JPH09217520A - Base isolation structure - Google Patents

Base isolation structure

Info

Publication number
JPH09217520A
JPH09217520A JP32635996A JP32635996A JPH09217520A JP H09217520 A JPH09217520 A JP H09217520A JP 32635996 A JP32635996 A JP 32635996A JP 32635996 A JP32635996 A JP 32635996A JP H09217520 A JPH09217520 A JP H09217520A
Authority
JP
Japan
Prior art keywords
isolation structure
plates
plate
seismic isolation
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32635996A
Other languages
Japanese (ja)
Inventor
Koji Kubo
孝治 久保
Isao Hagiwara
萩原  勲
Yoshihide Fukahori
美英 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP32635996A priority Critical patent/JPH09217520A/en
Publication of JPH09217520A publication Critical patent/JPH09217520A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation structure by alternately laminating a plurality of hard plates and soft plates with viscoelastic property, and laminating a plurality of friction plates, made of polymeric material of the specific value or less in the modulus of elasticity, in a hole piercing a center part. SOLUTION: Steel plates 1 of 250mm in outer diameter, 50mm in inner diameter and 1.6mm in thickness, and soft plates 2 made of rubber material of 2.3kgf/ cm<2> in 50% modulus, 90kgf/cm<2> in tensile strength, 760% in rupture time elongation, the modulus of shearing elasticity G=1.9kgf/cm<2> in shearing stress 200%, and 2.5mm in thickness with tan δ of 0.11 are placed between an upper face plate 3 and a lower face plate 4 made of iron plates. Polyamide friction plates 6 of 1.6mm in thickness and 49.8mm in outer diameter are further filled in a center through hole, and an external thread 8 is pushed into an internal thread 7, provided at the upper face plate 8, so as to apply compressive force of 5-150kg/cm<2> to the friction plates 6. The elastic modulus of the friction plates 6 is to be 1.5×10<5> kgf/cm<2> or less. A base isolation structure prevented from the generation of irreversible deformation can thereby be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は免震装置に係り、特に風
揺れ等の影響を受けやすい戸建住宅等の軽負荷用、及び
一般ビル用に好適な免震装置に用いられる免震構造体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation device, and more particularly to a seismic isolation device used for a seismic isolation device suitable for a light load such as a detached house which is easily affected by wind sway and for general buildings. It is about.

【0002】[0002]

【従来の技術】従来、複数個の鋼板等の剛性を有した硬
質板と、同じく複数個の粘弾性的性質を有したゴム等の
軟質板とを交互に積層した免震構造体が、中層、低層の
ビルや橋梁等の免震装置のゴム支承片として広く用いら
れている。このような免震構造体の軟質板を構成するゴ
ム等の弾性体は、下記のようなばね特性を有するように
設計されるのが一般である。即ち、ゴム等の弾性体の横
ばね定数KH 、搭載質量をMとして、水平方向の固有振
動数fH は次の条件を満たすように設計する。 fH =(1/2π)√(KH /M)=0.5(Hz) この固有振動数fH は、建物や橋梁などの重量と、ゴム
などの弾性体の横ばね定数KH との比で決まるので、ビ
ルや橋梁など搭載質量Mの大きいものの免震装置の軟質
板を構成する弾性体はばね剛性の大きい材料、高弾性材
料が用いられることが一般的である。これを戸建住宅な
どの軽負荷のものにに適用すると、戸建住宅等は搭載質
量Mが小さいので、軟質板の材料はばね剛性の小さい、
低弾性のものが必要であった。また、地震による揺れを
早くおさえるために、ダンパー(エネルギー吸収装置)
併用するのが一般的であった。そのダンパーの一つとし
て、免震構造体の複合積層体の内部に貫通する孔を設
け、その孔の中に複数枚の摩擦板を積層したものが特開
昭62−141330号等で提案されていた。
2. Description of the Related Art Conventionally, a seismic isolation structure in which a plurality of rigid hard plates, such as steel plates, and a plurality of soft plates, such as rubber, which also have viscoelastic properties, are alternately laminated Widely used as a rubber support piece for seismic isolation devices such as low-rise buildings and bridges. An elastic body such as rubber constituting a soft plate of such a seismic isolation structure is generally designed to have the following spring characteristics. That is, with the lateral spring constant KH of an elastic body such as rubber and the mounting mass M, the natural frequency fH in the horizontal direction is designed to satisfy the following conditions. fH = (1 / 2π) √ (KH / M) = 0.5 (Hz) This natural frequency fH is determined by the ratio of the weight of a building or bridge to the lateral spring constant KH of an elastic body such as rubber. Therefore, as the elastic body that constitutes the soft plate of the seismic isolation device having a large mounting mass M such as a building or a bridge, a material having a large spring rigidity or a highly elastic material is generally used. If this is applied to a light load such as a detached house, since the mounted mass M of the detached house is small, the material of the soft plate has a small spring rigidity,
Low elasticity was needed. In addition, a damper (energy absorbing device) is used to quickly suppress the shaking caused by the earthquake.
It was common to use them together. As one of the dampers, there is proposed in Japanese Patent Laid-Open No. 62-141330, etc., in which a through hole is provided in a composite laminated body of seismic isolation structures, and a plurality of friction plates are laminated in the hole. Was there.

