JPH09218150A - Salt damage monitor system - Google Patents

Salt damage monitor system

Info

Publication number
JPH09218150A
JPH09218150A JP8026822A JP2682296A JPH09218150A JP H09218150 A JPH09218150 A JP H09218150A JP 8026822 A JP8026822 A JP 8026822A JP 2682296 A JP2682296 A JP 2682296A JP H09218150 A JPH09218150 A JP H09218150A
Authority
JP
Japan
Prior art keywords
salt
amount
insulator
measured
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8026822A
Other languages
Japanese (ja)
Inventor
Mikihiro Ito
幹浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP8026822A priority Critical patent/JPH09218150A/en
Publication of JPH09218150A publication Critical patent/JPH09218150A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

PROBLEM TO BE SOLVED: To provide a salt damage monitor system capable of accurately measuring a deposited salt amount at a plurality of positions on a real time basis, and even predicting the amount. SOLUTION: Regarding a system for monitoring a salt damage due to salt deposited on the insulator of an electrical facility such as a transmission line, meteorological measurement instruments 3a to 3c for measuring the meteorological data of a wind direction, a wind velocity and a precipitation are installed at a plurality of monitor positions 1a to 1c, and an amount of salt deposited on insulators 2a to 2c at each of the monitor positions 1a to 1c is calculated on the basis of the meteorological data so measured. Also, an optical waveguide is fitted to the insulator 2a at least at one position 1a of the monitor positions, and the amount of salt deposited on the insulator 2a is measured on the basis of a light transmission amount through the optical waveguide. Then, the amount of deposited salt so measured at the one position 1a is is compared with the calculated amount of salt deposited on the insulators 2a to 2c. The amount of deposited salt calculated for other monitor positions 1b and 1c is corrected on the basis of the result of the comparison.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、碍子の塩害を監視
するシステムに係り、特に、複数箇所の塩分付着量がリ
アルタイムで精度よく測定でき、予測も可能な塩害監視
システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for monitoring salt damage to insulators, and more particularly to a salt damage monitoring system capable of accurately measuring and predicting the amount of salt attached at a plurality of locations in real time.

【0002】[0002]

【従来の技術】高圧電線と支柱鉄塔との間の電気的絶縁
部材として、碍子が広く用いられている。しかし、碍子
のおかれる環境は過酷なものであり、例えば工業地域や
臨海地域などにあっては碍子表面に塩分(NaCl)、
その他の無機物質を主体とする塵埃が付着して汚損され
やすく、それらが碍子の絶縁耐圧を低下させて閃絡事故
等を引き起こす場合がある。
2. Description of the Related Art Insulators are widely used as an electrical insulating member between a high voltage electric wire and a support tower. However, the environment in which the insulator is placed is harsh. For example, in industrial areas and coastal areas, salt (NaCl),
Dust, which is mainly composed of other inorganic substances, may be easily attached and polluted, which may lower the insulation withstand voltage of the insulator and cause a flashover accident or the like.

【0003】こうした事態を未然に防止するために、碍
子表面に付着する汚損物質を定期的に定量分析し、碍子
汚損量を求めることが従来から行われている。
In order to prevent such a situation, it has been conventionally practiced to periodically quantitatively analyze a pollutant substance adhering to the surface of the insulator to obtain the polluted amount of the insulator.

【0004】ところで、碍子に付着する汚損物質として
は、塩分の他、十種類程度の無機物質があるといわれて
いるが、その中でも特に塩分は碍子の絶縁体圧を大きく
劣化させる要因となっている。そこで、碍子汚損量を表
示するにあたり、汚損物質を全て塩分からなると仮定し
た場合の単位面積当りの塩分量(等価塩分付着量)を用
いることが便宜上なされている。
By the way, as the fouling substances attached to the insulator, it is said that there are about 10 kinds of inorganic substances in addition to the salt content. Among them, especially the salt content causes a great deterioration of the insulator pressure of the insulator. There is. Therefore, when displaying the amount of fouling of insulators, it is convenient to use the amount of salt per unit area (equivalent amount of adhering salt) when it is assumed that the fouling substance is composed entirely of salt.

