JPH09215203A - Photovoltatic power generation system - Google Patents

Photovoltatic power generation system

Info

Publication number
JPH09215203A
JPH09215203A JP8091691A JP9169196A JPH09215203A JP H09215203 A JPH09215203 A JP H09215203A JP 8091691 A JP8091691 A JP 8091691A JP 9169196 A JP9169196 A JP 9169196A JP H09215203 A JPH09215203 A JP H09215203A
Authority
JP
Japan
Prior art keywords
power generation
power distribution
power
grid
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8091691A
Other languages
Japanese (ja)
Other versions
JP3722901B2 (en
Inventor
Tomomi Kaneko
智美 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP09169196A priority Critical patent/JP3722901B2/en
Publication of JPH09215203A publication Critical patent/JPH09215203A/en
Application granted granted Critical
Publication of JP3722901B2 publication Critical patent/JP3722901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation system in which an operation regarding the inspection of a system linkage protective function is reduced and in which the system linkage protective function can be inspected automatically whenever a power generation is started. SOLUTION: When a status judgment means 13 at a self-diagnostic means 12 judges a self-sustaining state in a state that an inverter device 4 is separated from a power distribution system 11, a simulation-signal generation means 16 outputs the abnormality simulation signal of the power distribution system 11 to a system linkage protective device 6. Then, an operation confirmation means 17 confirms the operation of the system linkage protective device 6 by the abnormality simulation signal, and its result is displayed on a display means 18. Thereby, a protective function is inspected automatically when a photovoltatic power generation system is started every morning.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池アレイで
発生した直流電力を交流電力に変換して使用する太陽光
発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system for converting DC power generated in a solar cell array into AC power for use.

【0002】[0002]

【従来の技術】近年、太陽光エネルギーを太陽電池を使
って直流電力に変換し、これを利用する太陽光発電シス
テムの実用化が進められている。太陽光発電システム
は、太陽電池アレイで発生した交流出力を電力配電系統
に接続して使う系統連系型システムと、電力配電線系統
に接続しないで使う独立型システムに分類される。そし
て、太陽光発電システムやその他の小規模の発電システ
ム(電源)を電力配電系統に接続して系統連系した場合
の運転形態は、分散型電源システムと呼ばれる。
2. Description of the Related Art In recent years, solar energy is converted into direct current power by using a solar cell, and a solar power generation system using this is put into practical use. Photovoltaic power generation systems are classified into grid-connected systems that use the AC output generated by the solar cell array connected to the power distribution system, and stand-alone systems that are used without being connected to the power distribution line system. The operation mode in which a photovoltaic power generation system or other small-scale power generation system (power source) is connected to a power distribution system to perform grid interconnection is called a distributed power system.

【0003】図3に、従来の系統連系型の太陽光発電シ
ステムの構成例を示す。太陽光エネルギーを受けて太陽
電池アレイ1から発生する直流電力は、逆流防止ダイオ
ード2及び直流開閉器3を介してインバータ装置4に供
給される。インバ−夕4では直流電力を交流電力に変換
し、絶縁トランス5、系統連系保護装置6及び配電盤7
を介して様々な電力負荷8へ供給される。
FIG. 3 shows a configuration example of a conventional grid-connected solar power generation system. The DC power generated by the solar cell array 1 upon receiving the solar energy is supplied to the inverter device 4 via the backflow prevention diode 2 and the DC switch 3. In the inverter 4, DC power is converted into AC power, and the insulation transformer 5, the grid interconnection protection device 6, and the switchboard 7 are converted.
Is supplied to various electric power loads 8 via.

【0004】また、配電盤7から屋外開閉器9及び電力
量計10を介して電力配電系統11へも接続されてい
る。したがって、太陽電池アレイ1での発電電力が消費
電力を上回る場合は電力配電系統11へ電力を逆送電
し、反対に夜間など太陽電池アレイ1での発電電力が得
られない場合は、電力配電系統11から電力の供給を受
ける。このように、電力の融通を行うことができるの
で、電力利用の制約を無くすことができる。
Further, the power distribution board 7 is also connected to an electric power distribution system 11 via an outdoor switch 9 and an electric energy meter 10. Therefore, when the power generated by the solar cell array 1 exceeds the power consumption, the power is reversely transmitted to the power distribution system 11, and conversely, when the power generated by the solar cell array 1 cannot be obtained, such as at night, the power distribution system. Power is supplied from 11. As described above, since the power can be exchanged, it is possible to remove the restriction on the use of the power.

【0005】ここで、系統連系運転を行うためには、系
統連系する電力配電系統11やそれに繋がる他の需要家
に対して、安全上及び電力品質上の悪影響を起こさない
ようにする必要がある。そこで、系統連系運転を行う際
に分散型電源システム側が満たすべき設備上の基準がガ
イドラインで定められている。
Here, in order to perform the grid interconnection operation, it is necessary to prevent the power distribution system 11 connected to the grid and other consumers connected to the grid from being adversely affected in safety and power quality. There is. Therefore, the guidelines set out the facility standards that the distributed power supply system side must meet when performing grid-connected operation.

【0006】系統連系のための条件は、一般に分散型電
源システム側の出力電圧、容量、電力配電系統11との
接続方式によって分類されており、その条件を満たすべ
き系統連系保護装置6の設置及び制御方式の使用等が義
務付けられている。
The conditions for system interconnection are generally classified according to the output voltage, capacity, and connection system with the power distribution system 11 on the side of the distributed power supply system. Installation and use of control methods are obligatory.

【0007】実際に、系統連系を行うべき太陽光発電シ
ステムを設置する場合は、系統連系する容量に合わせ、
系統連系保護機能を一つのユニットとした系統連系保護
装置6を太陽光発電システムの一構成要素として独立し
て設置するか、または、系統連系保護機能をインバータ
装置4に内蔵させたものを用いる場合とがある。いずれ
の場合も、その設置の際は電力会社と系統連系のための
協議と契釣を行い、最終的な設備構成、保護リレーの整
定値、連絡体制などを取り決めることになっている。図
3では、独立して系統連系保護装置6を設置したものを
示している。
[0007] Actually, when installing a photovoltaic power generation system which should be connected to the grid, according to the capacity to be connected to the grid,
A system interconnection protection device 6 having a system interconnection protection function as one unit is independently installed as a component of the photovoltaic power generation system, or a system interconnection protection function is built in the inverter device 4. May be used. In either case, when installing the system, discussions will be held with the electric power company for grid interconnection, and the final arrangement of equipment, set values of protection relays, and communication system will be decided. In FIG. 3, the system interconnection protection device 6 is installed independently.

