JPH0921796A - Method for measuring grain physical property for obtaining mortar or concrete - Google Patents

Method for measuring grain physical property for obtaining mortar or concrete

Info

Publication number
JPH0921796A
JPH0921796A JP9771195A JP9771195A JPH0921796A JP H0921796 A JPH0921796 A JP H0921796A JP 9771195 A JP9771195 A JP 9771195A JP 9771195 A JP9771195 A JP 9771195A JP H0921796 A JPH0921796 A JP H0921796A
Authority
JP
Japan
Prior art keywords
water
concrete
mortar
sand
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9771195A
Other languages
Japanese (ja)
Other versions
JP2731798B2 (en
Inventor
Yasuro Ito
靖郎 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7097711A priority Critical patent/JP2731798B2/en
Publication of JPH0921796A publication Critical patent/JPH0921796A/en
Application granted granted Critical
Publication of JP2731798B2 publication Critical patent/JP2731798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PURPOSE: To measure the characteristics of a mixture by obtaining the underwater unit volume weight of a grain in the most dense state by compacting and filling it in water when obtaining such mixture as mortar where liquid and powder are added to the grain. CONSTITUTION: The grain of a target mixture includes river sand, a thin aggregate such as an artificial thin aggregate, and a fibrous material such as metal fiber and further, as mass-shaped bodies, a rough aggregate of ballast and macadam and each kind of aggregate for giving, for example, sound-screening and heat-insulating property. A liquid is obtained by mixing each kind of assistant and additive to representative water. Also, the grain includes a powdery body used for filling or increasing such as a special cement, stone powder, and clay. While the mixtures are most densely filled by compacting and filling operation, the underwater unit volume weight of the grain is obtained. The characteristics of, for example, the workability, breeding, and fluidizing behavior of the mixture can be measured from the weight and the blend design, manufacture, and control of the mixture of, for example, mortar and concrete can be logically executed by judging characteristics when the blend changes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はモルタルまたはコンクリ
ートを得るための粒体に関する物性測定法に係り、モル
タルやコンクリートなばの液体と粉体および粒体を用い
たセメント混合物、特に粒体として砂などの天然産出粒
子や砕砂などの人工粒子の如きを用いた上記混合物に関
してその特性を判定し、配合設計ないし製造、管理など
をも含む該混合物の調整を合理的且つ的確に実施するた
めの新しい定量的物性を得しめようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring physical properties of granules for obtaining mortar or concrete, which is a liquid mixture of mortar or concrete nava and a cement mixture using the granules, particularly sand as the granules. A new method for rationally and appropriately adjusting the characteristics of the above-mentioned mixture using natural-produced particles such as artificial particles such as crushed sand and the like, and adjusting the mixture including designing and manufacturing, management, etc. It is intended to obtain quantitative physical properties.

【0002】即ち本発明は、セメント、フライアッシュ
などの粉体と水その他の液体および砂その他の細骨材な
どの粒体および必要に応じて砂利などの塊体を配合して
得られる混合物に関してワーカビリティ、ブリージン
グ、流動性などの特性を測定し、又当該混合系における
配合変化時の特性を判定し、更にはこのような混合物に
関し流動性その他の特性を最高状態として安定に得し
め、あるいはそれらの配合設計、製造、管理などを合理
的に行うことのできる物性測定技術に関する。
That is, the present invention relates to a mixture obtained by mixing powders such as cement and fly ash, particles such as water and other liquids, sand and other fine aggregates, and, if necessary, lumps such as gravel. Workability, breathing, fluidity, and other properties are measured, and the properties of the mixture system at the time of blending change are determined.Furthermore, the fluidity and other properties of such a mixture can be stably obtained as the maximum state, or The present invention relates to a physical property measurement technique capable of rationalizing the design, manufacture, management, etc. of those compounds.

【0003】[0003]

【従来の技術】各種土木、建築などに関してセメントな
どの水硬性物質粉末を用い、これに水を主体とした液体
と共に砂その他の細骨材を配合したモルタルを利用する
ことの多いことは周知の通りであり、又これに砂利や砕
石などの粗骨材や繊維材などをも配合したコンクリート
に関してもその特性としては上記3者の混合物において
基本的に求めることが可能で、適宜に添加剤を配合して
も同じ関係がある。同様のことは各種窯業製品を製造し
或いはその他の物理的、化学的製品を得るための資料調
整に関して不可欠的に必要であるが、斯様な調整に際し
ては前記したような資料粉粒の液体存在下における吸着
現象(その反面における分散現象)などがあり、所期す
る均斉な調整物を得ることができないことは周知の通り
である。このような現象はそうした調整物を用いて目的
製品を得る場合における成形性ないし充填性、ブリージ
ング性ないし分離性、更には該混練物の成形硬化によっ
て得られる製品の強度その他の特性に影響し、又該調整
物の搬送その他の荷役取扱いに影響する。従ってこの吸
着現象などに関してはそれなりに検討が加えられている
が、従来では単に理論的ないし定性的に理解するもので
ある。
2. Description of the Related Art It is well known that powders of hydraulic materials such as cement are often used for various types of civil engineering and construction, and mortar containing sand or other fine aggregate together with a liquid mainly composed of water is used. As for the characteristics of concrete in which coarse aggregate such as gravel or crushed stone or fiber material is also added, its characteristics can be basically obtained in the mixture of the above three, and an additive is appropriately added. Even if blended, they have the same relationship. The same thing is indispensable for the adjustment of materials for manufacturing various ceramic products or for obtaining other physical and chemical products. However, in the case of such adjustment, the existence of the liquid powder of the materials as described above is necessary. It is well known that the desired uniform preparation cannot be obtained due to the adsorption phenomenon (dispersion phenomenon on the other hand) below. Such a phenomenon affects the moldability or filling property, the breathability or the separability when obtaining the target product using such an adjusted product, and further affects the strength and other properties of the product obtained by molding and curing of the kneaded material, It also affects the transportation of the adjusted article and other handling operations. Therefore, although some consideration has been given to the adsorption phenomenon and the like, conventionally, it is only theoretically or qualitatively understood.

【0004】このような従来一般の技術的状態におい
て、本発明者等は曩に特願昭58−5216号(特開昭
59−131164号)や特開昭58−245233号
(特開昭60−139407号)のような提案をなし、
特にコンクリートないしモルタルに用いられる細骨材表
面における吸着液の定量化に関する試験測定法ないしそ
のような試験測定結果を利用した混練物の調整に関する
1連の手法を提案した。即ちこれらの先願技術は前記の
ような粒子ないし粉体表面に附着介在する水などの液体
に関し、毛細管現象的に粉粒間に保留停滞されたものと
粉粒表面に吸着されたものに区分して考案し、特にその
後者について定量的に試験測定しようとするもので、し
かも複数個の試料に対し同一遠心力条件による能率的な
測定が可能であり、それだけに上記したようなコンクリ
ートやモルタルなどの調整に関し従来の漫然として同じ
液体と理解把握されているものを区分して理解し、しか
もその測定結果を夫々の条件下に即応して定量的に得し
めるものであることからその混練、調整上画期的な改善
結果を得しめている。
Under such conventional general technical conditions, the inventors of the present invention have disclosed in Japanese Patent Application No. 58-5216 (Japanese Unexamined Patent Publication No. 59-131164) and Japanese Unexamined Patent Publication No. 245233/58. -139407),
In particular, we proposed a test measurement method for quantifying the adsorbed liquid on the surface of fine aggregate used for concrete or mortar, and a series of methods for adjusting a kneaded product using such test measurement results. That is, these prior application technologies are divided into those particles or liquids such as water adhering to the surface of the powder as described above, which are retained by the capillary phenomenon between particles and those adsorbed on the surface of particles. In particular, it is intended to quantitatively test and measure the latter, and moreover, it is possible to efficiently measure multiple samples under the same centrifugal force conditions, and that is the only reason such as concrete and mortar. Regarding the adjustment of kneading and adjustment, it is possible to separately understand what is conventionally understood as the same liquid as the conventional liquid and to quantitatively obtain the measurement results in response to each condition. It has achieved groundbreaking improvement results.