【0005】従来の塩分付着量測定方法には、以下のよ
うなものがある。
There are the following conventional methods for measuring the amount of deposited salt.

【0006】(1)筆洗い法 実運用中の碍子と素材・形状が同じパイロット碍子を、
測定したい場所に設置しておき、所定期間経過後これを
取り外し、汚損物質を筆で洗浄してその洗浄液の電気伝
導度を測定することにより等価塩分付着量を求める。
(1) Brush washing method A pilot insulator with the same material and shape as the insulator in actual operation,
The equivalent salt content is determined by setting it in a place to be measured, removing it after a predetermined period of time, cleaning the pollutant with a brush and measuring the electric conductivity of the cleaning liquid.

【0007】(2)露点式汚損量測定法 パイロット碍子に電子冷却素子を組み入れ、これを露点
温度以下に冷却させて空気中の水分を集め、碍子に付い
ている汚損物質を強制的に十分湿潤させた状態にして洩
れ抵抗を測定する。次いで、別に求めておいた洩れ抵抗
と等価塩分付着量との関係から換算して当該汚損物質の
等価塩分付着量を求める。
(2) Dew-point type pollution amount measuring method An electronic cooling element is incorporated in a pilot insulator, which is cooled to a temperature below the dew-point temperature to collect moisture in the air and forcibly moisten the pollutant attached to the insulator. Leakage resistance is measured in the condition where it is left. Next, the equivalent salt deposit amount of the pollutant is calculated by converting from the relationship between the leak resistance and the equivalent salt deposit amount that have been separately obtained.

【0008】(3)超音波洗浄式汚損量測定法 パイロット碍子を蒸留水の入った洗浄槽内に入れ、碍子
を回転させながら超音波洗浄により汚損物質を洗い落と
し、汚損物質の溶け込んだ洗浄液の電気伝導度を測定し
て等価塩分付着量を求める。
(3) Ultrasonic cleaning-type fouling amount measuring method: The pilot insulator is put in a cleaning tank containing distilled water, the fouling substance is washed off by ultrasonic cleaning while rotating the insulator, and the cleaning liquid in which the fouling substance is dissolved is electrified. Conductivity is measured to determine the equivalent salt content.

【0009】(4)球形模擬碍子法 常時穏やかに自転する球形の模擬碍子を設置しておき、
これに付着した汚損物質をワイパーブラシで拭い取る。
ワイパーブラシに付着した汚損物質を循環する洗浄液で
洗い落とし、この洗浄液の電気伝導度を測定して、換算
された等価塩分付着量を求める。
(4) Spherical Simulated Insulator Method A spherical simulated insulator that always rotates gently is installed.
Wipe off the contaminants adhering to this with a wiper brush.
The fouling substances adhering to the wiper brush are washed off with a circulating cleaning liquid, the electric conductivity of this cleaning liquid is measured, and the converted equivalent salt content is determined.

【0010】[0010]

【発明が解決しようとする課題】わが国には多数の碍子
が設置されており、全ての設置場所において碍子表面の
塩分付着量を求めることが必要とされている。ところが
現在のところ、碍子塩害測定装置は全ての碍子には設置
されていない。
A large number of insulators are installed in Japan, and it is necessary to determine the amount of salt attached to the surface of the insulator at all installation locations. However, at present, insulators for salt damage measurement are not installed in all insulators.

【0011】塩分付着量を碍子設置地点の風速・風向・
雨量との関係式によって計算する方法が過去の体験・経
験を通じて古くから研究されており、一部で実用したと
の報告がある。しかし、この手法では、個々の環境や状
況により、測定精度に差があり、あらゆる条件で、精度
のよい塩分付着量を求めることは不可能である。
The amount of salt adhered can be measured by measuring the wind speed, wind direction, and
It has been reported that the method of calculating by the relational expression with the rainfall amount has been studied for a long time through past experience and experience, and that it has been partially used. However, with this method, there is a difference in measurement accuracy depending on the individual environment and situation, and it is impossible to obtain an accurate salt adhesion amount under all conditions.

