JPH092148A - Headlamp optical axis regulating device for automobile - Google Patents
Headlamp optical axis regulating device for automobileInfo
- Publication number
- JPH092148A JPH092148A JP15766795A JP15766795A JPH092148A JP H092148 A JPH092148 A JP H092148A JP 15766795 A JP15766795 A JP 15766795A JP 15766795 A JP15766795 A JP 15766795A JP H092148 A JPH092148 A JP H092148A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- optical axis
- ultrasonic
- ultrasonic sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超音波による距離測定
を用いた自動車用前照灯光軸調整装置の改良に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a vehicle headlamp optical axis adjustment device using ultrasonic distance measurement.
【0002】[0002]
【従来の技術】自動車の路面に対する角度は、その自動
車に乗車する人数や積載する荷重の多寡あるいはそれら
の分布状態等に伴って変化し、これにより前照灯の光軸
も変化する。このことは、知らずして自車の前照灯で対
向車を眩惑していたり、前照灯が下方に向き過ぎている
ことがあることを意味し、したがって、前照灯の光軸を
適正に自動調整できることは自車及び対向車の安全性確
保に極めて有用である。2. Description of the Related Art The angle of an automobile with respect to the road surface changes in accordance with the number of people in the automobile, the amount of load to be loaded or the distribution state thereof, and the optical axis of the headlight also changes accordingly. This means that you may unknowingly be dazzling an oncoming vehicle with your vehicle's headlight, or the headlight may be pointing too far downward, and therefore the optical axis of the headlight should be Being able to adjust automatically is extremely useful for ensuring the safety of the own vehicle and oncoming vehicles.
【0003】そこで、前照灯の光軸を自動調整する自動
車用前照灯光軸調整装置が種々案出されているが、この
場合、自動車の路面に対する角度、すなわち前照灯の光
軸の傾きを求める方法として、自動車の前・後端部に距
離センサを設け、各々の箇所で路面との距離を測定し、
それらの値に基づいて傾きを求める方法がある。この方
法では、通常、自動車前・後端部の所定位置から発射
(送信)された測定用媒体の路面からの反射を検出し、
距離測定を行う。距離測定に用いられる媒体としては
光、電波あるいは超音波等があるが、光は発光面や受光
面の汚れで距離測定が不能になったり、路面を光反射面
と想定することは実際上、困難であり、また電波は外来
雑音の影響を受けて誤測定されやすい。このことから、
超音波が好適であり、実際に超音波を用いて距離測定
し、前照灯の光軸の傾きを求め、光軸調整する技術がい
くつか考えられている。Therefore, various types of vehicle headlight optical axis adjusting devices for automatically adjusting the optical axis of the headlight have been devised. In this case, the angle with respect to the road surface of the vehicle, that is, the inclination of the optical axis of the headlight. As a method of determining the distance, install a distance sensor at the front and rear ends of the car, measure the distance to the road surface at each location,
There is a method of obtaining the inclination based on those values. In this method, usually, the reflection from the road surface of the measurement medium emitted (transmitted) from a predetermined position on the front and rear ends of the vehicle is detected,
Measure the distance. The medium used for distance measurement includes light, radio waves, ultrasonic waves, etc., but it is impossible to measure distance due to dirt on the light emitting surface or light receiving surface of light, and it is actually assumed that the road surface is a light reflecting surface. It is difficult, and radio waves are easily affected by external noise and are erroneously measured. From this,
Ultrasonic waves are preferable, and some techniques have been considered in which distances are actually measured using ultrasonic waves, the tilt of the optical axis of the headlight is determined, and the optical axis is adjusted.
【0004】図3はその一例を示すブロック図である。
この図3において、1は送信用及び受信用の一対の超音
波振動子等からなる超音波センサ、2は超音波センサ1
にパルス状の高電圧信号bを与えてその超音波センサ1
から所定のパルス状超音波を発射(送信)させる送信回
路、3は超音波センサ1で受信された信号を増幅・整形
する受信回路、4は超音波センサ1と受信回路3の間に
設けられ、送信回路2からの信号bを受信回路3に伝え
ないための選択回路である。5はタイミング回路、6は
制御回路である。ここで、タイミング回路5は超音波の
送信周波数fと送信時間τを設定するもので、制御回路
6からのパルス信号(トリガパルス)aによって起動し
て送信回路2を駆動し、かつ、受信回路3に対して制御
回路6からのパルス信号aを伝送するものである。制御
回路6は受信回路3からの信号cと後述位置センサから
の信号Vsを入力として演算を行い、その演算結果に応
じてタイミング回路5へ信号aを、後述駆動回路へ信号
gを各々出力するものである。7は制御回路6からの信
号gによって前照灯光軸駆動装置9を駆動するための駆
動回路、8は前照灯光軸駆動装置9の出力軸の位置を検
出し、その検出信号Vsを制御回路6へ帰還する位置セ
ンサである。FIG. 3 is a block diagram showing an example thereof.
In FIG. 3, reference numeral 1 is an ultrasonic sensor including a pair of ultrasonic transducers for transmission and reception, and 2 is an ultrasonic sensor 1.
By applying a pulsed high voltage signal b to the ultrasonic sensor 1
A transmitting circuit for emitting (transmitting) a predetermined pulsed ultrasonic wave from the ultrasonic wave sensor 3, a receiving circuit 3 for amplifying and shaping a signal received by the ultrasonic sensor 1, and a reference numeral 4 provided between the ultrasonic sensor 1 and the receiving circuit 3. , A selection circuit for not transmitting the signal b from the transmission circuit 2 to the reception circuit 3. Reference numeral 5 is a timing circuit, and 6 is a control circuit. Here, the timing circuit 5 sets the transmission frequency f and the transmission time τ of the ultrasonic wave, and is activated by the pulse signal (trigger pulse) a from the control circuit 6 to drive the transmission circuit 2 and the receiving circuit. The pulse signal a from the control circuit 6 is transmitted to the circuit 3. The control circuit 6 receives the signal c from the receiving circuit 3 and the signal Vs from the position sensor which will be described later as input, performs calculation, and outputs the signal a to the timing circuit 5 and the signal g to the drive circuit which will be described later according to the calculation result. It is a thing. Reference numeral 7 is a drive circuit for driving the headlamp optical axis drive device 9 by a signal g from the control circuit 6, and 8 is a position detection circuit for detecting the position of the output shaft of the headlamp optical axis drive device 9 and detecting the detected signal Vs. 6 is a position sensor that returns to 6.
