて
いるが、磁気ヘッドの磁気回路に体積の大きいフェライ
ト基板が入る構造となるため、ヘッドインダクタンスが
大きくなり低インダクタンスの磁気ヘッドを得にくくな
る。(Embodiment 2) Next, another embodiment of the present invention will be described. In the embodiment shown in FIGS. 1 to 13, FIG.
In the step shown in FIG. 0, as shown in the coil substrate sectional view of FIG. 10C, a non-magnetic film is formed on a ferrite substrate and a plurality of conductor coils, connection electrodes, etc. are formed on the coil by semiconductor technology. Although the substrate is used and it is excellent in mass productivity, since a ferrite substrate having a large volume is put in the magnetic circuit of the magnetic head, the head inductance becomes large and it is difficult to obtain a low-inductance magnetic head.
【0039】この問題に関しては図14に示すようにコ
イル基板40を非磁性基板41に溝を形成し、溝内に金
属軟磁性膜42を埋め込んだ構造とすることにより、金
属磁性膜42のみが磁気回路の一部となるため、磁気ヘ
ッドの低インダクタンス化が可能となる。さらに、溝
幅、深さの形状を変え金属軟磁性膜の体積を変えること
によりインダクタンスの制御も可能である。図15はI
−I´の断面図で、非磁性基板41の溝内に埋め込んだ
金属軟磁性膜42上に非磁性絶縁膜43を被着し、その
上にコイルを形成した構造となっている。With respect to this problem, as shown in FIG. 14, by forming a groove in the non-magnetic substrate 41 of the coil substrate 40 and embedding the metal soft magnetic film 42 in the groove, only the metal magnetic film 42 is formed. Since it becomes a part of the magnetic circuit, the inductance of the magnetic head can be reduced. Further, the inductance can be controlled by changing the shape of the groove width and the depth and changing the volume of the metal soft magnetic film. Figure 15 shows I
In the cross-sectional view taken along the line -I ', the structure is such that the nonmagnetic insulating film 43 is deposited on the metal soft magnetic film 42 buried in the groove of the nonmagnetic substrate 41, and the coil is formed thereon.
【0040】図16、図17、図18は本実施例のコイ
ル基板の工程を示したもので、図16に示す工程で非磁
性基板41にミリング装置等の半導体製造方法もしくは
高速ダイシングソー装置等の機械加工方法により、その
断面形状が略U字状または略台形状の所定形状の溝45
を複数本、平行して形成する。なお、溝深さが10μm
以上の場合は加工時間からの点から、機械加工方法が優
位である。また、非磁性基板41は、MnO−NiO系
非磁性フェライト,Al2O3等のセラミック基板、また
は結晶化ガラス等のガラス基板から選ばれる。具体的に
は、先端を略台形状に成形したレジンまたはメタルボン
ド砥石を用いて、高速ダイシングソー装置で加工を行な
う。溝深さは20μmとし、この場合の溝幅が60μm
になるように砥石の成形を行なった。FIG. 16, FIG. 17, and FIG. 18 show steps of the coil substrate of this embodiment. In the step shown in FIG. 16, the nonmagnetic substrate 41 is subjected to a semiconductor manufacturing method such as a milling device or a high-speed dicing saw device. According to the machining method described above, the groove 45 having a predetermined shape whose cross-sectional shape is a substantially U shape or a substantially trapezoidal shape.