【0012】また、上記の(1)〜(4)の方法による
測定の結果を利用して、碍子塩害測定装置が設置してあ
る地点の塩分量を計測・評価している。さらに、碍子塩
害測定装置が設置されていない地点においては風速・風
向・雨量のデータを計測して、上記手法により碍子表面
に付着している塩分量を予測する方法も一部では試みら
れている。
Further, by utilizing the results of the measurement by the above-mentioned methods (1) to (4), the amount of salt at the point where the insulator damage measuring device is installed is measured and evaluated. In addition, at some points where there is no insulator salt damage measuring device, wind speed, wind direction, and rainfall data are measured to predict the amount of salt adhering to the insulator surface by the above method. .

【0013】一方、碍子表面の塩分量が予め設定した基
準値を超えた場合には、直ちに洗浄しなければならない
ため、数時間後までの碍子表面の塩分付着量を予測する
必要がある。
On the other hand, when the amount of salt on the surface of the insulator exceeds a preset reference value, it must be washed immediately. Therefore, it is necessary to predict the amount of salt attached to the surface of the insulator up to several hours later.

【0014】上記のシステムのように塩害を監視・予測
して、事故を未然に防止するためには、碍子塩分付着量
の計測にリアルタイム性が要求される。
In order to monitor and predict salt damage and prevent accidents as in the above system, real-time measurement is required for measuring the amount of insulator salt content.

【0015】ところが、上記の(1)〜(4)の測定器
では、計測時間が数分から数十分で、しかも、計測時間
インターバルが、いずれも最短で数十分から1,2時間
かかるため、塩害で問題となる急速汚損状況下では、そ
の測定が遅くなり、肝心のデータを把握したときには、
既に塩害事故が発生してしまう事例も多い。さらに、複
数の地点で碍子表面の塩分付着量を監視するためには、
非常に時間がかかってしまう。
However, in the measuring instruments (1) to (4), the measuring time is several minutes to several tens of minutes, and the measuring time interval is the shortest, which is several tens of minutes to 1 to 2 hours. In a situation of rapid fouling, which is a problem due to salt damage, the measurement will be delayed, and when the essential data is grasped,
There are many cases in which a salt damage accident has already occurred. Furthermore, in order to monitor the amount of salt adhering to the insulator surface at multiple points,
It takes a very long time.

【0016】また、上記の(1)〜(4)の測定器で塩
害予測を行う場合には、同様の理由で非常に時間がかか
ってしまい、実際に予測したときには、その値が間違っ
ている(精度が悪い)という欠点がある。
Further, when salt damage is predicted by the measuring instruments of (1) to (4), it takes a very long time for the same reason, and when actually predicted, the value is wrong. It has the drawback of (inaccuracy).

【0017】そこで、本発明の目的は、上記課題を解決
し、複数箇所の塩分付着量がリアルタイムで精度よく測
定でき、予測も可能な塩害監視システムを提供すること
にある。
Therefore, an object of the present invention is to solve the above problems and to provide a salt damage monitoring system capable of accurately measuring and predicting the amount of salt attached at a plurality of places in real time.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に本発明は、送電線等の電気設備の碍子に塩分が付着す
る塩害を監視するシステムにおいて、複数の監視箇所に
風向・風速・降水量からなる気象データを計測する気象
測定器を設置し、この気象データに基づき各監視箇所の
碍子の塩分付着量を算出するようにし、上記監視箇所の
うち少なくとも一箇所の碍子に光導波路を取り付け、こ
の光導波路の光透過量から碍子の塩分付着量を計測する
ようにし、この一箇所について前記計測した塩分付着量
と前記算出した塩分付着量とを比較し、その比較結果に
より、他の監視箇所について前記算出した塩分付着量を
補正するものである。
In order to achieve the above object, the present invention provides a system for monitoring salt damage caused by salt adhering to insulators of electric equipment such as power transmission lines. A meteorological measuring instrument for measuring meteorological data consisting of quantity is installed, and the salt adhesion amount of the insulator at each monitoring point is calculated based on this meteorological data, and an optical waveguide is attached to at least one of the above monitoring points. The amount of salt attached to the insulator is measured from the amount of light transmission of the optical waveguide, and the measured amount of salt attached is compared with the calculated amount of salt attached at this one location, and the result of the comparison is used to monitor another. The calculated salt adhering amount is corrected for the location.