【0005】ここで、前記送信回路2、受信回路3、選
択回路4及びタイミング回路5は超音波送受信回路11
を構成するが、この超音波送受信回路11と前記超音波
センサ1は各々一対設けられるもので、そのうち1組
(符号に添字 Fを付してあるもの)は自動車(図示せ
ず)の前端部用、他の1組(符号に添字 Rを付してある
もの)は同じく後端部用である。前端部用の超音波セン
サ1Fは自動車前端部、例えば前バンパ下部に、後端部
用の超音波センサ1Rは自動車後端部、例えば後バンパ
下部に、各々路面Gに対向させた状態で取り付けられて
いる。Here, the transmitting circuit 2, the receiving circuit 3, the selecting circuit 4, and the timing circuit 5 are ultrasonic transmitting / receiving circuits 11.
The ultrasonic transmitter / receiver circuit 11 and the ultrasonic sensor 1 are provided as a pair, and one set (the one with the suffix F added to the reference numeral) is the front end of an automobile (not shown). The other set (the one with the suffix R attached to the code) is also for the rear end. The ultrasonic sensor 1F for the front end portion is attached to the front end portion of the automobile, for example, the lower front bumper, and the ultrasonic sensor 1R for the rear end portion is attached to the rear end portion of the automobile, for example, the lower rear bumper, while facing the road surface G. Has been.
【0006】このような自動車用前照灯光軸調整装置に
おいて、制御回路6は、超音波送信と受信のタイミング
をとるパルス信号a(aF,aR)を出力してタイミング
回路5(5F,5R)を起動する。送信回路2(2F,2
R)はパルス信号aの立上がりに同期して一定時間τ、
超音波センサ1(1F,1R)を励振させる高電圧信号b
(bF,bR)を発生する。励振させる振動数fは任意で
ある。In such an automotive headlight optical axis adjusting device, the control circuit 6 outputs a pulse signal a (aF, aR) for timing the transmission and reception of ultrasonic waves, and the timing circuit 5 (5F, 5R). To start. Transmitter circuit 2 (2F, 2
R) is a constant time τ in synchronization with the rise of the pulse signal a,
High voltage signal b to excite the ultrasonic sensor 1 (1F, 1R)
(BF, bR) is generated. The frequency f to be excited is arbitrary.
【0007】超音波センサ1から発射された超音波は路
面Gで反射され、T秒後に再び超音波センサ1に戻る。
その受信信号o(oF,oR)は選択回路4(4F,4R)
を通過し、受信回路3(3F,3R)に至る。なお、送信
回路2への高電圧信号bはこの選択回路4によって受信
回路3への入り込みが阻止される。受信回路3に到達し
た受信信号p(pF,pR)は受信回路3で増幅・整形処
理され、距離L(LF,LR)に応じて時間幅Tが変化す
る距離信号c(cF,cR)として出力されて制御回路6
に送られる。この際の、信号a,b,cの時間的関係は
図4a,b,cに示す通りである。The ultrasonic wave emitted from the ultrasonic sensor 1 is reflected on the road surface G and returns to the ultrasonic sensor 1 again after T seconds.
The received signal o (oF, oR) is the selection circuit 4 (4F, 4R).
To reach the receiving circuit 3 (3F, 3R). The high voltage signal b to the transmission circuit 2 is prevented from entering the reception circuit 3 by the selection circuit 4. The reception signal p (pF, pR) that has reached the reception circuit 3 is amplified and shaped by the reception circuit 3, and as a distance signal c (cF, cR) whose time width T changes according to the distance L (LF, LR). Output control circuit 6
Sent to At this time, the temporal relationships of the signals a, b and c are as shown in FIGS. 4a, b and c.
【0008】制御回路6は、受信回路3から送られてき
た距離信号cを受け、その幅Tに応じたデジタル値又は
アナログ値に変換する。変換結果はメモリ又はサンプル
ホールド回路等に記憶されるが、ここではアナログ値に
変換し、サンプルホールド回路に記憶されるものとす
る。すなわちここでは、距離信号cの幅Tによって電圧
レベルの変わるようなD/A変換カウントを行う(図4
D/A OUT参照)。図4c,D/A OUTから分
かるように、距離信号cがHレベルにあるときのみD/
A変換カウントを開始し、このカウント値は距離信号c
がLレベルになると保持される。ただし、次のパルス信
号aが入ってくると、D/A変換器のカウンタはリセッ
トされるので、再び0からカウントし直され、距離信号
cがHレベルの間はカウントが継続され、距離信号cが
Lレベルになるとそのカウント値が保持されるもので、
以後同様に繰り返される。すなわち、図4のD/A O
UTの波形において太線で示した部分は距離信号cの時
間幅Tに比例した電圧レベルの変化として表わされる。The control circuit 6 receives the distance signal c sent from the receiving circuit 3 and converts it into a digital value or an analog value according to the width T thereof. The conversion result is stored in a memory, a sample hold circuit, or the like. Here, it is assumed that the conversion result is converted into an analog value and stored in the sample hold circuit. That is, here, the D / A conversion count is performed so that the voltage level changes depending on the width T of the distance signal c (FIG. 4).
D / A OUT). As can be seen from FIG. 4c, D / A OUT, D / A only when the distance signal c is at H level.
The A conversion count is started, and this count value is the distance signal c.
Is held at the L level. However, when the next pulse signal a comes in, the counter of the D / A converter is reset, so the counter is counted again from 0, and while the distance signal c is at the H level, counting is continued and When c goes to L level, its count value is held,
The same process is repeated thereafter. That is, D / A O in FIG.
The thick line portion of the UT waveform is represented as a change in voltage level proportional to the time width T of the distance signal c.
