JPH09215094A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH09215094A
JPH09215094A JP8020972A JP2097296A JPH09215094A JP H09215094 A JPH09215094 A JP H09215094A JP 8020972 A JP8020972 A JP 8020972A JP 2097296 A JP2097296 A JP 2097296A JP H09215094 A JPH09215094 A JP H09215094A
Authority
JP
Japan
Prior art keywords
piezoelectric
ultrasonic probe
ultrasonic waves
composite
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020972A
Other languages
Japanese (ja)
Inventor
Akira Hamada
章 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP8020972A priority Critical patent/JPH09215094A/en
Publication of JPH09215094A publication Critical patent/JPH09215094A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic probe which also improves formability at the time of making an element into recessed face concerning this element having satisfactory characteristics for transmitting/receiving ultrasonic waves by composing piezoelectric materials. SOLUTION: This ultrasonic probe is composed of a base 1 having a recessed face 1a, a compound reflector 2 as the compound film of piezoelectric ceramics materials and organic piezoelectric materials to be laminated on the recessed face 1a, and a polymeric piezoelectric body 3 as an organic piezoelectric film laminated on the compound reflector 2. In this case, the compound reflector 2 is used for oscillating ultrasonic waves and the polymeric piezo-electric body 3 is used for receiving the ultrasonic waves. Therefore, characteristics for transmitting and receiving the ultrasonic waves are improved and since this ultrasonic probe is provided on the base 1 having the recessed face 1a, the characteristics are further improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧電膜を複合化し
て超音波の送信および受信の特性を向上した超音波プロ
ーブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe in which piezoelectric films are combined to improve ultrasonic wave transmission and reception characteristics.

【0002】[0002]

【発明が解決しようとする課題】従来、例えば実開平4
−128499号公報には、PZT等の圧電セラミック
ス材料とPVDF等からなる有機圧電材料とを組合せた
超音波探触子が開示されていて、圧電セラミックス材料
が超音波の送信に、有機圧電材料が超音波の受信に優れ
ていることが示されている。
Conventionally, for example, the actual Kaihei 4
JP-A-128499 discloses an ultrasonic probe in which a piezoelectric ceramic material such as PZT and an organic piezoelectric material such as PVDF are combined, and the piezoelectric ceramic material is used for transmitting ultrasonic waves, and the organic piezoelectric material is used. It has been shown to be excellent in receiving ultrasonic waves.

【0003】近年、超音波を検出する素子の利用が進
み、検査対象の内部の状態が非破壊的に検出できること
から、医療の分野においては人体内部の状態や腫瘍の大
きさ等を検出している。このように近年使用されている
素子は、特定の位置の出力を十分に検出する必要があ
り、素子の面を凹面化して焦点を絞っている。また、凹
面化された素子をリング状に分割して焦点距離を個々に
ずらしたアニュラー型の素子も使用されている。このよ
うに、素子の面を凹面化しようとすると、セラミックス
材料は成形性に問題がある。
In recent years, the use of elements for detecting ultrasonic waves has progressed, and the internal state of an object to be examined can be detected nondestructively. Therefore, in the medical field, the internal state of the human body, the size of a tumor, etc. are detected. There is. As described above, in the element used in recent years, it is necessary to sufficiently detect the output at a specific position, and the surface of the element is made concave to focus the light. Further, an annular element in which a concave element is divided into rings and the focal lengths thereof are individually shifted is also used. As described above, if the surface of the element is to be concave, the ceramic material has a problem in formability.

【0004】本発明は、圧電材料を複合させて超音波の
送信および受信の特性が優れた素子であって、素子の面
を凹面化するときに成形性にも優れた素子を用いた超音
波プローブを得ることを目的とする。
The present invention is an element which is composed of a piezoelectric material and is excellent in the characteristics of transmitting and receiving ultrasonic waves. The ultrasonic wave using the element is excellent in formability when the surface of the element is made concave. The purpose is to obtain a probe.