【0019】前記気象データの代わりに所定時間先の予
測気象データを用いて所定時間先の碍子の塩分付着量を
算出してもよい。
Instead of the meteorological data, predicted amount of meteorological data ahead of a predetermined time may be used to calculate the salt deposition amount of the insulator ahead of a predetermined time.

【0020】[0020]

【発明の実施の形態】以下本発明の一実施形態を添付図
面に基づいて詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0021】図1に示されるように、本発明の塩害監視
・予測システムにあっては、支柱鉄塔には、高圧電線と
の間の電気的絶縁部材として碍子が設けられている。図
示された支柱鉄塔は、いずれも塩害監視のための監視箇
所1a〜1cとなっているものである。これらの監視箇
所1a〜1cには、それぞれ碍子2a〜2cの近傍に風
向・風速・降水量からなる気象データを計測するための
気象測定器(風向・風速・雨量計)3a〜3cが設置さ
れおり、また送信器4a〜4cが設置されている。これ
らの送信器4a〜4cは送信用光ファイバコード等の伝
送路5を介して中央管理装置6に接続されている。送信
器4a〜4cは気象測定器3a〜3cで計測した風向・
風速・降水量からなる気象データを中央管理装置6に送
信するようになっている。
As shown in FIG. 1, in the salt damage monitoring / prediction system of the present invention, the support tower is provided with an insulator as an electrically insulating member with respect to the high voltage electric wire. The pillar steel towers shown are all monitoring points 1a to 1c for salt damage monitoring. At these monitoring points 1a to 1c, meteorological measuring instruments (wind direction, wind speed, and rain gauge) 3a to 3c for measuring meteorological data including wind direction, wind speed, and precipitation are installed near the insulators 2a to 2c, respectively. And transmitters 4a-4c are installed. These transmitters 4a to 4c are connected to a central management unit 6 via a transmission line 5 such as a transmission optical fiber cord. The transmitters 4a to 4c are wind directions measured by the meteorological measuring devices 3a to 3c.
Meteorological data including wind speed and precipitation is transmitted to the central management unit 6.

【0022】上記監視箇所のうち一箇所の監視箇所1a
については、碍子2aに光導波路を取り付けた光式碍子
塩害センサ(図2)が設けられており、碍子2aの塩分
付着量を計測できるようになっている。20はその演算
器部分である。この塩分付着量の計測結果についても送
信器4aが中央管理装置6に送信するようになってい
る。
Of the above monitoring points, one monitoring point 1a
2), an optical insulator salt damage sensor (FIG. 2) in which an optical waveguide is attached to the insulator 2a is provided, and the amount of salt adhering to the insulator 2a can be measured. Reference numeral 20 is a calculator unit. The transmitter 4a also sends the measurement result of the amount of deposited salt to the central management device 6.