【0003】[0003]

【発明が解決しようとする課題】しかし、どのような摩
擦板でもこれらの特性を発揮できるわけでなく、例え
ば、摩擦板に金属板を用いた場合は、高剪断歪み時、即
ち地震時に周囲の複合積層体との接触により、摩擦板が
不可逆の変形を起こし、免震構造体としての機能を発揮
できなくなるという問題があった。本発明は、このよう
な従来の技術に鑑みてなされたものであり、地震にも風
揺れにも効果が大きく、不可逆の変形を起こさない免震
構造体を提供するものである。
However, not all friction plates can exhibit these characteristics. For example, when a metal plate is used as the friction plate, the surroundings of the friction plate at the time of high shear strain, that is, when an earthquake occurs There is a problem in that the friction plate causes irreversible deformation due to contact with the composite laminate, and the function as a seismic isolation structure cannot be exhibited. The present invention has been made in view of such a conventional technique, and provides a seismic isolation structure that is highly effective against earthquakes and wind sway and does not cause irreversible deformation.

【0004】[0004]

【課題を解決するための手段】本発明では、免震構造体
の上下の面板の間に剛性を有した硬質板と粘弾性的性質
を有した軟質板とを、それぞれ複数個、交互に積層した
複合積層体の内部に、該複合積層体を貫通する孔を設
け、該孔の中に複数枚の摩擦板を積層し、該摩擦板の弾
性率を1.5×105 Kgf/cm2 以下の高分子材料
を用いることにより、上記のような問題点の解決を図っ
た。
According to the present invention, a plurality of hard plates having rigidity and soft plates having viscoelastic properties are alternately laminated between upper and lower face plates of a seismic isolation structure. A hole penetrating the composite laminate is provided inside the composite laminate, and a plurality of friction plates are laminated in the holes, and the elastic modulus of the friction plate is 1.5 × 10 5 Kgf / cm 2 The following problems were solved by using the following polymeric materials.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0005】本発明の免震構造体の軟質板に用いられる
材料としては、50%モジュラスが1.0〜10Kgf
/cm2 の特性を有するものが好ましく、更に好ましく
は、1.0〜7Kgf/cm2 、更に1.0〜5Kgf
/cm2 が好ましく用いられる。即ち、熱可塑ゴム、ウ
レタンゴム、各種の加硫ゴム、未加硫ゴム、微架橋ゴ
ム、プラスチックス等の有機材料、これらの発泡体、ア
スファルト、粘土等の無機材料、これらの混合材料など
各種の物を用いることができる。これらのものを単独で
用いても良いが、内側部分に高ダンピング材、外側部分
にクリープ性能の良くかつ柔らかい材料等と二種類以上
を組み合わせて使用しても良い。また、本発明における
硬質板としては、金属、セラミックス、プラスチック
ス、FRP、ポリウレタン、木材、紙板、スレート板、
化粧板等所要の剛性を有する各種の材料を使用すること
が出来る。
The material used for the soft plate of the seismic isolation structure of the present invention has a 50% modulus of 1.0 to 10 Kgf.
/ Cm 2 is preferable, more preferably 1.0 to 7 Kgf / cm 2 , and further 1.0 to 5 Kgf.
/ Cm 2 is preferably used. That is, thermoplastic rubber, urethane rubber, various vulcanized rubbers, unvulcanized rubbers, slightly cross-linked rubbers, organic materials such as plastics, foams thereof, inorganic materials such as asphalt and clay, mixed materials thereof, and the like. The thing of can be used. These materials may be used alone, or two or more kinds may be used in combination, such as a high damping material for the inner part and a material having good creep performance and soft material for the outer part. Further, as the hard plate in the present invention, metal, ceramics, plastics, FRP, polyurethane, wood, paper plate, slate plate,
Various materials having a required rigidity such as a decorative plate can be used.

【0006】本発明の免震装置に用いる免震構造体に耐
候性を付与するために免震構造体の外側を耐候性の優れ
た材料で被覆しても良い。この被服材料としては、例え
ば、ブチルゴム、アクリルゴム、ポリウレタン、シリコ
ンゴム、フっ素ゴム、多硫化ゴム、エチレンプロピレン
ゴム(ERP及びEPDM)、ハイパロン、塩素化ポリ
エチレン、エチレン酢酸ビニルゴム、クロロプレンゴム
などを用いることが出来る。これらの材料は単独でも二
種類以上をブレンドしても良い。また、天然ゴム、イソ
プレンゴム、スチレンブタジエンゴム、ブタジエンゴ
ム、ニトリルゴムなどとブレンドしても良い。
In order to impart weather resistance to the seismic isolation structure used in the seismic isolation device of the present invention, the outside of the seismic isolation structure may be covered with a material having excellent weather resistance. As the clothing material, for example, butyl rubber, acrylic rubber, polyurethane, silicone rubber, fluorine rubber, polysulfide rubber, ethylene propylene rubber (ERP and EPDM), hypalon, chlorinated polyethylene, ethylene vinyl acetate rubber, chloroprene rubber, etc. Can be used. These materials may be used alone or as a blend of two or more. Further, it may be blended with natural rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, nitrile rubber and the like.

【0007】本発明に用いられる摩擦板は、弾性率1.
5×105 Kgf/cm2 以下の高分子材料である。好
ましくは1.1×105 Kgf/cm2 以下、更に好ま
しくは、8.5×104 Kgf/cm2 以下の高分子材
料である。例えば摩擦板にジアリルフタレートを用いた
場合の弾性率の1例は、1.1×105 Kgf/cm
2 、ガラス繊維補強(30%)の66ナイロンを用いた
場合の弾性率の1例は、8.5×104 Kgf/cm
2 、66ナイロン単体を用いた場合の弾性率の1例は、
2.9×104 Kgf/cm2 である。
The friction plate used in the present invention has an elastic modulus of 1.
It is a polymer material of 5 × 10 5 Kgf / cm 2 or less. The polymer material is preferably 1.1 × 10 5 Kgf / cm 2 or less, and more preferably 8.5 × 10 4 Kgf / cm 2 or less. For example, one example of the elastic modulus when using diallyl phthalate for the friction plate is 1.1 × 10 5 Kgf / cm.
2. One example of the elastic modulus when glass fiber reinforced (30%) 66 nylon is used is 8.5 × 10 4 Kgf / cm
An example of the elastic modulus when using 2 , 66 nylon alone is
It is 2.9 × 10 4 Kgf / cm 2 .

【0008】本発明に用いる摩擦板の材料は高分子材料
に限られる。高分子材料としては、例えば熱可塑性プラ
スチックとして、ポリアミド(ナイロン)、ポリエチレ
ン、ポリプロピレン、ポリスチレン、ガラス繊維強化ポ
リスチレン、ポリ−P−キシレン、ポリ酢酸ビニル、ポ
リアクリレート、ポリメタアクリレート、ポリ塩化ビニ
ル、ポリ塩化ビニリデン、フッ素系プラスチック、ポリ
アクリロニトリル、ポリビニルエーテル、ポリビニルケ
トン、ポリエーテル、ポリカーボネイト、熱可塑性ポリ
エステル、ジエン系プラスチック、ポリウレタン系プラ
スチック、芳香族ポリアミド、ポリフェニレン、シリコ
ーンや、熱硬化性プラスチック(例えば不飽和ポリエス
テル樹脂)などを用いることができる。これらのプラス
チックは単体で用いても又は、可塑剤や充填剤、ガラス
繊維やカーボン繊維などの補強材を混合して用いても良
い。又、これらのプラスチックを単独で用いても、複数
の種類を複合して用いても良い。
The material of the friction plate used in the present invention is limited to polymer materials. Examples of the polymer material include thermoplastics such as polyamide (nylon), polyethylene, polypropylene, polystyrene, glass fiber reinforced polystyrene, poly-P-xylene, polyvinyl acetate, polyacrylate, polymethacrylate, polyvinyl chloride, and polyvinyl chloride. Vinylidene chloride, fluoroplastics, polyacrylonitrile, polyvinyl ethers, polyvinyl ketones, polyethers, polycarbonates, thermoplastic polyesters, diene plastics, polyurethane plastics, aromatic polyamides, polyphenylenes, silicones and thermosetting plastics (eg unsaturated Polyester resin) or the like can be used. These plastics may be used alone or mixed with a plasticizer, a filler, and a reinforcing material such as glass fiber or carbon fiber. Further, these plastics may be used alone or in combination of plural kinds.

【0009】本発明の構成は、免震構造体の上下の面板
の間に剛性を有した硬質板と粘弾性的性質を有した軟質
板とを、それぞれ複数個、交互に積層した複合積層体の
内部に孔を設け、その中に複数の摩擦板を積層するもの
である。地震時などには、この摩擦板は免震構造体の剪
断変形に合わせて移動し、図5に示すようなヒステリシ
スループを描く。図5には、荷重8tonを負荷した免
震構造体に、f=0.2Hzのサイン波で、200%歪
の振動を与えた時のヒステリシスループ(歪−力)を示
している。本発明の免震構造体のヒステリシスループ
は、図5のように必ず正勾配のループでなければならな
い。例えば、ステンレス板を摩擦板に用いると、その時
のヒステリシスループは図8のようになり、戻り変形過
程で負勾配の部分ができる。金属の摩擦板は、剪断変形
時に周囲の複合積層体の軟質板や硬質板との接触により
不可逆の変形を起こすからである。即ち、この不可逆変
形部分が隣接する硬質板に引っかかり、ヒステリシスル
ープに負の勾配を発生させると同時に不連続な衝撃音を
発生して軟質板を傷つけ、免震構造体の破壊の原因にも
なりかねない。
The structure of the present invention is a composite laminate in which a plurality of rigid hard plates and a plurality of soft plates having viscoelastic properties are alternately laminated between upper and lower face plates of a seismic isolation structure. A hole is provided inside and a plurality of friction plates are laminated in the hole. At the time of an earthquake, this friction plate moves in accordance with the shear deformation of the base isolation structure, and draws a hysteresis loop as shown in FIG. FIG. 5 shows a hysteresis loop (strain-force) when vibration of 200% strain is applied to a seismic isolation structure loaded with a load of 8 tons with a sine wave of f = 0.2 Hz. The hysteresis loop of the seismic isolation structure of the present invention must be a positive gradient loop as shown in FIG. For example, when a stainless plate is used as the friction plate, the hysteresis loop at that time is as shown in FIG. 8, and a negative gradient portion is formed in the returning deformation process. This is because the metal friction plate causes irreversible deformation due to contact with the soft and hard plates of the surrounding composite laminate during shear deformation. In other words, this irreversible deformation part is caught by the adjacent hard plate, and a negative gradient is generated in the hysteresis loop, and at the same time, a discontinuous impact sound is generated and the soft plate is damaged, which may cause the seismic isolation structure to break. It can happen.

【0010】本発明の摩擦板の厚さtマサツ は、軟質板1
枚の厚さtR 以下であることが好ましい。また、この時
の摩擦板の直径dは、複合積層体の高さをH、軟質板の
総厚さをhとしたときに、d≧10(h/(H−t
マサツ ))tマサツ となることが好ましい。即ち、硬質板1
枚の厚さをtS 、硬質板の枚数をn枚としたときに、 H=(n+1)tR +ntS h=(n+1)tR このとき、上下の面板間の摩擦板の枚数をm枚とする
と、 H=mtマサツ となる。剪断歪み200%時における摩擦板の重なり部
分は、摩擦板の直径dの80%以上あることが望ましい
ので、 (2h/(m−1))≦0.2d d≧10(h/(m−1))=10(h/((H/tマサツ )−1)) =10(h/(H−tマサツ ))tマサツ となる。更に好ましくは、剪断歪200%時における摩
擦板の重なり部分は、摩擦板の直径dの90%以上ある
ことが望ましく、 d≧20(h/(H−tマサツ ))tマサツ である。また、摩擦板の直径dは、硬質板の直径をDと
すると、 0.1≦(d/D)≦0.8 であることが好ましい。更に好ましくは、 0.1≦(d/D)≦0.6 である。d/Dが0.8を越えると摩擦力が大きくなり
過ぎ、免震構造体のバネ剛性とのバランスがくずれ、復
元力が損なわれてしまう。d/Dが0.1未満になる
と、充分な減衰性が得られないため、目的を達し得な
い。
The thickness t of the friction plate of the present invention is as follows :
It is preferable that the thickness is not more than the sheet thickness t R. Further, the diameter d of the friction plate at this time is d ≧ 10 (h / (H−t) where H is the height of the composite laminate and h is the total thickness of the soft plate.
Masatsu )) t masatsu is preferred. That is, the hard plate 1
When the thickness of the plate is t S and the number of hard plates is n, H = (n + 1) t R + nt S h = (n + 1) t R At this time, the number of friction plates between the upper and lower face plates is m. Assuming one sheet, H = mt Masatsu . Since the overlapping portion of the friction plates when the shear strain is 200% is preferably 80% or more of the diameter d of the friction plates, (2h / (m−1)) ≦ 0.2d d ≧ 10 (h / (m− 1)) = 10 (h / ((H / t mass ) -1)) = 10 (h / (H-t mass )) t mass . More preferably, the overlapping portion of the friction plates at a shear strain of 200% is preferably 90% or more of the diameter d of the friction plates, and d ≧ 20 (h / ( Ht mass )) t mass . The diameter d of the friction plate is preferably 0.1 ≦ (d / D) ≦ 0.8, where D is the diameter of the hard plate. More preferably, 0.1 ≦ (d / D) ≦ 0.6. When d / D exceeds 0.8, the frictional force becomes too large, the balance with the spring rigidity of the seismic isolation structure is lost, and the restoring force is impaired. If d / D is less than 0.1, the purpose cannot be achieved because sufficient damping cannot be obtained.

【0011】本発明の摩擦板は、複合積層体を貫通する
孔の中に押込み力5〜150Kgf/cm2 で封入する
ことが好ましい。更に好ましくは5〜100Kgf/c
2、更には、10〜60Kgf/cm2 である。封入
する圧力が、150Kgf/cm2 を越えると、免震構
造体が垂直方向に大きく引き伸ばされることになり、使
用時即ち載荷時の初期の沈み込み量を勘案しても150
Kgf/cm2 が限度である。又、押込み力5Kgf/
cm2 未満では圧縮力が不十分であり、免震構造体とし
て十分な摩擦力を得ることができない。
The friction plate of the present invention is preferably enclosed in a hole penetrating the composite laminate with a pushing force of 5 to 150 Kgf / cm 2 . More preferably 5 to 100 Kgf / c
m 2 and further 10 to 60 Kgf / cm 2 . If the pressure to be filled exceeds 150 Kgf / cm 2 , the seismic isolation structure will be greatly stretched in the vertical direction. Even if the initial amount of sinking during use, that is, during loading, is taken into consideration, 150
The limit is Kgf / cm 2 . In addition, pushing force 5 Kgf /
If it is less than cm 2 , the compressive force is insufficient, and sufficient frictional force cannot be obtained as a seismic isolation structure.

【0012】本発明の免震構造体は、一般ビル用として
は、面圧150 Kgf/cm2以下、50Kgf/cm2以上で用い
られる。又、軽負荷用としては、面圧50 Kgf/cm2
満、更には面圧30 Kgf/cm2以下、更に好ましくは面圧
20 Kgf/cm2以下の軽負荷用免震構造体として好適に用
いられる。
The seismic isolation structure of the present invention is used for a general building with a surface pressure of 150 Kgf / cm 2 or less and 50 Kgf / cm 2 or more. Also, for light loads, it is suitable as a light load seismic isolation structure with a surface pressure of less than 50 Kgf / cm 2 , further less than 30 Kgf / cm 2, and more preferably less than 20 Kgf / cm 2. Used.

【0013】[0013]

【実施例】以下に本発明を図面を参照して実施例につい
て具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings.

【実施例1】図1は本発明の実施例1に係る免震構造体
の断面図を示している。図1に示す免震構造体におい
て、上面板3(鉄板)と下面板4(鉄板)の間に硬質板
1として外径250mm、内径50mm、厚さ1.6m
mの鋼板30枚(図では一部省略)、軟質板2として、
50%モヂュラスが2.3Kgf/cm2 、引張り強度が90
Kgf/cm2 、破断時の伸びが760%、剪断歪200%に
おける剪断弾性率G=1.9Kgf/cm2 、及びtanδが
0.11のゴム材料を用い、外径250mm、内径50
mm、軟質板1枚の厚さ2.5mmのものを31層(図
では一部省略)用いた。中央の貫通する孔の中に、摩擦
板6として、厚さ1.5mm、外径49.8mmのナイ
ロン板を99枚(図では一部省略)、摩擦板と摩擦板の
間に隙間ができないように封入した。外被ゴム5とし
て、天然ゴムを用いた。上面板3に、M48のメスネジ
7を切り、そこにM48のオスネジ8を押し込むことに
より、摩擦板に圧縮力を加えた。その時のトルクは5K
gm、押込み力は25Kgf/cm2 であった。荷重8
tonを負荷し、振動数f=0.2Hzで、剪断歪20
0%で振動させた時のヒステリシスループを図5に示
す。これにより、実施例1は負勾配を持たない安定した
ヒステリシスループであることがわかる。即ち、摩擦板
に高分子材料(ナイロン)を用いることにより、永久変
形を伴うことなく、理想的なヒステリシスループが得ら
れている。
[Embodiment 1] FIG. 1 is a sectional view of a seismic isolation structure according to Embodiment 1 of the present invention. In the seismic isolation structure shown in FIG. 1, the hard plate 1 has an outer diameter of 250 mm, an inner diameter of 50 mm, and a thickness of 1.6 m between the upper plate 3 (iron plate) and the lower plate 4 (iron plate).
30 steel plates of m (partly omitted in the figure), the soft plate 2,
50% Modulus 2.3Kgf / cm 2 , Tensile Strength 90
Kgf / cm 2 , elongation at break 760%, shear modulus at shear strain 200% G = 1.9 Kgf / cm 2 , and tan δ used rubber material of 0.11, outer diameter 250 mm, inner diameter 50
mm, and one soft plate having a thickness of 2.5 mm was used in 31 layers (partly omitted in the figure). As the friction plate 6, 99 nylon plates having a thickness of 1.5 mm and an outer diameter of 49.8 mm (partly omitted in the figure) are provided in the through hole in the center so that no gap is formed between the friction plates. Enclosed. Natural rubber was used as the outer rubber 5. A compression screw was applied to the friction plate by cutting an M48 female screw 7 on the upper surface plate 3 and pressing an M48 male screw 8 into the upper surface plate 3. The torque at that time is 5K
The gm and pushing force were 25 Kgf / cm 2 . Load 8
shearing strain of 20 at frequency f = 0.2 Hz
FIG. 5 shows a hysteresis loop when vibrating at 0%. From this, it can be seen that Example 1 is a stable hysteresis loop having no negative gradient. That is, by using a polymer material (nylon) for the friction plate, an ideal hysteresis loop is obtained without permanent deformation.

【実施例2】図2は本発明の実施例2に係る免震構造体
の断面図を示している。図2に示す免震構造体におい
て、上面板3(鉄板)と下面板4(鉄板)の間に硬質板
1として外径250mm、内径50mm、厚さ1.6m
mの鋼板30枚(図では一部省略)、軟質板2として、
50%モヂュラスが2.3Kgf/cm2 、引張り強度が90
Kgf/cm2 、破断時の伸びが760%、剪断歪200%に
おける剪断弾性率G=1.9Kgf/cm2 、及びtanδが
0.11のゴム材料を用い、外径250mm、内径50
mm、軟質板1枚の厚さ2.5mmのものを31層(図
では一部省略)用いた。外被ゴム5は実施例1と同様の
ものを用いた。中央の貫通する孔の中に、摩擦板6とし
て、厚さ1.5mm、外径49.8mmのナイロン板を
99枚(図では一部省略)、摩擦板と摩擦板の間に隙間
ができないように装填し、更にその摩擦板6の上に、皿
バネ9を乗せて封入した。その時の押込み力は25Kg
f/cm2 であった。荷重8tonを負荷し、振動数f
=0.2Hzで、剪断歪200%で振動させた時のヒス
テリシスループを図6に示す。これにより、実施例2は
負勾配を持たない安定したヒステリシスループであるこ
とがわかる。
Second Embodiment FIG. 2 is a sectional view of a seismic isolation structure according to a second embodiment of the present invention. In the seismic isolation structure shown in FIG. 2, the hard plate 1 has an outer diameter of 250 mm, an inner diameter of 50 mm, and a thickness of 1.6 m between the upper plate 3 (iron plate) and the lower plate 4 (iron plate).
30 steel plates of m (partly omitted in the figure), the soft plate 2,
50% Modulus 2.3Kgf / cm 2 , Tensile Strength 90
Kgf / cm 2 , elongation at break 760%, shear modulus at shear strain 200% G = 1.9 Kgf / cm 2 , and tan δ used rubber material of 0.11, outer diameter 250 mm, inner diameter 50
mm, and one soft plate having a thickness of 2.5 mm was used in 31 layers (partly omitted in the figure). The same rubber as in Example 1 was used as the outer rubber 5. As the friction plate 6, 99 nylon plates having a thickness of 1.5 mm and an outer diameter of 49.8 mm (partly omitted in the figure) are provided in the through hole in the center so that no gap is formed between the friction plates. After loading, the disc spring 9 was placed on the friction plate 6 and sealed. The pushing force at that time is 25 kg
f / cm 2 . Load a load of 8 ton and frequency f
FIG. 6 shows a hysteresis loop when vibrating with a shear strain of 200% at 0.2 Hz. From this, it can be seen that Example 2 is a stable hysteresis loop having no negative gradient.

【実施例3】図3は本発明の実施例3に係る免震構造体
の断面図を示している。図3に示す免震構造体におい
て、上面板3(鉄板)と下面板4(鉄板)の間に硬質板
1として外径250mm、内径50mm、厚さ1.6m
mの鋼板30枚(図では一部省略)、軟質板2として、
50%モヂュラスが2.3Kgf/cm2 、引張り強度が90
Kgf/cm2 、破断時の伸びが760%、剪断歪200%に
おける剪断弾性率G=1.9Kgf/cm2 、及びtanδが
0.11のゴム材料を用い、外径250mm、内径50
mm、軟質板1枚の厚さ2.5mmのものを31層(図
では一部省略)用いた。外被ゴム5は実施例1と同様の
ものを用いた。中央の貫通する孔の中に、摩擦板6とし
て、厚さ1.5mm、外径49.8mmのナイロン板を
93枚、摩擦板と摩擦板の間に隙間ができないように装
填し、その上にパッキンとして、JIS硬度60°、厚
さ10mmのゴム板10を圧縮ぎみに封入した。この時
の押込み力は、5Kg/fcm2 であった。荷重8to
nを負荷し、振動数f=0.2Hzで、剪断歪200%
で振動させた時のヒステリシスループを図7に示す。こ
れによると、ヒステリシスループの中央部にゼロ勾配部
分が現れてはいるが、負勾配の部分は無く、実施例1、
実施例2よりは劣るが免震構造体としては機能してい
る。
Third Embodiment FIG. 3 is a sectional view of a seismic isolation structure according to a third embodiment of the present invention. In the seismic isolation structure shown in FIG. 3, the hard plate 1 has an outer diameter of 250 mm, an inner diameter of 50 mm, and a thickness of 1.6 m between the upper surface plate 3 (iron plate) and the lower surface plate 4 (iron plate).
30 steel plates of m (partly omitted in the figure), the soft plate 2,
50% Modulus 2.3Kgf / cm 2 , Tensile Strength 90
Kgf / cm 2 , elongation at break 760%, shear modulus at shear strain 200% G = 1.9 Kgf / cm 2 , and tan δ used rubber material of 0.11, outer diameter 250 mm, inner diameter 50
mm, and one soft plate having a thickness of 2.5 mm was used in 31 layers (partly omitted in the figure). The same rubber as in Example 1 was used as the outer rubber 5. As a friction plate 6, 93 pieces of nylon plates having a thickness of 1.5 mm and an outer diameter of 49.8 mm were loaded into the through hole in the center so that there was no gap between the friction plates and the packing was placed on the plate. As a result, a rubber plate 10 having a JIS hardness of 60 ° and a thickness of 10 mm was enclosed in a compression groove. The pushing force at this time was 5 Kg / fcm 2 . Load 8 to
n, load, f = 0.2Hz, shear strain 200%
FIG. 7 shows a hysteresis loop when vibrated by. According to this, the zero slope portion appears in the central portion of the hysteresis loop, but there is no negative slope portion.
Although it is inferior to the second embodiment, it functions as a seismic isolation structure.

【比較例1】図4は本発明の比較例1に係る免震構造体
の断面図を示している。図4に示す免震構造体におい
て、上面板3(鉄板)と下面板4(鉄板)の間に硬質板
1として外径250mm、内径50mm、厚さ1.6m
mの鋼板30枚(図では一部省略)、軟質板2として、
50%モヂュラスが2.3Kgf/cm2 、引張り強度が90
Kgf/cm2 、破断時の伸びが760%、剪断歪200%に
おける剪断弾性率G=1.9Kgf/cm2 、及びtanδが
0.11のゴム材料を用い、外径250mm、内径50
mm、軟質板1枚の厚さ2.5mmのものを31層(図
では一部省略)用いた。外被ゴム5は実施例1と同様の
ものを用いた。中央の貫通する孔の中に、摩擦板6とし
て、厚さ1.5mm、外径49.8mmのステンレス板
(SUS304)を99枚(図では一部省略)、摩擦板
と摩擦板の間に隙間ができないように封入した。上面板
3に、M48のメスネジ7を切り、そこにM48のオス
ネジ8を押し込むことにより、摩擦板に圧縮力を加え
た。その時のトルクは5Kg・mで、押込み力は、25
Kgf/cm2 であった。 荷重8tonを負荷し、振
動数f=0.2Hzで、剪断歪200%で振動させた時
のヒステリシスループを図8に示す。これによると、戻
り変形時の途中からループ波形が乱れ、原点に戻る前に
急激な負勾配を示している。それと同時に大きな衝撃音
を発した。測定終了後、摩擦板を観察すると、剪断変形
させた側の端部の近傍に永久変形が見られ、この永久変
形部が負勾配、衝撃音の原因と推定される。
[Comparative Example 1] FIG. 4 shows a sectional view of a seismic isolation structure according to Comparative Example 1 of the present invention. In the seismic isolation structure shown in FIG. 4, the hard plate 1 has an outer diameter of 250 mm, an inner diameter of 50 mm, and a thickness of 1.6 m between the upper plate 3 (iron plate) and the lower plate 4 (iron plate).
30 steel plates of m (partly omitted in the figure), the soft plate 2,
50% Modulus 2.3Kgf / cm 2 , Tensile Strength 90
Kgf / cm 2 , elongation at break 760%, shear modulus at shear strain 200% G = 1.9 Kgf / cm 2 , and tan δ used rubber material of 0.11, outer diameter 250 mm, inner diameter 50
mm, and one soft plate having a thickness of 2.5 mm was used in 31 layers (partly omitted in the figure). The same rubber as in Example 1 was used as the outer rubber 5. As the friction plate 6, 99 stainless steel plates (SUS304) having a thickness of 1.5 mm and an outer diameter of 49.8 mm (partly omitted in the figure) are provided in the central penetrating hole, and a gap is provided between the friction plates. Enclosed so that it cannot be done. A compression screw was applied to the friction plate by cutting an M48 female screw 7 on the upper surface plate 3 and pressing an M48 male screw 8 into the upper surface plate 3. The torque at that time is 5 kg · m, and the pushing force is 25
Kgf / cm 2 . FIG. 8 shows a hysteresis loop when a load of 8 tons is applied and vibration is performed at a vibration frequency f = 0.2 Hz and a shear strain of 200%. According to this, the loop waveform is disturbed from the middle of the return deformation, and shows a sharp negative gradient before returning to the origin. At the same time, a loud shock noise was emitted. When the friction plate is observed after the measurement, permanent deformation is observed near the end on the sheared side, and this permanent deformed portion is presumed to be the cause of the negative gradient and impact noise.

【0014】[0014]

【発明の効果】以上の説明から明らかなごとく、免震構
造体の上下の面板の間に剛性を有した硬質板と粘弾性的
性質を有した軟質板とを、それぞれ複数個、交互に積層
した複合積層体の内部に、該複合積層体を貫通する孔を
設け、その孔の中に複数枚の弾性率が1.5×105
gf/cm2 以下の高分子材料の摩擦板を積層すること
により、地震時だけでなく風揺れにも効果がある免震構
造体を得ることができた。
As is apparent from the above description, a plurality of hard plates having rigidity and a plurality of soft plates having viscoelastic properties are alternately laminated between the upper and lower face plates of the seismic isolation structure. In the inside of the composite laminated body, a hole penetrating the composite laminated body is provided, and the elastic modulus of a plurality of sheets is 1.5 × 10 5 K in the hole.
By laminating a friction plate made of a polymer material having a gf / cm 2 or less, a seismic isolation structure that is effective not only during an earthquake but also in wind sway can be obtained.

【0015】[0015]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施例1に係る免震構造体の断
面図である。
FIG. 1 is a sectional view of a seismic isolation structure according to a first embodiment of the present invention.

【図2】図2は本発明の実施例2に係る免震構造体の断
面図である。
FIG. 2 is a cross-sectional view of a seismic isolation structure according to a second embodiment of the present invention.

【図3】図3は本発明の実施例3に係る免震構造体の断
面図である。
FIG. 3 is a sectional view of a seismic isolation structure according to a third embodiment of the present invention.

【図4】図4は本発明の比較例1に係る免震構造体の断
面図である。
FIG. 4 is a cross-sectional view of a seismic isolation structure according to Comparative Example 1 of the present invention.

【図5】図5は本発明の実施例1に係る免震構造体のヒ
ステリシスループである。
FIG. 5 is a hysteresis loop of the seismic isolation structure according to the first embodiment of the present invention.

【図6】図6は本発明の実施例2に係る免震構造体のヒ
ステリシスループである。
FIG. 6 is a hysteresis loop of the seismic isolation structure according to the second embodiment of the present invention.

【図7】図7は本発明の実施例3に係る免震構造体のヒ
ステリシスループである。
FIG. 7 is a hysteresis loop of a base isolation structure according to a third embodiment of the present invention.

【図8】図8は本発明の比較例1に係る免震構造体のヒ
ステリシスループである。
FIG. 8 is a hysteresis loop of the seismic isolation structure according to Comparative Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1:硬質板 2:軟質板 3:上面板 4:下面板 5:外被ゴム 6:摩擦板 7:メスネジ 8:オスネジ 9:皿バネ 10:ゴム板 1: Hard plate 2: Soft plate 3: Top plate 4: Bottom plate 5: Outer rubber 6: Friction plate 7: Female screw 8: Male screw 9: Disc spring 10: Rubber plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 上下の面板の間に、剛性を有した硬質板
と粘弾性的性質を有した軟質板とをそれぞれ複数個交互
に積層した複合積層体を設け、更に該複合積層体の内部
に貫通する孔を設け、該孔の中に複数枚の摩擦板を積層
した免震構造体において、前記摩擦板が弾性率1.5×
105 Kgf/cm2 以下の高分子材料であることを特
徴とする免震構造体。
1. A composite laminate, in which a plurality of rigid hard plates and a plurality of soft plates having viscoelastic properties are alternately laminated between upper and lower face plates, and the inside of the composite laminate is further provided. In the seismic isolation structure in which a plurality of friction plates are laminated in the hole, the friction plate has an elastic modulus of 1.5 ×
A seismic isolation structure characterized by being a polymer material of 10 5 Kgf / cm 2 or less.
【請求項2】 前記摩擦板が、前記複合積層体の内部に
貫通する孔の中に押込み力5Kgf/cm2 から150
Kgf/cm2 で封入されていることを特徴とする請求
項1記載の免震構造体。
2. The friction plate has a pushing force of 5 Kgf / cm 2 to 150 in a hole penetrating inside the composite laminate.
The seismic isolation structure according to claim 1, wherein the seismic isolation structure is filled with Kgf / cm 2 .
【請求項3】 前記摩擦板の厚さtマサツ は、前記軟質板
1枚の厚さをtR としたときに、 tマサツ ≦tR であり、且つ前記摩擦板の直径dは、前記複合積層体の
高さをH、前記軟質板の総厚さをh、前記硬質板の直径
をDとしたときに、 d≧10(h/(H−tマサツ ))tマサツ 0.1≦(d/D)≦0.8 であることを特徴とする請求項1又は請求項2に記載の
免震構造体。
The thickness t Friction according to claim 3, wherein the friction plate, the thickness of one said flexible plate is taken as t R, is t Friction ≦ t R, and the diameter d of the friction plate, said composite When the height of the laminated body is H, the total thickness of the soft plate is h, and the diameter of the hard plate is D, d ≧ 10 (h / (H-t Masato )) t Masato 0.1 ≦ ( The seismic isolation structure according to claim 1 or 2, wherein d / D) ≦ 0.8.
【請求項4】 前記摩擦板が、ナイロン、ポリエチレ
ン、ポリエステル、ポリプロピレン、ポリ塩化ビニル、
又は不飽和ポリエステル樹脂を1種あるいは2種以上組
み合わせた材料からなることを特徴とする請求項1乃至
3のいずれか1項に記載の免震構造体。
4. The friction plate is nylon, polyethylene, polyester, polypropylene, polyvinyl chloride,
Alternatively, the seismic isolation structure according to any one of claims 1 to 3, wherein the seismic isolation structure is made of a material in which one or more unsaturated polyester resins are combined.
JP32635996A 1995-12-08 1996-12-06 Base isolation structure Pending JPH09217520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32635996A JPH09217520A (en) 1995-12-08 1996-12-06 Base isolation structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32007695 1995-12-08
JP7-320076 1995-12-08
JP32635996A JPH09217520A (en) 1995-12-08 1996-12-06 Base isolation structure

Publications (1)

Publication Number Publication Date
JPH09217520A true JPH09217520A (en) 1997-08-19

Family

ID=26569942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32635996A Pending JPH09217520A (en) 1995-12-08 1996-12-06 Base isolation structure

Country Status (1)

Country Link
JP (1) JPH09217520A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220691A (en) * 1999-01-29 2000-08-08 Oiles Ind Co Ltd Vibration energy absorbing device
JP2016028208A (en) * 2014-07-10 2016-02-25 昭和電線デバイステクノロジー株式会社 Laminated rubber bearing body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220691A (en) * 1999-01-29 2000-08-08 Oiles Ind Co Ltd Vibration energy absorbing device
JP2016028208A (en) * 2014-07-10 2016-02-25 昭和電線デバイステクノロジー株式会社 Laminated rubber bearing body

Similar Documents

Publication Publication Date Title
US5884440A (en) Seismic isolation device
US4899323A (en) Anti-seismic device
JPH0868234A (en) Seismic isolator
JP4983326B2 (en) Improved ground and its construction method
JP2615639B2 (en) Seismic isolation structure
US5904010A (en) Elastomeric seismic isolation bearing and method
JP3851386B2 (en) Seismic isolation structure
JPS63225739A (en) Vibration isolating device
US20060137292A1 (en) Reinforcing structure for building and reinforcing member for the structure
JPH09217520A (en) Base isolation structure
JP2008121822A (en) Vibration-isolation structure and its manufacturing method
JP2615626B2 (en) Seismic isolation structure
JPH09177367A (en) Base insulation structure
JPH08326840A (en) Base isolation structure
JPH11125306A (en) Base isolation system
JPH09242376A (en) Vibration isolating device
JPH09151988A (en) Base isolation construction
JPH0893845A (en) Base isolation structural body for light load
JPH09296845A (en) Base isolation structural body
JP2003147947A (en) Vibration control heat insulating floor structure of building
JPH08105123A (en) Structure for base isolation
JP3630951B2 (en) Seismic isolation structure
JP3671317B2 (en) Seismic isolation mechanism
WO2000031436A1 (en) Seismic isolation device
JP3896668B2 (en) Seismic isolation structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120