【0005】[0005]

【課題を解決するための手段】本発明は、凹面を有する
基台と、該凹面に積層される圧電セラミックス材料およ
び有機圧電材料の複合膜と、該複合膜に積層された有機
圧電膜と、を有するものである。この複合膜は、圧電セ
ラミックス材料の粉体を混入して有機圧電材料の成膜を
行うものでよく、圧電セラミックス材料としては、PZ
T、チタン酸バリウムまたはチタン酸鉛等が用いられ、
有機圧電材料としては、PVDFやVDF/TrFEの
コポリマ等を用いることができる。
The present invention provides a base having a concave surface, a composite film of a piezoelectric ceramic material and an organic piezoelectric material laminated on the concave surface, and an organic piezoelectric film laminated on the composite film. Is to have. This composite film may be one in which powder of a piezoelectric ceramic material is mixed to form an organic piezoelectric material, and as the piezoelectric ceramic material, PZ is used.
T, barium titanate or lead titanate is used,
As the organic piezoelectric material, PVDF, VDF / TrFE copolymer, or the like can be used.

【0006】この複合膜を設けることにより、強度が大
きいので、有機圧電材料のみでは柔軟すぎて必要となる
反射板が不要になる。また、複合膜の代わりに直接圧電
セラミックス材料を基台に設けるには、凹面に形成する
のが困難である。
By providing this composite film, since the strength is high, the reflecting plate which is necessary because the organic piezoelectric material alone is too flexible is unnecessary. Further, if the piezoelectric ceramic material is directly provided on the base instead of the composite film, it is difficult to form the concave surface.

【0007】[0007]

【発明の実施の形態】本発明の一実施形態について、図
1および図2を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS.

【0008】図において、基台としての凹面1aを有す
るフェノール樹脂等によるバッキング材1と、凹面1a
に積層される圧電セラミックス材料としてPZT(チタ
ンジルコン酸鉛)および有機圧電材料としてPVDF
(ポリフッ化ビニリデン)やそれを主材とする共重合体
(VDF/TrFE(テトラフルオロエチレン))の複
合膜である複合体反射板2と、複合体反射板2に積層さ
れた有機圧電膜である同上のVDF/TrFEによる高
分子圧電体3とが示されている。
In the figure, a backing material 1 made of phenolic resin or the like having a concave surface 1a as a base, and a concave surface 1a
PZT (lead titanium zirconate) as a piezoelectric ceramic material and PVDF as an organic piezoelectric material to be laminated on
A composite reflector 2 which is a composite film of (polyvinylidene fluoride) or a copolymer (VDF / TrFE (tetrafluoroethylene)) containing the same as a main material, and an organic piezoelectric film laminated on the composite reflector 2. A polymer piezoelectric body 3 made of VDF / TrFE of the same as above is shown.

【0009】そして、複合体反射板2と高分子圧電体3
の間および上下面にはそれぞれ金等の蒸着により電極
4、5、6が形成されている。また、図1はシングル
型、図2はアニュラー型であるので、電極4、5は図1
では一体でよいが、図2ではリング状に分割され、個々
に出力が得られるような構造になっている。そして、各
電極4、5、6は、詳細な説明を行わないが、発振回路
TXと受信回路RXに接続され、発振回路TXにより電
極4、5を介して複合体反射体2から超音波が発振さ
れ、受信回路RXにより複合体反射体2を介した高分子
圧電体3による受信出力が電極4、6を介して得られ
る。
Then, the composite reflector 2 and the piezoelectric polymer 3
Electrodes 4, 5 and 6 are formed on the space and on the upper and lower surfaces by vapor deposition of gold or the like. Further, since FIG. 1 is a single type and FIG. 2 is an annular type, the electrodes 4 and 5 are shown in FIG.
2 may be integrated, but in FIG. 2, the structure is such that the output is obtained individually by being divided into rings. Although not described in detail, the respective electrodes 4, 5, 6 are connected to the oscillation circuit TX and the reception circuit RX, and ultrasonic waves are emitted from the composite reflector 2 via the electrodes 4, 5 by the oscillation circuit TX. It is oscillated and a reception output by the polymer piezoelectric material 3 via the composite reflector 2 is obtained via the electrodes 4 and 6 by the reception circuit RX.