【0009】また、このD/A変換カウント途中の傾斜
波形(図4のD/A OUT中の上向き矢印↑で示した
部分)は、カウントの過程で原理的に生じるもので、実
際の距離Lを示すものではない。上向き矢印↑で示した
部分を削除すると連続した信号として扱うことができな
くなってしまうため、上向き矢印↑部分にはその直前の
アナログレベルを保持させて連続信号とする(図4e参
照)。この連続信号を疑似連続信号e(eF,eR)とい
うことにすると、制御回路6では、まずその疑似連続信
号eを得る処理を行う。The ramp waveform during the D / A conversion counting (the portion indicated by the upward arrow ↑ in D / A OUT of FIG. 4) is generated in principle during the counting process, and the actual distance L Does not indicate. If the portion indicated by the upward arrow ↑ is deleted, it cannot be treated as a continuous signal. Therefore, the analog level immediately before the upward arrow ↑ is held to be a continuous signal (see FIG. 4e). When this continuous signal is referred to as a pseudo continuous signal e (eF, eR), the control circuit 6 first performs a process of obtaining the pseudo continuous signal e.
【0010】以上の動作は自動車の前・後端部の超音波
センサ1F,1Rから送られてくる信号について共通であ
り、このような動作を経て、自動車の前・後端部につい
ての疑似連続信号eF,eRが得られる。このとき(ある
時点tにおいて)、 前端部用超音波センサ1Fの疑似連続信号eFの電圧値:VF(t) 後端部用超音波センサ1Rの疑似連続信号eRの電圧値:VR(t) 前端部用超音波センサ1Fと路面G間距離 :LF(=VF(t)・k) 後端部用超音波センサ1Rと路面G間距離 :LR(=VR(t)・k) 比例定数 :k 超音波センサ1F,1Rの前後間距離:l 車体傾斜 :θ(t) とすると、 tanθ(t)=(LF−LR)/l={k(VF(t)−VR(t))}/l…(1) となり、K=1とすれば、 tanθ(t)=(VF(t)−VR(t))/l …(2) が成り立つ。このとき、θ(t)の範囲は事実上、−3゜
<θ(t)<3゜であるため、(2)式を、 k´θ(t)≒(VF(t)−VR(t))/l (k´は比例定数) θ(t)≒(1/k´)×{(VF(t)−VR(t))/l} …(3) とみなすことができる。The above operation is common to the signals sent from the ultrasonic sensors 1F and 1R at the front and rear ends of the automobile, and through such operations, the pseudo continuous operation at the front and rear ends of the automobile is performed. The signals eF and eR are obtained. At this time (at a certain time t), the voltage value of the pseudo continuous signal eF of the front end ultrasonic sensor 1F: VF (t) and the voltage value of the pseudo continuous signal eR of the rear end ultrasonic sensor 1R: VR (t) Distance between front-end ultrasonic sensor 1F and road surface G: LF (= VF (t) ・ k) Distance between rear-end ultrasonic sensor 1R and road surface G: LR (= VR (t) ・ k) Proportional constant: k Distance between front and rear of ultrasonic sensors 1F and 1R: l Body inclination: θ (t), tan θ (t) = (LF−LR) / l = {k (VF (t) −VR (t))} / L ... (1), and if K = 1, then tan θ (t) = (VF (t) −VR (t)) / l (2) holds. At this time, since the range of θ (t) is practically −3 ° <θ (t) <3 °, the equation (2) is changed into k′θ (t) ≈ (VF (t) −VR (t )) / L (k ′ is a proportional constant) θ (t) ≈ (1 / k ′) × {(VF (t) −VR (t)) / l} (3)
【0011】一方制御回路6には、前照灯光軸駆動装置
9の現在の出力軸の位置信号(電圧)Vsが位置センサ
8から帰還している。制御回路6は、この電圧Vsと前
掲(3)式によるθ(t)とを比較し、θ(t)<Vs又はθ
(t)>Vsの関係にあるとき駆動回路7へ信号を出力し、
前照灯光軸駆動装置9を駆動して路面Gに対する自動車
の傾斜により生じた前照灯光軸の傾きを打ち消す方向に
光軸角度を変更作動する。θ(t)=Vsのときは、適正光
軸角度にあることを意味し、駆動回路7への信号gは出
力されず、前照灯光軸駆動装置9は駆動されない。ま
た、タイミング回路5への信号aも出力されない。On the other hand, to the control circuit 6, the current position signal (voltage) Vs of the output shaft of the headlamp optical axis driving device 9 is fed back from the position sensor 8. The control circuit 6 compares this voltage Vs with θ (t) according to the above equation (3), and θ (t) <Vs or θ
When (t)> Vs, the signal is output to the drive circuit 7,
The headlamp optical axis drive device 9 is driven to change the optical axis angle in a direction in which the inclination of the headlamp optical axis caused by the inclination of the vehicle with respect to the road surface G is canceled. When θ (t) = Vs, it means that the optical axis angle is appropriate, the signal g to the drive circuit 7 is not output, and the headlamp optical axis drive device 9 is not driven. Also, the signal a to the timing circuit 5 is not output.
【0012】ここで受信回路3と制御回路6についてよ
り詳しく説明する。図5は受信回路3の詳細を示す回路
図で、この図5において、31a,31bは増幅器、3
1cは半波整流・平滑回路、31dはフリップフロップ
回路、D/A INはD/A変換器入力、S/H IN
はサンプルホールド選択入力、その他は図3と同様であ
る。なお、図5では添字 Fを省略してある。また、以下
の動作は前・後端部の超音波センサ1F,1Rから送られ
てくる信号について共通である。図6は図5における各
部信号波形図である。Now, the receiving circuit 3 and the control circuit 6 will be described in more detail. FIG. 5 is a circuit diagram showing details of the receiving circuit 3. In FIG. 5, 31a and 31b are amplifiers and 3
1c is a half-wave rectifying / smoothing circuit, 31d is a flip-flop circuit, D / A IN is a D / A converter input, S / H IN
Is the sample and hold selection input, and the others are the same as in FIG. The subscript F is omitted in FIG. The following operations are common to the signals sent from the front and rear end ultrasonic sensors 1F and 1R. FIG. 6 is a signal waveform diagram of each part in FIG.