Are formed in parallel. The groove depth is 10 μm
In the above cases, the machining method is superior in terms of processing time. The non-magnetic substrate 41 is selected from MnO—NiO based non-magnetic ferrite, ceramic substrates such as Al 2 O 3 or glass substrates such as crystallized glass. Specifically, processing is performed by a high-speed dicing saw device using a resin or a metal bond grindstone whose tip is formed into a substantially trapezoidal shape. The groove depth is 20 μm and the groove width in this case is 60 μm
The grindstone was shaped so that
【0041】次に、図17に示す工程で溝形成面に高周
波スパッタリング装置を用いて、金属磁性膜を少なくと
も溝が埋まる厚さ被着した後、被着面を研磨し不要部分
の金属軟磁性膜を除去して、溝内のみに金属軟磁性膜4
2が埋め込まれた基板を得る。なお、金属磁性膜45と
しては図2に示した工程同様にする。面研磨は例えばダ
イヤモンド砥粒を用いて行ない、研磨面は鏡面仕上げ面
とする。以上の工程で得られた溝基板上にフォトリソ、
成膜等の半導体製造技術で導体コイル45、接続電極4
6を形成するが、図18に示すように導体コイル42は
その中心部と溝内金属軟磁性膜42の中心部がほぼ一致
する位置に形成する。Next, in the step shown in FIG. 17, a metal magnetic film is applied to the groove forming surface with a high frequency sputtering device to a thickness such that at least the groove is filled, and then the adhered surface is polished to remove unnecessary portions of the metal soft magnetic material. By removing the film, the metal soft magnetic film 4 is formed only in the groove.
Obtain a substrate in which 2 is embedded. The metal magnetic film 45 is similar to the process shown in FIG. Surface polishing is performed using, for example, diamond abrasive grains, and the polished surface is a mirror finished surface. Photolithography on the groove substrate obtained in the above steps,
Conductor coil 45, connection electrode 4 by semiconductor manufacturing technology such as film formation
6, the conductor coil 42 is formed at a position where the center portion of the conductor coil 42 and the center portion of the in-groove metal soft magnetic film 42 are substantially aligned with each other.
【0042】本発明のコイル基板を用いることにより、
磁気回路の一部分がコイル基板に埋め込んだ金属磁性膜
のみで構成されることになり、磁気ヘッドのインダクタ
ンスを低くすることができる。さらに、溝深さ、幅等を
変えて金属磁性膜の断面積を変えることにより、インダ
クタンスの制御も可能となる。By using the coil substrate of the present invention,
Since a part of the magnetic circuit is composed only of the metal magnetic film embedded in the coil substrate, the inductance of the magnetic head can be reduced. Further, the inductance can be controlled by changing the cross-sectional area of the metal magnetic film by changing the groove depth and width.
【0043】[0043]
【発明の効果】本発明によれば、 (1)主磁極コアとコイル基板を別工程で製造し、互い
に接合して磁気ヘッドを製造するため、良好な特性の組
合せが容易にでき、記録再生特性の優れた薄膜磁気ヘッ
ドを高歩留まりで製造することができる。According to the present invention, (1) the main magnetic pole core and the coil substrate are manufactured in separate steps, and the magnetic head is manufactured by bonding them to each other. Therefore, good characteristics can be easily combined, and recording / reproducing is performed. A thin film magnetic head having excellent characteristics can be manufactured with a high yield.
【0044】(2)記録媒体と当接する主磁極コアを単
独工程で製造するため、コア形状の制約が小さくなり、
コア形状最適化により記録媒体との当接が良好な磁気ヘ
ッドを容易に得ることができる。(2) Since the main magnetic pole core that comes into contact with the recording medium is manufactured in a single process, restrictions on the core shape are reduced,
By optimizing the core shape, it is possible to easily obtain a magnetic head that is in good contact with the recording medium.
【0045】(3)主磁極,コイルとも複数個配列した
ブロック、基板で製造を行なうため量産性にも優れてい
る。(3) The main magnetic pole and the coil are manufactured by using a block and a substrate in which a plurality of coils are arranged, so that mass productivity is excellent.
【0046】等の利点がある。There are advantages such as the following.
【図1】本発明の第一実施例の薄膜磁気ヘッドの第1工
程の説明図。FIG. 1 is an explanatory diagram of a first step of a thin film magnetic head of a first embodiment of the invention.
【図2】本発明の第一実施例の薄膜磁気ヘッドの第2工
程の説明図。FIG. 2 is an explanatory diagram of a second step of the thin film magnetic head of the first embodiment of the present invention.
【図3】本発明の第一実施例の薄膜磁気ヘッドの第3工
程の説明図。FIG. 3 is an explanatory diagram of a third step of the thin film magnetic head of the first embodiment of the present invention.
【図4】本発明の第一実施例の薄膜磁気ヘッドの第4工
程の説明図。FIG. 4 is an explanatory view of a fourth step of the thin film magnetic head of the first embodiment of the invention.