【0023】中央管理装置6は、全ての監視箇所1a〜
1cを一括して集中的に塩害監視を行うものである。中
央管理装置6は、受信器7、演算処理装置8、表示器9
から構成されている。受信器7は各監視箇所1a〜1c
の送信器4a〜4cからの気象データ、塩分付着量の計
測結果を受信するものである。演算処理装置8は、予め
風向・風速・雨量の気象データと塩分付着量との関係式
を入力されており、各監視箇所1a〜1cからの気象デ
ータに基づき各監視箇所1a〜1cの碍子2a〜2cの
塩分付着量を算出するようになっていると共に、光式碍
子塩害センサを取り付けた監視箇所1aからの気象デー
タ及び塩分付着量に基づき上記関係式を補正するように
なっている。即ち、この一箇所について計測した塩分付
着量と関係式で算出した塩分付着量とを比較し、その比
較結果により、他の監視箇所1b,1cについて算出し
た塩分付着量を補正することができる。表示器9は、各
監視箇所1a〜1cの塩分付着量を表示するもので、例
えば地図上に各監視箇所1a〜1cの碍子を示し、塩分
付着量を表示するようになっている。
The central management device 6 is provided with all the monitoring points 1a ...
1c is collectively monitored for salt damage. The central management unit 6 includes a receiver 7, an arithmetic processing unit 8 and a display unit 9.
It is composed of The receiver 7 has monitoring points 1a to 1c.
The weather data and the measurement results of the amount of deposited salt are received from the transmitters 4a to 4c. The arithmetic processing unit 8 is preliminarily input with the relational expression between the weather data of wind direction, wind speed, and rainfall and the amount of deposited salt, and the insulator 2a of each of the monitoring points 1a to 1c is based on the weather data from each of the monitoring points 1a to 1c. 2c is calculated, and the above relational expression is corrected based on the meteorological data from the monitoring point 1a to which the optical insulator salt damage sensor is attached and the salt adhesion amount. That is, the amount of deposited salt measured at this one location is compared with the amount of deposited salt calculated by the relational expression, and the amount of deposited salt calculated at the other monitoring points 1b and 1c can be corrected by the comparison result. The display unit 9 displays the amount of salt adhering to each of the monitoring points 1a to 1c. For example, the insulator of each of the monitoring points 1a to 1c is shown on the map, and the amount of adhering salt is displayed.

【0024】光式碍子塩害センサの詳細は、図2に示さ
れるように、光導波路21が碍子22の表面に装着さ
れ、この光導波路21の光透過量から碍子22の塩分付
着量を計測する演算器部分20は光ファイバコードで接
続されている。光導波路21は、その表面に塩分が付着
すると透過光損失を生じるものである。この光導波路2
1が碍子22の下側に露出するよう取り付けられてい
る。この光導波路21は光コネクタ23を介して第1光
ファイバコード24及び第2光ファイバコード25に接
続されている。演算器部分20において、第1光ファイ
バコード24のもう一端は光源26に接続されている。
また、第2光ファイバコード25のもう一端は受光器2
7に接続されている。受光器27は導線を介して演算器
28に接続されている。
For details of the optical insulator salt damage sensor, as shown in FIG. 2, the optical waveguide 21 is mounted on the surface of the insulator 22, and the amount of salt attached to the insulator 22 is measured from the amount of light transmission of the optical waveguide 21. The arithmetic unit 20 is connected by an optical fiber cord. The optical waveguide 21 causes a loss of transmitted light when salt is attached to its surface. This optical waveguide 2
1 is attached so as to be exposed on the lower side of the insulator 22. The optical waveguide 21 is connected to a first optical fiber cord 24 and a second optical fiber cord 25 via an optical connector 23. In the arithmetic unit portion 20, the other end of the first optical fiber cord 24 is connected to the light source 26.
The other end of the second optical fiber cord 25 is connected to the light receiver 2
7 is connected. The light receiver 27 is connected to the calculator 28 via a lead wire.

【0025】光源26から第1光ファイバコード24を
介して光導波路21の一端に光を入射し、光導波路21
の他端からの出射光を第2光ファイバコード25を介し
て受光器27で受光する。受光器27の受光信号は演算
器28で信号処理され、予め求めておいた光損失量と塩
分付着量との関係式によって、当該碍子表面の塩分付着
量をリアルタイムで求めることが可能となる。以上が、
光式碍子塩害センサの塩分付着量の測定原理である。
Light is incident on one end of the optical waveguide 21 from the light source 26 via the first optical fiber cord 24, and
Light emitted from the other end is received by the light receiver 27 via the second optical fiber cord 25. The light reception signal of the light receiver 27 is processed by the calculator 28, and the salt deposition amount on the insulator surface can be calculated in real time by the relational expression between the light loss amount and the salt deposition amount obtained in advance. More than,
This is the principle of measuring the amount of salt adhering to the optical insulator salt damage sensor.