【0008】次に、図4に太陽電池アレイ1の出力特性
を示す。インバータ装置4は太陽電池アレイ1の出力特
性に応じた運転制御を行う。太陽電池アレイ1の発電出
力は、太陽電池アレイ1への日射強度にほぼ比例し、天
気の良くない日は発電量は少なく、また夜間は発電しな
い。したがって、太陽電池アレイ1からの直流電カを交
流電カに変換するインバータ装置4は、この太陽電池ア
レイ1の出カを最大限に効率よく変換する必要がある。
Next, FIG. 4 shows the output characteristics of the solar cell array 1. The inverter device 4 performs operation control according to the output characteristics of the solar cell array 1. The power generation output of the solar cell array 1 is almost proportional to the intensity of solar radiation on the solar cell array 1, and the amount of power generation is small on a day when the weather is not good, and it does not generate power at night. Therefore, the inverter device 4 for converting the DC power from the solar cell array 1 into the AC power needs to convert the output of the solar cell array 1 as efficiently as possible.

【0009】図4において、朝の日の出と共に日射強度
が上昇し、太陽電池アレイ1の直流出力電圧Eが上昇す
る。そして、その直流出力電圧Eがインバータ装置4の
制御電源の動作範囲内に入ると(t1)、制御電源確立
(起動)となり、インバータ装置4は自動的に起動待機
状態に入る(t1〜t2)。その後、数分程度の一定電
圧制御でインバータ装置4を運転し(t2〜t3)、直
流出力電圧Eが増える傾向にあれぱ発電運転を開始する
(t3)。もし,雨天や曇天又は日没時など日射強度が
下がって太陽電池アレイ1の出力が減少してくると、運
転を停止し待機状態となる。
In FIG. 4, the solar radiation intensity increases with the sunrise in the morning, and the DC output voltage E of the solar cell array 1 increases. Then, when the DC output voltage E enters the operating range of the control power supply of the inverter device 4 (t1), the control power supply is established (started), and the inverter device 4 automatically enters the start standby state (t1 to t2). . After that, the inverter device 4 is operated under constant voltage control for about several minutes (t2 to t3), and power generation operation is started (t3) if the DC output voltage E tends to increase. If the intensity of solar radiation decreases and the output of the solar cell array 1 decreases, such as in the case of rain, cloudy weather, or sunset, the operation is stopped and the standby state is entered.

【0010】一方、直流出力電圧Eが増え発電運転の状
態になると、最大出力電力点を追従する制御(MPPT
制御)により、太陽電池アレイ1の発電電力Pを効率よ
く変換し電力負荷8や電力配電系統11へ電力を供給す
る(t3〜t4)。ここで、発電運転中に直流出力電圧
Eが多少低下しているのは、温度上昇による太陽電池ア
レイ1の出力低下である。
On the other hand, when the DC output voltage E increases and the power generating operation is started, the control for tracking the maximum output power point (MPPT
Control) to efficiently convert the generated power P of the solar cell array 1 and supply the power to the power load 8 and the power distribution system 11 (t3 to t4). Here, the fact that the DC output voltage E is slightly decreased during the power generation operation is due to the decrease in the output of the solar cell array 1 due to the temperature increase.

【0011】日射強度が下がり、太陽電池アレイ1の出
力が減少してくると、MPPT制御動作範囲の最低運転
電圧を切った時点t4で一定電圧制御に移行して運転を
継続し(t4〜t5)、出力が減少する傾向にあれば運
転を停止する(t6)。夜間など日射強度がとれない間
は、インバータ装置4は動作せず、翌朝日射強度が上昇
してきた時点で自動的に運転を再開する。
When the solar radiation intensity decreases and the output of the solar cell array 1 decreases, at a time point t4 when the minimum operating voltage in the MPPT control operating range is cut off, the control is shifted to a constant voltage control and the operation is continued (t4 to t5). ), If the output tends to decrease, the operation is stopped (t6). The inverter device 4 does not operate while the solar radiation intensity cannot be obtained at night, and the operation is automatically restarted at the time when the solar radiation intensity increases the next morning.

【0012】[0012]

【発明が解決しようとする課題】ところが、このような
太陽光発電システムを電力配電系統11に接続し系統連
系運転を行う場合には、前述したように、系統連系する
電力配電系統11側を保護するための系統連系保護機能
を設置することが義務付けられており、電力配電系統1
1に異常があった場合は随時その系統連系保護機能が正
常に働くことが要求される。そのため、系統連系保護機
能が正常に動作するかどうかの点検を行うことが必要と
なる。このような系統連系保護機能の点検は顧客自身で
行わなければならず、顧客自身にかかる手間数を考える
と点検作業は面倒であった。
However, when such a photovoltaic power generation system is connected to the power distribution system 11 for grid-connected operation, as described above, the grid-connected power distribution system 11 side. It is obligatory to install a grid interconnection protection function to protect the
When there is an abnormality in 1, the system interconnection protection function is required to work normally. Therefore, it is necessary to inspect whether the grid interconnection protection function operates normally. Such a system interconnection protection function inspection must be performed by the customer himself, and the inspection work is troublesome considering the time and effort required for the customer himself.

【0013】本発明の目的は、系統連系保護機能の点検
に伴う作業を軽減し、発電起動毎に自動的に系統連系保
護機能の点検を行うことのできる太陽光発電システムを
提供することである。
An object of the present invention is to provide a photovoltaic power generation system which can reduce the work involved in the inspection of the grid interconnection protection function and can automatically inspect the grid interconnection protection function every time the power generation is started. Is.