【0013】通常、受信された信号は、図5に示す受信
回路3で図6中、区間Aの各部信号波形に示すような動
作を経て距離信号cを得ることができる。このように、
図6中の区間Aの受信信号p波形に示すように、常に充
分な大きさの信号(後段で増幅して利用するに値する大
きさの信号)が入力していれば問題は生じない。しか
し、実車搭載時にはこの受信信号pの信号強度が大きく
変動し、特にこれが著しく微弱化することがあり、その
結果、距離信号c波形に距離Lを示すパルスが発生しな
い場合がある。Normally, the received signal can be obtained as a distance signal c by the receiving circuit 3 shown in FIG. 5 through the operations as shown in the signal waveforms of the sections A in FIG. in this way,
As shown in the waveform of the received signal p in the section A in FIG. 6, if a signal of a sufficiently large size (a signal of a size sufficient to be amplified and used in the subsequent stage) is always input, no problem occurs. However, when mounted on an actual vehicle, the signal strength of the received signal p may fluctuate significantly, and this may be extremely weakened, and as a result, a pulse indicating the distance L may not be generated in the waveform of the distance signal c.
【0014】この様子を図6の区間Bに示す。図6の区
間B中、イは微弱な受信信号p部分、ロは距離Lを示す
パルスがない距離信号c部分である。これによると、D
/A変換段でも距離=0とみなされ(区間B中のD/A
OUT信号部分ハ参照)、疑似連続信号eにおいても
区間Baについては誤ったレベルが保持されてしまうこ
とになる。すなわち、受信信号pの振幅が極端に小さく
なると、疑似連続信号eに実際とは違うレベルが生じ、
誤った値で制御が進むことになり、その結果として、適
正な光軸調整が実現できなくなる。This state is shown in section B of FIG. In section B of FIG. 6, a is a weak reception signal p portion, and b is a distance signal c portion without a pulse indicating the distance L. According to this, D
Even at the / A conversion stage, the distance is regarded as 0 (D / A in section B
Even in the case of the pseudo continuous signal e) (see the OUT signal portion C), an incorrect level is held in the section Ba. That is, when the amplitude of the received signal p becomes extremely small, a level different from the actual level occurs in the pseudo continuous signal e,
Control proceeds with an incorrect value, and as a result, proper optical axis adjustment cannot be realized.
【0015】[0015]
【発明が解決しようとする課題】上記のように、従来か
ら超音波を用いて距離測定し、前照灯の光軸の傾きを検
出する技術が知られているが、超音波を用いて距離測定
をする場合、被測定対象である路面Gの音響特性が種々
雑多であることから、路面Gから常に一定強度の音波が
反射してくるとは限らず、その反射波の強度が変動する
場合がしばしばある。また、停止中の自動車の前・後端
部の各超音波センサ1に対向する路面Gの音響特性も常
に同じとは限らない。このため、走行中においても、停
止中においても、正確な距離測定が常に行えるわけでは
なく、特に微弱な反射波に起因する誤測定が生じやす
く、適正な前照灯光軸角調整を行うことができなくなっ
て走行の安全性,円滑性が損なわれるという問題点があ
った。As described above, a technique for measuring the distance using ultrasonic waves and detecting the inclination of the optical axis of the headlight has been conventionally known. However, the distance using ultrasonic waves is known. When the measurement is performed, since the acoustic characteristics of the road surface G that is the object to be measured are mixed, a sound wave of a constant intensity is not always reflected from the road surface G, and the intensity of the reflected wave varies. Often. Further, the acoustic characteristics of the road surface G facing the ultrasonic sensors 1 at the front and rear ends of the stopped vehicle are not always the same. Therefore, it is not always possible to perform accurate distance measurement while traveling or while stopped, and erroneous measurement due to particularly weak reflected waves is likely to occur, and proper headlight optical axis angle adjustment can be performed. There was a problem in that the safety and smoothness of driving were impaired due to the inability to do so.
【0016】本発明の目的は、反射波の強度が一時的に
微弱になっても、適正な前照灯光軸角調整を維持するが
でき、より一層、安全で円滑な走行が実現できる自動車
用前照灯光軸調整装置を提供することにある。An object of the present invention is to provide an automobile for which an appropriate adjustment of the headlight optical axis angle can be maintained even if the intensity of the reflected wave is temporarily weakened, and a safer and smoother driving can be realized. An object is to provide a headlight optical axis adjustment device.
【0017】[0017]
【課題を解決するための手段】上記目的は、自動車の前
・後端部側に各々路面に対向して設けられた超音波セン
サから所定のパルス状超音波を発射させると共にその反
射波を各超音波センサで超音波発射毎に各々検出し、そ
の各反射波の各超音波センサへの各到達時間に基づき前
記自動車の路面に対する角度を演算し、その演算結果に
応じて前記自動車の前照灯光軸角度を制御し適正光軸角
度を得る自動車用前照灯光軸調整装置において、前記超
音波センサで検出された反射波が予め設定された強度以
下になったときに、その直前の超音波発射による反射波
をその際の超音波発射による反射波としその超音波セン
サへの到達時間を用いて前記自動車の路面に対する角度
演算を行わせる信号保持回路を設けることにより達成さ
れる。The above object is to emit predetermined pulsed ultrasonic waves from ultrasonic sensors provided on the front and rear end sides of an automobile so as to face the road surface and to reflect the reflected waves. Each ultrasonic wave is detected by the ultrasonic sensor at each ultrasonic emission, and the angle of the reflected wave to the road surface of the vehicle is calculated based on the arrival time at each ultrasonic sensor, and the headlight of the vehicle is calculated according to the calculation result. In a vehicle headlamp optical axis adjusting device for obtaining a proper optical axis angle by controlling the lamp optical axis angle, when the reflected wave detected by the ultrasonic sensor becomes less than or equal to a preset intensity, the ultrasonic wave immediately before that This can be achieved by providing a signal holding circuit that makes the reflected wave from the emission a reflected wave from the ultrasonic emission at that time and uses the arrival time at the ultrasonic sensor to calculate the angle with respect to the road surface of the automobile.
【0018】[0018]
【作用】超音波発射毎に反射波を検出し、その各反射波
の超音波センサへの各到達時間に基づいて角度演算を
し、前照灯光軸角度を制御する場合、正常な反射波検出
の途中で著しく微弱な反射波があると、その際、超音波
センサへの到達時間が計測されないことになり、前照灯
光軸角度制御の制御量が大きく変動し、またその後に正
常な反射波検出が行われると再び制御量が大きく変動す
る等、制御が不安定で、誤測定が生じやすく、適正な前
照灯光軸角調整が行われない。[Function] When a reflected wave is detected each time an ultrasonic wave is emitted, an angle calculation is performed based on each arrival time of each reflected wave to the ultrasonic sensor, and normal reflected wave detection is performed when the headlight optical axis angle is controlled. If there is a remarkably weak reflected wave in the middle of the operation, the arrival time at the ultrasonic sensor will not be measured at that time, the control amount of the headlight optical axis angle control will fluctuate significantly, and after that, the normal reflected wave When the detection is performed, the control amount changes again, and the control is unstable, so that erroneous measurement is likely to occur, and the headlamp optical axis angle is not properly adjusted.
【0019】信号保持回路は、超音波センサで検出され
た反射波が予め設定された強度以下になったときに、す
なわち上記のように著しく微弱な反射波があったとき
に、その直前の超音波発射による反射波をその際の超音
波発射による反射波としその超音波センサへの到達時間
を用いて自動車の路面に対する角度演算を行わせる。し
たがって、制御量が大きく変動する等、制御が不安定に
なることがなくなり、誤測定がなくなる。すなわち、反
射波の強度が一時的に微弱になっても、適正な前照灯光
軸角調整が維持され、より一層、安全で円滑な走行が実
現されることになる。When the reflected wave detected by the ultrasonic sensor becomes less than or equal to the preset intensity, that is, when there is a remarkably weak reflected wave as described above, the signal holding circuit immediately precedes it. The reflected wave from the sound wave emission is used as the reflected wave from the ultrasonic wave emission at that time, and the angle calculation with respect to the road surface of the automobile is performed using the arrival time at the ultrasonic sensor. Therefore, the control does not become unstable due to a large change in the control amount, and erroneous measurement is eliminated. That is, even if the intensity of the reflected wave is temporarily weakened, proper headlamp optical axis angle adjustment is maintained, and safer and smoother traveling is realized.
【0020】[0020]
【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は、本発明による自動車用前照灯光軸調整装
置の一実施例の要部を示す回路図である。この図1にお
いて、31eは+入力端に定電圧Voが入力され、−入
力端に信号sが入力される比較器、31fは信号cを反
転するインバータ、31gはインバータ31fの出力信
号(信号cの反転信号)が一方の入力端に、比較器31
eの出力信号vが他方の入力端に各々入力されるAND
回路、31hはAND回路31gの出力信号wとパルス
信号(トリガパルス)aを入力信号とするフリップフロ
ップ回路で、これらは受信信号pが予め設定された強度
以下になったときに、その直前の超音波発射による信号
eのレベルをその際の超音波発射による信号eのレベル
として保持するように制御回路6を作動させる信号保持
回路3Aを構成する。なお、定電圧Voは有効な受信信
号pとして処理するか否かの閾値電圧であり、R1,R2
はその定電圧Voを設定するための分圧抵抗、R3はプ
ルアップ抵抗である。その他は図5と同様である。ま
た、図1において添字 Fを省略してあることも図5と同
様である。更に、本発明装置全体の基本的構成は図3と
同様である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing a main part of an embodiment of an optical axis adjusting device for a vehicle headlight according to the present invention. In FIG. 1, 31e is a comparator having a + input terminal to which a constant voltage Vo is input and a − input terminal to which a signal s is input, 31f is an inverter that inverts the signal c, 31g is an output signal of the inverter 31f (signal c Signal of the comparator 31
AND in which the output signal v of e is input to the other input end
A circuit, 31h is a flip-flop circuit that receives the output signal w of the AND circuit 31g and the pulse signal (trigger pulse) a as input signals, and these are just before that when the received signal p becomes equal to or less than a preset intensity. A signal holding circuit 3A for activating the control circuit 6 is configured to hold the level of the signal e generated by the ultrasonic wave emission as the level of the signal e generated by the ultrasonic wave emission at that time. The constant voltage Vo is a threshold voltage of whether or not to process as a valid reception signal p, and R1, R2
Is a voltage dividing resistor for setting the constant voltage Vo, and R3 is a pull-up resistor. Others are the same as in FIG. Further, the subscript F is omitted in FIG. 1 as in FIG. Further, the basic configuration of the entire device of the present invention is similar to that of FIG.
【0021】すなわち本発明装置は、その受信回路3
を、図5に示す受信回路3に信号保持回路3Aを付加し
て構成し、信号cを図5に示す受信回路3と同様にD/
A変換器入力(D/A IN)とするが、サンプルホー
ルド選択入力(S/H IN)としては上記信号保持回
路3Aの出力信号xを与えるようにしたものである。That is, the device of the present invention has the receiving circuit 3 thereof.
Is configured by adding a signal holding circuit 3A to the receiving circuit 3 shown in FIG.
The A converter input (D / A IN) is used, but the output signal x of the signal holding circuit 3A is supplied as the sample hold selection input (S / H IN).
【0022】図2は図1における各部信号波形図であ
る。この図2において、D/A OUT及びeは直接に
は図1に示されていないが、制御回路6内でのD/A変
換カウント出力信号及び疑似連続信号であり、図4,図
6と同様である。FIG. 2 is a signal waveform diagram of each part in FIG. In FIG. 2, D / A OUT and e are not directly shown in FIG. 1, but are the D / A conversion count output signal and the pseudo continuous signal in the control circuit 6, and It is the same.
【0023】次に上述本発明装置の動作について説明す
るが、受信信号pが従来装置においても処理可能の信号
強度であるときには、図2中の区間Aでの各部信号波形
と図6中の区間Aでの各部信号波形とを対照して分かる
ように同様の動作であるのでその説明を省略し、反射波
が極めて微弱で、受信信号pが従来装置において処理不
可能な程、著しく微弱である場合の動作について以下に
説明する。Next, the operation of the apparatus of the present invention will be described. When the received signal p has a signal strength that can be processed by the conventional apparatus, the signal waveform of each part in the section A in FIG. 2 and the section in FIG. As can be seen by comparing the signal waveforms at each part in A, the description is omitted because the operation is similar, and the reflected wave is extremely weak, and the received signal p is extremely weak so that the conventional device cannot process it. The operation in this case will be described below.