【0026】さて、図1の塩害監視・予測システムにお
いて、一箇所の監視箇所1aの光式碍子塩害センサによ
り碍子2aの表面の塩分付着量を計測する。計測した塩
分付着量は送信器4aに伝えられ、送信器4aは、光式
碍子塩害センサで計測した塩分付着量と風向・風速・雨
量計で計測した風向・風速・雨量とを中央管理装置6に
送信する。
In the salt damage monitoring / prediction system shown in FIG. 1, the amount of salt attached to the surface of the insulator 2a is measured by the optical insulator salt damage sensor at one monitoring point 1a. The measured salt adhesion amount is transmitted to the transmitter 4a, and the transmitter 4a displays the salt adhesion amount measured by the optical insulator salt damage sensor and the wind direction / wind speed / rainfall measured by the wind direction / wind speed / rainfall meter in the central control unit 6 Send to.

【0027】中央管理装置6では、演算処理装置8が、
光式碍子塩害センサで計測した塩分付着量と風向・風速
・雨量計で計測した風向・風速・雨量とを用い、予め入
力されている風向・風速・雨量の気象データと塩分付着
量との関係式を補正する。
In the central management unit 6, the arithmetic processing unit 8 is
The relationship between the amount of salt attached measured by the optical insulator salt damage sensor and the wind direction, wind speed, and rainfall measured by the wind direction, wind speed, and rain gauge, and the meteorological data of wind direction, wind speed, and rainfall that has been input in advance, and the amount of salt attached Correct the formula.

【0028】光式碍子塩害センサでの計測値は瞬時の計
測結果であり、かつ気象データも瞬時の計測結果である
ため、互いのデータをリアルタイムで評価できる。従っ
て、この評価結果から判明する補正係数は、高精度であ
り、この補正により求められる塩分付着量が高精度とな
ることは明白である。
Since the measured value by the optical insulator salt damage sensor is an instantaneous measured result and the meteorological data is also an instantaneous measured result, mutual data can be evaluated in real time. Therefore, the correction coefficient found from this evaluation result is highly accurate, and it is clear that the salt deposition amount obtained by this correction is highly accurate.

【0029】一方、他の複数の監視箇所1b,1cで
は、送信器4b,4cが風向・風速・雨量計3b,3c
で計測した風向・風速・雨量を中央管理装置6に送信す
る。中央管理装置6は補正した上記関係式を用いて、風
向・風速・雨量の測定値から塩分付着量を計算する。表
示器9は、地図上に各監視箇所1a〜1cの碍子を示
し、塩分付着量を表示する。
On the other hand, at the other plural monitoring points 1b and 1c, the transmitters 4b and 4c are the wind direction, wind speed, and rain gauges 3b and 3c.
The wind direction, wind speed, and rainfall measured in step 3 are transmitted to the central management device 6. The central management unit 6 calculates the amount of salt adhering from the measured values of the wind direction, wind speed, and rainfall using the corrected relational expression. The display 9 shows the insulators of the monitoring points 1a to 1c on the map, and displays the amount of deposited salt.

【0030】次に他の実施形態を説明する。Next, another embodiment will be described.

【0031】気象庁が発表する数時間後までの監視箇所
(碍子設置地点)1a〜1cにおける風向・風速・雨量
の予測値を受信し、この予測値(予測気象データ)を用
いて演算処理装置9が数時間後までの塩分付着量を予測
計算することも可能である。
The predicted values of the wind direction, wind speed, and rainfall at the monitoring points (insulator installation points) 1a to 1c until several hours after the announcement by the Japan Meteorological Agency are received, and the arithmetic processing unit 9 is used by using these predicted values (predicted weather data). It is also possible to predict and calculate the amount of salt attached up to several hours later.