【0014】[0014]

【課題を解決するための手段】請求項1の発明は、太陽
電池アレイで発生した直流電力をインバータ装置で交流
電力に変換し、系統連系運転のときは電力配電系統にイ
ンバータ装置を接続して交流電力を供給し、自立運転の
ときはインバータ装置を電力配電系統から切り離し自立
運転用の電力負荷に交流電流を供給し、電力配電系統の
異常を系統連系保護装置が検出したときはインバータ装
置を電力配電系統から切り離すようにした太陽光発電シ
ステムであり、電力配電系統からインバータ装置を切り
離した状態で自立運転状態であることを判定する状態判
定手段と、状態判定手段の判定が成立したときは系統連
系保護装置に電力配電系統の異常模擬信号を出力するた
めの模擬信号発生手段と、異常模擬信号による系統連系
保護装置の動作を確認するための動作確認手段とからな
る自己診断手段を備えたものである。
According to a first aspect of the present invention, DC power generated in a solar cell array is converted into AC power by an inverter device, and the inverter device is connected to a power distribution system during grid interconnection operation. AC power is supplied by the inverter, the inverter device is disconnected from the power distribution system during self-sustaining operation, AC current is supplied to the power load for self-sustaining operation, and the inverter is detected when the grid protection device detects an abnormality in the power distribution system. It is a solar power generation system that disconnects the device from the power distribution system, and the determination of the status determination means and the status determination means that determines the self-sustaining operation state with the inverter device disconnected from the power distribution system has been established. At this time, the simulated signal generating means for outputting the abnormality simulation signal of the power distribution system to the grid interconnection protection device and the operation of the grid interconnection protection device by the abnormality simulation signal Those with auto-diagnostic means comprising a operation confirmation means for sure.

【0015】請求項1の発明では、状態判定手段が電力
配電系統からインバータ装置を切り離した状態で自立運
転状態であることを判定すると、模擬信号発生手段は系
統連系保護装置に電力配電系統の異常模擬信号を出力す
る。そして、動作確認手段にて異常模擬信号による系統
連系保護装置の動作を確認する。
According to the first aspect of the present invention, when the state determining means determines that the inverter device is in the self-sustaining operation state in a state where the inverter device is disconnected from the power distribution system, the simulation signal generating means causes the system interconnection protection device to detect the power distribution system. Outputs an abnormal simulation signal. Then, the operation confirmation means confirms the operation of the system interconnection protection device by the abnormality simulation signal.

【0016】請求項2の発明は、請求項1の発明におい
て、模擬信号発生手段は、状態判定手段の判定が成立し
た状態で、自動又は手動で動作を開始するようにしたも
のである。
According to a second aspect of the present invention, in the first aspect of the invention, the simulated signal generating means starts the operation automatically or manually in a state where the judgment of the state judging means is established.

【0017】請求項2の発明では、模擬信号発生手段は
自動又は手動で起動操作される。
In the second aspect of the invention, the simulated signal generating means is automatically or manually activated.

【0018】請求項3の発明は、請求項2の発明におい
て、自動又は手動の切換を行う切換手段を備えたもので
ある。
According to a third aspect of the present invention, in the second aspect of the invention, a switching means for performing automatic or manual switching is provided.

【0019】請求項3の発明では、切換手段にて模擬信
号発生手段を自動又は手動での起動操作に切換える。
In the third aspect of the invention, the switching means switches the simulated signal generating means to an automatic or manual starting operation.

【0020】請求項4の発明は、請求項1乃至請求項3
の発明において、系統連系運転状態であるとき一定の時
間間隔で、インバータ装置を電力配電系統から切り離す
ための指令を出力するタイマーを設けたものである。
The invention of claim 4 is the first to third aspects of the invention.
In the invention described above, a timer for outputting a command for disconnecting the inverter device from the power distribution system is provided at regular time intervals in the system interconnection operation state.

【0021】請求項4の発明では、太陽光発電システム
が系統連系運転状態であるときであっても、タイマーで
定める時間間隔で運転を一時停止して再起動のときに自
己診断手段を起動し、異常模擬信号を系統連系保護装置
に出力する。
According to the invention of claim 4, even when the photovoltaic power generation system is in the grid interconnection operation state, the self-diagnosis means is activated at the time of restarting the operation at a time interval determined by the timer. Then, the abnormality simulation signal is output to the grid interconnection protection device.

【0022】請求項5の発明は、請求項1乃至請求項4
の発明において、動作確認手段が系統連系保護装置の動
作を確認したときは、その確信状態を表示するための表
示手段を備えたものである。
The invention according to claim 5 is the invention according to claims 1 to 4.
In the invention, when the operation confirming means confirms the operation of the grid interconnection protection device, the operation confirming means is provided with display means for displaying the certainty state.

【0023】請求項5の発明では、異常模擬信号に対し
ての系統連系保護装置の動作状態を表示する。
According to the fifth aspect of the present invention, the operating state of the system interconnection protection device for the abnormality simulation signal is displayed.

【0024】請求項6の発明は、請求項1乃至請求項5
の発明において、模擬信号発生手段からの異常模擬信号
は、電力配電系統の定格電圧より高い系統過電圧、電力
配電系統の定格電圧より低い系統不足電圧を交互にスー
プさせ、電力配電系統の定格周波数より高い系統過周波
数、電力配電系統の定格周波数より低い系統不足周波数
を交互にスイープさせた信号としたものである。
[0024] The invention of claim 6 is from claim 1 to claim 5.
In the invention of 1, the abnormal simulation signal from the simulation signal generating means, the system overvoltage higher than the rated voltage of the power distribution system, the system undervoltage lower than the rated voltage of the power distribution system alternately soup, than the rated frequency of the power distribution system. This is a signal in which high system overfrequency and system shortage frequency lower than the rated frequency of the power distribution system are alternately swept.

【0025】請求項6の発明では、模擬信号発生手段
は、系統電圧が定格電圧に対し所定の範囲を超えてスイ
ープさせた異常模擬信号を発生し、系統周波数が定格周
波数に対し所定の範囲を超えてスイープさせたた異常模
擬信号を発生する。
In the invention of claim 6, the simulated signal generating means generates an abnormal simulated signal in which the system voltage is swept over a predetermined range with respect to the rated voltage, and the system frequency is within a predetermined range with respect to the rated frequency. Generate an abnormal simulation signal that is swept beyond.

【0026】請求項7の発明は、請求項6の発明におい
て、系統過電圧は定格電圧の120%の電圧であり、系
統不足電圧は定格電圧の80%の電圧としたものであ
る。
According to the invention of claim 7, in the invention of claim 6, the system overvoltage is 120% of the rated voltage, and the system undervoltage is 80% of the rated voltage.

【0027】請求項7の発明では、模擬信号発生手段
は、系統電圧の変動が定格電圧の±20%を逸脱した異
常模擬信号を発生する。
In the seventh aspect of the present invention, the simulated signal generating means generates the abnormal simulated signal in which the fluctuation of the system voltage deviates from ± 20% of the rated voltage.

【0028】請求項8の発明は、請求項6の発明におい
て、系統過周波数は定格周波数の105%の周波数であ
り、系統不足周波数は定格周波数の95%の周波数とし
たものである。
According to the invention of claim 8, in the invention of claim 6, the system overfrequency is a frequency of 105% of the rated frequency, and the system shortage frequency is a frequency of 95% of the rated frequency.

【0029】請求項8の発明では、模擬信号発生手段
は、系統周波数の変動が定格周波数の±5%を逸脱した
異常模擬信号を発生する。
In the eighth aspect of the present invention, the simulated signal generating means generates the abnormal simulated signal in which the fluctuation of the system frequency deviates from ± 5% of the rated frequency.

【0030】請求項9の発明は、請求項1乃至請求項8
の発明において、動作確信手段が系統連系保護装置の動
作異常を検出したときは、再度、異常模擬信号を出力
し、動作異常が2回連続したときは、系統連系保護装置
の異常であることを表示するようにしたことを特徴とす
る太陽光発電システム。
[0030] The invention of claim 9 is from claim 1 to claim 8.
In the invention described above, when the operation convincing means detects an operation abnormality of the grid interconnection protection device, the abnormality simulation signal is output again, and when the operation abnormality continues twice, it is an abnormality of the grid interconnection protection device. The solar power generation system is characterized in that the information is displayed.

【0031】請求項9の発明では、異常模擬信号に対し
て系統連系保護装置が正常に動作しないことが2回連続
したときに、系統連系保護装置の異常を表示する。
According to the ninth aspect of the present invention, the abnormality of the grid interconnection protection device is displayed when the grid interconnection protection device does not operate normally for the abnormal simulation signal twice in succession.

【0032】請求項10の発明は、請求項1乃至請求項
9の発明において、系統連系保護装置及び自己診断手段
の各機能をインバータ装置に持たせたものである。
According to a tenth aspect of the present invention, the inverter device is provided with the functions of the grid interconnection protection device and the self-diagnosis means in the first to ninth aspects of the invention.

【0033】請求項10の発明では、異常模擬信号を直
接インバータ装置から出力する。
In the tenth aspect of the invention, the abnormality simulation signal is directly output from the inverter device.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の実施の形態を示す構成図である。
本発明の実施の形態による太陽光発電システムは、自己
診断手段12を有したものであり、図3に示した従来例
と同一要素には同一符号を付しその説明は省略する。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram showing an embodiment of the present invention.
The photovoltaic power generation system according to the embodiment of the present invention has the self-diagnosis means 12, and the same elements as those of the conventional example shown in FIG.

【0035】自己診断手段12は、系統連系保護装置6
が正常に動作するか否かを判定するためのものであり、
インバータ装置4が電力配電系統11から切り離された
状態で異常模擬信号を系統連系保護装置6に出力し、系
統連系保護装置が正常に動作するか否かを確認する。
The self-diagnosis means 12 is a system interconnection protection device 6.
Is for determining whether or not
An abnormality simulation signal is output to the grid interconnection protection device 6 in a state where the inverter device 4 is disconnected from the power distribution system 11, and it is confirmed whether or not the grid interconnection protection device operates normally.

【0036】自己診断手段12の状態判定手段13は、
太陽光発電システムの運転制御を司る運転制御装置14
から、インバータ装置4が電力配電系統11から切り離
された状態であることを示す信号を入力すると共に、太
陽電池アレイ1からの直流出力電圧を入力し、太陽光発
電システムの状態を判定する。すなわち、状態判定手段
が電力配電系統11からインバータ装置4を切り離した
状態で自立運転状態であることを判定すると、切換手段
15が自動側に選択されているときには、模擬信号発生
手段16は系統連系保護装置6に対し電力配電系統11
の異常模擬信号を出力する。
The state determination means 13 of the self-diagnosis means 12 is
Operation control device 14 that controls the operation of the solar power generation system
From the above, a signal indicating that the inverter device 4 is disconnected from the power distribution system 11 is input, and the DC output voltage from the solar cell array 1 is input to determine the state of the photovoltaic power generation system. That is, when the state determining means determines that the inverter device 4 is disconnected from the power distribution system 11 and is in the self-sustaining operation state, when the switching means 15 is selected to the automatic side, the simulated signal generating means 16 causes the system connection. Power distribution system 11 for system protection device 6
The abnormal simulation signal of is output.

【0037】一方、切換手段15が手動側を選択してい
るときは、状態判定手段13の判定が成立している状態
で手動点検スイッチ20により手動操作行われたときに
模擬信号発生手段16は系統連系保護装置6に対し電力
配電系統11の異常模擬信号を出力する。この異常模擬
信号は系統連系保護装置6に入力される。そして、異常
模擬信号による系統連系保護装置6の動作状態は、動作
確認手段17に入力され、そこで系統連系保護装置6の
動作状態が確認される。そして、その確認結果は表示手
段18に表示される。
On the other hand, when the switching means 15 selects the manual side, the simulated signal generating means 16 operates when the manual inspection switch 20 performs a manual operation in a state where the determination of the state determining means 13 is established. An abnormality simulation signal of the power distribution system 11 is output to the system interconnection protection device 6. This abnormality simulation signal is input to the system interconnection protection device 6. Then, the operating state of the system interconnection protection device 6 by the abnormality simulation signal is input to the operation confirmation means 17, and the operation state of the system interconnection protection device 6 is confirmed there. Then, the confirmation result is displayed on the display unit 18.

【0038】また、自己診断手段12にはタイマー19
が設けられ、このタイマー19は太陽光発電システムが
系統連系運転状態であるときに一定の時間間隔で、イン
バータ装置4を電力配電系統11から切り離すための指
令を出力する。これにより、太陽光発電システムが系統
連系運転状態であるときであっても、タイマー19で定
める時間間隔で運転を一時停止して再起動のときに自己
診断手段を起動し、異常模擬信号を系統連系保護装置6
に出力する。
A timer 19 is provided in the self-diagnosis means 12.
The timer 19 outputs a command for disconnecting the inverter device 4 from the power distribution system 11 at regular time intervals when the photovoltaic power generation system is in the grid interconnection operation state. As a result, even when the photovoltaic power generation system is in the grid-interconnected operation state, the operation is temporarily stopped at the time interval determined by the timer 19 and the self-diagnosis means is activated at the time of restart, and the abnormality simulation signal is output. Grid interconnection protection device 6
Output to

【0039】ここで、電力配電系統11と連系するため
の保護とは、連系した電力配電系統11に異常が生じた
場合、インバータ装置4の動作が電力配電系統11側へ
影響を与えないようにインバータ装置4を電力配電系統
11から切り離すことである。電力配電系統11側の異
常に対する保護要素として、以下の項目があげられる。 (1)系統不足電圧(OV) (2)系統過電圧(UV) (3)系統周波数異常(OF/UF) 電力配電系統11側で異常が発生した場合、これらの保
護機能が正常に動作しインバータ装置4を電力配電系統
11から切り離すことになる。そこで、この保護機能が
正常に動作することを、自己診断手段12で定期的に動
作点検する。
Here, the protection for connecting to the power distribution system 11 means that the operation of the inverter device 4 does not affect the power distribution system 11 side when an abnormality occurs in the connected power distribution system 11. In this way, the inverter device 4 is disconnected from the power distribution system 11. The following items can be listed as protection elements against abnormalities on the side of the power distribution system 11. (1) System undervoltage (OV) (2) System overvoltage (UV) (3) System frequency abnormality (OF / UF) When an abnormality occurs on the power distribution system 11 side, these protection functions operate normally and the inverter The device 4 will be disconnected from the power distribution system 11. Therefore, the self-diagnosis means 12 regularly checks the operation of this protective function normally.

【0040】図2は、本発明の実施の形態における自己
診断手段12の機能を示すフローチャートである。ま
ず、朝の日の出と共に日射強度が上昇すると、太陽電池
アレイ1の発電が開始される。その発電電力Pがインバ
ータ装置4の制御電源確立の許容範囲に入ると(S
1)、インバータ装置4は電力配電系統11を切り離し
た状態で強制的に自立運転状態での運転を開始する(S
2)。
FIG. 2 is a flow chart showing the function of the self-diagnosis means 12 in the embodiment of the present invention. First, when the solar radiation intensity rises with the sunrise in the morning, the solar cell array 1 starts to generate electricity. When the generated power P falls within the allowable range for establishing the control power source of the inverter device 4 (S
1), the inverter device 4 forcibly starts the operation in the self-sustaining operation state with the power distribution system 11 disconnected (S).
2).

【0041】すなわち、強制的に電力配電系統11側の
異常が発生したと同様な異常模擬信号を摸擬信号発生手
段16から系統連系保護装置6へ出力して、系統連系保
護機能の点検を行う。なお、日中であっても天候が回復
した場合、またはその逆の場合も同様な動作を行う。
That is, an abnormal simulation signal similar to the one in which an abnormality occurs on the side of the power distribution system 11 is forcibly output from the simulated signal generating means 16 to the system interconnection protection device 6 to check the system interconnection protection function. I do. The same operation is performed even during the daytime when the weather is recovered or vice versa.

【0042】まず、模擬信号発生手段16からは、電力
配電系統11の定格電圧に対する異常模擬信号を出力す
る。定格電圧→定格電圧+20%→定格電圧へとスイー
プさせた異常模擬電圧を出力する(S3)。そして、系
統連系保護装置6に系統過電圧を模擬させ保護機能が動
作するか確認する(S4)。正常な動作が確認される
と、次に電圧信号を定格電圧→定格電圧ー20%→定格
電圧へとスイープさせ、系統不足電圧を模擬させ、保護
機能が正常に動作するか確認する。正常な動作が確認さ
れると、周波数信号を定格→+5%→定格へとスイープ
させ(S5)、系統過周波数を摸擬させ、保護機能が動
作するか確認する(S6)。
First, the simulated signal generating means 16 outputs an abnormal simulated signal for the rated voltage of the power distribution system 11. An abnormal simulated voltage that is swept from rated voltage → rated voltage + 20% → rated voltage is output (S3). Then, the system interconnection protection device 6 is made to simulate the system overvoltage and it is confirmed whether the protection function operates (S4). If the normal operation is confirmed, then the voltage signal is swept from the rated voltage to the rated voltage -20% to the rated voltage to simulate the system undervoltage, and it is confirmed whether the protection function operates normally. When the normal operation is confirmed, the frequency signal is swept from the rating to + 5% to the rating (S5), the system overfrequency is simulated, and it is confirmed whether the protection function operates (S6).

【0043】次に、周波数信号を定格周波数→定格周波
数+5%→定格周波数とスイーブさせ(S7)、系統不
足周波数を模擬して保護機能が正常に動作するか確認す
る(S8)。正常な動作が確認されると、周波数信号を
定格周波数→定格周波数ー5%→定格周波数とスイーブ
させ(S9)、系統不足周波数を模擬して保護機能が正
常に動作するか確認する(S10)。
Next, the frequency signal is swept in the order of rated frequency → rated frequency + 5% → rated frequency (S7), and a system shortage frequency is simulated to confirm whether the protection function operates normally (S8). When the normal operation is confirmed, the frequency signal is swept from the rated frequency → the rated frequency-5% → the rated frequency (S9), and the protection function operates normally by simulating the system shortage frequency (S10). .

【0044】そして、すべての保護機能の動作の確認が
終了した時点で初めてインバ−夕装置4は電力配電系統
11へ連系され(S11)、系統連系運転を開始する
(S12)。ここで、これらの動作に要する時間は通常
1分以下である。また、保護機能の各部分で正常な運転
が確認されなかった場合は、一旦、自立運転開始の状態
まで戻り(S13)、再度保護機能動作の確認を行い、
2回目の点検でも保護動作が確認されなかった場合は
「保護機能異常」と判定し(S14)、表示手段18に
異常表示すると共にインバータ装置4を停止する(S1
5)。
The inverter device 4 is first connected to the power distribution system 11 (S11) and the system interconnection operation is started (S12) only after the confirmation of the operation of all the protection functions is completed. Here, the time required for these operations is usually 1 minute or less. If normal operation is not confirmed in each part of the protection function, the operation returns to the state where the self-sustained operation starts (S13), and the protection function operation is checked again.
If the protection operation is not confirmed even in the second inspection, it is determined that the "protection function is abnormal" (S14), the abnormality is displayed on the display unit 18, and the inverter device 4 is stopped (S1).
5).

【0045】これにより、毎朝の太陽電池アレイ1の発
電起動時に、自動的に保護機能の点検が行われる。した
がって、確実に保護機能が動作することを確認した上で
連系運転を開始することができるので、特に顧客先で定
期的に保譲機能の点検作業を実施しなくても、常に正常
な系統連系保護機能を備えた状態で太陽光発電システム
から電力を供給することができる。
As a result, the protection function is automatically inspected every morning when power generation of the solar cell array 1 is started. Therefore, it is possible to start the interconnected operation after confirming that the protection function operates reliably, so even if the customer does not regularly perform the inspection work of the transfer function, Electric power can be supplied from the solar power generation system with the interconnection protection function.

【0046】また、以上のことは、系統連系保護装置6
がインバータ装置4に内蔵された場合、あるいは系統運
系保護装置6及び自己診断手段12がインバ−夕4に内
蔵された場合にも適用される。
In addition, the above is the system interconnection protection device 6
Is incorporated in the inverter device 4, or the system operation protection device 6 and the self-diagnosis means 12 are incorporated in the inverter 4.

【0047】ところで、切換手段15を手動側に切り替
えておき、太陽光発電システムの起動時にインバータ装
置4が点検する保護機能を手動で行えるようにしても良
い。日射強度が上昇し、太陽電池アレイ1の発電電力で
インバータ装置4の制御電源確立後に一旦待機状態とな
り、手動点検スイッチ20を入れることで系統連系保護
機能の点検を行い、保護動作の確認終了後に、太陽光発
電システムの運転を開始する。この場合は、前述の自動
の場合と同様に太陽光発電システムの起動毎に保護機能
動作の確認ができると同時に、顧客自身で保護機能動作
の確認ができ、自動点検時の点検状態を確認することが
できる。
By the way, the switching means 15 may be switched to the manual side so that the protection function checked by the inverter device 4 when the solar power generation system is started can be manually performed. The solar radiation intensity rises, and once the control power of the inverter device 4 has been established by the power generated by the solar cell array 1, the standby state is once entered, and the manual inspection switch 20 is turned on to inspect the grid interconnection protection function, and the confirmation of the protection operation is completed. After that, the operation of the solar power generation system is started. In this case, the protection function operation can be checked each time the solar power generation system is started, as well as the automatic operation described above, and at the same time the customer can check the protection function operation and check the inspection status during automatic inspection. be able to.

【0048】上述した自動点検を発電起動時だけでな
く、タイマー19などで点検を実施したい時間を設定し
て、発電中の任意時間毎に自動点検を行えるようにして
もよい。この場合は、起動時のみの1回の点検ではな
く、2回以上点検できるため、保護機能の動作確認の信
頼性を高くできる。
The above-described automatic inspection may be set not only at the time of power generation start-up, but also by setting the time at which the inspection is desired to be performed by the timer 19 or the like so that the automatic inspection can be performed every arbitrary time during power generation. In this case, since it is possible to inspect twice or more instead of only once at startup, it is possible to increase the reliability of operation confirmation of the protection function.

【0049】さらに、保護動作の点検確認後、「保護機
能異常」と判定した場合、その異常状態を表示できるよ
うにするので、太陽光発電システムが起動しない原因が
顧客側で確認できると同時にーサービスマンへの対応が
スムーズにできる。
Further, after the inspection of the protection operation is confirmed, when it is judged that the "protection function is abnormal", the abnormal state is displayed so that the customer can confirm the reason why the solar power generation system does not start. Can be handled smoothly.

【0050】[0050]

【発明の効果】以上述べたように、本発明によれば、イ
ンバータ装置の起動毎に自動的に保護機能を点検する自
己診断手段を具備しているので、毎朝、太陽光発電シス
テムの起動時にインバータ装置が自動的に保護機能の動
作を点検することができる。したがって、定期的な顧客
自身での保護機能の点検作業を行わずにすみ、常に正常
な保護機能を持った状態で太陽光発電システムを電力配
電系統と連携することができる。
As described above, according to the present invention, the self-diagnosis means for automatically inspecting the protection function every time the inverter device is started up is provided, so every morning when the solar power generation system is started up. The inverter device can automatically check the operation of the protection function. Therefore, it is not necessary to regularly perform the inspection work of the protection function by the customer himself, and the solar power generation system can be linked with the power distribution system while always having a normal protection function.

【0051】すなわち、本発明では、毎朝の太陽光発電
システムの起動時に自動的に保護機能の点検を行うこと
ができるので、顧客側での特別な点検作業を行うことを
せず、常に正常な保護機能の具備した状態で系統連系運
転を行える。
In other words, according to the present invention, since the protection function can be automatically inspected every morning when the solar power generation system is started, no special inspection work is performed on the customer side, and normal inspection is always performed. System interconnection operation can be performed with the protection function provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の自己診断手段の機能を示すフローチャ
ート。
FIG. 2 is a flowchart showing the function of the self-diagnosis means of the present invention.

【図3】従来の系統連系型の太陽光発電システムの構成
[Fig. 3] Configuration example of a conventional grid-connected photovoltaic power generation system

【図4】太陽電池アレイの出力特性の説明図。FIG. 4 is an explanatory diagram of output characteristics of a solar cell array.

【符号の説明】[Explanation of symbols]

1 太陽電池アレイ 2 逆流防止ダイオード 3 直流開閉器 4 インバータ装置 5 絶縁トランス 6 系統連系保護装置 7 配電盤 8 電力負荷 9 屋外開閉器 10 電力量計 11 電力配電系統 12 自己診断手段 13 状態判定手段 14 運転制御装置 15 切換手段 16 模擬信号発生手段 17 動作確認手段 18 表示手段 19 タイマー 20 手動点検スイッチ DESCRIPTION OF SYMBOLS 1 Solar cell array 2 Backflow prevention diode 3 DC switch 4 Inverter device 5 Insulation transformer 6 Grid connection protection device 7 Distribution board 8 Electric load 9 Outdoor switch 10 Electricity meter 11 Electric power distribution system 12 Self-diagnosis means 13 Status judgment means 14 Operation control device 15 Switching means 16 Simulated signal generation means 17 Operation confirmation means 18 Display means 19 Timer 20 Manual inspection switch

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池アレイで発生した直流電力をイ
ンバータ装置で交流電力に変換し、系統連系運転のとき
は電力配電系統に前記インバータ装置を接続して前記交
流電力を供給し、自立運転のときは前記インバータ装置
を前記電力配電系統から切り離し自立運転用の電力負荷
に前記交流電流を供給し、前記電力配電系統の異常を系
統連系保護装置が検出したときは前記インバータ装置を
前記電力配電系統から切り離すようにした太陽光発電シ
ステムにおいて、前記電力配電系統から前記インバータ
装置を切り離した状態で前記自立運転状態であることを
判定する状態判定手段と、前記状態判定手段の判定が成
立したときは前記系統連系保護装置に前記電力配電系統
の異常模擬信号を出力するための模擬信号発生手段と、
前記異常模擬信号による前記系統連系保護装置の動作を
確認するための動作確認手段とからなる自己診断手段を
備えたことを特徴とする太陽光発電システム。
1. A DC power generated by a solar cell array is converted into AC power by an inverter device, and when the system is interconnected, the inverter device is connected to a power distribution system to supply the AC power, thereby performing a self-sustaining operation. When the inverter device is disconnected from the power distribution system, the alternating current is supplied to the power load for self-sustaining operation, and when the grid interconnection protection device detects an abnormality in the power distribution system, the inverter device is powered by the power. In the solar power generation system which is designed to be disconnected from the power distribution system, the status determination unit that determines that the power supply system is in the self-sustaining operation state with the inverter device disconnected from the power distribution system, and the determination of the state determination unit is established. When, a simulated signal generating means for outputting an abnormal simulation signal of the power distribution system to the system interconnection protection device,
A photovoltaic power generation system, comprising: a self-diagnosis unit including an operation confirmation unit for confirming an operation of the grid interconnection protection device based on the abnormality simulation signal.
【請求項2】 前記模擬信号発生手段は、前記状態判定
手段の判定が成立した状態で、自動又は手動で動作を開
始するようにしたことを特徴とする請求項1に記載の太
陽光発電システム。
2. The photovoltaic power generation system according to claim 1, wherein the simulated signal generation means is configured to start operation automatically or manually in a state where the determination by the state determination means is established. .
【請求項3】 前記自動又は手動の切換を行う切換手段
を備えたことを特徴とする請求項2に記載の太陽光発電
システム。
3. The photovoltaic power generation system according to claim 2, further comprising switching means for performing the automatic or manual switching.
【請求項4】 前記系統連系運転状態であるとき一定の
時間間隔で、前記インバータ装置を前記電力配電系統か
ら切り離すための指令を出力するタイマーを設けたこと
を特徴とする請求項1乃至請求項3に記載の太陽光発電
システム。
4. The timer according to claim 1, further comprising a timer for outputting a command for disconnecting the inverter device from the power distribution system at a constant time interval in the grid interconnection operation state. Item 3. The solar power generation system according to Item 3.
【請求項5】 前記動作確認手段が前記系統連系保護装
置の動作を確認したときは、その確信状態を表示するた
めの表示手段を備えたことを特徴とする請求項1乃至請
求項4に記載の太陽光発電システム。
5. The display device according to claim 1, further comprising display means for displaying a certainty state when the operation confirmation means confirms the operation of the grid interconnection protection device. The described solar power generation system.
【請求項6】 前記模擬信号発生手段からの異常模擬信
号は、前記電力配電系統の定格電圧より高い系統過電
圧、前記電力配電系統の定格電圧より低い系統不足電圧
を交互にスイープさせ、前記電力配電系統の定格周波数
より高い系統過周波数、前記電力配電系統の定格周波数
より低い系統不足周波数を交互にスイープさせた信号で
あることを特徴とする請求項1乃至請求項5に記載の太
陽光発電システム。
6. The abnormality simulation signal from the simulation signal generating means alternately sweeps a system overvoltage higher than a rated voltage of the power distribution system and a system undervoltage lower than a rated voltage of the power distribution system to generate the power distribution. The photovoltaic power generation system according to claim 1, wherein the photovoltaic power generation system is a signal obtained by alternately sweeping a grid overfrequency higher than a grid rated frequency and a grid shortage frequency lower than a rated frequency of the power distribution system. .
【請求項7】 前記系統過電圧は定格電圧の120%の
電圧であり、前記系統不足電圧は定格電圧の80%の電
圧であることを特徴とする請求項6に記載の太陽光発電
システム。
7. The photovoltaic power generation system according to claim 6, wherein the grid overvoltage is 120% of the rated voltage and the grid undervoltage is 80% of the rated voltage.
【請求項8】 前記系統過周波数は定格周波数の105
%の周波数であり、前記系統不足周波数は定格周波数の
95%の周波数であることを特徴とする請求項6に記載
の太陽光発電システム。
8. The system overfrequency is 105 of a rated frequency.
%, And the grid shortage frequency is a frequency that is 95% of the rated frequency.
【請求項9】 前記動作確信手段が前記系統連系保護装
置の動作異常を検出したときは、再度、前記異常模擬信
号を出力し、前記動作異常が2回連続したときは、前記
系統連系保護装置の異常であることを表示するようにし
たことを特徴とする請求項1乃至請求項8に記載の太陽
光発電システム。
9. When the operation convincing means detects an operation abnormality of the system interconnection protection device, the abnormality simulation signal is output again, and when the operation abnormality continues twice, the system interconnection system is activated. 9. The photovoltaic power generation system according to claim 1, wherein the fact that the protection device is abnormal is displayed.
【請求項10】 前記系統連系保護装置の及び前記自己
診断手段の各機能を前記インバータ装置に持たせたこと
を特徴とする請求項1乃至請求項9に記載の太陽光発電
システム。
10. The photovoltaic power generation system according to claim 1, wherein the inverter device is provided with the functions of the grid interconnection protection device and the self-diagnosis means.
JP09169196A 1996-01-26 1996-01-26 Solar power system Expired - Fee Related JP3722901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09169196A JP3722901B2 (en) 1996-01-26 1996-01-26 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09169196A JP3722901B2 (en) 1996-01-26 1996-01-26 Solar power system

Publications (2)

Publication Number Publication Date
JPH09215203A true JPH09215203A (en) 1997-08-15
JP3722901B2 JP3722901B2 (en) 2005-11-30

Family

ID=14033540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09169196A Expired - Fee Related JP3722901B2 (en) 1996-01-26 1996-01-26 Solar power system

Country Status (1)

Country Link
JP (1) JP3722901B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486023B1 (en) * 1999-09-16 2005-05-03 현대중공업 주식회사 Apparatus for self-diagnosis of printed circuit board
JP2005210864A (en) * 2004-01-26 2005-08-04 Toyo Electric Mfg Co Ltd Device for checking interconnection protection function of interconnection inverter
WO2006006672A1 (en) * 2004-07-14 2006-01-19 Matsushita Electric Industrial Co., Ltd. Fuel cell electric power generation system
JP2006032128A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Fault diagnosis control device for fuel cell system
JP2008154435A (en) * 2006-12-20 2008-07-03 Aisin Seiki Co Ltd Cogeneration generator
JP2013207931A (en) * 2012-03-28 2013-10-07 Fujitsu Ltd Illegal electric power selling detection device and method
JP2015042029A (en) * 2013-08-20 2015-03-02 東芝シュネデール・インバータ株式会社 Inverter device
JP2016039759A (en) * 2014-08-11 2016-03-22 株式会社椿本チエイン Power supply system and power conversion device
JP2016167917A (en) * 2015-03-09 2016-09-15 東洋電機製造株式会社 Inverter for system interconnection
WO2017073076A1 (en) * 2015-10-28 2017-05-04 京セラ株式会社 Power control system and control method for power control system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486023B1 (en) * 1999-09-16 2005-05-03 현대중공업 주식회사 Apparatus for self-diagnosis of printed circuit board
JP4562399B2 (en) * 2004-01-26 2010-10-13 東洋電機製造株式会社 System protection function confirmation device for system interconnection inverter
JP2005210864A (en) * 2004-01-26 2005-08-04 Toyo Electric Mfg Co Ltd Device for checking interconnection protection function of interconnection inverter
WO2006006672A1 (en) * 2004-07-14 2006-01-19 Matsushita Electric Industrial Co., Ltd. Fuel cell electric power generation system
JPWO2006006672A1 (en) * 2004-07-14 2008-05-01 松下電器産業株式会社 Fuel cell power generation system
JP5063110B2 (en) * 2004-07-14 2012-10-31 パナソニック株式会社 Fuel cell power generation system
JP2006032128A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Fault diagnosis control device for fuel cell system
JP2008154435A (en) * 2006-12-20 2008-07-03 Aisin Seiki Co Ltd Cogeneration generator
JP2013207931A (en) * 2012-03-28 2013-10-07 Fujitsu Ltd Illegal electric power selling detection device and method
JP2015042029A (en) * 2013-08-20 2015-03-02 東芝シュネデール・インバータ株式会社 Inverter device
JP2016039759A (en) * 2014-08-11 2016-03-22 株式会社椿本チエイン Power supply system and power conversion device
JP2016167917A (en) * 2015-03-09 2016-09-15 東洋電機製造株式会社 Inverter for system interconnection
WO2017073076A1 (en) * 2015-10-28 2017-05-04 京セラ株式会社 Power control system and control method for power control system
JPWO2017073076A1 (en) * 2015-10-28 2018-06-07 京セラ株式会社 Power control system and control method of power control system
US10910839B2 (en) 2015-10-28 2021-02-02 Kyocera Corporation Power control system and control method for power control system

Also Published As

Publication number Publication date
JP3722901B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
US9225285B2 (en) Photovoltaic installation with automatic disconnect device
US8564916B2 (en) Photovoltaic array ground fault detection method for utility-scale grounded solar electric power generating systems
JP2943133B2 (en) Insulation state measuring method, insulation state determination device, and distributed power generation device using the same
US11073807B2 (en) Method and apparatus for activation and de-activation of power conditioners in distributed resource island systems using low voltage AC
KR101531625B1 (en) Charging apparatus
JP6114016B2 (en) Power conditioner control method and power conditioner
US20230208187A1 (en) Photovoltaic disconnect device for storage integration
JP3722901B2 (en) Solar power system
JP2012135125A (en) Indoor power transmission system
JP2003289626A (en) Power conditioner for solar power generation system
JPH1023673A (en) Power conditioner and dispersed power supplying system
JPH07322504A (en) Power supply system
JP2020061850A (en) Power generation control system, power generation control method, and program
JPH07147728A (en) System linkage type inverter
JP6171672B2 (en) Power generation system and power conditioner
JP2004104851A (en) Linkage system provided with generator-linkage function
JPH08331776A (en) Dc power source system
JPH09285015A (en) Dc ground detector of photovoltaic power generation system
Yamaguchi et al. Development of a new utility-connected photovoltaic inverter LINE BACK
JPH1189093A (en) System interconnection distribution type power supply system
JPH089555A (en) Power conditioner for photovoltaic power generation
JP2003319561A (en) Power generation system
KR102501188B1 (en) CONNECTION BOARD OF SOLAR POWER GENERATOR WITH PROTECTING REVERSE POWER and its Method for Trip Prevention
JPH0993820A (en) Solar photovoltaic power generation system
JP6804849B2 (en) Power supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees