JPH09215989A - Water treatment installation - Google Patents

Water treatment installation

Info

Publication number
JPH09215989A
JPH09215989A JP8023971A JP2397196A JPH09215989A JP H09215989 A JPH09215989 A JP H09215989A JP 8023971 A JP8023971 A JP 8023971A JP 2397196 A JP2397196 A JP 2397196A JP H09215989 A JPH09215989 A JP H09215989A
Authority
JP
Japan
Prior art keywords
water
tank
magnesium ion
biodegradation
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8023971A
Other languages
Japanese (ja)
Inventor
Akira Kaneyasu
彰 兼安
Satoshi Aramatsu
智 新松
Kunio Watanabe
国男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UBE MATERIALS KK
Original Assignee
UBE MATERIALS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UBE MATERIALS KK filed Critical UBE MATERIALS KK
Priority to JP8023971A priority Critical patent/JPH09215989A/en
Publication of JPH09215989A publication Critical patent/JPH09215989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a smaller scale biological decomposition installation by constituting the installation of a magnesium ion feeding apparatus wherein water within the water region where eutrophication advances is brought into contact with a magnesium ion feeding agent and a biological decomposition processing apparatus consisting of a tank wherein a braid-like contacting material is immersed. SOLUTION: A biological decomposition processing tank 3 in a processing apparatus for processing water within the water region where eutrophication advances is filled with a braid-like contacting material and changes org. substances into inorg. state by utilizing microorganisms and eliminates algae generated in the water region by means of an ultraviolet irradiation apparatus. In addition, a magnesium ion feeding apparatus 4 for bringing a magnesium ion feeding agent into contact with the water within the water region is assembled on the inside or the outside of the biological decomposition processing tank 3 and phosphorus in inorg. state after org. substances are decomposed is made into a hardly soluble compd. and is immobilized and eliminated. It is possible thereby to make a biological decomposition installation smaller in scale.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、富栄養化された水
域内の水質浄化を目的とした水処理装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment device for purifying water in a eutrophic water area.

【0002】[0002]

【従来の技術】近年、後背地に大きな汚濁源を有する湖
沼等の閉鎖性水域は、流入する汚濁負荷が大きい上に汚
濁物質が蓄積し易いために富栄養化が進み、微細藻類
(アオコ)の異常発生が起こるなど深刻な社会問題とな
っている。観光地の湖沼等においては富栄養化の進行に
より微細藻類の異常発生による景観の損壊、あわせて異
臭が漂うことで観光資源としての価値が低下している。
公園などの公共施設に配置された池等での微細藻類の異
常発生による景観の低下は、都市において重要視される
休息空間の価値が低下し、また飲料水の取水源となって
いる湖沼においても微細藻類や淡水赤潮の異常発生によ
り、上水道施設のろ過障害や異臭の問題が生じている。
このため、水質汚濁防止法、湖沼水質保全特別措置法、
湖沼に係わる窒素及び燐の排水規制等が制定実施されて
いる。
2. Description of the Related Art In recent years, in closed water areas such as lakes and marshes, which have large pollution sources in the hinterland, eutrophication has progressed due to the large inflowing pollutant load and the accumulation of pollutants. It has become a serious social problem such as the occurrence of abnormalities. In lakes and marshes of tourist destinations, the value of tourist resources is decreasing due to the damage of the landscape caused by the abnormal occurrence of microalgae due to the progress of eutrophication, and the presence of a strange odor.
The deterioration of the landscape due to the abnormal occurrence of microalgae in the ponds arranged in public facilities such as parks reduces the value of the rest space, which is important in cities, and in lakes that are the intake source of drinking water. Also, due to the abnormal occurrence of microalgae and freshwater red tide, problems of filtration problems and offensive odors of water supply facilities have occurred.
For this reason, the Water Pollution Control Act, the Lake Water Quality Special Measures Act,
Wastewater regulations for nitrogen and phosphorus related to lakes have been established and implemented.

【0003】[0003]

【発明が解決使用とする手段】これら問題の主な対策と
して、(1) 栄養塩を含む汚濁物質の流入を防止する、
(2) 富栄養化した閉鎖性水域の底泥を除去する、(3) 富
栄養化された水質を浄化し、富栄養化により増殖した微
細藻類等を直接除去する方法等が提案されている。この
内(1) に関しては、人間を含めて全ての生産活動の休止
または抑制によってのみ達成されるため、現時点では完
全に実施することは不可能である。(2) については、浚
渫及び残土の処理に莫大な費用が掛かるとともに、対象
となる湖沼等の数が多いために実施するのは困難となっ
ている。従って、現時点では(3) の直接的な水質浄化及
び藻類の除去対策が最も現実的に実施に移し易い方法と
されている。湖沼の富栄養化によりすでに発生した微細
藻類除去の効果的な方法としては、直接ろ過法、生
物分解法、紫外線照射法がある。
[Means for solving and using the invention] As main measures against these problems, (1) prevent the inflow of pollutants containing nutrient salts,
(2) Methods such as removing the bottom mud of eutrophic closed water areas, (3) purifying the eutrophication of water quality, and directly removing microalgae etc. grown by eutrophication have been proposed. . Of these, (1) cannot be completely implemented at this time because it can be achieved only by suspending or suppressing all production activities, including humans. As for (2), it is difficult to carry out the treatment of dredging and the remaining soil because of the huge cost and the large number of target lakes. Therefore, at this point, the direct water purification and algae removal measures of (3) are considered to be the most practical methods that can be put into practice. Direct filtration method, biodegradation method, and ultraviolet irradiation method are effective methods for removing microalgae already generated by eutrophication of lakes.

【0004】これら直接的除去方法のうち、の直接ろ
過法は、水域の水を砂等によりろ過するもので、目詰ま
り等が激しいため、ろ過効果が急激に減少し、また規模
の大きな湖沼では適用できない欠点がある。の生物分
解法は、一時的な除去に効果はあるが、発生を抑制する
ことは不可能な方法である。これは生物法により分解無
機化された栄養塩類が、再び発生原因となるからであ
る。また、従来から採用されている設備及び装置で大き
な分解除去効果を得るためには設備が大きくなり、外観
やコストの面で実用に問題が生じる。の紫外線照射法
は、紫外線を藻類に照射して殺藻することにより湖沼の
外観を保つ方法である。現時点では最も効果的な方法と
されているが、紫外線照射のランニングコストが高い欠
点がある。従ってこれらの方法のみで水質浄化対策を行
うことは、コスト的にも実施後の効果においても問題が
残る。
Among these direct removal methods, the direct filtration method is a method of filtering water in a water area with sand or the like, and since the clogging is severe, the filtering effect sharply decreases, and in a large-scale lake or marsh. There are drawbacks that cannot be applied. The biodegradation method of is effective for temporary removal, but it is impossible to control its generation. This is because nutrient salts that have been decomposed and mineralized by the biological method again cause the generation. In addition, in order to obtain a large effect of decomposition and removal with the equipment and devices that have been conventionally used, the equipment becomes large, which causes problems in practical use in terms of appearance and cost. The ultraviolet irradiation method is a method of maintaining the appearance of lakes by irradiating algae with ultraviolet rays to kill algae. At present, it is considered to be the most effective method, but it has a drawback that the running cost of ultraviolet irradiation is high. Therefore, implementing water purification measures only by these methods has problems in terms of cost and effects after implementation.

【0005】そこで本発明者等は鋭意研究の結果、富栄
養化が進行している水域中での植物の増殖に必要不可欠
なリンの挙動について着眼し、湖沼において水域中に
存在するリンは生物生産による有機態リンが無機態リン
よりも多いこと、従来から行われている生物分解法は
微生物を利用した有機物の無機態化によるものであり、
無機態リンは再び藻類増殖の栄養源となること、無機
吸着剤で吸着除去できるリンのほとんどは無機態リンで
あること、紫外線照射等は殺藻が主たる目的であり、
水中に存在するリンの量には影響がない、従来の石灰
系材料の添加による難溶性化合物の形成は、石灰が水中
の炭酸ガスと反応して炭酸カルシウムの膜で被覆される
ため、長期に渡って効果を発揮することが不可能等の事
実を発見し、微細藻類の成長に不可欠なリンの削減を念
頭にいれた本装置を発明するに至った。
Therefore, as a result of diligent research, the inventors of the present invention focused on the behavior of phosphorus, which is indispensable for the growth of plants in water bodies where eutrophication is progressing. The amount of organic phosphorus produced is higher than that of inorganic phosphorus, and the conventional biodegradation method is due to the mineralization of organic matter using microorganisms.
Inorganic phosphorus becomes a nutrient source for algae growth again, most of the phosphorus that can be adsorbed and removed with an inorganic adsorbent is inorganic phosphorus, and ultraviolet irradiation is the main purpose of algae killing,
The formation of sparingly soluble compounds by the addition of conventional lime-based materials, which does not affect the amount of phosphorus present in the water, causes lime to react with carbon dioxide in the water and be coated with a film of calcium carbonate, resulting in long-term By discovering the fact that it is impossible to exert the effect over the whole time, the inventors have invented this device, which takes into consideration the reduction of phosphorus, which is indispensable for the growth of microalgae.

【0006】水域中のリンの低減は、流入リンの削減と
水域中のリンの削減が同時に実施されることが重要であ
る。しかしながら、流入するリンの削減は先に述べた理
由により現時点での対応は困難であるために、流入した
リンを削減することでの対処が必要となる。流入したリ
ンの従来の削減方法としては、石灰系材料の添加が行わ
れてきた。この石灰系材料の添加は、カルシウムイオン
が無機態リンと反応することにより難溶性リン酸化合物
を形成させ、アオコの栄養源であるリンを固定除去する
ことを目的とした。しかしながら、この石灰系材料は、
水中に存在する炭酸イオンと反応して材料表面に炭酸カ
ルシウム膜が被覆するため当材料からのカルシウムイオ
ンの供給が止まるため、短期間でその効果が失われる。
また石灰は比較的溶解度が高いために、水中投入時に水
のpHが急激に高くなることなどの問題が生じている。
In order to reduce phosphorus in water bodies, it is important that reduction of inflow phosphorus and reduction of phosphorus in water bodies are carried out at the same time. However, it is difficult to reduce the inflowing phosphorus at this point for the reasons described above, so it is necessary to deal with it by reducing the inflowing phosphorus. As a conventional method for reducing inflowing phosphorus, addition of a lime-based material has been performed. The addition of this lime-based material was intended to form a sparingly soluble phosphate compound by reacting calcium ions with inorganic phosphorus, and fixedly remove phosphorus, which is a nutrient source for water-bloom. However, this lime-based material
Since the calcium carbonate film coats the surface of the material by reacting with carbonate ions existing in water, the supply of calcium ions from this material is stopped, and the effect is lost in a short period of time.
Further, since lime has a relatively high solubility, there is a problem that the pH of water rapidly rises when it is poured into water.

【0007】[0007]

【課題を解決するための手段】本発明は、富栄養化が進
行する水域内の水質浄化や難分解性有機物質を含む排水
の浄化を行う装置において、水域内の水をマグネシウム
イオン供給剤と接触させるマグネシウムイオン供給装置
と、紐状接触材を浸漬させた槽からなる生物分解処理装
置とからなることを特徴とする水処置装置に関する。
The present invention is a device for purifying water in a water area where eutrophication is progressing or for purifying waste water containing a hardly decomposable organic substance, wherein the water in the water area is supplied with a magnesium ion supplying agent. The present invention relates to a water treatment device comprising a magnesium ion supply device to be brought into contact with a biodegradation treatment device including a tank in which a cord-like contact material is immersed.

【0008】また本発明において、上記水処理装置に紫
外線照射装置を配置させることにより、更に分解の促進
をすることができる。
Further, in the present invention, by disposing an ultraviolet irradiation device in the water treatment device, the decomposition can be further promoted.

【0009】また本発明において、上記マグネシウムイ
オン供給材が酸化マグネシウム、水酸化マグネシウム及
び炭酸マグネシウムから選ばれる1種または2種以上で
構成されることが好ましい。
Further, in the present invention, it is preferable that the magnesium ion supplying material is composed of one or more selected from magnesium oxide, magnesium hydroxide and magnesium carbonate.

【0010】本発明は富栄養化が進む水域の水質浄化を
行う装置において、(1) 紐状接触材を浸漬させた槽内に
被処理水を通水させることにより、環境水中の有機物を
分解して無機態化する生物分解処理槽の改良を行い、従
来より更に効率的に生物分解処理を行うことができ、加
えて難分解性有機物の分解を可能にした装置、(2) 生物
分解された被処理水をマグネシウムイオンを供給できる
マグネシウムイオン供給剤と接触させて、被処理水中に
含まれる無機態リンを固定し被処理水中の無機態リン濃
度を低下させる装置、更には(3) 被処理水中の微細藻類
を殺藻し、分解の促進をすることを主たる目的として被
処理水に紫外線照射を行う装置を伴う装置である。
The present invention relates to a device for purifying water in a water area where eutrophication is progressing. (1) Decomposing organic matter in environmental water by passing treated water through a tank in which a string-shaped contact material is immersed. By improving the biodegradation treatment tank that becomes inorganic, the biodegradation treatment can be performed more efficiently than before, and in addition, a device that enables decomposition of hardly decomposable organic substances, (2) Biodegradation A device for contacting the treated water with a magnesium ion supply agent capable of supplying magnesium ions to fix the inorganic phosphorus contained in the treated water to reduce the concentration of inorganic phosphorus in the treated water, and further (3) It is an apparatus with an apparatus for irradiating the water to be treated with ultraviolet rays mainly for the purpose of killing microalgae in the treated water and promoting decomposition.

【0011】上記のような装置により、有機物を分解す
ることのみならず、また有機態リンを効率良く無機態リ
ン化することにより、被処理水内の無機態リンをマグネ
シウムイオンと反応させて難溶性化合物化し、固定化除
去することにより、長期に渡って微細藻類の成長に不可
欠なリンを減少せしめて微細藻類(アオコ)の除去並び
に異常発生を抑制することが可能となった。
[0011] The apparatus as described above not only decomposes organic substances, but also efficiently converts organic phosphorus into inorganic phosphorus, thereby making it difficult to react the inorganic phosphorus in the water to be treated with magnesium ions. By making it a soluble compound and immobilizing and removing it, it became possible to reduce phosphorus, which is indispensable for the growth of microalgae, for a long period of time, and to suppress the microalgae (blue-green algae) and suppress the abnormal occurrence.

【0012】生物分解処理装置を構成する槽としては、
生物分解を直接行う紐状接触材を充填でき、且つ効果的
に生物分解を行うことが可能な構造であることが肝要で
あるが、槽の形状に関してはいかなる制約も受けない。
紐状接触材は、効率的に有機物の生物分解を行う微生物
群を繁殖させ、被処理水に含まれる有機物を無機物に分
解するものである。
The tank constituting the biodegradation treatment apparatus is as follows:
It is essential that the structure can be filled with a string-like contact material that directly biodegrades and that biodegradation can be effectively performed, but there is no restriction on the shape of the tank.
The string-like contact material propagates a group of microorganisms that efficiently biodegrade organic matter, and decomposes organic matter contained in water to be treated into inorganic matter.

【0013】紐状接触材は、芯紐を有し、芯紐に対して
放射状に輪状、たわし状、髭状の繊維集合体が分布する
構造を有していることが好ましい。材質的には、微生物
により容易に分解されない材質であれば特に材料を選ぶ
必要はないが、例えば合成繊維の塩化ビニール、ポリエ
チレン、ビニロン、ポリ塩化ビニリデン、ポリプロピレ
ン等或いは金属のステンレス、アルミニウム或いはガラ
ス製のファイバー等を挙げることができる。また、これ
ら材料の径は、通水により破損しない強度を有しておれ
ば問題ない。
The cord-like contact material preferably has a core cord and has a structure in which ring-shaped, scrubber-shaped or whisker-shaped fiber aggregates are radially distributed with respect to the core cord. In terms of material, it is not necessary to select any material as long as it is a material that is not easily decomposed by microorganisms. For example, synthetic fiber such as vinyl chloride, polyethylene, vinylon, polyvinylidene chloride, polypropylene, etc. or metal such as stainless steel, aluminum or glass. Fibers, etc. can be mentioned. In addition, the diameters of these materials are not a problem as long as they have such strength that they are not damaged by passing water.

【0014】従来の生物分解を行う充填材として、波板
状、網目状或いはマット状の接触材が使用されてきた
が、本紐状接触材は上述の構造を有するため空隙部分の
容積が大きく、また被処理水と接する面積が大きいこと
から、本生物分解処理槽の充填材として使用することに
より、従来の材料よりも有機態リンの無機態リン化への
変換を更に効率的に行うことができる。しかしながら、
本紐状接触材を組み込んだ生物分解処理装置のみからな
る水処理装置では、本接触材に付着した微生物によって
被処理水中の有機物が分解されることのみ行われるた
め、分解後の無機態リンは被処理水内に留り、再度水域
内の生物成長に利用される原因となる。したがって、紐
状接触材を充填した生物分解処理槽のみからなる水処理
装置では、本発明が目標とする水処理レベルに到達する
ことは不可能であった。本発明の目標となる水質レベル
へ到達させるには、本発明の特徴の一つである被処理水
へマグネシウムイオンを供給することにより、マグネシ
ウムイオンと無機態リンとの難溶性化合物を形成させ固
定除去され初めて可能となる。従って、このマグネシム
イオンを供給する装置を生物分解処理槽内外に配置する
ことが肝要となる。また好ましくは紫外線照射装置を本
装置に組み込むことにより、更に容易に本水質浄化が達
成可能である。
Corrugated plate-shaped, mesh-shaped or mat-shaped contact materials have been used as conventional biodegradable fillers, but since the present string-shaped contact material has the above-mentioned structure, the volume of the void portion is large. In addition, since the area in contact with the water to be treated is large, it can be used as a filler for this biodegradation treatment tank to more efficiently convert organic phosphorus to inorganic phosphorus than conventional materials. You can However,
In a water treatment device consisting only of a biodegradation treatment device incorporating this cord-shaped contact material, the organic substances in the water to be treated are only decomposed by the microorganisms adhering to this contact material, so the inorganic phosphorus after decomposition is It will remain in the water to be treated and will be used again for biological growth in the water area. Therefore, it was impossible to reach the target water treatment level of the present invention with the water treatment device including only the biodegradation treatment tank filled with the string-shaped contact material. In order to reach the target water quality level of the present invention, magnesium ions are supplied to the water to be treated, which is one of the features of the present invention, to form and fix a sparingly soluble compound of magnesium ions and inorganic phosphorus. It will be possible only after it is removed. Therefore, it is important to arrange the device for supplying the magnesium ions inside and outside the biodegradation treatment tank. Further, preferably, by incorporating an ultraviolet irradiation device into this device, the present water quality can be more easily achieved.

【0015】更に本生物分解処理槽の特徴は先に述べた
設置面積の小型化可能に加えて、従来の波板状の生物分
解処理槽に比べて有機物の生物分解に必要な微生物の定
着が速やかであることや汚泥等の堆積物が樹脂間に堆積
し閉塞した時も、従来から水質浄化に使用されている珊
瑚石、セラミックスなどの多孔質の材料、或いは高分子
材料からなる波板状、網目状或いはマット状の接触材と
異なり、容易に洗浄でき、再使用可能であり、また微生
物保持可能量が極端に多いため次の洗浄処理までに要す
るまでの期間が非常に長くできる省エネルギ−型の材料
である。また生物分解処理を行うことにより水質浄化し
ようとする水域の面積や富栄養化の進行に合わせて特殊
な技術がなくても設置計画、設計等が可能なことが挙げ
られる。
Further, the feature of the biodegradation treatment tank is that the installation area can be reduced as described above, and in addition to the conventional corrugated plate-like biodegradation treatment tank, the fixing of microorganisms necessary for biodegradation of organic matter can be achieved. Even when it is prompt or when sludge and other deposits are accumulated between the resins and become clogged, corrugated stones that are conventionally used for water purification, corrugated stones, ceramics, or corrugated sheets made of polymer materials Unlike a mesh or mat-shaped contact material, it can be easily washed and reused, and the amount of microorganisms that can be retained is extremely large, so the period until the next washing process can be extremely long. -Type material. Moreover, it is possible to carry out biodegradation treatment so that installation plans and designs can be made without special techniques according to the area of the water area to be purified and the progress of eutrophication.

【0016】マグネシウムイオン供給剤は、生物分解処
理槽で分解されて被処理水中に溶存する無機態リンと反
応して難溶性リン酸マグネシウム化合物を生成する目的
のために必要なものである。従って、マグネシウムイオ
ン供給剤は液状、固体状或いはスラリ−状を問わず、マ
グネシウムイオンを供給することが可能であればいかな
るものでも構わないが、長期に渡ってマグネシウムイオ
ン供給効果を持続させるためには、酸化マグネシウム、
水酸化マグネシウム、炭酸マグネシウムの1種または2
種以上で構成された苦土系粉粒体であることが好まし
い。
The magnesium ion supplying agent is necessary for the purpose of producing a sparingly soluble magnesium phosphate compound by being decomposed in the biological decomposition treatment tank and reacting with the inorganic phosphorus dissolved in the water to be treated. Therefore, the magnesium ion supplying agent may be any liquid, solid or slurry type as long as it can supply magnesium ions, but in order to maintain the magnesium ion supplying effect for a long period of time. Is magnesium oxide,
One or two of magnesium hydroxide and magnesium carbonate
It is preferably a magnesia-based powder or granular material composed of at least one kind.

【0017】被処理水中で難溶性リン酸化合物を生成さ
せる目的で、本発明のごとく従来の石灰系材料ではなく
苦土系材料を用いる理由は、溶存することによって変
動するpHは苦土系のほうが小さく、且つ環境水のpH
内で作動させることが可能であること、炭酸イオンと
の反応性が低く、炭酸化合物の生成により無機態リンと
の反応性が劣化しないこと、石灰系と比較して溶解度
が低いため、長期に渡って反応性が持続すること、環
境水のpH範囲において生成する難溶性リン酸化合物の
溶解度は苦土系の方が低いため吸着効率が高いためであ
る。
For the purpose of producing a sparingly soluble phosphoric acid compound in the water to be treated, the reason why the soda-based material is used instead of the conventional lime-based material as in the present invention is that the pH which varies depending on the dissolution is in the soda-based material. The smaller is the pH of the environmental water
It is possible to operate in the interior, the reactivity with carbonate ions is low, the reactivity with inorganic phosphorus does not deteriorate due to the formation of carbonic acid compounds, and the solubility is low compared to lime type, so it can be used for a long time. This is because the reactivity continues over time, and the solubility of the sparingly soluble phosphoric acid compound generated in the pH range of the environmental water is lower in the magnesia system, so that the adsorption efficiency is higher.

【0018】紫外線照射は、富栄養化された水域中です
でに異常発生した藻類を短時間で除去することを主たる
目的に行う。装置内で被処理液に紫外線照射することに
より藻類の分解が促進される。分解された藻類の有機態
リンは、先に述べたように生物処理槽で処理され無機態
リンに分解される。紫外線照射法の欠点であるコストの
問題も、生物分解処理法とマグネシウムイオン供給剤と
の接触を併用することにより短時間の照射で効果が得ら
れ、特に湖沼の富栄養化が進み藻類の異常発生が予想さ
れる季節に短期に実施して最小限の設備で効果を挙げる
よう設計することも可能である。
Ultraviolet irradiation is carried out mainly for the purpose of removing algae which have already abnormally occurred in the eutrophic water area in a short time. The decomposition of algae is promoted by irradiating the liquid to be treated with ultraviolet rays in the apparatus. The decomposed organic phosphorus of algae is processed in the biological treatment tank as described above and decomposed into inorganic phosphorus. The cost problem, which is a drawback of the UV irradiation method, can be obtained by irradiation in a short time by using the biodegradation treatment method and contact with a magnesium ion supply agent in combination, and especially eutrophication of lakes and marine algae abnormalities It is also possible to design it so that it is carried out in a short period during the season when it is expected to occur and that it is effective with a minimum of equipment.

【0019】[0019]

【発明の実施の態様】以下、具体的な装置について説明
する。本処理装置は基本的に、富栄養化する水域中の水
をポンプで処理槽に送り、処理後元の水域へ戻すことを
連続して行うものである。被処理水域の外部処理槽にお
いての連続処理は、被処理水域中の他生物への負担を最
小限に留め、処理を集中的且つ効果的に行う方法として
望ましい。本処理装置は、生物分解法による有機態リ
ンの無機態リンへの分解工程、被処理水中の無機態リ
ンにマグネシウムイオンを供給する工程が含まれること
が肝要で、好ましくは紫外線照射による殺藻を行う工
程が含まれることを特徴とする。本装置において、各工
程の順序はいずれを先に行っても問題はなく、同時に行
っても構わない。装置の置場は処理槽と被処理水域が隔
離されれば、処理装置の設置場所は処理する水域の横の
地上でも水域上でも水域中でも構わないが、湖沼等の全
水域の浄化を目的とすれば被処理水の汲み上げ口と装置
からの処理水の排水口は離して設計する方が効果的であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A specific device will be described below. Basically, this treatment device continuously pumps the water in the eutrophic water area to the treatment tank and returns it to the original water area after the treatment. Continuous treatment in the external treatment tank of the treated water area is desirable as a method for performing the treatment intensively and effectively while minimizing the burden on other organisms in the treated water area. It is essential that this treatment device includes a step of decomposing organic phosphorus into inorganic phosphorus by a biodegradation method, and a step of supplying magnesium ions to the inorganic phosphorus in the water to be treated, and it is preferable that the alga-killing by ultraviolet irradiation is performed. Is included. In the present apparatus, there is no problem in the order of the steps, and it does not matter which step is performed first. If the treatment tank and the water to be treated are separated from each other, the equipment may be installed on the ground next to the water to be treated, on the water, or in the water, but for the purpose of purifying all water such as lakes and marshes. For example, it is more effective to design the pumping outlet for treated water and the drain outlet for treated water from the equipment separately.

【0020】本発明における生物分解処理槽の概略図を
例として図1及び図2に示す。前述の如く、形状に関し
ては制約を受けず図1のような円筒型でも、また図2の
ような箱型の形状でも構わない。加えて、接触材同志の
接触により充填さた接触材が閉塞するのを防ぐことを目
的として、接触材を固定するために仕切りを取り付ける
ことも構わない。この際紐状接触材への通水を妨げない
ように充填することが望ましい。
A schematic view of the biodegradation treatment tank according to the present invention is shown in FIGS. 1 and 2 as an example. As described above, the shape is not limited and may be a cylindrical shape as shown in FIG. 1 or a box shape as shown in FIG. In addition, a partition may be attached to fix the contact material for the purpose of preventing the contact material filled with the contact material from being blocked. At this time, it is desirable to fill the cord-shaped contact material so as not to hinder the passage of water.

【0021】本紐状接触材を組み込んだ生物分解処理装
置のみからなる水処理装置では、紐状接触材に付着した
微生物によって被処理水中の有機物が分解される処理の
み行われるため、分解後の無機態リンは被処理水内に留
り、再度水域内の生物成長に利用される原因となる。従
来の接触材には、波板状や網目状或いはマット状のもの
が使用されてきたが、本紐状接触材の充填により本生物
分解処理槽における有機態リンの無機態リン化は更に効
率的に変換される。しかしながら、分解後の無機態リン
は被処理水内に留り、再度水域内の生物成長に利用され
る原因となる。従って本発明の特徴の一つである、マグ
ネシウムイオンの供給により無機態リンを固定化し、水
中から除去する工程を組み込むことが肝要となる。かか
る無機態リンの固定除去を目的にマグネシウムイオンが
供給され、難溶性化合物を形成させ固定除去されること
となる。このマグネシムイオンを供給する装置を生物分
解処理槽内外に配置することが肝要となる。この生物分
解処理槽及びマグネシウムイオン供給装置を組み込んだ
装置によって、有機物分解後の無機態リンを難溶性化合
物化し、固定除去することが可能となり、本発明の目的
である富栄養化された水域内の水質浄化レベルに初めて
到達する。また好ましくは紫外線照射装置を本装置に組
み込むことにより、更に容易に本水質浄化が達成可能で
ある。
In the water treatment device comprising only the biodegradation treatment device in which the cord-like contact material is incorporated, only the treatment of decomposing the organic matter in the water to be treated by the microorganisms attached to the cord-like contact material is performed. Inorganic phosphorus remains in the water to be treated and becomes a cause of being used again for biological growth in the water area. Corrugated plates, meshes, or mats have been used as conventional contact materials, but the filling of this string-shaped contact material makes it more efficient for inorganic phosphorus conversion of organic phosphorus in this biodegradation treatment tank. Will be converted. However, the decomposed inorganic phosphorus remains in the water to be treated and becomes a cause of being used again for biological growth in the water area. Therefore, it is important to incorporate a step of fixing inorganic phosphorus by supplying magnesium ions and removing it from water, which is one of the features of the present invention. Magnesium ions are supplied for the purpose of fixing and removing the inorganic phosphorus, and a sparingly soluble compound is formed to be fixed and removed. It is important to arrange the device for supplying this magnesium ion inside and outside the biodegradation treatment tank. With the device incorporating this biodegradation treatment tank and magnesium ion supply device, it becomes possible to make inorganic phosphorus after organic matter decomposition into a sparingly soluble compound, and to fix and remove it, and in the eutrophied water area which is the object of the present invention. First reach the water purification level of. Further, preferably, by incorporating an ultraviolet irradiation device into this device, the present water quality can be more easily achieved.

【0022】次に生物分解処理槽にマグネシウムイオン
供給剤と接触させるマグネシウムイオン供給装置となる
槽を設置し、更に紫外線照射装置を負荷して浄化能力を
向上させる装置の概要を図3に示す。本図中、ポンプ1
により取水された富栄養化された水域中の水は処理装置
に送られる。処理装置は、紫外線照射装置2、生物分解
処理槽3、マグネシウムイオン供給槽4からなり、各工
程を通過した後に水域中に戻される。図1においては被
処理水は処理工程の3→2→4の順番で通過するように
示しているが処理固定の通過順序はいずれの工程から行
っても可能で、また同時に行っても構わない。
Next, FIG. 3 shows an outline of an apparatus for improving the purification performance by installing a tank serving as a magnesium ion supply device in contact with the magnesium ion supply agent in the biodegradation treatment tank and further loading an ultraviolet irradiation device thereon. In this figure, pump 1
The water in the eutrophic water area taken by is sent to the treatment device. The treatment device comprises an ultraviolet irradiation device 2, a biodegradation treatment tank 3, and a magnesium ion supply tank 4, and is returned to the water area after passing through each process. In FIG. 1, the water to be treated is shown to pass through the treatment steps in the order of 3 → 2 → 4, but the order of passing the treatments may be fixed at any step, or at the same time. .

【0023】図中1で示したポンプは、被処理水域の水
を取水し移送できるものならば形式は問わない。また紫
外線照射装置2は市販の低圧紫外線ランプを設置した。
すでに水域中に発生している微細藻類を除去する目的で
使用する場合は、異常発生の抑制を目的とする場合以上
の設置であれば除去可能であるが、紫外線ランプを多く
することによって除去に要する時間は短縮可能である。
The pump indicated by 1 in the figure may be of any type as long as it can take in and transfer water in the water to be treated. As the ultraviolet irradiation device 2, a commercially available low-pressure ultraviolet lamp was installed.
When it is used for the purpose of removing microalgae that have already occurred in the water area, it can be removed if it is installed more than for the purpose of suppressing abnormal occurrence, but it can be removed by increasing the number of ultraviolet lamps. The time required can be shortened.

【0024】処理装置の生物分解処理槽3は紐状接触材
を充填し、微生物を利用して有機物質を無機態に変える
ものであり、受槽に仕切り板を取り付けて本接触材を通
水を妨げないように充填した構造を考案した。この充填
構造により、微生物の単位体積当たりの保持量を多くで
き、処理能力向上効果が有るとともに、難分解性有機物
の分解処理が可能となる。本構造により、充填した紐状
接触材間の樹脂間に生物学的分解を行う微生物を効率良
く繁殖させ、被処理水に含まれる富栄養化の原因となる
汚濁物資は生物膜を通して充填材表面及び充填材間の微
生物により効率的に分解されることができ、本発明であ
る被処理水内におけるリンの固定除去を行うための無機
態リンが生成される。
The biodegradation treatment tank 3 of the treatment apparatus is filled with a string-like contact material and uses microorganisms to convert organic substances into inorganic substances. A partition plate is attached to the receiving tank to pass water through the contact material. We devised a filling structure that does not interfere. With this filling structure, the amount of microorganisms retained per unit volume can be increased, the treatment capacity can be improved, and the decomposition treatment of hardly decomposable organic substances can be performed. With this structure, microorganisms that biodegrade biologically between the resins between the filled cord-shaped contact materials can be efficiently propagated, and the pollutants that cause eutrophication contained in the water to be treated pass through the biofilm to the surface of the packing material. And, it can be efficiently decomposed by microorganisms between the fillers, and inorganic phosphorus for fixing and removing phosphorus in the water to be treated according to the present invention is produced.

【0025】処理装置のマグネシウムイオン供給槽4は
マグネシウムイオン供給剤が被処理水と接触できる槽な
らば形状は問わない。マグネシウムイオンは、前述の生
物分解処理槽で水中の有機態リンが効率良く分解される
ことにより生成し溶存する無機態リンと反応して、難溶
性リン酸マグネシウム化合物を生成させる目的のため供
給される。かかる効果により、初めて水中のリンの削減
が可能となり、富栄養化された水域中の水質浄化が達成
される。マグネシウムイオン供給剤が液状やスラリ−状
のものであれば、添加用のポンプと、被処理水のpHが
降下するのを防ぐため、pH計や流量を調整する設備が
必要となる。運用する設備を最小限にするため、且つ長
期に渡ってマグネシウムイオン供給効果を持続させるた
めには、酸化マグネシウム、水酸化マグネシウム或いは
炭酸マグネシウムの1種または2種以上で構成される苦
土系材料を投入することが好ましい。
The magnesium ion supply tank 4 of the processing apparatus may have any shape as long as the magnesium ion supply agent can contact the water to be treated. Magnesium ions are supplied for the purpose of producing a sparingly soluble magnesium phosphate compound by reacting with the dissolved inorganic phosphorus that is generated by the efficient decomposition of organic phosphorus in water in the aforementioned biodegradation treatment tank. It Due to such an effect, it becomes possible to reduce phosphorus in water for the first time, and water purification in a eutrophic water area is achieved. If the magnesium ion supply agent is liquid or slurry-like, a pump for addition and a pH meter and equipment for adjusting the flow rate are required to prevent the pH of the water to be treated from dropping. Magnesium-based materials composed of one or more of magnesium oxide, magnesium hydroxide or magnesium carbonate in order to minimize the equipment to be operated and to maintain the magnesium ion supply effect for a long period of time. Is preferably added.

【0026】図4に生物分解処理槽とマグネシウムイオ
ン供給槽を図示した。供給された被処理水は装置底部か
ら徐々に生物分解処理槽を通過しオ−バ−フロ−するこ
とにより供給された量だけマグネシウムイオン供給槽へ
送られる。図4で示すように、槽に板で仕切りを入れ
て、仕切りの間に紐状接触材を水の流れに対して水平な
方向に吊り下げることにより効率的な生物分解処理槽と
して使用できる。生物分解処理が不可能な残渣を排出す
るための抜き取り口を槽下部に設置したり、マグネシウ
ムイオン供給剤が流出しないように堰を設けるなど、本
装置形状に更に付帯機能を付け加えることにより、より
実用性が高まる。
FIG. 4 shows a biodegradation treatment tank and a magnesium ion supply tank. The supplied water to be treated is gradually passed through the biodegradation treatment tank from the bottom of the apparatus, and is overflowed to be sent to the magnesium ion supply tank by the amount supplied. As shown in FIG. 4, a partition is put in the tank, and the string-like contact material is hung between the partitions in a direction horizontal to the flow of water, whereby it can be used as an efficient biodegradation processing tank. By adding an additional function to the shape of this device, such as installing an extraction port at the bottom of the tank for discharging the residue that cannot be biodegraded, and installing a weir to prevent the magnesium ion supply agent from flowing out, Practicality is enhanced.

【0027】大規模な装置が必要な場合には図5のよう
に、図4で示した形状の基本装置を連結して、表面積を
大きくすることによりその目的を達成することは可能
で、外観的に問題があれば円筒状にしてもよい。生物分
解処理槽のオ−バ−フロ−も図6から図9のように生物
分解処理槽の内側で行い、外側から見えない構造にして
も構わない。
When a large-scale device is required, it is possible to achieve the object by connecting the basic device having the shape shown in FIG. 4 and increasing the surface area as shown in FIG. If there is a particular problem, it may be cylindrical. The overflow of the biodegradation treatment tank may be performed inside the biodegradation treatment tank as shown in FIGS. 6 to 9 and not visible from the outside.

【0028】処理工程の順序について図6から図9を用
いて説明すると、生物分解処理槽で有機態から無機態に
分解されたリンは遅滞なくマグネシウムイオン供給剤に
より固定されることが望ましく、図6のように生物分解
処理槽の直後にマグネシウムイオン供給槽があることが
理想的であるが、現実としては無機化されたリンを藻類
が生育に使用する速度より被処理水の循環速度が圧倒的
に大きい装置であるため、図7のように生物分解処理槽
の前にマグネシウムイオン供給槽があっても何ら問題な
い。マグネシウムイオン供給槽の生物分解処理槽外部へ
の取り付けに外観上の問題があるならば、図8のように
生物分解処理槽内に設置するよう設計しても構わない。
紫外線照射装置についても同様である。図9では生物分
解処理槽を被処理水域中に潜めて設置するように設置し
てあるが、目的や設置環境に応じて土中に埋没させる形
式でも、地上に設置する形式でも構わない。以下、実施
例を用いて説明を行う。
The order of the treatment steps will be described with reference to FIGS. 6 to 9. It is desirable that the phosphorus decomposed from the organic state to the inorganic state in the biodegradation treatment tank is fixed without delay by the magnesium ion supplying agent. Ideally, there is a magnesium ion supply tank immediately after the biodegradation treatment tank as in 6, but in reality, the circulation speed of the water to be treated is overwhelming compared to the speed at which algae use mineralized phosphorus for growth. Since it is a relatively large device, there is no problem even if there is a magnesium ion supply tank before the biodegradation processing tank as shown in FIG. If the magnesium ion supply tank is externally attached to the biodegradation treatment tank, it may be designed to be installed in the biodegradation treatment tank as shown in FIG.
The same applies to the ultraviolet irradiation device. In FIG. 9, the biodegradation treatment tank is installed so as to be submerged in the water to be treated. However, it may be buried in the soil or installed on the ground depending on the purpose and the installation environment. Hereinafter, description will be made using examples.

【0029】[0029]

【実施例】【Example】

実施例1 すでにアオコが発生している水槽に3m3 の水を入れ、
錦鯉を8匹飼育した。次に図1に図示したように生物分
解処理槽を設置した。槽は直径50cmの塩ビ製の筒を
加工し、充填材部の全容積0.2m3 として市販のポリ
塩化ビニリデン製紐状接触材を通水を妨げないように充
填し、通水して充填材表面に生物膜を形成させて使用し
た。マグネシウムイオン供給槽は水槽の外部に取り付け
て槽内にマグネシウムイオン供給剤として水酸化マグネ
シウムを2Kg投入した。マグネシウムイオン供給槽を
通過した被処理水をポンプにより飼育水槽内に設置した
生物分解処理槽へ送り、水槽→マグネシウムイオン供給
槽→生物分解処理槽→水槽で循環を始めた。循環を開始
した時の飼育用水槽内の飼育水の透視度は1.8cmで
あった。ポンプの移送能力は1日2回水槽の水の全量を
移送できる量で設定した。ポンプの稼働を初めて3日目
の飼育水槽中の飼育水の透視度は25cmであり、7日
目に透視度100cmを越えた。その後30日間透視度
が100cmを越えた期間が続いた後、まだ充填物の分
解能力は十分残っているものと思われたが実験開始後3
8日目に充填材を水道水で軽く洗浄して付着物を洗い流
し、系外に廃棄した。その後更に30日間通水を続けた
が、透視度は安定して100cmを越えた状態を維持し
た。本結果より、水質の浄化効果が確認され、また長期
間安定して維持できることが認められた。加えて水道水
で軽く洗うことにより再生可能で、再生後そのまま通水
を行っても水質劣化を招くことなく、長期間安定して維
持できることが認められた。
Example 1 3 m 3 of water was added to a water tank in which water-bloom was already generated,
Eight Nishikigoi were raised. Next, the biodegradation treatment tank was installed as shown in FIG. Tank was processed PVC steel cylinder having a diameter of 50 cm, was filled with commercially available polyvinylidene chloride manufactured by string-like contact member so as not to interfere with the water flow as the total volume of 0.2 m 3 of filling unit, filling and passed through A biofilm was formed on the surface of the material for use. The magnesium ion supply tank was attached to the outside of the water tank, and 2 kg of magnesium hydroxide as a magnesium ion supply agent was charged into the tank. The water to be treated that passed through the magnesium ion supply tank was pumped to the biodegradation treatment tank installed in the breeding water tank, and circulation was started in the water tank → magnesium ion supply tank → biodegradation treatment tank → water tank. The transparency of the breeding water in the breeding aquarium when the circulation was started was 1.8 cm. The transfer capacity of the pump was set so that the total amount of water in the water tank could be transferred twice a day. The transparency of the breeding water in the breeding aquarium on the 3rd day was 25 cm for the first time when the pump was operated, and exceeded the transparency of 100 cm on the 7th day. After 30 days, when the transparency exceeded 100 cm, it seemed that the decomposition ability of the filling material was still sufficient.
On the 8th day, the filler was lightly washed with tap water to wash off the adhered substances and discarded outside the system. After that, water was continued for another 30 days, but the transparency remained stable and exceeded 100 cm. From these results, it was confirmed that the purification effect of water quality could be maintained stably for a long time. In addition, it was confirmed that it can be regenerated by lightly washing it with tap water, and that water can be maintained for a long period of time without water quality deterioration even if water is passed through after regeneration.

【0030】実施例2 実施例1の装置の内、生物分解処理槽の上に市販の15
W紫外線ランプを2台設置して同様の実験を行った。ポ
ンプと紫外線ランプの稼働を始めて3日目で透視度は1
00cmを越えた。実施例1と同様に、まだ充填物の分
解能力は十分残っているものと思われたが実験開始後3
3日目に充填材を水道水で軽く洗浄して付着物を洗い流
し、系外に廃棄した。その後更に30日間通水を続けた
後充填材を洗浄するというサイクルを2回続けたが、透
視度は安定して100cmを越えた状態を維持した。飼
育水槽の水は透明であり、紫外線照射を生物分解処理槽
による水質浄化工程に加えることにより水質浄化が促進
され、透視度の高い水質良好な水を長期間安定して維持
できることが確認された。
Example 2 In the apparatus of Example 1, a commercially available 15 was placed on the biodegradation treatment tank.
The same experiment was conducted with two W ultraviolet lamps installed. The transparency is 1 on the 3rd day after starting the operation of the pump and the UV lamp.
It exceeded 00 cm. Similar to Example 1, it seems that the decomposition ability of the packing still remains, but after the start of the experiment 3
On the third day, the filler was lightly washed with tap water to wash off the adhered substances, and discarded outside the system. After that, the cycle of continuing water passage for 30 days and then washing the filler was repeated twice, but the transparency was stably maintained above 100 cm. It was confirmed that the water in the breeding aquarium is transparent, and that UV irradiation is added to the water purification process by the biodegradation treatment tank to promote water purification, and water with high transparency and good water quality can be stably maintained for a long period of time. .

【0031】実施例3 図3で示した生物分解処理槽とマグネシウムイオン供給
槽を一体化した鉄製の水質浄化槽(生物分解処理槽容積
4m3 、マグネシウムイオン供給槽容積0.4m3
を、すでにアオコが発生した70m3 の水が入ったコン
クリ−ト製水槽の横に設置した。本水槽では、錦鯉を4
5匹飼育し、市販の餌を350g/日投与した。水質浄
化槽の生物分解処理槽には、幅2m、高さ1mの塩ビ製
パイプ枠に総延長30mの実施例1及び2で使用した紐
状接触材を取り付け、これを槽内に6cm間隔で17枚
充填(総延長510m)した。紫外線照射装置は生物分
解処理槽の上に設置し、市販の15W紫外線ランプを6
本取り付けた。マグネシウムイオン供給槽には、水酸化
マグネシウムを20Kg投入した。ポンプで汲み上げた
被処理水は流量6m3 /時間で生物分解処理槽へと送
り、水槽→生物分解処理槽→マグネシウムイオン供給槽
→水槽で循環を始めた。循環を開始した時の被処理水の
透視度は15cmであったが、実験開始後5日目で透視
度は100cmを越える結果を得た。その後30日間透
視度は100cmを越えた期間が続いた後、まだ充填物
の分解能力は十分残っているものと思われたが実験開始
後35日目に充填材を水道水で軽く洗浄して付着物を洗
い流し、系外に廃棄した。その後更に30日間通水を続
けたが、透視度は安定して100cmを越えた状態を維
持した。この30日目に洗浄を行うサイクルを3サイク
ル行ったが、透視度は安定して100cmを越えた状態
を維持した。本結果より、水質の浄化効果が確認され、
また長期間安定して維持できることが認められた。加え
て前述の実施例1及び2と同様に、被処理水の量が大規
模化しても水道水で軽く洗う程度の極めて簡単な再生処
理により、再生後通水を行っても水質劣化を招くことな
く、長期間安定して維持できることが判明した。従っ
て、本装置がアオコの発生した水質の浄化について極め
て効果のあることが判明した。
Example 3 A water purification tank made of iron in which the biological decomposition treatment tank and the magnesium ion supply tank shown in FIG. 3 are integrated (biological decomposition treatment tank volume 4 m 3 , magnesium ion supply tank volume 0.4 m 3 ).
Was installed next to a concrete water tank containing 70 m 3 of water that had already generated water-bloom. 4 Nishikigoi in this aquarium
Five animals were bred, and commercially available feed was administered at 350 g / day. In the biodegradation treatment tank of the water purification tank, a string-shaped contact material used in Examples 1 and 2 having a total length of 30 m was attached to a PVC pipe frame having a width of 2 m and a height of 1 m, and the cord-like contact material was installed at an interval of 6 cm in the tank. One sheet was filled (total length: 510 m). The UV irradiation device is installed on the biodegradation treatment tank, and a commercially available 15W UV lamp is used.
I installed a book. 20 kg of magnesium hydroxide was added to the magnesium ion supply tank. The treated water pumped up by the pump was sent to the biodegradation treatment tank at a flow rate of 6 m 3 / hour, and circulation was started in the water tank → biodegradation treatment tank → magnesium ion supply tank → water tank. The transparency of the water to be treated was 15 cm when the circulation was started, but the transparency exceeded 100 cm 5 days after the start of the experiment. After 30 days, when the transparency exceeded 100 cm, it seems that the decomposition ability of the filling material still remained, but on the 35th day after the start of the experiment, the filling material was lightly washed with tap water. The deposit was washed off and discarded outside the system. After that, water was continued for another 30 days, but the transparency remained stable and exceeded 100 cm. The washing cycle was repeated 3 times on the 30th day, and the transparency was stably maintained at a state of exceeding 100 cm. From this result, the purification effect of water quality was confirmed,
It was also confirmed that it could be stably maintained for a long period of time. In addition, as in Examples 1 and 2 described above, even if the amount of water to be treated becomes large, the water quality will be deteriorated even if water is passed through after regeneration by a very simple regeneration process of lightly washing with tap water. It turned out that it can be stably maintained for a long period of time. Therefore, it was found that this device is extremely effective in purifying the water quality generated by water-bloom.

【0032】比較例1 実施例1で使用した同一形状の水槽に同様に錦鯉を飼育
した後、従来より環境水の浄化に使用している波板を
0.7m2 敷設して実施例1と同様の条件で水槽内の水
を循環させた。水槽内の有機物の分解を促進するため
に、曝気を0.12m3 /分の量で行った。水槽内の水
の循環と曝気を開始して5日の透視度を測定するも、実
験開始と同様に飼育水の透視度は1.8cmであった。
その後、数日毎に飼育水の透視度を測定したが、1.4
〜2.5cmの範囲で推移し生物負荷の高い水域での波
板での水質浄化効果は本発明の水処理装置より低いもの
であった。
Comparative Example 1 After breeding Nishikigoi in the same shape of aquarium used in Example 1, 0.7 m 2 of corrugated sheet conventionally used for purification of environmental water was laid and The water in the water tank was circulated under the same conditions. Aeration was performed at an amount of 0.12 m 3 / min in order to accelerate the decomposition of organic substances in the water tank. Although the water circulation and aeration in the aquarium were started and the transparency was measured for 5 days, the transparency of the breeding water was 1.8 cm as in the start of the experiment.
After that, the transparency of the breeding water was measured every few days.
The effect of water purification on the corrugated plate in the water area having a high biological load which was in the range of up to 2.5 cm was lower than that of the water treatment device of the present invention.

【0033】比較例2 実施例3で使用した生物分解処理槽に直径0.5mmの
塩ビ製の糸を加工しマット状にした充填材を通水を妨げ
ないように充填した以外は、実施例3と同様の条件下で
水質処理実験を行った。通水開始時の飼育水の透視度は
14cmであったが、10日目に透視度100cmを越
えた。その後15日間透視度が100cmを越えた期間
が続いたが、マット状充填材の表面の付着物が非常に多
くなり充填材の処理能力限界に達したと考え、また透視
度が100cm以下となったため、水道水により洗浄を
行い付着物を十分洗い流した。その後更に通水を続けた
が、再通水後3日目にようやく透視度は100cmを越
えるようになった。本結果より、従来の接触材を使用し
た場合、本紐状接触材の使用時より水質処理能力に劣る
こと、また充填材の再生処理までに要する期間が短く、
再生処理を頻繁に行う必要のあることが判明した。
COMPARATIVE EXAMPLE 2 An example was carried out except that the biodegradation treatment tank used in Example 3 was filled with a PVC-made thread having a diameter of 0.5 mm which was processed so as not to hinder the passage of water. A water treatment experiment was conducted under the same conditions as in 3. Although the transparency of the breeding water at the start of water flow was 14 cm, the transparency exceeded 100 cm on the 10th day. After that, the transparency exceeded 100 cm for 15 days, but it was considered that the amount of deposits on the surface of the mat-like filler became so large that the processing capacity of the filler was reached, and the transparency fell below 100 cm. Therefore, it was washed with tap water to thoroughly wash off the deposits. After that, water continued to be passed through, but the transparency finally exceeded 100 cm on the third day after water was passed again. From this result, when the conventional contact material is used, the water quality treatment capacity is inferior to that when the cord-like contact material is used, and the period required for the reprocessing of the filler is short,
It turned out that the regeneration process had to be carried out frequently.

【0034】比較例3 実施例3で使用したマグネシウムイオン供給装置にマグ
ネシウムイオン供給剤を投入しなく、また紫外線を照射
しなかったこと以外は、実施例3と同様の条件下で水質
処理実験を行った。通水開始時の飼育水の透視度は16
cmであったが、7日目の透視度は23cmであった。
その後21日間実験を続行したが透視度は15cmから
25cmの間を推移した。生物分解処理槽に充填した紐
状接触材は微生物層の付着量が多く、実験開始後10日
目には水道水による洗浄再生処理を余儀なくされた。本
結果より、紐状接触材を充填した生物分解処理槽のみか
らなる水処理装置による水質浄化処理では、透視度はほ
とんど向上せず、また充填材の洗浄を頻繁に行わなけれ
ばならないことが認められ、紐状接触材を充填した生物
分解処理槽のみによる水質浄化ではほとんど効果のない
ことが判明した。
Comparative Example 3 A water treatment experiment was conducted under the same conditions as in Example 3 except that the magnesium ion supplying device used in Example 3 was not charged with a magnesium ion supplying agent and was not irradiated with ultraviolet rays. went. The transparency of breeding water at the start of water flow is 16
Although it was cm, the transparency on the 7th day was 23 cm.
After that, the experiment was continued for 21 days, but the transparency changed between 15 cm and 25 cm. The string-shaped contact material filled in the biodegradation treatment tank had a large amount of adhered microbial layers, and was required to be washed and regenerated with tap water on the 10th day after the start of the experiment. From these results, it was confirmed that in water purification treatment using a water treatment device consisting only of a biodegradation treatment tank filled with a string-shaped contact material, the transparency is hardly improved and the filler must be washed frequently. It was found that water purification using only the biodegradation treatment tank filled with the string-shaped contact material had almost no effect.

【0035】[0035]

【発明の効果】以上のように、富栄養化された湖沼の水
質の浄化を行う生物分解法において、有機物に分解を行
う微生物と被処理水との接触方法を改善することによ
り、生物分解を行う設備の小規模化を行うことが可能と
なり、従来よりも大規模な水域の水質改善が可能とな
る。また生物分解処理を施した被処理水をマグネシウム
イオン供給剤と接触させることにより環境水中のリン濃
度の低減や、紫外線照射による有機物の分解促進を組み
合わせることにより、富栄養化された水域の浄化を小型
化した装置で行うことが可能となる。本発明による水処
理装置は各工程の設備が従来の大型で高価なものを必
要とせず、特殊な技術や特殊な設備を持たずに容易に
設計、制作、運転が可能で、特殊な薬剤を使用するこ
となく自然における浄化力を利用するために環境に対し
てより安全で、稼働設備が僅かでありランニングコス
トが安価である、等の長所を有する。
INDUSTRIAL APPLICABILITY As described above, in the biodegradation method for purifying the water quality of eutrophic lakes, the biodegradation is improved by improving the contact method between the microorganisms that decompose organic matter and the water to be treated. It will be possible to reduce the scale of equipment to be used, and it will be possible to improve the water quality of water bodies on a larger scale than before. In addition, by purifying water to be eutrophied by combining the treatment of water that has undergone biodegradation with a magnesium ion supply agent to reduce the phosphorus concentration in environmental water and by promoting the decomposition of organic substances by UV irradiation. It becomes possible to carry out with a miniaturized device. The water treatment device according to the present invention does not require conventional large-scale and expensive equipment for each process, and can be easily designed, produced, and operated without any special technology or special equipment. It has the advantages of being safer for the environment because it uses the purification power in nature without using it, has few operating facilities, and has a low running cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で使用した円筒型の槽を持つ生
物分解処理装置の概略図である。
FIG. 1 is a schematic view of a biodegradation treatment apparatus having a cylindrical tank used in an embodiment of the present invention.

【図2】本発明で示した箱型の槽をもつ生物分解処理装
置の概略図である。
FIG. 2 is a schematic diagram of a biodegradation treatment apparatus having a box-shaped tank shown in the present invention.

【図3】本発明で示した水処理工程の処理工程の概略図
である。
FIG. 3 is a schematic view of a treatment step of the water treatment step shown in the present invention.

【図4】本発明で示したマグネシウムイオン供給槽を併
設する箱型の槽をもつ生物分解処理装置の上面、側面及
び正面図である。
FIG. 4 is a top view, a side view, and a front view of a biodegradation treatment apparatus having a box-shaped tank provided with a magnesium ion supply tank shown in the present invention.

【図5】本発明で示した水処理装置の大規模な処理工程
の概略図である。
FIG. 5 is a schematic view of a large-scale treatment process of the water treatment device shown in the present invention.

【図6】本発明で示した生物分解処理装置の槽の出口に
マグネシウムイオン供給槽を配置した生物分解処理装置
の概略図である。
FIG. 6 is a schematic diagram of a biodegradation processing apparatus in which a magnesium ion supply tank is arranged at the outlet of the tank of the biodegradation processing apparatus shown in the present invention.

【図7】本発明で示した生物分解処理装置の槽の入口に
マグネシウムイオン供給槽を配置した生物分解処理槽の
概略図である。
FIG. 7 is a schematic diagram of a biodegradation treatment tank in which a magnesium ion supply tank is arranged at the inlet of the tank of the biodegradation treatment apparatus shown in the present invention.

【図8】本発明で示した生物分解処理装置の槽の内部に
マグネシウムイオン供給槽を配置した生物分解処理槽の
概略図である。
FIG. 8 is a schematic view of a biodegradation treatment tank in which a magnesium ion supply tank is arranged inside the tank of the biodegradation treatment apparatus shown in the present invention.

【図9】本発明で示した生物分解処理装置、マグネシウ
ムイオン供給槽及び紫外線照射装置の配置方法の概略図
である。
FIG. 9 is a schematic diagram of a method for disposing the biodegradation treatment device, the magnesium ion supply tank, and the ultraviolet irradiation device shown in the present invention.

【符号の説明】[Explanation of symbols]

1 ポンプ 2 紫外線照射装置 3 生物分解処理槽 4 マグネシウムイオン供給槽 1 Pump 2 Ultraviolet irradiation device 3 Biodegradation treatment tank 4 Magnesium ion supply tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 富栄養化が進行する水域内の水質浄化や
難分解性有機物質を含む排水の浄化を行う装置におい
て、水域内の水をマグネシウムイオン供給剤と接触させ
るマグネシウムイオン供給装置と、紐状接触材を浸漬さ
せた槽からなる生物分解処理装置とからなることを特徴
とする水処置装置。
1. An apparatus for purifying water in a water area where eutrophication is progressing or for purifying waste water containing a hardly decomposable organic substance, and a magnesium ion supply apparatus for bringing water in the water area into contact with a magnesium ion supply agent, A water treatment device comprising a biodegradation treatment device comprising a tank in which the string-shaped contact material is immersed.
【請求項2】 上記水処理装置に紫外線照射装置を配置
させたことを特徴とする請求項1記載の水処理装置。
2. The water treatment device according to claim 1, wherein an ultraviolet irradiation device is arranged in the water treatment device.
【請求項3】 上記紐状接触材が、芯紐を有し、芯紐に
対して放射状に輪状、たわし状または髭状の繊維状集合
体が分布していることを特徴とする請求項1または2記
載の水処理装置。
3. The cord-shaped contact material has a core cord, and the ring-shaped, scourer-shaped or whisker-shaped fibrous aggregates are radially distributed with respect to the core cord. Or the water treatment device according to 2.
【請求項4】 上記マグネシウムイオン供給剤が酸化マ
グネシウム、水酸化マグネシウム及び炭酸マグネシウム
から選ばれる1種または2種以上で構成されることを特
徴とする請求項1、2または3記載の水処理装置。
4. The water treatment apparatus according to claim 1, 2 or 3, wherein the magnesium ion supplier is composed of one or more selected from magnesium oxide, magnesium hydroxide and magnesium carbonate. .
JP8023971A 1996-02-09 1996-02-09 Water treatment installation Pending JPH09215989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8023971A JPH09215989A (en) 1996-02-09 1996-02-09 Water treatment installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8023971A JPH09215989A (en) 1996-02-09 1996-02-09 Water treatment installation

Publications (1)

Publication Number Publication Date
JPH09215989A true JPH09215989A (en) 1997-08-19

Family

ID=12125445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8023971A Pending JPH09215989A (en) 1996-02-09 1996-02-09 Water treatment installation

Country Status (1)

Country Link
JP (1) JPH09215989A (en)

Similar Documents

Publication Publication Date Title
KR0149621B1 (en) Apparatus and method for waste water treatment utilizing aerobic and anaerobic microorganisms
KR101163061B1 (en) Equipment and method for water and stream purification using layered soil system
JP3056361B2 (en) Wastewater treatment device and wastewater treatment method
KR100642821B1 (en) Sewage treatment system made by artificial reediness
KR101110710B1 (en) Water purification of polluted water methods, and the device
KR100921194B1 (en) Sewage and wastewater treatment plant
CN104150704B (en) A kind for the treatment of unit of waste water treating and reutilizing and treatment process
KR100752792B1 (en) Ds-hf-rr
CN111517570B (en) Sea wave-imitated ship sewage treatment and recycling system and method
JP2003340489A (en) Water cleaning apparatus in closed water area
CN104276722A (en) Novel tail water upgrading system
JP2005000784A (en) Closed water area cleaning facility
CN100586879C (en) Biological filter dephosphorizing technique employing alternative aeration
CN207192930U (en) A kind of device that black-odor riverway is administered using intensive aeration artificial swamp coupling technique dystopy
CN215250258U (en) Non-point source pollution collecting and processing system for livestock farm
CN104150694A (en) Combined device and method for deeply treating breeding wastewater by adopting ecological method
CN104045206A (en) UV (ultraviolet)/O3+BAF (biological aerated filter) advanced oxidation sewage treatment facility
JP2004154668A (en) Resource recovery type sewage purification method and apparatus using the same
JP2007083193A (en) Water purification method using microorganism immobilized carrier, and its water purification apparatus
JPH09215989A (en) Water treatment installation
KR101354193B1 (en) Water treatment system for biological membrane filtration
JP3653593B2 (en) Water quality improvement methods in closed and stagnant water systems
CN207130116U (en) A kind of mechanical cleaning wastewater treatment equipment
KR200435202Y1 (en) Water purifier of eco-pond
JPS61178092A (en) Treatment of sewage