【0024】受信信号pの信号強度が上記のように著し
く微弱である場合の各部信号波形を図2の区間Bに示
す。図2の区間B中、イは微弱な受信信号p部分、ロは
距離を示すパルスがない距離信号c部分である。これに
よると、D/A変換段でも距離=0とみなされる(区間
B中のD/A OUT信号部分ハ参照)。このため、従
来装置では疑似連続信号eにおいても誤ったレベルが保
持されてしまった(図6の区間Ba参照)。The signal waveform of each part when the signal strength of the received signal p is extremely weak as described above is shown in the section B of FIG. In section B of FIG. 2, a is a weak received signal p portion, and b is a distance signal c portion without a pulse indicating a distance. According to this, the distance is regarded as 0 even at the D / A conversion stage (see the D / A OUT signal portion C in the section B). Therefore, in the conventional device, an erroneous level is held even in the pseudo continuous signal e (see section Ba in FIG. 6).
【0025】本発明装置においては、信号保持回路3A
により、受信信号pが予め設定された強度以下になった
ときに、その直前の超音波発射による信号eのレベルを
その際の信号eのレベルとして保持するように制御回路
6内のサンプルホールド回路(図示せず)を作動させ
る。すなわち、受信信号p、換言すれば受信回路3中の
整流出力信号sが予め設定された強度に対応する定電圧
Vo以下になると、比較器31eの出力信号vはHレベ
ルになる。このとき、フリップフロップ回路31dの出
力信号(距離信号)cはLレベルにあるからインバータ
31fの出力信号(信号cの反転信号)はHレベルにあ
り、したがってAND回路31gの出力信号wはHレベ
ルにある。In the device of the present invention, the signal holding circuit 3A
As a result, when the received signal p becomes equal to or lower than a preset intensity, the sample and hold circuit in the control circuit 6 holds the level of the signal e by the ultrasonic wave emission immediately before that as the level of the signal e at that time. Activate (not shown). That is, when the reception signal p, in other words, the rectified output signal s in the reception circuit 3 becomes equal to or lower than the constant voltage Vo corresponding to the preset strength, the output signal v of the comparator 31e becomes H level. At this time, since the output signal (distance signal) c of the flip-flop circuit 31d is at the L level, the output signal of the inverter 31f (the inverted signal of the signal c) is at the H level, and therefore the output signal w of the AND circuit 31g is at the H level. It is in.
【0026】フリップフロップ回路31hは出力信号w
がHレベルのときホールドの選択信号xを、同wがLレ
ベルのときサンプルの選択信号xを、サンプルホールド
選択入力(S/H IN)として制御回路6内のサンプ
ルホールド回路に与える。これによると、反射波が極め
て微弱で、受信信号pが従来装置において処理不可能な
程、著しく微弱であっても、その区間Bの直前(区間A
の最終部)の信号eのレベル(直前の超音波発射による
信号eのレベル)をその際の超音波発射による信号eの
レベルとして保持する(区間Bb参照)。したがって、
従来装置のように信号eが異常な値になることはなく、
光軸調整の誤動作を最小限に抑え、適正な前照灯光軸角
調整が維持される。以上の動作は前・後端部の超音波セ
ンサ1F,1Rから送られてくる信号について共通であ
る。The flip-flop circuit 31h outputs the output signal w.
Is applied to the sample hold circuit in the control circuit 6 as a sample hold select input (S / H IN) when the hold select signal x is at the H level and when the w is at the L level. According to this, even if the reflected wave is extremely weak and the received signal p is extremely weak to the extent that the conventional device cannot process it, immediately before the section B (section A
The final level of the signal e (the level of the signal e by the immediately preceding ultrasonic wave emission) is held as the level of the signal e by the ultrasonic wave emission at that time (see section Bb). Therefore,
Unlike the conventional device, the signal e does not have an abnormal value,
The malfunction of the optical axis adjustment is minimized, and the proper headlamp optical axis angle adjustment is maintained. The above operation is common to the signals sent from the front and rear end ultrasonic sensors 1F and 1R.
【0027】なお上述実施例では、受信回路3から送ら
れてきた距離信号cの幅Tをアナログ値に変換し、変換
結果をサンプルホールド回路に記憶させる場合について
説明したが、距離信号cの幅Tをデジタル値に変換し、
変換結果をメモリ等に記憶するようにしてもよい。これ
によれば、制御回路6のデジタル回路化に役立つ。In the above embodiment, the width T of the distance signal c sent from the receiving circuit 3 is converted into an analog value and the conversion result is stored in the sample hold circuit. Convert T to a digital value,
The conversion result may be stored in a memory or the like. This is useful for making the control circuit 6 a digital circuit.
【0028】また上述実施例では、前・後端部の超音波
センサ1F,1Rが同一高さで取り付けられることを前提
(前掲(1)〜(3)式はセンサ1F,1Rが同一高さに
あることを前提)としているが、これのみに限定される
ことはなく、異なる高さで取り付けてもよい。この場合
は、例えば制御回路6での演算において超音波センサ1
F,1Rの高さ補正をすればよい。これによれば、超音波
センサ1F,1Rの取付時に高さ合わせをする必要がなく
なり、取付作業が容易になる。一般的には、前端部用の
超音波センサ1Fは前バンパ下部に、後端部用の超音波
センサ1Rは後バンパ下部に、各々路面Gに対向して取
り付けられ、この場合、前バンパ及び後バンパはほぼ同
一高さであるので、高さ合わせをせずに超音波センサ1
F,1Rの取付けが可能である。Further, in the above-mentioned embodiment, it is premised that the ultrasonic sensors 1F and 1R at the front and rear ends are mounted at the same height (the above equations (1) to (3) show that the sensors 1F and 1R have the same height). However, the present invention is not limited to this and may be attached at different heights. In this case, for example, in the calculation in the control circuit 6, the ultrasonic sensor 1
The height of F and 1R should be corrected. This eliminates the need for height adjustment when mounting the ultrasonic sensors 1F and 1R, and facilitates mounting work. Generally, the front end ultrasonic sensor 1F is attached to the lower part of the front bumper, and the rear end ultrasonic sensor 1R is attached to the lower part of the rear bumper so as to face the road surface G. In this case, the front bumper and Since the rear bumpers have almost the same height, the ultrasonic sensor 1 can be used without adjusting the height.
F and 1R can be attached.
【0029】[0029]
【発明の効果】以上説明したように本発明によれば、超
音波センサで検出された反射波が予め設定された強度以
下になったときに、その直前の超音波発射による反射波
をその際の超音波発射による反射波としその超音波セン
サへの到達時間を用いて自動車の路面に対する角度演算
を行わせる信号保持回路を設けたので、反射波の強度が
一時的に微弱になっても、適正な前照灯光軸角調整を維
持するができ、より一層、安全で円滑な走行が実現でき
るという効果がある。As described above, according to the present invention, when the reflected wave detected by the ultrasonic sensor becomes equal to or lower than the preset intensity, the reflected wave immediately before the ultrasonic wave is emitted at that time. Since the signal holding circuit that performs the angle calculation with respect to the road surface of the automobile by using the arrival time to the ultrasonic sensor as the reflected wave due to the ultrasonic wave emission of, even if the intensity of the reflected wave becomes temporarily weak, It is possible to maintain an appropriate headlight optical axis angle adjustment and to realize safer and smoother traveling.
【図1】本発明装置の一実施例の要部を示す回路図であ
る。FIG. 1 is a circuit diagram showing a main part of an embodiment of a device of the present invention.
【図2】図1における各部信号波形図である。FIG. 2 is a signal waveform diagram of each part in FIG.
【図3】自動車用前照灯光軸調整装置の一例を示すブロ
ック図である。FIG. 3 is a block diagram showing an example of a vehicle headlight optical axis adjustment device.
【図4】図3に示す装置の動作を説明するための信号波
形図である。FIG. 4 is a signal waveform diagram for explaining the operation of the device shown in FIG.
【図5】従来装置の要部を示す回路図である。FIG. 5 is a circuit diagram showing a main part of a conventional device.
【図6】図5における各部信号波形図である。FIG. 6 is a signal waveform diagram of each part in FIG.
1(1F,1R)…超音波センサ、2(2F,2R)…送信
回路、3(3F,3R)…受信回路、3A(3AF,3A
R)…信号保持回路、4(4F,4R)…選択回路、5
(5F,5R)…タイミング回路、6…制御回路、7…駆
動回路、8…位置センサ、9…前照灯光軸駆動装置、1
1(11F,11R)…超音波送受信回路、G…路面、L
…超音波センサから路面までの距離、a…パルス信号
(トリガパルス)、b…高電圧信号、c…受信回路出力
信号(距離信号)、g…制御回路からの信号(駆動回路
制御信号)、Vs…前照灯光軸駆動装置の出力軸位置検
出信号、o…選択回路入力信号、p…受信信号。1 (1F, 1R) ... Ultrasonic sensor, 2 (2F, 2R) ... Transmission circuit, 3 (3F, 3R) ... Reception circuit, 3A (3AF, 3A)
R) ... signal holding circuit, 4 (4F, 4R) ... selection circuit, 5
(5F, 5R) ... Timing circuit, 6 ... Control circuit, 7 ... Drive circuit, 8 ... Position sensor, 9 ... Headlight optical axis drive device, 1
1 (11F, 11R) ... Ultrasonic wave transmitting / receiving circuit, G ... Road surface, L
... distance from ultrasonic sensor to road surface, a ... pulse signal (trigger pulse), b ... high voltage signal, c ... receiving circuit output signal (distance signal), g ... signal from control circuit (driving circuit control signal), Vs ... Output axis position detection signal of headlight optical axis drive device, o ... Selection circuit input signal, p ... Reception signal.
Claims (2)
して設けられた超音波センサから所定のパルス状超音波
を発射させると共にその反射波を各超音波センサで超音
波発射毎に各々検出し、その各反射波の各超音波センサ
への各到達時間に基づき前記自動車の路面に対する角度
を演算し、その演算結果に応じて前記自動車の前照灯光
軸角度を制御し適正光軸角度を得る自動車用前照灯光軸
調整装置において、前記超音波センサで検出された反射
波が予め設定された強度以下になったときに、その直前
の超音波発射による反射波をその際の超音波発射による
反射波としその超音波センサへの到達時間を用いて前記
自動車の路面に対する角度演算を行わせる信号保持回路
を具備することを特徴とする自動車用前照灯光軸調整装
置。1. A predetermined pulsed ultrasonic wave is emitted from ultrasonic sensors provided on the front and rear end sides of a vehicle so as to face a road surface, and the reflected wave is emitted by each ultrasonic sensor at each ultrasonic wave emission. To calculate the angle to the road surface of the vehicle based on each arrival time of each reflected wave to each ultrasonic sensor, and to control the headlight optical axis angle of the vehicle according to the calculation result In the vehicle headlight optical axis adjustment device for obtaining the axis angle, when the reflected wave detected by the ultrasonic sensor becomes equal to or lower than a preset intensity, the reflected wave immediately before the ultrasonic wave emission at that time is An optical axis adjusting device for a vehicle headlamp, comprising a signal holding circuit for performing an angle calculation with respect to a road surface of the vehicle by using a reflected wave generated by ultrasonic wave emission and its arrival time at the ultrasonic sensor.
して設けられた超音波センサと、各超音波センサから所
定のパルス状超音波を発射させる送信回路と、各超音波
センサによる受信信号を増幅・整形し、各超音波センサ
から路面までの距離に応じて時間幅が変化する距離信号
を各超音波センサからの超音波発射毎に各々出力する受
信回路と、トリガパルスによって起動して予め設定した
送信周波数及び送信時間で各超音波センサから各々パル
ス状超音波を発射させるように前記送信回路を駆動する
タイミング回路と、前記自動車の前照灯の光軸角度を制
御する前照灯光軸駆動手段と、この前照灯光軸駆動手段
の光軸角度制御出力軸の位置を検出する位置センサと、
前記受信回路からの各距離信号を受けてその時間幅を各
超音波センサからの超音波発射毎にデジタル値又はアナ
ログ値に変換し記憶して各々疑似連続信号を得、各疑似
連続信号の所定時間における値によって前記自動車の路
面に対する角度を演算すると共に、この演算結果及び前
記位置センサからの検出信号で光軸角度が適正であるか
否かを判別し適正光軸角度でないときには前記前照灯光
軸駆動手段を駆動して光軸角度を制御し適正光軸角度を
得る制御回路とを備えてなる自動車用前照灯光軸調整装
置において、前記受信回路は、前記受信信号が予め設定
された強度以下になったときにはその直前の超音波発射
による前記疑似連続信号の値をその際の超音波発射によ
る疑似連続信号の値として保持して前記演算及び光軸角
度制御をするように制御回路を作動させる信号保持回路
を具備することを特徴とする自動車用前照灯光軸調整装
置。2. An ultrasonic sensor provided on each of front and rear end sides of an automobile so as to face a road surface, a transmission circuit for emitting a predetermined pulsed ultrasonic wave from each ultrasonic sensor, and each ultrasonic sensor. By a trigger circuit and a receiving circuit that amplifies and shapes the received signal by each, and outputs a distance signal whose time width changes according to the distance from each ultrasonic sensor to the road surface for each ultrasonic emission from each ultrasonic sensor A timing circuit that drives the transmission circuit so that each ultrasonic sensor emits pulsed ultrasonic waves at a preset transmission frequency and transmission time when activated and the optical axis angle of the vehicle headlight is controlled. Headlight optical axis drive means, a position sensor for detecting the position of the optical axis angle control output shaft of the headlight optical axis drive means,
Each distance signal from the receiving circuit is received, the time width thereof is converted into a digital value or an analog value for each ultrasonic wave emission from each ultrasonic sensor and stored, and each pseudo continuous signal is obtained. The angle with respect to the road surface of the automobile is calculated by a value in time, and it is determined whether the optical axis angle is proper or not based on the calculation result and the detection signal from the position sensor. In a vehicle headlamp optical axis adjusting device comprising a control circuit for driving an axis driving means to control an optical axis angle to obtain an appropriate optical axis angle, the receiving circuit is configured so that the reception signal has a preset intensity. When the following occurs, the value of the quasi-continuous signal immediately before the ultrasonic wave emission is held as the value of the quasi-continuous signal due to the ultrasonic wave emission at that time to perform the calculation and the optical axis angle control. Automotive headlight optical axis adjustment device characterized by comprising a signal holding circuit for operating the control circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15766795A JPH092148A (en) | 1995-06-23 | 1995-06-23 | Headlamp optical axis regulating device for automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15766795A JPH092148A (en) | 1995-06-23 | 1995-06-23 | Headlamp optical axis regulating device for automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH092148A true JPH092148A (en) | 1997-01-07 |
Family
ID=15654754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15766795A Pending JPH092148A (en) | 1995-06-23 | 1995-06-23 | Headlamp optical axis regulating device for automobile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH092148A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6234654B1 (en) | 1998-04-27 | 2001-05-22 | Denso Corporation | Height sensor and vehicular headlight beam axis leveling apparatus |
DE102004013187A1 (en) * | 2003-03-18 | 2004-10-07 | Mitsubishi Fuso Truck And Bus Corp. | Vehicle headlight light axis adjustment device has a control device that constantly monitors the signal from an ultrasonic vehicle inclination state detector and adjusts the axis accordingly |
-
1995
- 1995-06-23 JP JP15766795A patent/JPH092148A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6234654B1 (en) | 1998-04-27 | 2001-05-22 | Denso Corporation | Height sensor and vehicular headlight beam axis leveling apparatus |
DE102004013187A1 (en) * | 2003-03-18 | 2004-10-07 | Mitsubishi Fuso Truck And Bus Corp. | Vehicle headlight light axis adjustment device has a control device that constantly monitors the signal from an ultrasonic vehicle inclination state detector and adjusts the axis accordingly |
US7093963B2 (en) | 2003-03-18 | 2006-08-22 | Mitsubishi Fuso Truck And Bus Corporation | Light axis adjusting apparatus for vehicle headlamp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4595197B2 (en) | Distance measuring device | |
US5485155A (en) | Radar system detecting plural obstacles and measuring distance based on full gain and automatic gain control | |
KR100201738B1 (en) | Distance measuring apparatus and distance measuring method for a vehicle | |
US6445285B1 (en) | Method and apparatus for detecting objects | |
JP2002286443A (en) | Device for detect side collision of automobile | |
US5631875A (en) | Device for measuring distance with ultrasound | |
US6898977B2 (en) | Ultrasonic distance-measuring method and device | |
GB2283096A (en) | Method and device for ultrasonic distance measurement | |
JP3248318B2 (en) | In-vehicle distance measuring device using laser light | |
US20030080543A1 (en) | Vehicular occupant restraint system and method | |
JP2001255371A (en) | Distance measuring device for motor vehicle | |
EP1079241B1 (en) | Inter-vehicle distance measuring apparatus measuring time difference between each detection time of same road surface condition | |
EP0773453A1 (en) | An optical remote detection, anticollision system for vehicles | |
JPH092148A (en) | Headlamp optical axis regulating device for automobile | |
JPH07128438A (en) | Method for correcting distance in radar range finder | |
JPH1172561A (en) | Alarming device for distance between vehicles | |
JPH07167954A (en) | Distance measuring device | |
JPH0330117B2 (en) | ||
JPH06249962A (en) | Radar for vehicle | |
JPH0882679A (en) | Radar apparatus for vehicle | |
JPH0399957A (en) | Forward vehicle detecting device | |
JPH07159531A (en) | Obstacle detecting device of vehicle | |
JPH07174851A (en) | Distance measuring device for vehicle | |
JPH09318734A (en) | Distance measuring device | |
JP7239887B2 (en) | Object detection device and object detection method |