【0010】この複合体反射板2は、圧電セラミックス
材料の粉体を混入して有機圧電材料の重合を行い成膜さ
れ、圧電セラミックス材料単体に比べて成形性を持たせ
ている。圧電セラミックス材料としては、最適のPZT
が用いられ、有機圧電材料としては、高分子圧電体3も
同様に、圧電性に優れたVDF/TrFEが用いられて
いる。また、圧電セラミックス材料としては、PZT以
外にチタン酸バリウムまたはチタン酸鉛等を、有機圧電
材料としては、PVDFやVDF/TrFE以外にポリ
テトラフルオロエチレン、テトラフルオロエチレン/ヘ
キサフルオロプロピレン共重合体、テトラフルオロエチ
レン/パーフルオロアルキルビニルエーテル共重合体、
ポリクロロトリフルオロエチレン、ポリビニルフルオラ
イド等を用いることができる。
The composite reflector 2 is formed by mixing a powder of a piezoelectric ceramic material and polymerizing an organic piezoelectric material, and has a moldability as compared with a single piezoelectric ceramic material. Optimal PZT as a piezoelectric ceramic material
As the organic piezoelectric material, the polymer piezoelectric body 3 similarly uses VDF / TrFE having excellent piezoelectricity. In addition to PZT, barium titanate, lead titanate, or the like is used as the piezoelectric ceramic material, and polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymer is used as the organic piezoelectric material, in addition to PVDF or VDF / TrFE. Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer,
Polychlorotrifluoroethylene, polyvinyl fluoride, etc. can be used.

【0011】そして、複合体反射板2の成膜には、例え
ばキャスト法により行うことができる。ガラス製のキャ
スト板にPZTの粉体を混合させたVDF/TrFEの
溶液(溶剤DMF)を注入し、真空乾燥器(50℃、2
00mmHg)中で窒素ガスを導入しながら30時間吸
引乾燥後、キャスト板を冷媒中で急冷して複合体膜を剥
離させ、ポーリング後に所定の大きさに切り出せばよ
い。このとき、PZT粉体が有機質になじむ必要がある
ので、MMA(メタメチルアクリル酸)等で予め粉体表
面を処理しておくか、溶媒中に混合することが好まし
い。ただし、MMAが両者の界面を阻害しない少量とす
る必要がある。ここで、VDF/TrFEの溶液を用い
ているが、モノマ溶液として重合させるようにしてもよ
い。 また、この複合体の成形性について図3に結果の
表を、比重および電気機械変換定数Ktとともに示す。
PZTにVDF/TrFEを混合していくと、9:1の
割合(重量比)でも成形性がよくなるが、VDF/Tr
FEの量が増えるにつれ音響インピーダンスが小さくな
り、反射板としての効果が減少する。基本的にこの点か
らはPZTにVDF/TrFEの割合が6:4程度まで
使用できる。また、受信波形λ/4の点でもPZTのみ
では114μm/10MHzに対して、6:4のものは
88μm/10MHzである。さらに、割合を変えて柔
らかすぎて形状保持が困難な場合であっても図1のバッ
キング材1等の基台に接着することによって目的を達成
することができる。
The film formation of the composite reflection plate 2 can be performed by, for example, a casting method. A VDF / TrFE solution (solvent DMF) in which PZT powder was mixed was poured into a glass cast plate, and a vacuum dryer (50 ° C., 2
After suction drying for 30 hours while introducing nitrogen gas in (00 mmHg), the cast plate may be rapidly cooled in a refrigerant to separate the composite film, and after poling, it may be cut into a predetermined size. At this time, since it is necessary for the PZT powder to become organically compatible, it is preferable to pretreat the powder surface with MMA (methmethylacrylic acid) or the like, or to mix it in a solvent. However, it is necessary that the amount of MMA be small enough not to interfere with the interface between the two. Although the VDF / TrFE solution is used here, it may be polymerized as a monomer solution. Further, FIG. 3 shows a table of the results of the moldability of this composite together with the specific gravity and the electromechanical conversion constant Kt.
When VDF / TrFE is mixed with PZT, the moldability improves even at a ratio of 9: 1 (weight ratio).
As the amount of FE increases, the acoustic impedance decreases, and the effect as a reflector decreases. Basically, from this point, the ratio of VDF / TrFE to PZT can be up to about 6: 4. Also, in terms of the reception waveform λ / 4, the PZT alone has a frequency of 114 μm / 10 MHz, whereas the frequency of 6: 4 has a frequency of 88 μm / 10 MHz. Further, even when the ratio is changed and the shape is too soft to maintain the shape, the object can be achieved by adhering it to the base such as the backing material 1 shown in FIG.

【0012】そして、上記複合体の圧電特性に関し、縦
軸を電気機械変換定数Kt、横軸を重量比としてグラフ
を図4に示す。図4からPZTにVDF/TrFEの割
合が7:3以上であると、特性に大きな差はない。な
お、高分子圧電体としてVDF/TrFEを用いている
ので、PVDF単独のようにフィルムの延伸を必要とせ
ず、熱処理後に厚さ1μ当たり印加電圧100Vでポー
リングすれば圧電性が得られる。
FIG. 4 is a graph showing the piezoelectric characteristics of the above composite, with the vertical axis representing the electromechanical conversion constant Kt and the horizontal axis representing the weight ratio. From FIG. 4, when the ratio of VDF / TrFE to PZT is 7: 3 or more, there is no large difference in characteristics. Since VDF / TrFE is used as the polymer piezoelectric material, it is not necessary to stretch the film unlike PVDF alone, and piezoelectricity can be obtained by poling after heat treatment at an applied voltage of 100 V per 1 μm of thickness.

【0013】このように形成される各素子が図示しない
本体に装着され、超音波プローブが形成される。そのと
きに、各素子の上側が検査対象の当接面に配置されるよ
うになるが、その際には図示しないPET等による保護
フィルムまたは保護ペースト等の保護膜が形成される。
また、本発明の各実施形態において、複合体反射体2
は、圧電セラミックス単体でないので柔軟性を有してい
るので、基台1の凹面1aに当接させることができる
が、反射体の役割を行うためには厚さが必要であるが、
不足の場合には通常の銅による反射板を用いる場合と同
様にすることができる。さらに、素子の凹面化は平面に
比べて特性がよく、特にアニュラー型として用いる場合
には平面では利用できない。
Each element thus formed is mounted on a main body (not shown) to form an ultrasonic probe. At that time, the upper side of each element comes to be arranged on the contact surface of the inspection target, but at that time, a protective film such as PET or a protective film such as a protective paste (not shown) is formed.
In addition, in each embodiment of the present invention, the composite reflector 2
Since it is not a single piezoelectric ceramic and has flexibility, it can be brought into contact with the concave surface 1a of the base 1, but a thickness is necessary to perform the role of a reflector.
If it is insufficient, it can be performed in the same manner as in the case of using an ordinary copper reflector. Furthermore, the concaved surface of the element has better characteristics than a flat surface, and cannot be used on a flat surface particularly when used as an annular type.

【0014】以上のように、凹面1aを有する基台1
と、該凹面1aに積層される圧電セラミックス材料およ
び有機圧電材料の複合膜である複合体反射体2と、該複
合体反射体2に積層された有機圧電膜である高分子圧電
体3と、を有するものであって、超音波の発振には圧電
セラミックス材料および有機圧電材料の複合膜である複
合体反射体2を用い、受信には有機圧電膜である高分子
圧電体3を用いることで、超音波の送信および受信の特
性を向上させることができ、凹面1aを有する基台1上
に設けられるので、さらに特性が向上し、アニュラー型
に用いる場合にも有利である。
As described above, the base 1 having the concave surface 1a
A composite reflector 2 which is a composite film of a piezoelectric ceramic material and an organic piezoelectric material laminated on the concave surface 1a, and a polymer piezoelectric body 3 which is an organic piezoelectric film laminated on the composite reflector 2. By using the composite reflector 2 which is a composite film of a piezoelectric ceramic material and an organic piezoelectric material for the oscillation of ultrasonic waves, and the polymer piezoelectric body 3 which is an organic piezoelectric film for the reception, Since the characteristics of transmitting and receiving ultrasonic waves can be improved and the ultrasonic wave is provided on the base 1 having the concave surface 1a, the characteristics are further improved, which is also advantageous when used in an annular type.

【0015】この複合体反射体2は、圧電セラミックス
材料の粉体を混入して有機圧電材料の重合を行い成膜さ
れることにより、圧電セラミックス材料単体よりも成形
性に優れ基台1の凹面1aに当接させることができる。
圧電セラミックス材料としては、PZT、チタン酸バリ
ウムまたはチタン酸鉛等が用いられ、有機圧電材料とし
ては、PVDF、VDCN/VAcまたはVDF/Tr
FEのコポリマ等を用いることができる。有機圧電材料
としてはVDF/TrFEが圧電性に優れ、圧電セラミ
ックス材料としてはPZTが最良である。
The composite reflector 2 is formed into a film by mixing the powder of the piezoelectric ceramic material and polymerizing the organic piezoelectric material, so that the composite reflector 2 is superior in moldability to the piezoelectric ceramic material alone and has a concave surface of the base 1. It can be brought into contact with 1a.
PZT, barium titanate or lead titanate is used as the piezoelectric ceramic material, and PVDF, VDCN / VAc or VDF / Tr is used as the organic piezoelectric material.
An FE copolymer or the like can be used. As the organic piezoelectric material, VDF / TrFE has excellent piezoelectricity, and PZT is the best as the piezoelectric ceramic material.

【0016】また、複合体反射体2により、有機圧電材
料では必要となる反射板が不要になる。また、複合膜の
代わりに直接圧電セラミックス材料を設けるには凹面に
形成するのが困難である。
The composite reflector 2 also eliminates the need for a reflector, which is required with organic piezoelectric materials. Moreover, it is difficult to form the piezoelectric ceramic material directly on the concave surface in place of the composite film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態(シングル型)を示す断面
図。
FIG. 1 is a sectional view showing an embodiment (single type) of the present invention.

【図2】本発明の他の実施形態(アニュラー型)を示す
断面図。
FIG. 2 is a sectional view showing another embodiment (annular type) of the present invention.

【図3】複合体の成形性に関する表。FIG. 3 is a table relating to moldability of composites.

【図4】複合体の圧電特性に関するグラフ。FIG. 4 is a graph relating to piezoelectric characteristics of a composite.

【符号の説明】[Explanation of symbols]

1 基台 2 複合体反射体 3 高分子圧電体 1 base 2 composite reflector 3 polymer piezoelectric

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 凹面を有する基台と、該凹面に積層され
る圧電セラミックス材料および有機圧電材料の複合膜
と、該複合膜に積層された有機圧電膜と、を有すること
を特徴とする超音波プローブ。
1. A super-structure comprising a base having a concave surface, a composite film of a piezoelectric ceramic material and an organic piezoelectric material laminated on the concave surface, and an organic piezoelectric film laminated on the composite film. Sonic probe.
【請求項2】 前記複合膜は、圧電セラミックス材料の
粉体を混入して有機圧電材料の成膜を行ったものである
請求項1の超音波プローブ。
2. The ultrasonic probe according to claim 1, wherein the composite film is formed by mixing a powder of a piezoelectric ceramic material to form an organic piezoelectric material.
【請求項3】 前記複合膜に用いられる有機圧電材料
は、フッ化ビニリデンを主材とする共重合体である請求
項2の超音波プローブ。
3. The ultrasonic probe according to claim 2, wherein the organic piezoelectric material used for the composite film is a copolymer containing vinylidene fluoride as a main material.
JP8020972A 1996-02-07 1996-02-07 Ultrasonic probe Pending JPH09215094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8020972A JPH09215094A (en) 1996-02-07 1996-02-07 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020972A JPH09215094A (en) 1996-02-07 1996-02-07 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH09215094A true JPH09215094A (en) 1997-08-15

Family

ID=12042090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020972A Pending JPH09215094A (en) 1996-02-07 1996-02-07 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH09215094A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528951A (en) * 2002-06-10 2005-09-29 シメッド ライフ システムズ インコーポレイテッド Ultrasound imaging catheter assembly
WO2007145073A1 (en) * 2006-06-13 2007-12-21 Konica Minolta Medical & Graphic, Inc. Array ultrasonic probe and its manufacturing method and array ultrasonic probe drive method
WO2009066519A1 (en) * 2007-11-21 2009-05-28 Konica Minolta Medical & Graphic, Inc. Oscillator for ultrasonic wave reception, manufacturing method thereof, ultrasonic wave probe, and ultrasonic wave medical diagnostic imaging system
US7583563B2 (en) 2004-04-23 2009-09-01 Denso Corporation Ultrasonic sensor
WO2010061726A1 (en) * 2008-11-25 2010-06-03 コニカミノルタエムジー株式会社 Organic piezoelectric material, ultrasonic transducer and ultrasonic probe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528951A (en) * 2002-06-10 2005-09-29 シメッド ライフ システムズ インコーポレイテッド Ultrasound imaging catheter assembly
US8043222B2 (en) 2002-06-10 2011-10-25 Scimed Life Systems, Inc. Transducer with multiple resonant frequencies for an imaging catheter
US7583563B2 (en) 2004-04-23 2009-09-01 Denso Corporation Ultrasonic sensor
WO2007145073A1 (en) * 2006-06-13 2007-12-21 Konica Minolta Medical & Graphic, Inc. Array ultrasonic probe and its manufacturing method and array ultrasonic probe drive method
JP5083210B2 (en) * 2006-06-13 2012-11-28 コニカミノルタエムジー株式会社 Array-type ultrasonic probe and manufacturing method thereof
WO2009066519A1 (en) * 2007-11-21 2009-05-28 Konica Minolta Medical & Graphic, Inc. Oscillator for ultrasonic wave reception, manufacturing method thereof, ultrasonic wave probe, and ultrasonic wave medical diagnostic imaging system
JP5392090B2 (en) * 2007-11-21 2014-01-22 コニカミノルタ株式会社 Ultrasonic wave receiving vibrator, manufacturing method thereof, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
WO2010061726A1 (en) * 2008-11-25 2010-06-03 コニカミノルタエムジー株式会社 Organic piezoelectric material, ultrasonic transducer and ultrasonic probe

Similar Documents

Publication Publication Date Title
JP5083210B2 (en) Array-type ultrasonic probe and manufacturing method thereof
Zhou et al. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications
Shung et al. Piezoelectric materials for high frequency medical imaging applications: A review
US8156620B2 (en) Process of making an ultrasonic probe
US10751756B2 (en) Porosity control in piezoelectric films
JP5493520B2 (en) Organic piezoelectric material manufacturing method, organic piezoelectric material, ultrasonic transducer, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
JPH0335878B2 (en)
Yuan et al. 5C-5 high frequency piezo composites microfabricated ultrasound transducers for intravascular imaging
Bantignies et al. Lead-free high-frequency linear-array transducer (30 MHz) for in vivo skin imaging
JPH09215094A (en) Ultrasonic probe
Zipparo et al. Imaging arrays with improved transmit power capability
JPH0294579A (en) Electrostrictive porcelain composition for ultrasonic vibrator
JP2974815B2 (en) Ultrasonic vibrator and manufacturing method thereof
Xu et al. Composite transducer with multiple piezoelectric matching layers
JPS59158699A (en) Ultrasonic wave probe
Matsunaka et al. Porous piezoelectric ceramic transducer for medical ultrasonic applications
JPH07390A (en) Ultrasonic probe
JPS6242560B2 (en)
JP2011155574A (en) Laminated ultrasonic vibrator, ultrasonic probe using the same, and ultrasonic medical image diagnostic device
JP4161187B2 (en) Piezoelectric plate, manufacturing method thereof, and ultrasonic transducer using the same
Ma et al. 40MHz piezocomposite linear array with one-wavelength-pitch
JP2004120320A (en) Ultrasonic transducer array and its manufacturing method
US20230197056A1 (en) Compound acoustic lens
SA Lead-free high-frequency linear-array transducer (30 MHz) for in vivo skin imaging
JPH1056694A (en) Ultrasonic wave probe