【0005】[0005]

【発明が解決しようとする課題】前記したような従来一
般的な技術は、JIS規定の如きにより細骨材に関し、
例えば表面乾燥飽水状態による吸水率と粗粒率、実績率
等の測定データを用い上記したような混練物等の液分を
把握調整しようとするものであって、具体的な混練物の
調整に当ってはその物性を的確に把握し制御することが
できない。即ちこのような混練物に関しては分離ブリー
ジング性ないしワーカビリティ、圧送性、締固め性等の
物性が必要であることは周知の通りであるが、これらの
物性は同じ砂であってもセメントが異ることによってそ
の特性が異り、又反対にセメントが同じであっても砂が
異ることにより得られた混練物の特性はやはり変動す
る。更に斯うした混練物を密実に充填成形するためには
振動その他の圧密処理を加えることが一般的であるが、
そうした振動その他の圧密処理に際して混練物の示す挙
動ないし変動は同じJIS規定による測定値のものであ
っても大幅に異っていることが殆んどである。又厚層に
コンクリート打ちをなし或いは型枠を縦形としてコンク
リートを打設充填した場合において打設充填された生コ
ンクリートまたはモルタルの示す様相は種々に変動した
ものとなる。
The conventional general technique as described above relates to fine aggregate according to JIS standard,
For example, it is intended to grasp and adjust the liquid content of the kneaded product as described above by using the measured data such as the water absorption rate, the coarse particle rate, and the actual performance rate due to the surface dry saturated state, and the specific adjustment of the kneaded product. However, the physical properties cannot be accurately grasped and controlled. That is, it is well known that such a kneaded product needs physical properties such as separation breathing property, workability, pumping property, compaction property, etc. As a result, the characteristics of the kneaded product obtained are different, and, conversely, even if the cement is the same, the characteristics of the kneaded product obtained are different due to the different sand. Further, in order to densely fill and mold such a kneaded product, it is common to add vibration or other consolidation treatment,
In most cases, the behaviors or fluctuations of the kneaded material during such vibration and other consolidation treatments are largely different even if they are measured values according to the same JIS standard. In addition, when concrete is poured into a thick layer or when the form is vertical and the concrete is poured and filled, the appearance of the ready-mixed concrete or mortar that has been poured and filled will vary in various ways.

【0006】ところで本発明者等は斯かる混練のための
配合水を分割し、その特定範囲における一部を均等に細
骨材へ附着させてからセメントを添加して1次混練し、
次いで残部の水を加えて2次混練することにより、フリ
ージングや分離が少く、しかもワーカビリティにおいて
優れた混練物を得しめ、又それによって得られる成形体
の強度その他を同じ配合条件において相当に高めること
のできる有利な技術を開発し業界の好評を得ているが、
そうした新技術を採用しても細骨材が異ることによって
具体的に得られる混練物における前記したような諸効果
の程度は種々に異ったものとなる。
By the way, the present inventors divide the compounding water for such kneading, and evenly attach a part of the specific range to the fine aggregate, and then add cement to carry out the primary kneading,
Then, the remaining water is added and secondary kneading is carried out to obtain a kneaded product with less freezing and separation and excellent workability, and the strength and other properties of the resulting molded product are considerably increased under the same compounding conditions. Has developed an advantageous technology that can
Even if such a new technique is adopted, the degree of the above-mentioned various effects in the kneaded product obtained concretely becomes different due to the different fine aggregate.

【0007】このような問題点を解決すべく本発明者等
によって提案された前記先願技術では粒子表面における
吸着液と、そうでないものとを区分するだけでなく、そ
の吸着液に関して定量的な解明を図るものであって、頗
る有効な手法と言えるが、この技術に関して具体的な測
定をなし、その結果を用いてコンクリートやモルタルの
調整をなした多数の結果について仔細を検討したとこ
ろ、夫々のモルタルやコンクリートなどの調整におい
て、なおそれなりの的確性を有し得ない傾向が認められ
た。即ちこれらの実験結果によると、細骨材のような骨
材類と粉体間の相互干渉性(セメントと骨材間のなじ
み)および骨材(細骨材を含む)の制御を確保すること
が容易でない。つまりこれら資材の表面粗度、材質、形
状、表面吸着力等、従来のJIS規定などで解明できな
い骨材の性質がコンクリートやモルタルの分離ブリージ
ング性、ワーカビリティ、圧送性、締固め性などに大き
く関与しているものと推定されるが、このような関係を
的確に解明し、合理的な混練物を得ることができない。
In the above-mentioned prior art technology proposed by the present inventors to solve such a problem, not only the adsorbed liquid on the particle surface is distinguished from the adsorbed liquid on the particle surface, but the adsorbed liquid is quantitatively determined. Although it is a very effective method for clarifying, we made concrete measurements on this technology and examined the details of many results of adjusting concrete and mortar using the results. It was observed that the adjustment of mortar, concrete, etc. did not have the proper accuracy. That is, according to these experimental results, it is necessary to ensure mutual interference between aggregates such as fine aggregates and powder (fitting between cement and aggregate) and control of aggregates (including fine aggregates). Is not easy. In other words, the properties of aggregates such as surface roughness, material, shape, surface adsorption force, etc., which cannot be clarified by conventional JIS regulations, are largely related to the separation breathing property of concrete and mortar, workability, pumpability, compaction property, etc. It is presumed that they are involved, but it is not possible to accurately elucidate such relationships and obtain rational kneaded products.

【0008】従って具体的には試し練りを繰返し、でき
るだけ有利な配合混練条件を決定することとなるが、斯
うした試し練りは1つの結果を得るために相当の工数と
時間を必要とし、例えば得られる製品の強度まで求めよ
うとすると一般的に4週間をも必要とする。況して繰返
して調整し試験するとすれば著しい長時間が消費され、
具体的施工に即応できない。この故にこの試し練りは基
本的には夫々の作業者等による経験ないし勘により、又
比較的短時間内に測定結果の求められるもののみを試験
して全般を推定するようなこととならざるを得ず、合理
性を欠くと共に的確な合致を得ることができず、相当の
誤差範囲を見込むことが必要である。
Therefore, specifically, the trial kneading is repeated to determine the compounding and kneading conditions which are as advantageous as possible. However, such trial kneading requires a considerable man-hour and time to obtain one result. In general, it takes 4 weeks to obtain the strength of the obtained product. If it is repeatedly adjusted and tested, it will consume a very long time,
Can not respond to concrete construction immediately. For this reason, this trial kneading is basically based on the experience or intuition of each worker, etc., and it is necessary to test only those for which measurement results are required within a relatively short time and to estimate the whole. Therefore, it is not possible to obtain an exact match because it lacks rationality and it is necessary to expect a considerable error range.

【0009】[0009]

【課題を解決するための手段】砂や粒状スラグ、人工細
骨材、ガラス球その他の粒体に対し水その他の液体とセ
メントなどの粉体を加えたモルタルまたはコンクリート
のような混合物を得るに当り、前記粒体を水中で圧密充
填操作した最密状態充填物を準備し、該最密状態におけ
る前記粒体の水中単位容積重量を求めることをによりモ
ルタルまたはコンクリートを得るための粒体に関する物
性を測定する。
[Means for Solving the Problems] To obtain a mixture such as mortar or concrete in which water or other liquid and powder such as cement are added to sand, granular slag, artificial fine aggregate, glass spheres or other particles. On the other hand, the physical properties of the granules for obtaining a mortar or concrete by preparing a close-packed state packing in which the granules are compacted and filled in water and determining the unit volume weight of the granules in water in the close-packed state. To measure.

【0010】砂や粒状スラグ、人工細骨材、ガラス球そ
の他の粒体に対し水その他の液体とセメントなどの粉体
を加えたモルタルまたはコンクリートのような混合物を
得るに当り、前記粒体を水中、で圧密充填操作した最密
状態充填物を準備し、該最密状態における前記粒体の水
中単位容積重量を求め、これを利用してモルタルまたは
コンクリートを得るための前記粒体間の間隔率または充
填率を求めることによりモルタルまたはコンクリートを
得るための粒体に関する物性を測定する。
In order to obtain a mixture such as mortar or concrete in which sand or granular slag, artificial fine aggregate, glass spheres or other particles are mixed with water or other liquid and powder such as cement, the particles are mixed. Prepare a close-packed packing that has been compacted and filled in water, determine the unit volume weight of water in the close-packed state of the granules, and use this to obtain an interval between the granules to obtain mortar or concrete. The physical properties of the granules for obtaining the mortar or concrete are measured by determining the filling rate or the filling rate.