【0032】前記実施形態では光式碍子塩害センサを設
けた監視箇所1aにて演算器28で塩分付着量を計算し
中央管理装置6に伝送しているが、演算器28は監視箇
所1aに設けず、受光器27の受光信号を中央管理装置
6に伝送し、中央管理装置6の演算処理装置8にて演算
器28の代わりに塩分付着量を計算しても同じ効果が得
られる。
In the above-mentioned embodiment, the calculator 28 calculates the salt adhesion amount at the monitoring point 1a provided with the optical insulator salt damage sensor and transmits it to the central control unit 6, but the calculator 28 is provided at the monitoring point 1a. Instead, the light reception signal of the light receiver 27 is transmitted to the central control unit 6, and the arithmetic processing unit 8 of the central control unit 6 calculates the salt deposition amount instead of the arithmetic unit 28, and the same effect can be obtained.

【0033】また、気象予報士の資格を持つ者は局地的
な気象データを公開できる。従って、気象庁が発表する
数時間後までの予測気象データの代わりに、気象予報士
の資格を持つ者による局地的な数時間後までの予測気象
データを入力すれば、同様にして数時間後までの塩分付
着量を予測計算することが可能である。
A person who is qualified as a weather forecaster can publish local weather data. Therefore, instead of the forecasted weather data announced by the Japan Meteorological Agency up to several hours later, if the forecasted weather data up to several hours later by a person who is qualified as a weather forecaster is input, the same will be obtained in several hours later. It is possible to predict and calculate the amount of deposited salt.

【0034】[0034]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0035】(1)光導波路の光透過量から碍子の塩分
付着量を計測するようにしたので、塩分付着量がリアル
タイムで精度よく測定でき、しかも、この比較結果によ
り気象データから算出した塩分付着量を補正するので、
他の箇所でも塩分付着量がリアルタイムで精度よく測定
できることになる。
(1) Since the salt deposition amount of the insulator is measured from the light transmission amount of the optical waveguide, the salt deposition amount can be accurately measured in real time, and the salt deposition amount calculated from the meteorological data based on the comparison result. Because the amount is corrected,
The amount of deposited salt can be accurately measured in real time at other locations as well.

【0036】(2)同様にして、予測気象データを用い
た塩分付着量の予測も高精度となる。
(2) Similarly, the prediction of the amount of deposited salt using the predicted meteorological data becomes highly accurate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す塩害監視システムの
概略構成図である。
FIG. 1 is a schematic configuration diagram of a salt damage monitoring system showing an embodiment of the present invention.

【図2】本発明に用いる光式碍子塩害センサの概略構成
図である。
FIG. 2 is a schematic configuration diagram of an optical insulator salt damage sensor used in the present invention.

【符号の説明】[Explanation of symbols]

1a〜1c 監視箇所 2a〜2c 碍子 3a〜3c 気象測定器 6 中央管理装置 1a-1c Monitoring point 2a-2c Insulator 3a-3c Meteorological measuring instrument 6 Central management device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 送電線等の電気設備の碍子に塩分が付着
する塩害を監視するシステムにおいて、複数の監視箇所
に風向・風速・降水量からなる気象データを計測する気
象測定器を設置し、この気象データに基づき各監視箇所
の碍子の塩分付着量を算出するようにし、上記監視箇所
のうち少なくとも一箇所の碍子に光導波路を取り付け、
この光導波路の光透過量から碍子の塩分付着量を計測す
るようにし、この一箇所について前記計測した塩分付着
量と前記算出した塩分付着量とを比較し、その比較結果
により、他の監視箇所について前記算出した塩分付着量
を補正することを特徴とする塩害監視システム。
1. In a system for monitoring salt damage in which salt adheres to insulators of electric equipment such as power transmission lines, a meteorological instrument for measuring meteorological data including wind direction, wind speed and precipitation is installed at a plurality of monitoring points, Based on this meteorological data, the salt adhesion amount of the insulator at each monitoring location is calculated, and an optical waveguide is attached to at least one insulator of the above monitoring location,
The amount of salt adhering to the insulator is measured from the amount of light transmission of this optical waveguide, and the measured amount of adhering salt and the amount of adhering salt calculated for this one location are compared, and the comparison result indicates that other monitoring points The salt damage monitoring system, wherein the calculated salt adhesion amount is corrected.
【請求項2】 前記気象データの代わりに所定時間先の
予測気象データを用いて所定時間先の碍子の塩分付着量
を算出することを特徴とする請求項1記載の塩害監視シ
ステム。
2. The salt damage monitoring system according to claim 1, wherein, instead of the meteorological data, the forecasted meteorological data at a predetermined time ahead is used to calculate the salt deposition amount of the insulator at a predetermined time ahead.
JP8026822A 1996-02-14 1996-02-14 Salt damage monitor system Pending JPH09218150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8026822A JPH09218150A (en) 1996-02-14 1996-02-14 Salt damage monitor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8026822A JPH09218150A (en) 1996-02-14 1996-02-14 Salt damage monitor system

Publications (1)

Publication Number Publication Date
JPH09218150A true JPH09218150A (en) 1997-08-19

Family

ID=12203979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8026822A Pending JPH09218150A (en) 1996-02-14 1996-02-14 Salt damage monitor system

Country Status (1)

Country Link
JP (1) JPH09218150A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123805A (en) * 2006-11-10 2008-05-29 Chugoku Electric Power Co Inc:The Insulator pollution area prediction system, method, and program
CN105004504A (en) * 2015-07-14 2015-10-28 清华大学深圳研究生院 Vibration wind speed evaluation method for composite insulator and selection method thereof
CN105842107A (en) * 2016-03-17 2016-08-10 东南大学 Insulator surface accumulated dirt cleaning method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123805A (en) * 2006-11-10 2008-05-29 Chugoku Electric Power Co Inc:The Insulator pollution area prediction system, method, and program
CN105004504A (en) * 2015-07-14 2015-10-28 清华大学深圳研究生院 Vibration wind speed evaluation method for composite insulator and selection method thereof
CN105842107A (en) * 2016-03-17 2016-08-10 东南大学 Insulator surface accumulated dirt cleaning method

Similar Documents

Publication Publication Date Title
US10360538B2 (en) Predicting pollution formation on insulator structures of power grids
KR101770620B1 (en) comprehensive weather observation system by realtime remote management based on IoT
JPH0738011B2 (en) Abnormality diagnosis system for high-voltage power equipment
CN106225843A (en) A kind of transmission line of electricity wide area icing monitoring and pre-alarming method based on miniradar
CN105117538A (en) Method for warning waving of power transmission channels
CN112488477A (en) Highway emergency management system and method
CN112990678B (en) Icing early warning judgment method based on multi-source data fusion
JP2001231119A (en) Insulator contamination detector and insulator contamination detecting system
CN110736502A (en) Icing monitoring and early warning system and method based on multi-information fusion
JPH09218150A (en) Salt damage monitor system
RU2580610C2 (en) Hardware and software system for monitoring corrosion protection of underground structures
JPH10319084A (en) Insulator contamination diagnostic device
CN104573192A (en) Online monitoring method for equivalent icing thickness of strain tower of overhead line
Ooura et al. Application of a power line maintenance information system using OPGW to the Nishi-Gunma UHV line
CN113836730B (en) Method for calculating diameter of rotary multi-circle conductor for icing monitoring
JP2724069B2 (en) Insulator cleaning equipment
CN109342908B (en) Icing early warning method based on insulator observation
CN106597240A (en) Insulator contamination monitoring system
CN208156084U (en) Insulator surface electrical conductivity monitoring device and power transmission line monitoring system
CN106996763B (en) Portable wire accumulated ice automatic detection device and accumulated ice observe control methods
JPH0512660B2 (en)
JP2002162478A (en) Road meteorology detection method and detection system
CN110649505A (en) Three-dimensional monitoring method and device for icing of power transmission line
CN210376571U (en) Hand-held type railway contact net insulator detector
JPH062206U (en) Insulator salt damage sensor