【図5】本発明の第一実施例の薄膜磁気ヘッドの第5工
程の説明図。FIG. 5 is an explanatory view of a fifth step of the thin film magnetic head of the first embodiment of the invention.
【図6】本発明の第一実施例の薄膜磁気ヘッドの第6工
程の説明図。FIG. 6 is an explanatory view of a sixth step of the thin film magnetic head of the first embodiment of the present invention.
【図7】本発明の第一実施例の薄膜磁気ヘッドの第7工
程の説明図。FIG. 7 is an explanatory view of a seventh step of the thin film magnetic head of the first embodiment of the invention.
【図8】本発明の第一実施例の薄膜磁気ヘッドの第8工
程の説明図。FIG. 8 is an explanatory view of an eighth step of the thin film magnetic head of the first embodiment of the invention.
【図9】本発明の第一実施例の薄膜磁気ヘッドの第9工
程の説明図。FIG. 9 is an explanatory view of a ninth step of the thin film magnetic head of the first embodiment of the invention.
【図10】本発明の第一実施例の薄膜磁気ヘッドの第1
0工程の説明図。FIG. 10 is a first thin film magnetic head according to the first embodiment of the present invention.
Explanatory drawing of 0 process.
【図11】本発明の第一実施例の薄膜磁気ヘッドの第1
1工程の説明図。FIG. 11 is a first thin film magnetic head according to the first embodiment of the present invention.
Explanatory drawing of 1 process.
【図12】本発明の第一実施例の薄膜磁気ヘッドの第1
1工程後の説明図。FIG. 12 is a first thin film magnetic head according to the first embodiment of the present invention.
Explanatory drawing after 1 process.
【図13】本発明の第一実施例の薄膜磁気ヘッドの斜視
図。FIG. 13 is a perspective view of a thin film magnetic head according to a first embodiment of the invention.
【図14】本発明の第二実施例の薄膜磁気ヘッドのコイ
ル基板の説明図。FIG. 14 is an explanatory diagram of a coil substrate of the thin film magnetic head of the second embodiment of the present invention.
【図15】本発明の第二実施例の薄膜磁気ヘッドのコイ
ル基板の説明図。FIG. 15 is an explanatory diagram of a coil substrate of the thin film magnetic head of the second embodiment of the present invention.
【図16】本発明の第二実施例の薄膜磁気ヘッドのコイ
ル基板の第1工程の説明図。FIG. 16 is an explanatory diagram of a first step of forming the coil substrate of the thin film magnetic head of the second embodiment of the present invention.
【図17】本発明の第二実施例の薄膜磁気ヘッドのコイ
ル基板の第2工程の説明図。FIG. 17 is an explanatory diagram of a second step of forming the coil substrate of the thin film magnetic head of the second embodiment of the present invention.
【図18】本発明の第二実施例の薄膜磁気ヘッドのコイ
ル基板のコイル形成位置を説明する基板の正面図。FIG. 18 is a front view of the substrate for explaining the coil forming position of the coil substrate of the thin film magnetic head of the second embodiment of the present invention.
【図19】従来の垂直薄膜磁気ヘッドの側面図。FIG. 19 is a side view of a conventional vertical thin film magnetic head.
21…主磁極コア、 24…コイル基板、 31…磁気ヘッド。 21 ... Main magnetic pole core, 24 ... Coil substrate, 31 ... Magnetic head.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 土屋 敏雄 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 柳原 仁 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 柴山 優子 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 長友 浩之 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 小西 捷雄 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 植村 典夫 東京都千代田区丸の内二丁目1番2号日立 金属株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Tsuchiya 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd. Hitachi, Ltd. multimedia system development headquarters (72) Hitoshi Yanagihara Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd.Multimedia System Development Headquarters (72) Inventor Yuko Shibayama Yoshidacho, Totsuka-ku, Yokohama, Kanagawa Prefecture 292 Hitachi, Ltd. Multimedia System Development Headquarters (72) Inventor Hirotomo Nagato Kanagawa 292 Yoshida-cho, Totsuka-ku, Yokohama-shi Hitachi, Ltd. multimedia system development headquarters (72) Inventor Nobuo Konishi 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi Ltd. multimedia system development headquarters (72) Inventor Norio Uemura Thousands of Tokyo Field-ku, Marunouchi 2-chome No. 2 Hitachi metal within Co., Ltd.
Claims (3)
所定の厚さ形成する工程、前記非磁性膜の面に金属軟磁
性膜を埋込むためのその断面形状が略U字状または略台
形状の溝を複数、所定の間隔でかつ平行に前記磁性基板
に到達しない深さに形成する工程、前記非磁性膜面の溝
内に少なくとも溝が埋まる厚さ金属軟磁性膜を被着する
工程、前記金属軟磁性膜の被着面を研磨し溝内膜以外を
除去する工程、前記研磨面に主磁極となる金属軟磁性薄
膜を所定の厚さ形成する工程、前記金属軟磁性薄膜を物
理的、化学的手法により所定のトラック幅,デプスを持
ち、そのパターンの中心線が溝内の前記金属軟磁性膜と
前記非磁性膜の境界線に略直交し、少なくともデプス=
0の位置が溝内膜外にあるように所定の形状に主磁極を
複数個配列してパターンニングする工程、前記基板を所
定の位置で切断し主磁極パターンが複数配列した主磁極
コアブロックを得る工程、前記主磁極コアブロックの少
なくともコイル基板と突き合わせる切断面を研磨する工
程、前記主磁極パターンのトラック部を中心として所定
の接触幅になるように研磨面に略垂直な方向に一対のV
字状溝ならび所定幅の主磁極コアを得るための切り欠け
をそれぞれの前記主磁極パターンに加工する工程、前記
主磁極コアブロックの前記コイル基板と突き合わせる研
磨面に略台形状溝と略長方形状の溝を所定の位置に加工
する工程、前記ヘッドブロックを所定位置で切断し1個
の磁気ヘッドを得る工程を含むことを特徴とする薄膜磁
気ヘッドの製造方法。1. A step of forming a non-magnetic film on a first substrate made of a magnetic substrate to a predetermined thickness, and a cross-sectional shape for embedding a metal soft magnetic film on the surface of the non-magnetic film is substantially U-shaped. Alternatively, a step of forming a plurality of substantially trapezoidal grooves at a predetermined interval in parallel to each other at a depth that does not reach the magnetic substrate, and covering the non-magnetic film surface with a metal soft magnetic film having a thickness that at least fills the grooves. The step of polishing, the step of polishing the adhered surface of the metal soft magnetic film to remove the portion other than the groove inner film, the step of forming a metal soft magnetic thin film to be the main pole to a predetermined thickness on the polished surface, the metal soft magnetic The thin film has a predetermined track width and depth by a physical or chemical method, the center line of the pattern is substantially orthogonal to the boundary line between the metal soft magnetic film and the non-magnetic film in the groove, and at least the depth =
Patterning by arranging a plurality of main magnetic poles in a predetermined shape so that the position 0 is outside the inner film of the groove; and cutting the substrate at a predetermined position to form a main magnetic pole core block in which a plurality of main magnetic pole patterns are arranged. The step of obtaining, a step of polishing at least a cut surface of the main magnetic pole core block that abuts against the coil substrate, V
A step of processing notches for obtaining a main magnetic pole core having a V-shaped groove and a predetermined width into each of the main magnetic pole patterns, and a substantially trapezoidal groove and a substantially rectangular shape on the polishing surface of the main magnetic pole core block that abuts the coil substrate. A method of manufacturing a thin film magnetic head, comprising the steps of processing a groove in a predetermined position and cutting the head block at a predetermined position to obtain one magnetic head.
接続電極を形成した第2の基板に前記主磁極コアブロッ
クを主磁極パターンの位置を合わせて接合し、磁気ヘッ
ドが多数個配列したヘッドブロックを得る工程におい
て、前記コイル基板の構造が非磁性基板に所定幅ならび
深さの略U字状または略台形状の溝を加工し、溝内のみ
に金属軟磁性膜を埋め込み、金属軟磁性膜上に非磁性絶
縁膜を介して導体コイルを形成する請求項1に記載の薄
膜磁気ヘッドの製造方法。2. A head in which a plurality of magnetic heads are arranged by bonding the main magnetic pole core block to a second substrate having a plurality of signal coils and connection electrodes formed on the magnetic substrate with the positions of the main magnetic pole patterns aligned. In the step of obtaining the block, the coil substrate is formed into a groove having a U-shape or a trapezoid shape having a predetermined width and depth in a non-magnetic substrate, and a metal soft magnetic film is embedded only in the groove to form a metal soft magnetic film. The method of manufacturing a thin-film magnetic head according to claim 1, wherein a conductor coil is formed on the film via a non-magnetic insulating film.
接続電極を形成した第2の基板に前記主磁極コアブロッ
クを主磁極パターンの位置を合わせて接合し、磁気ヘッ
ドが多数個配列したヘッドブロックを得る工程で略V溝
の開き角度が60゜〜120゜の範囲内でかつ主磁極コ
アの接触幅が10〜100μmの範囲内である請求項1
または2に記載の薄膜磁気ヘッドの製造方法。3. A head in which a plurality of magnetic heads are arrayed by bonding the main magnetic pole core block to a second substrate having a plurality of signal coils and connection electrodes formed on the magnetic substrate with the positions of the main magnetic pole patterns aligned. The step of obtaining a block, wherein the opening angle of the substantially V groove is within the range of 60 ° to 120 °, and the contact width of the main magnetic pole core is within the range of 10 to 100 μm.
Alternatively, the method of manufacturing the thin-film magnetic head according to the item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2756996A JPH09219010A (en) | 1996-02-15 | 1996-02-15 | Production of perpendicular thin-film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2756996A JPH09219010A (en) | 1996-02-15 | 1996-02-15 | Production of perpendicular thin-film magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09219010A true JPH09219010A (en) | 1997-08-19 |
Family
ID=12224658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2756996A Pending JPH09219010A (en) | 1996-02-15 | 1996-02-15 | Production of perpendicular thin-film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09219010A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6989960B2 (en) * | 1999-12-30 | 2006-01-24 | Advanced Research Corporation | Wear pads for timing-based surface film servo heads |
-
1996
- 1996-02-15 JP JP2756996A patent/JPH09219010A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6989960B2 (en) * | 1999-12-30 | 2006-01-24 | Advanced Research Corporation | Wear pads for timing-based surface film servo heads |
US7701665B2 (en) | 1999-12-30 | 2010-04-20 | Advanced Research Corporation | Wear pads for timing-based surface film servo heads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4656547A (en) | Composite type magnetic head for recording and reproducing high frequency signals | |
EP0115842B1 (en) | Magnetic head and method of fabricating same | |
US4635153A (en) | Magnetic transducer head | |
EP0140977A1 (en) | Magnetic head and method of manufacture thereof | |
JPH0770036B2 (en) | Floating magnetic head and method of manufacturing the same | |
JPH09219010A (en) | Production of perpendicular thin-film magnetic head | |
US5691866A (en) | Magnetic head and method of manufacturing the same | |
US5016341A (en) | A process for producing magnetic heads of the floating type | |
EP0108152A1 (en) | Narrow-track composite digital magnetic head | |
JPS60231903A (en) | Composite type magnetic head and its production | |
JP2889072B2 (en) | Thin film laminated magnetic head chip and manufacturing method thereof | |
JPH0585962B2 (en) | ||
JPS59218615A (en) | Magnetic head and its manufacture | |
JPH06318311A (en) | Perpendicular thin-film magnetic head and its production | |
JPH0522962B2 (en) | ||
JPH0729345A (en) | Magnetic head and its production | |
JPH06223317A (en) | Laminate type magnetic head and manufacture thereof | |
JPH0827899B2 (en) | Magnetic head and manufacturing method thereof | |
JPH1049827A (en) | Manufacture of magnetic head | |
JPH07192241A (en) | Floating type magnetic head and its production | |
JPH027206A (en) | Manufacture of magnetic head | |
JPH04195903A (en) | Magnetic head | |
JPH0528415A (en) | Manufacture of magnetic head | |
JPH09251610A (en) | Plating method and production of magnetic head by using the same | |
JPH1064008A (en) | Magnetic head |