【0011】砂や粒状スラグ、人工細骨材、ガラス球そ
の他の粒体に対し水その他の液体とセメントなどの粉体
を加えたモルタルまたはコンクリートのような混合物を
得るに当り、前記粒体を水中で圧密充填操作した最密状
態充填物を準備すると共に絶乾で同様に圧密充填操作し
た最密状態充填物を準備し、これらの各最密状態におけ
る前記粒体の水中単位容積重量と絶乾単位容積重量とを
求め、これら両単位容積重量の差をモルタルまたはコン
クリートを得るために利用する微砂量として求めること
によりモルタルまたはコンクリートを得るための粒体に
関する物性を測定する。
To obtain a mixture such as mortar or concrete in which sand or granular slag, artificial fine aggregate, glass spheres or other particles are mixed with water or other liquid and powder such as cement, the particles are mixed. In addition to preparing a close-packed packing that has been subjected to a compaction filling operation in water, prepare a close-packed packed packing that has been similarly compacted and filled by absolutely dry, and prepare a unit volume weight of the granules in water in each close-packed state. The dry unit volume weight is determined, and the difference between these two unit volume weights is determined as the amount of fine sand used to obtain the mortar or concrete to determine the physical properties of the particles for obtaining the mortar or concrete.

【0012】[0012]

【作用】砂や粒状スラグ、人工細骨材、ガラス球その他
の粒体に対し水その他の液体を加えた混合物を圧密充填
操作した最密状態充填物において上記粒体の水中単位容
積重量ρSWが求められ、このような最密状態充填物の粒
体に関する単位容積重量はモルタルやコンクリートなど
の混合物に関してその打設状態の物性を示す重要な因子
となる。
[Action] sand and granulated slag, artificial fine aggregates, water unit volume weight of the granular material in the densest state packing was compacted filling operation the mixture was added water or other liquid to the glass spheres other grains [rho SW Is required, and the unit volume weight of the granules of such a close packed state is an important factor showing the physical properties of a mixture such as mortar and concrete in the cast state.

【0013】又上記ρSWから前記最密状態充填物におい
て骨格的機能を果たす砂のような粒体についての水中条
件下の粒体間間隔ΨS W は、 ΨS W = (1−S/ρSW)× 100 によって得られ、このような測定値によって現実のモル
タル、コンクリートなどにおいて的確に合致し精度の高
い特性値を提供し、前記混合物の予測、設計ないし製造
に関する具体的調整を合理化する。
[0013] granules spacing [psi S W in water under conditions of the particle, such as sand fulfilling skeletal function in the densest state packing from the [rho SW is, Ψ S W = (1- S / ρ SW ) × 100, and by such measurement values, provide accurate and highly accurate characteristic values in actual mortar, concrete, etc., and rationalize concrete adjustments related to the prediction, design and manufacturing of the mixture. .

【0014】更に前記水中単位容積重量ρSWと共に絶乾
での同様に圧密充填操作した最密状態充填物における粒
体の絶乾単位容積重量ρSDとの差を微粒量(微砂量)と
して求めることができ、このような微粒量によっても該
粒体(細骨材)を用いて得られるモルタルまたはコンク
リートの特性を予測し、設計ないし製造に関する指標と
して利用される。
Furthermore, the difference between the unit volume weight ρ SW of water and the unit volume weight ρ SD of the dry granules in the densest packed material which was similarly compacted in the absolutely dry condition is defined as the fine particle amount (fine sand amount). It can be determined, and even with such an amount of fine particles, the characteristics of the mortar or concrete obtained by using the particles (fine aggregate) are predicted and used as an index for designing or manufacturing.

【0015】[0015]

【実施例】上記したような本発明について更に説明する
と、本発明者等は上記したような粒体、粉体および液体
から成る混練物について、その配合混練条件により得ら
れる混練物ないし該混練物によって成形された製品の特
性などを的確に予測し、合理的に混練物を調整すること
について多年に亘る実地的検討と推考を重ねた結果、こ
のような混練物の挙動を的確に把握する指標として該混
合物における骨格的機能を果たす砂のような粒体に関し
その最密状態充填を形成したものにおける水中での単位
容積当り重量あるいはこの最密状態充填物における粒体
間の間隔率が、前記混練物ないしその製品の特性に対し
決定的地位を有することを発見し、このような関係を利
用して配合混練条件を決定することにより得られる混練
物の特性を的確に解明し、予測することに成功した。
EXAMPLES To further explain the present invention as described above, the inventors of the present invention have kneaded products comprising the above-mentioned granules, powders and liquids, and kneaded products obtained by the compounding and kneading conditions or the kneaded products. An index that accurately grasps the behavior of such a kneaded product as a result of many years of practical examinations and speculations regarding the accurate prediction of the characteristics of the molded product and the rational adjustment of the kneaded product. As for the sand-like particles that perform a skeletal function in the mixture, the weight per unit volume in water of the close-packed particles formed in the close-packed particles or the spacing ratio between the particles in the close-packed particles is It was discovered that it has a decisive position for the properties of the kneaded product or its product, and the properties of the kneaded product obtained by determining the compounding and kneading conditions by utilizing such relations are accurately determined. Facie showing, was able to predict.

【0016】本発明において目的混合物に用いられる粉
体としてはポルトランドセメント類、アルミナセメン
ト、マグネシアセメント、石こう類、消石灰などの石灰
類、高炉スラグ、膨脹セメントなどの特殊セメント、フ
ライアッシュ、シリカヒューム、石粉、粘土ないし泥分
その他の無機または有機質の充填ないし増量目的で用い
られる粉状体がある。又粒体としては川砂や海砂、山
砂、砕砂、粒状スラグ、人工細骨材などの細骨材や金属
繊維、無機繊維などの繊維材、更に塊状体として砂利、
砕石などの粗骨材があり、又これら粒体ないし塊状体と
しては遮音や断熱あるいは耐火性、原子力遮断性、軽量
性、重量性などを附与するために用いられる各種骨材類
などがある。更に液体としては水が代表的であるが、こ
れに減水剤、急結剤、プラスチック類などの各種助剤な
いし添加剤を混合したものが広く用いられる。
In the present invention, the powder used in the target mixture includes Portland cements, alumina cement, magnesia cement, gypsum, limes such as slaked lime, blast furnace slag, special cement such as expansion cement, fly ash, silica fume, There is a powdery material used for the purpose of filling or extending of stone powder, clay or mud and other inorganic or organic substances. Granules include river sand, sea sand, mountain sand, crushed sand, granular slag, fine aggregates such as artificial fine aggregates, fiber materials such as metal fibers and inorganic fibers, and gravel as aggregates.
There are coarse aggregates such as crushed stones, and these granules or agglomerates include various aggregates used for imparting sound insulation, heat insulation or fire resistance, nuclear isolation, lightness, weight, etc. . Water is a typical liquid, and a mixture of various auxiliary agents or additives such as a water reducing agent, a quick setting agent, and plastics is widely used.

【0017】然して本発明者は上記したような細骨材な
どの粒体に関して、充分且つ大量に水分を附着含有させ
たものに遠心力などの脱水力を作用させることによりそ
の含水量が脱水力増大に伴い次第に低下することとなる
が、ある一定限度に達するとそれ以上に脱水力が増大し
ても殆んど含水量を低下することのない限界相対吸着水
率の存することを確認しており、同様に粉体に関しても
粉体相互が実質的に接触し且つ粉体粒子間に水が充満し
ていてしかも空気が実質的に存しないキャピラリー域に
達した状態において該粉体の限界的吸着水率の存するこ
とが確められている。更に前記粒体についての限界相対
吸着水率測定に関して粉体を併用することにより粒体間
における接点液の如きによる影響を回避し的確に測定結
果の得られる手法などを確立している。
However, the present inventor applies a dehydrating force such as a centrifugal force to a granular material such as the above-mentioned fine aggregate to which a sufficient and large amount of water has been attached, so that the water content of the aggregate can be reduced. Although it gradually decreases with an increase, it was confirmed that there is a limit relative adsorbed water ratio that does not decrease the water content even if the dehydration power increases beyond a certain limit. Similarly, regarding the powder, when the powder reaches the capillary region where the powders are substantially in contact with each other, water is filled between the powder particles, and air is substantially absent, It is confirmed that the adsorbed water rate exists. Further, regarding the measurement of the limit relative adsorbed water rate for the above-mentioned granules, a method has been established in which the effect of contact liquid between the granules can be avoided by using powder in combination and an accurate measurement result can be obtained.

【0018】本発明においてはこれらの本発明者等によ
る新規開発技術に加えて前述したような最密状態充填物
についての解明を重ね、前記した粒体の水中単位容積重
量や粒体間の間隔率を求めるものである。即ち本発明者
等は上記したような細骨材等の骨材に関してその吸着液
量を求めるに当って粉体を併用することにより骨材間に
おける接点液の如きによる影響を該粉体の保液量として
排除して的確な測定結果を得しめ、又このような骨材の
如き粒状ないし繊維状体と粉体および液体から成る混合
系に対し遠心力を作用させて脱液処理するならば、作用
する遠心力の変化によって吸着液量が変化し、つまり遠
心力の増大に従って骨材に対する吸着液量が次第に低減
することとなるが、斯うした脱液処理の遠心力がある一
定値を超えると、それ以上に遠心力を増加させても吸着
液量に殆んど変動するつことがなくなり、前記したよう
な吸着液量の低減傾向の変曲するポイントの存すること
を確認し、このような吸着液低減傾向の変更点を限界吸
着水率として理解している。
In the present invention, in addition to these newly developed technologies by the present inventors, the close packed state packing as described above has been clarified, and the unit volume weight of the particles in water and the spacing between the particles are described. It seeks the rate. That is, the inventors of the present invention used the powder in combination with the above-described fine aggregate and the like to determine the amount of the adsorbed liquid, so that the influence of contact liquid between the aggregates can be maintained. If the amount of liquid is excluded to obtain an accurate measurement result, and if a centrifugal force is applied to a mixed system composed of such a granular or fibrous material such as aggregate, powder and liquid, then the liquid is removed. , The amount of adsorbed liquid changes due to the change of the centrifugal force acting, that is, the amount of adsorbed liquid to the aggregate gradually decreases as the centrifugal force increases. If it exceeds, even if the centrifugal force is further increased, there is almost no fluctuation in the amount of adsorbed liquid, and it is confirmed that there is a point at which the tendency of decrease in the amount of adsorbed liquid as described above is inflection. Adsorption water is the limit It is understood as.

【0019】然してこのような限界吸着水率は用いられ
た骨材、粉体あるいは液体の何れか1つまたは2つ以上
が変化することによってそれなりに変化し、従って具体
的に得られる吸着水率は相対限界吸着水率となるが、斯
うした限界基準吸着水率なるものは多数の実験結果から
どのような混合系においても存在し、又同じ混合組成の
ものにおいては常に一定である。例えば富士川産川砂
(Q:2.49,F.M.:2.65,比重表乾ρH :2.5
8,ρD :2.52,ρV :1.739,ε:31%,S
m:65.3cm2 /g)と普通ポルトランドセメントおよ
び代表的液体である水を用い、砂セメント比(S/C)
を0、1、2、3と変化させた各試料について本発明者
等が曩に提案した特願昭58−245233号(特開昭
60−139407号)の方法により遠心力30G(Gは
重量)より1000Gに亘る多様な脱水処理を行った結
果は、S/Cが0であるセメントペーストの含水率WP
/Cは前記したように作用する遠心力の如何によってそ
れなりに異る。
However, such a critical adsorbed water rate changes to some extent by changing one or more of the used aggregates, powders or liquids, and therefore the adsorbed water rate which is specifically obtained. Is a relative limit adsorbed water rate, and such a limit reference adsorbed water rate exists in any mixed system from many experimental results, and is always constant in the same mixed composition. For example, river sand from Fujikawa (Q: 2.49, FM: 2.65, specific gravity surface dry ρ H : 2.5
8, ρ D : 2.52, ρ V : 1.739, ε: 31%, S
m: 65.3 cm 2 / g) and ordinary Portland cement and water, which is a typical liquid, and sand-cement ratio (S / C)
No. 58-245233 proposed by the inventors of the present invention to each sample in which 0, 1, 2, and 3 were changed.
No. 60-139407), the result of various dehydration treatments from centrifugal force of 30 G (G is weight) to 1000 G is the water content W P of the cement paste with S / C of 0.
/ C varies depending on the centrifugal force acting as described above.

【0020】又これに砂が混合され、S/Cの値が高く
なるに従って含水率が高くなるが、上記セメントペース
トの場合を基点としてS/Cの上昇に伴い含水率の上昇
する度合は、一定遠心力(例えば150G〜200G)
以上となってもその遠心力増大にも拘わらず殆んど変化
がない。即ち100G以下のような重力の比較的低い領
域においては30G、60G、80G、100Gの如く
相当に少い遠心力差条件を以て処理測定するのに対し
て、200G以上においては100G以上のような大き
い遠心力差条件で処理測定したものであっても、150
Gから200Gとなることによって何れのS/Cの場合
においても比較的大きい含水率の低下があり、それより
重力条件が大となることによってもこの含水率低下の程
度が大幅に低減する様相が示され、しかもそのS/Cの
増加に伴う図表上の上昇傾斜角θ1は略一定であって、
殆んど変化がない。例えば、483Gと1000Gとで
は500G以上の遠心力増大があるに拘わらずその上昇
傾斜角θ1 は一定状態であり、200Gの場合において
も上記1000Gの場合と実質的に平行状態である。
Further, when sand is mixed with this and the water content becomes higher as the S / C value becomes higher, the degree of increase in water content with the increase of S / C from the case of the above cement paste is as follows. Constant centrifugal force (eg 150G-200G)
Even if it becomes the above, there is almost no change despite the increase in centrifugal force. That is, in a relatively low gravitational region such as 100 G or less, the process measurement is performed under a condition of a centrifugal force difference such as 30 G, 60 G, 80 G, and 100 G, whereas when 200 G or more, a large measurement such as 100 G or more is performed. Even if it was processed and measured under the condition of centrifugal force difference,
A change from G to 200 G results in a relatively large decrease in water content in any S / C case, and even if the gravity condition becomes larger than this, the degree of this decrease in water content is significantly reduced. In addition, the ascending inclination angle θ 1 on the chart with the increase of S / C is substantially constant,
There is almost no change. For example, in the case of 483G and 1000G, the ascending inclination angle θ 1 is constant regardless of the centrifugal force increase of 500G or more, and even in the case of 200G, it is substantially parallel to the case of 1000G.

【0021】前記したような結果について、その遠心力
作用後の全含水量をWZ とし、Cをセメント量、Sを砂
量とすると共に遠心力作用後の粉体の含水量をWP 、ま
た遠心力作用後の砂の含水量をWS となし、更に遠心力
処理後の前記傾斜角θ1 の正接(tan θ1 )をβとする
と、上記WZ /Cは次の数1のようになる。
With respect to the above results, let W Z be the total water content after the action of centrifugal force, C be the amount of cement, S be the amount of sand, and W P be the water content of the powder after the action of centrifugal force. Further, assuming that the water content of sand after the action of centrifugal force is W S and the tangent (tan θ 1 ) of the inclination angle θ 1 after the centrifugal force treatment is β, the above W Z / C is given by the following formula 1. Like

【0022】[0022]

【数1】WZ /C=WP /C+βS/C[Formula 1] W Z / C = W P / C + βS / C

【0023】又、βは次の数2のように表わされる。Further, β is expressed by the following equation 2.

【0024】[0024]

【数2】 β=tan θ1 =(WS /C)/(S/C)=WS /S## EQU2 ## β = tan θ 1 = (W S / C) / (S / C) = W S / S

【0025】従って前記した砂の含水量WS は次の数3
の如くなる。
Therefore, the water content W S of the above-mentioned sand is calculated by the following equation 3
It looks like

【0026】[0026]

【数3】WS =WZ −WP [Formula 3] W S = W Z −W P

【0027】仍ってβは砂の含水量を砂量で除した含水
率となり、これを骨材の限界相対吸着水率とする。然し
て具体的にWZ /Cを数1によって求めると共にその精
度(r2 )を検討すると、次の表1の如くであった。
On the other hand, β is the water content obtained by dividing the water content of sand by the sand content, and this is taken as the limit relative adsorbed water content of the aggregate. However, when W Z / C was concretely obtained by the equation 1 and its accuracy (r 2 ) was examined, it was as shown in Table 1 below.

【0028】[0028]

【表1】 [Table 1]

【0029】即ち精度r2 は少くとも0.98以上である
ことが確認され、頗る高精度のものであることが確認さ
れた。
That is, the accuracy r 2 was confirmed to be at least 0.98 or more, and it was confirmed that the accuracy r 2 was extremely high.

【0030】又このような結果について、その遠心力G
と前記β、即ちWS /Sの関係は前記した200Gまで
は相対吸着水率βが次第に低下するが、200Gを超え
ることにより殆んど相対吸着水率βが低下しないで略水
平状の直線的な脱水結果が得られる様相は明かである。
即ち上記した200Gまでの相対吸着水率β低下が20
0G以上の遠心力作用時における略水平状直線とのなす
角度θ2 が求められ、このθ2 は夫々の骨材によってそ
れなりに異ることになるが、θ2 の角度如何は夫々の骨
材における脱水エネルギーの大きさによる脱水特性を代
表する1G当りの界面脱水率ということができる。前記
のように遠心力が増大しても相対吸着水率に殆んど変化
のない値は当該骨材に関する限界吸着水率(β0 )と言
うことができる。又最大相対吸着水率β0 max はθ2
傾斜直線と重力0点との交点であり、骨材の全相対吸着
水率βGOは限界吸着水率β0 にβ0 max を加えたものと
なり、遠心力処理によって、該吸着水率β0 max が脱水
される関係をなすものであり、又、前記のように遠心力
増大により吸着水率の実質的に変化しない遠心力値をG
max として求めることができる。
Regarding such a result, the centrifugal force G
The above β, that is, the relationship of W S / S, the relative adsorbed water ratio β gradually decreases up to 200 G described above, but when it exceeds 200 G, the relative adsorbed water ratio β does not almost decrease and a substantially horizontal straight line is obtained. It is clear that effective dehydration results are obtained.
That is, the decrease in the relative adsorbed water ratio β up to
An angle θ 2 formed by a substantially horizontal straight line when a centrifugal force of 0 G or more is applied is obtained, and this θ 2 will vary depending on each aggregate, but the angle of θ 2 depends on each aggregate. It can be said that the interface dehydration rate per 1 G, which is representative of the dehydration property depending on the magnitude of the dehydration energy. As described above, the value at which the relative adsorbed water rate hardly changes even if the centrifugal force increases can be said to be the limit adsorbed water rate (β 0 ) for the aggregate. The maximum relative adsorbed water rate β 0 max is the intersection of the inclination line of θ 2 and the point of gravity 0, and the total relative adsorbed water rate β GO of the aggregate is the limit adsorbed water rate β 0 plus β 0 max. Therefore, the adsorbed water rate β 0 max is dehydrated by the centrifugal force treatment, and the centrifugal force value that does not substantially change the adsorbed water rate due to the increase in the centrifugal force is G as described above.
It can be obtained as max.

【0031】一方粉体のペーストに関してキャピラリー
域における含水率が混練操作時におけるトルクの最高値
近辺となることについては同じく本発明者等により特開
昭58−56815号公報の第4図などに発表されてい
る(該公報ではファニキュラーないしキャピラリーとさ
れているが、その後の検討によりキャピラリー域たるこ
とが確認されている)。即ち絶乾状態の粉体に対し次第
に加水しながら混練した場合において、その加水量が次
第に増加するに従って混練トルクは増大するが、斯うし
て水量増加に伴い次第に増加したトルクがトルク最高点
に達した後に更に水量が増加するならば今度は次第にト
ルクが減少することとなる。これはペースト中における
水が粉体粒子間の空隙を完全状態に満たしてスラリー状
態となり、しかもその粉体粒子間水量が次第に増加する
ことによって流動性が大となることによるものである。
つまり粉体粒子間の空隙が完全に水で満たされる(スラ
リーとなる)直前のキャピラリー域においては混練トル
クが最大状態となるわけで、このような混練トルク最大
状態で調整された混練物を用いるときはブリージング水
の発生を有効に縮減し、斯うした混練物による製品は強
度その他の特性において卓越したものとなることが前記
公開公報に示されている。
On the other hand, the fact that the water content in the capillary region of the powder paste is close to the maximum value of the torque during the kneading operation is similarly disclosed by the present inventors in FIG. 4 of JP-A-58-56815. (Although it is referred to as a funicular or a capillary in the publication, it is confirmed to be a capillary region by the subsequent examination). That is, in the case where the powder in the completely dry state is kneaded while gradually adding water, the kneading torque increases as the amount of water gradually increases, and thus the torque gradually increased as the amount of water increases reaches the torque maximum point. If the amount of water further increases after this, the torque will gradually decrease. This is because the water in the paste completely fills the gaps between the powder particles to form a slurry state, and the fluidity increases as the amount of water between the powder particles gradually increases.
In other words, the kneading torque becomes maximum in the capillary region immediately before the voids between the powder particles are completely filled with water (slurry), and thus a kneaded product adjusted with such a maximum kneading torque is used. It is shown in the above-mentioned publication that the generation of breathing water is effectively reduced in some cases, and the product obtained from such a kneaded product is excellent in strength and other properties.

【0032】ところで本発明者は上述したような粉体、
粒体および液体からなる混練物について前記のようにそ
れ以上に作用力を増大しても吸着水率βの実質的に低下
しない状態を遠心力で実施した場合を検討した結果、こ
の場合においてはその遠心力が例えば150〜200G
(粒体の性状によって夫々の場合に若干の差がある)の
ように高いことから充填組織内に気孔が発生し、単に脱
水する場合は兎も角としても実際の充填打設組織と異な
ることになることに鑑み、上記のような気孔を発生しな
い遠心力以外の方法により前記遠心力150〜200G
を作用せしめたものと同じ状態を形成することについて
検討した結果、突き固め方式や振動方式などによっても
同等の状態を形成し得ることを確認した。
By the way, the present inventor has proposed a powder as described above,
As for the kneaded material composed of granules and liquid, as a result of examining the case where the adsorbed water ratio β does not substantially decrease even if the acting force is further increased by centrifugal force as described above, as a result, in this case, The centrifugal force is, for example, 150-200G
Since it is as high as (there are slight differences in each case depending on the properties of the granules), pores are generated in the filling tissue, and when simply dehydrating, the rabbit and horn are different from the actual filling and placing tissue. In view of the above, the centrifugal force of 150 to 200 G is obtained by a method other than the centrifugal force that does not generate pores as described above.
As a result of investigating the formation of the same state as the one that was made to act, it was confirmed that an equivalent state could be formed by a tamping method or a vibration method.

【0033】即ちこのような方法として本発明者は多く
の細骨材とセメント粉体との組合わせについて仔細に検
討した結果、その突き固め方式によるものは、直径が1
1.4cmで高さが9.8cmの容量1000ccを有する円筒形
容器(容量マス)に試料約500ccを装入してから重量
500gのテーブルフロー用突き棒で容器内全般に亘っ
て平均に25回以上の突き固め操作を行い、次いで支持
台面から2〜3cm上げて落下させるスタンピング操作を
3回以上行って突き固め充填状態を平均化し、その後更
に約500ccの試料を装入して同じ突き固め操作とスタ
ンピングを行う方法が好ましいもの(但し一連の試験測
定に当っては全試料に関して同一試験条件を採用する)
であって、この方法で同じS/Cによる試料に対しW/
Cを次第に変化させた各種のものについて検討するなら
ば、得られた突き固め充填物においてそのW/Cが特定
の値を採った場合に最高の容重値が得られる。例えば細
骨材たる砂の粒径組成と合致し、しかも形状的に揃った
基準材として0.075〜5mmの径を有するガラス球を用
い、これにボルトランドセメントを、S/C=1として
配合した試料についてW/Cを順次且つ種々に変化させ
て上記突き固めによる充填を行った場合には次の第2表
のような結果が得られ、W/Cを28%としたものが単
位容積重量(以下容重という)ρにおいて2235gで
あって最高状態の充填状態を得しめ、これよりW/Cが
低くても高くても容重ρが小となる。
That is, as a method of this kind, the present inventor has made detailed examinations on many combinations of fine aggregate and cement powder, and as a result, the tamping method has a diameter of 1
About 500 cc of a sample was loaded into a cylindrical container (capacity mass) having a volume of 1000 cc with a height of 1.4 cm and a height of 9.8 cm, and then a table flow ram having a weight of 500 g was used to make an average of 25 within the entire container. Perform the tamping operation more than once, then perform the stamping operation of raising the surface by 2-3 cm from the support table and dropping it three times or more to average the tamped and packed state, and then insert another 500 cc sample and tamper the same. Operation and stamping are preferable (however, the same test conditions are adopted for all samples in a series of test measurements)
In this method, W /
When considering various grades of C, the highest capacity value is obtained when the W / C of the obtained tamped packing has a specific value. For example, glass spheres having a diameter of 0.075 to 5 mm are used as a reference material which is in conformity with the particle size composition of sand as fine aggregate and which has a uniform shape. Boltland cement is added to this as S / C = 1. When the W / C of the compounded sample was changed sequentially and variously and the filling by the above-mentioned tamping was performed, the results shown in the following Table 2 were obtained, and W / C was 28% as a unit. The volume weight (hereinafter referred to as “capacity”) ρ is 2235 g, and the highest filled state can be obtained, and the weight ρ becomes small regardless of whether W / C is lower or higher.

【0034】[0034]

【表2】 [Table 2]

【0035】同様に同じガラス球とポルトランドセメン
トを用い、S/Cを3とした場合にはW/Cが33%程
度のときに容重ρが2227gであって、このW/C値
より1%高くなり或いは低くなった場合には夫々に容重
ρの低くなる様相は第2表の場合と同じであり、更にS
/Cを6とした場合にはW/Cが48%程度のときに容
重ρが最高値を示し、これよりW/C値が変動すること
により高くなっても低くなっても容重ρは低下する。
Similarly, when the same glass ball and Portland cement are used and S / C is set to 3, the weight ρ is 2227 g when W / C is about 33%, and 1% from this W / C value. When the weight becomes higher or lower, the appearance that the weight ρ becomes lower is the same as in the case of Table 2, and S
When / C is set to 6, the capacity ρ shows the highest value when W / C is about 48%, and the capacity ρ decreases even if it becomes higher or lower due to the fluctuation of the W / C value. To do.

【0036】斯うした様相は上記基準材としてのガラス
球が細骨材として一般的に用いられている天然砂(川砂
や海砂、山砂)、人工砂(砕砂やスラグ粒)の場合にお
いても全く同様であって、このようなW/C値との関係
でピーク点の存在する様相は粉体(セメント)について
混練トルクのピーク点の存在する様相と共通するものが
あり、しかも上記のように容重ρがピーク点を示すW/
Cが前記した150G〜200Gの遠心力処理したとき
のそれと実質的に同じである。
Such an aspect is obtained in the case of natural sand (river sand, sea sand, mountain sand) or artificial sand (crushed sand or slag particles) in which glass spheres as the reference material are generally used as fine aggregates. The appearance of the peak point in relation to the W / C value is common to the appearance of the peak point of the kneading torque of the powder (cement). As shown in W /
C is substantially the same as that when the centrifugal force treatment of 150 G to 200 G is performed.

【0037】即ち本発明においてはこのような手法など
による充填状態を最密充填状態となし、この状態が水中
で行われることにより実際のこの種混練物の充填打設状
態によく合致していることから好ましい代表的試験方法
として利用することとし、突き棒による突き固めは上下
各層について25回、スタンピングは各層毎に3回の夫
々一定のものとして実施した。
That is, in the present invention, the filling state by such a method is referred to as the closest packing state, and this state is performed in water, so that it is well matched to the actual filling and placing state of this kind of kneaded product. Therefore, it was decided to use it as a preferable representative test method. The tamping with a stick was performed 25 times for each of the upper and lower layers, and the stamping was performed 3 times for each layer.

【0038】ところで斯うした最密充填状態による試験
測定を多くの試料について実施した結果、この種混練物
における水量に関してそのセメント量,砂量に対し、前
記したα値およびβ値を似てしても解明することのでき
ない要因の存することを発見した。即ち斯うした要因
は、セメントおよび砂を種々に変化させたどのような試
料においても求められるものであるが、後述する測定例
におけると同じガラス球、相模川砕砂および富士川砂を
粒体として用い、これに普通ポルトランドセメントを粉
体として採用し、S/Cを種々に変化させた多様な混練
物を準備して前記最密充填状態を夫々形成したものにお
ける水量W/Cを、そのセメント量に対して前述したよ
うなα、βにより計算して求めた結果と、実際の混練物
についての実測値とを対比し要約的に示すと第1図の如
くである。つまりソリッドの測定点で示された計算値に
対して、ブランクの測定点を以て示された実測値は相当
にずれており、α、β以外の第3の要因が、斯うしたそ
れ以上に操作力を与えても実質的に含水量に変動を来さ
ない最密充填状態において存在するものと言える。
By the way, as a result of carrying out the test measurement in such a close packed state on many samples, the α value and the β value were similar to the amount of water and the amount of sand in this kind of kneaded product. However, I discovered that there are some factors that cannot be elucidated. That is, such a factor is required in any sample in which cement and sand are variously changed, but the same glass spheres, Sagamikawa crushed sand, and Fujikawa sand in the measurement examples described later are used as granules. In this, ordinary Portland cement was adopted as powder, and various kneaded products having various S / C were prepared to prepare the close packed state, and the water amount W / C was calculated as the cement amount. On the other hand, the results obtained by calculating α and β as described above and the measured values of the actual kneaded product are compared and shown in summary in FIG. In other words, the measured value indicated by the blank measuring point is considerably deviated from the calculated value indicated by the solid measuring point, and the third factor other than α and β is manipulated further than that. It can be said that it exists in the closest packed state in which the water content does not substantially change even when a force is applied.

【0039】詳言すると、成程S/Cが1程度の相対的
に砂の少ない状態においては砂粒子間において粉体(セ
メント)が多量に存在するから、そのような多量に存在
するセメントが斯うした第3の要因であるかのように考
えられるとしても、このS/Cが2ないし3以上となっ
て粉体(セメント)が相対的に少ない状態となってもこ
のような計算値と実測値との間の偏差は全く減少しない
で、規則的に増加する傾向を示すことは図示の通りであ
る。即ちこのような粉体、粒体および液体よりなる混練
物における液体においては前記α、βのみならず、更に
第3の要因が作用することは明確である。
More specifically, in a state where the S / C is about 1 and the amount of sand is relatively small, a large amount of powder (cement) is present between the sand particles. Even if it is considered that it is the third factor, even if this S / C is 2 or 3 or more and the powder (cement) is in a relatively small amount, such a calculated value As shown in the drawing, the deviation between the measured value and the measured value does not decrease at all, and tends to increase regularly. That is, it is clear that not only α and β described above but also the third factor acts on the liquid in the kneaded material composed of such powder, particles and liquid.

【0040】そこで本発明者等はこのような第3の要因
を解明することについて検討を重ねた結果、この第3の
要因は結局において充填された混練物の構造ないし組織
に原因して内部に保持される水分と言うべきであるが、
このような混練物の充填組織に関し斯かる構造ないし組
織を考察する場合において、その骨格的機能ないし構造
をなすものは砂であることが明らかであって、そのよう
な骨格的機能ないし構造を形成している砂のような粒体
間の間隙度合(緩み率ないし充填状態)が支配的機能を
なすものと考えられる。然るにこのような混練物用原料
として入手される砂のような粒体においては前記のよう
な骨格的機能ないし構造をなさない程度の微粒分(微砂
分)を附着混入することが不可避であって、斯うした微
粒分(微砂分)を差引いたものを用いなければ適切な解
明をなし得ない。然して斯うした微粒分(微砂分)を何
を以て、どのように求めることが妥当であるかについて
は従来において細小フルイ目による分別を行うようなこ
とで考慮されているとしても的確性を有するものでな
い。本発明者は砂の実績率測定を従来の絶乾固め方法の
締固め状態における空隙率を満たす程度の水中で実施し
た場合にその実績率が大きくなる事実を発見したが、こ
れは前記微粒分(微砂分)によるものであり、この微粒
量に関する微粒率(微粉率)MS は具体的に次の数4に
よって求めることとした。
Therefore, as a result of repeated investigations by the present inventors to elucidate such a third factor, the third factor is eventually caused by the structure or structure of the kneaded mixture filled inside. It should be called the retained water,
When considering such a structure or structure with respect to the filling structure of such a kneaded material, it is clear that the skeletal function or structure is sand, and such a skeletal function or structure is formed. It is considered that the degree of porosity (loosening rate or filling state) between the granular particles such as sand is the dominant function. However, it is unavoidable that the fine particles (fine sand) that do not have the above-mentioned skeletal function or structure are adhering to the particles such as sand obtained as a raw material for kneading. Therefore, proper clarification cannot be achieved without using the one obtained by subtracting such fine particles (fine sand). However, what is appropriate and how to obtain such fine particles (fine sand) is accurate even if it is considered in the past by performing classification with fine and fine sieves. Not a thing. The present inventor has discovered the fact that when the actual rate measurement of sand is carried out in water to the extent that the porosity in the compacted state of the conventional absolutely dry compaction method is satisfied, the actual rate increases, but this is due to the fine particle content. (Fine sand content), and the fine particle rate (fine powder rate) M S related to this fine particle amount is specifically determined by the following formula 4.

【0041】[0041]

【数4】MS = (ρSW−ρSD)/ρS × 100(4) M S = (ρ SW −ρ SD ) / ρ S × 100

【0042】但し、ρSWは水中での嵩比重であり、ρSD
は絶乾状態の嵩比重である。
However, ρ SW is the bulk specific gravity in water, and ρ SD
Is the bulk specific gravity in the absolutely dry state.

【0043】更に上記のようにして微粒率(微粉率)を
求めた場合において、前述したような第3の要因として
重要な骨格的機能を果たす砂のような粒体間の間隔率Ψ
S は、現実には水中条件下であって、この水中条件下に
おける間隔率ΨS W は次の数5で得られるものである。
Further, in the case where the fine particle ratio (fine powder ratio) is obtained as described above, the interval ratio Ψ between the particles such as sand which plays an important skeletal function as the third factor as described above.
S is in reality a water conditions, the interval rate [psi S W in the water conditions is obtained by the following equation 5.

【0044】[0044]

【数5】ΨS W = (1−S/ρSW)×100[Number 5] Ψ S W = (1-S / ρ SW) × 100

【0045】従って絶乾状態を基準とする場合には補正
されたものとなるべきで、この絶乾状態の粒体間間隔率
ΨS D は次の数6のようになる。なお上記数5で得られ
る水中条件下の試料は定重量となるまで乾燥することで
絶乾状態となることは明らかである。
Therefore, when the absolute dry state is used as a reference, it should be corrected, and the interparticle spacing rate Ψ S D in this absolute dry state is given by the following equation 6. It is apparent that the sample under water conditions obtained by the above equation 5 becomes an absolutely dry state by drying until the weight becomes constant.

【0046】[0046]

【数6】 ΨS D = (1−S/ρSW)×100 (%)## EQU6 ## Ψ S D = (1−S / ρ SW ) × 100 (%)

【0047】又絶乾単位容積重量ρSDの測定は、上記の
容器(マス)に絶乾砂を3層に分けて入れ、その各1層
毎に左右両側面を各10回(計20回)木槌で軽く叩
き、充填終了後その上面を角部を3角状とした定木で平
面状に均らし、その重量を測定する。
Further, the absolute dry unit volume weight ρ SD is measured by putting the absolutely dry sand into the above-mentioned container (mass) in three layers, and for each one of the layers, the left and right side surfaces are respectively 10 times (total 20 times). ) Lightly tap with a mallet, and after filling, flatten the top surface with a regular tree with triangular corners and measure the weight.

【0048】更に上記水中単位容積重量ρSWの測定は、
上記とは別に500mlのメスシリンダーに水を用意し、
以下のようにしても測定される。即ち前記容器(容重マ
ス:1000cc)に100mlの水を入れ、次に容器深さ
の3分の1に相当した絶乾砂を入れ、棒でよく攪拌した
後左右両側面を各10回(計20回)木槌で軽く叩き、
更に3分の2までの深さに相当した砂を入れて同様に攪
拌し木槌で合計20回軽く叩き、この時水が砂の上面に
数mm出るように必要に応じて注水する。同様容器上面か
ら2〜3mm下となるように砂と水を交互に入れ、20回
叩き、次に容器上面で砂面と水面とが同一になるように
砂だけを入れ、又必要に応じては注水するか、ピペット
で水を吸い取るかし、吸い取った水はメスシリンダーに
戻すような操作をなし、容器上面で砂面と水面とが同一
で且つ平滑になるように金べらなどで均らし、その全重
量(W)を測定して数7により水中単位容積重量ρSW
求める。
Further, the measurement of the unit volume weight ρ SW in water is as follows.
Prepare water in a 500 ml measuring cylinder separately from the above,
It is also measured as follows. That is, 100 ml of water was placed in the container (mass: 1000 cc), and then dry sand corresponding to one-third of the container depth was placed in the container. 20 times) Tap with a mallet,
Further, add sand corresponding to a depth of up to two-thirds, stir in the same manner, and tap it with a mallet for a total of 20 times. In the same manner, insert sand and water alternately 2 to 3 mm below the top of the container, beat 20 times, then add only sand so that the sand surface and the water surface are the same on the top surface of the container, and if necessary. Water or use a pipette to absorb the water, and then perform the operation of returning the absorbed water to the graduated cylinder, and level it with a metal spatula so that the sand surface and the water surface are the same and smooth on the top surface of the container. Then, the total weight (W) is measured and the underwater unit volume weight ρ SW is obtained by the equation 7.

【0049】[0049]

【数7】ρSW =〔W−{a+(500−b)/ρW }〕/
1000 × 1/V 但し、a:容器の風袋 b:メスシリンダーに残った水量 V:容器の容積でこの場合は1000cc
[Formula 7] ρ SW = [W- {a + (500-b) / ρ W }] /
1000 x 1 / V where a: tare of container b: amount of water remaining in graduated cylinder V: volume of container 1000cc in this case

【0050】上記したような各方法で、径0.075〜5
mmのガラス球、富士川砂および相模川砕砂を用い砂(ガ
ラス球)/セメントの重量比(S/C)を0〜6とした
各試料について測定すると共に粒体間の間隔率(または
充填率)や微粒量ないし微粒率などを求めた結果は次の
表3から表5に示す如くである。
With each method as described above, a diameter of 0.075 to 5
mm glass spheres, Fujikawa sand, and Sagamikawa crushed sand were used to measure each sample with a sand (glass sphere) / cement weight ratio (S / C) of 0 to 6 and the spacing rate between particles (or filling rate). ) Or the amount of fine particles or the fine particle ratio is shown in Tables 3 to 5 below.

【0051】なおこれら表3〜表5において、WP はセ
メントのキャピラリー域含水量,SW は砂の限界相対吸
着水量であって、WP /C×100が前記αであり、又
W/S×100が前記βである。更にWW は前記セメ
ント(C)、砂(S)とそれらのαおよびβ以外構造内
水量であって、その如何が具体的に流動ないし成形化す
るか否かは兎も角として、少なくとも流動ないし成形に
潜在的に寄与するものであるからワーカブル水量と言う
べきである。更にρSDは正確にはρSVD とも言うべきも
のであって、砂の絶乾嵩比重であり、これに対するρSW
はρSVW とも言うべきものであって、ρSDの絶乾条件の
ものとは反対に砂の水中条件下における嵩比重である。
In these Tables 3 to 5, W P is the water content in the capillary region of cement, S W is the limit relative adsorbed water amount of sand, W P / C × 100 is the above α, and S W is / S × 100 is the β. Furthermore W W is the cement (C), a structure in water but sand (S) and their α and beta, even angular whether the rabbits that how the specific flow or forming of at least flow Or it should be called the workable water content because it has a potential contribution to molding. Furthermore, ρ SD , which should be called ρ SV D to be exact, is the absolute dry bulk density of sand, and ρ SW
Is also called ρ SV W, which is the bulk specific gravity of sand under water, as opposed to the dry condition of ρ SD .

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【表5】 [Table 5]

【0055】然して上記のようにして本発明による新し
い測定ρSWおよびρSWとΨ SW を用いて得られた上述第
3〜5表のような測定結果によるときはこの新しいΨ S
W とワーカブル水量WW との関係を解析せしめ、粒体が
前記のようにガラス球、川砂および砕砂という材質的、
性状的に明かに異るものであるに拘わらず、このWW
前記Ψ SW との間には整然として殆んど変化のない所定
の関係が得られるものであることが確認された。つまり
このような結果によるときは、対数回帰式または指数回
帰式による全回帰曲線または個別回帰曲線の如きを求め
ることが可能であり、斯うした結果を用いることにより
このような混練物においてΨ SW が求められるならばワ
ーカブル水量WW を略適切に求めることが可能であり、
従って又そのブリージング水量ないし流動性、更には成
形体における強度その他の特性の如きをも有効に判定す
ることが可能である。
[0055] Thus when due to measurements, such as a new measurement [rho SW and [rho SW and [psi S W above third to fifth table obtained using the present invention as described above is the new [psi S
By analyzing the relationship between W and the workable water volume W W , the particles are made of glass spheres, river sand and crushed sand as described above,
Regardless of the nature it will be obvious to those yl, it was confirmed that those throat change without predetermined relationship is obtained N殆orderly between this W W and the [psi S W. That is, when such a result is obtained, it is possible to obtain an overall regression curve or an individual regression curve by a logarithmic regression equation or an exponential regression equation, and by using such a result, Ψ S If W is required, it is possible to obtain the workable water amount W W almost appropriately,
Therefore, it is possible to effectively judge the amount of breathing water or fluidity, and further the strength and other characteristics of the molded product.

【0056】[0056]

【発明の効果】以上説明したような本発明によるとき
は、セメントなどの粉体、砂などの粒体および水などの
液体による混合物に関し従来法における如き試し練りの
繰返しや統計的手法から脱却し、該混練物において骨格
的組織ないし機能を有する砂などの粒体についての最密
状態充填物における水中単位容積重量を求め、あるいは
これにその粒体間の間隔率を求めしめ、これらの新しい
測定値によって流動必要水、ブリージング水などを定量
的に仔細に解明し、実際の混合物、特にコンクリートや
モルタルの如き混練物の実態に即応した合理的な解明を
なし、ばらつきの少ない安定した品質を有する製品を予
測、企画し且つ適切に得しめるなどの効果を有してお
り、工業的にその効果の大きい発明である。
According to the present invention as described above, with respect to a mixture of powder such as cement, granules such as sand and liquid such as water, it is necessary to avoid the repeated trial kneading and the statistical method as in the conventional method. , The unit volume weight of water in the closest packed state of the granular material such as sand having a skeletal structure or function in the kneaded material, or the interval ratio between the granular materials is obtained, and these new measurements are made. The amount of fluid required water, breathing water, etc. are clarified quantitatively in detail according to the value, and rational clarification is made corresponding to the actual condition of the actual mixture, especially the kneading material such as concrete and mortar, and stable quality with little variation It has the effect of predicting, planning and appropriately obtaining products, and is an invention that has a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 最密充填状態混合物におけるW/CとS/C
の変化状態を計算値と実測値について併せて示した図
表。
FIG. 1 W / C and S / C in a close packed mixture.
FIG. 4 is a chart showing the calculated state and the actually measured value together with the change state.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 砂や粒状スラグ、人工細骨材、ガラス球
その他の粒体に対し水その他の液体とセメントなどの粉
体を加えたモルタルまたはコンクリートのような混合物
を得るに当り、前記粒体を水中で圧密充填操作した最密
状態充填物を準備し、該最密状態における前記粒体の水
中単位容積重量を求めることを特徴とするモルタルまた
はコンクリートを得るための粒体に関する物性測定法。
1. When obtaining a mixture such as mortar or concrete in which sand or granular slag, artificial fine aggregate, glass spheres or other particles are mixed with water or other liquid and powder such as cement, the particles are used. A method for measuring physical properties of granules for obtaining mortar or concrete, characterized in that a densest packed material prepared by compacting and filling a body in water is prepared, and a unit volume weight of the granules in water in the densest state is determined. .
【請求項2】 砂や粒状スラグ、人工細骨材、ガラス球
その他の粒体に対し水その他の液体とセメントなどの粉
体を加えたモルタルまたはコンクリートのような混合物
を得るに当り、前記粒体を水中で圧密充填操作した最密
状態充填物を準備し、該最密状態における前記粒体の水
中単位容積重量を求め、これを利用してモルタルまたは
コンクリートを得るための前記粒体間の間隔率または充
填率を求めることを特徴とするモルタルまたはコンクリ
ートを得るための粒体に関する物性測定法。
2. When obtaining a mixture such as mortar or concrete in which sand or granular slag, artificial fine aggregate, glass spheres or other particles are mixed with water or other liquid and powder such as cement, the particles are used. Prepare a densest packing in which the body is compacted and filled in water, determine the unit volume weight of the granules in water in the closest packed state, and use this to obtain the mortar or concrete between the granules. A physical property measuring method for granules for obtaining mortar or concrete, which is characterized by obtaining a space ratio or a filling ratio.
【請求項3】 砂や粒状スラグ、人工細骨材、ガラス球
その他の粒体に対し水その他の液体とセメントなどの粉
体を加えたモルタルまたはコンクリートのような混合物
を得るに当り、前記粒体を水中で圧密充填操作した最密
状態充填物を準備すると共に絶乾で同様に圧密充填操作
した最密状態充填物を準備し、これらの各最密状態にお
ける前記粒体の水中単位容積重量と絶乾単位容積重量と
を求め、これら両単位容積重量の差をモルタルまたはコ
ンクリートを得るために利用する微砂量として求めるこ
とを特徴とするモルタルまたはコンクリートを得るため
の粒体に関する物性測定法。
3. When obtaining a mixture such as mortar or concrete in which sand or granular slag, artificial fine aggregate, glass spheres or other particles are mixed with water or other liquid and powder such as cement, the particles are used. Prepare a close-packed state that the body was compacted and filled in water, and also prepared a close-packed state that was similarly dried and compacted and filled, and the unit volume weight of the granules in water in each close-packed state. And the absolute dry unit volume weight are obtained, and the difference between these unit volume weights is obtained as the amount of fine sand used to obtain the mortar or concrete. A method for measuring physical properties of granules for obtaining mortar or concrete. .
JP7097711A 1995-03-31 1995-03-31 Physical property measurement method for granules to obtain mortar or concrete Expired - Fee Related JP2731798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7097711A JP2731798B2 (en) 1995-03-31 1995-03-31 Physical property measurement method for granules to obtain mortar or concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7097711A JP2731798B2 (en) 1995-03-31 1995-03-31 Physical property measurement method for granules to obtain mortar or concrete

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11703787A Division JPH0833385B2 (en) 1987-05-15 1987-05-15 Basic fluid flow measurement method for mixtures of liquids, powders and granules

Publications (2)

Publication Number Publication Date
JPH0921796A true JPH0921796A (en) 1997-01-21
JP2731798B2 JP2731798B2 (en) 1998-03-25

Family

ID=14199494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7097711A Expired - Fee Related JP2731798B2 (en) 1995-03-31 1995-03-31 Physical property measurement method for granules to obtain mortar or concrete

Country Status (1)

Country Link
JP (1) JP2731798B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539566A (en) * 2006-03-14 2009-09-23 江苏博特新材料有限公司 Method for testing early capillary negative pressure of concrete
CN107500658A (en) * 2017-09-23 2017-12-22 四川省三台县波特兰商品砼有限公司 A kind of matching method of closely knit concrete

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284469A (en) * 1987-05-15 1988-11-21 Yasuro Ito Method for measuring basic fluid water volume of mixture composed of liquid, powder and grain and method for deciding characteristics of various kinds of compounds in said mixture system and method for preparing said mixture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284469A (en) * 1987-05-15 1988-11-21 Yasuro Ito Method for measuring basic fluid water volume of mixture composed of liquid, powder and grain and method for deciding characteristics of various kinds of compounds in said mixture system and method for preparing said mixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539566A (en) * 2006-03-14 2009-09-23 江苏博特新材料有限公司 Method for testing early capillary negative pressure of concrete
CN107500658A (en) * 2017-09-23 2017-12-22 四川省三台县波特兰商品砼有限公司 A kind of matching method of closely knit concrete
CN107500658B (en) * 2017-09-23 2021-04-06 四川省三台县波特兰商品砼有限公司 Proportioning method of dense concrete

Also Published As

Publication number Publication date
JP2731798B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
Kwan et al. Packing density measurement and modelling of fine aggregate and mortar
WO1991004837A1 (en) Method and apparatus for regulating mixture of granular material such as sand, powder such as cement and liquid
de Oliveira Haddad et al. Influence of particle shape and size distribution on coating mortar properties
CN115028419B (en) Design method for self-compacting concrete mix proportion
RU2135427C1 (en) Method of designing cement mixture (variants), method of preparing final cement mix, method of preparing final dry cement mix, cement mex, and final cement mix
CN109626886B (en) Steel fiber self-compacting concrete mix proportion design method based on mortar rheological property
JP2704251B2 (en) Method for determining the characteristics of a mixture using liquids, powders and granules, and method for adjusting the mixture
JPH0921796A (en) Method for measuring grain physical property for obtaining mortar or concrete
JPH0833385B2 (en) Basic fluid flow measurement method for mixtures of liquids, powders and granules
JP3211006B2 (en) Mixing or adjusting a mixture of powder, granules and water
JPS63314465A (en) Physical property measurement pertaining to particulate material for obtaining mortar of concrete
JP2819288B2 (en) Preparation method of mixture with granular material such as sand and powder and liquid such as cement
Jovein et al. Effects of aggregate properties on rheology of self-consolidating concrete
WO1991012218A1 (en) Composition for covering a substrate
Ngwenya et al. Influence of Recycled Coarse Aggregate on some Properties of Fresh and Hardened Concrete
JP2597835B2 (en) Method for measuring relative water absorption of aggregate between powder and aggregate in the presence of liquid and method for adjusting kneaded material based on measurement results
Van Der Putten et al. Influence of the Particle Shape on the Packing Density and Pumpability of UHPC
Ikumapayi et al. Quality assurance of available Portland Cements in Nigeria
Lunkad Simultaneous enhancement of fluidity and thixotropy of vibration-free concrete
Smith Uniformity and workability
Toebben Selecting Consolidation Procedures for Making Concrete Specimens
Jaja et al. New Absolute Volume Mix Design Method For Self-Compacting Concrete
JP2869663B2 (en) Method of measuring relative absorption liquid ratio of powder and granule and preparation of powder and granule mixture
Shekarchi et al. Verification of wet and dry packing methods with experimental data
Islam A STUDY ON THE COMPRESSIVE STRENGTH OF CONCRETE PREPARED BY USING VARIOUS SAND

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees