JPH09214244A - Two-frequency resonance antenna device - Google Patents
Two-frequency resonance antenna deviceInfo
- Publication number
- JPH09214244A JPH09214244A JP8298657A JP29865796A JPH09214244A JP H09214244 A JPH09214244 A JP H09214244A JP 8298657 A JP8298657 A JP 8298657A JP 29865796 A JP29865796 A JP 29865796A JP H09214244 A JPH09214244 A JP H09214244A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- antenna device
- dual
- metal
- frequency resonant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 claims abstract description 105
- 230000005855 radiation Effects 0.000 claims abstract description 71
- 230000008878 coupling Effects 0.000 claims abstract description 28
- 238000010168 coupling process Methods 0.000 claims abstract description 28
- 238000005859 coupling reaction Methods 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims description 55
- 239000003990 capacitor Substances 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 230000010287 polarization Effects 0.000 claims description 3
- 241000282887 Suidae Species 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Support Of Aerials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本アンテナ装置は、例えば広
い帯域を有する通信システム、又は2つ以上の通信シス
テムを共用する通信システムに用いられる小型のアンテ
ナ装置、特に2周波共振のアンテナ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small antenna device used in a communication system having a wide band, or a communication system sharing two or more communication systems, and more particularly to a dual frequency resonance antenna device.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】図1及
び2は従来のアンテナ装置を示した図であり、図1はプ
リントアンテナの放射導体板を上下2枚としたもの、図
2はプリントアンテナを横に並列に並べた場合である。
ここで、101A,101Bは放射導体板であり、2枚の異なる
長さ又は幅を有する導体板から成る。102は給電線、
103は放射板と地板の短絡金属板、104は地板、1
20は誘電体板である。従来のアンテナ装置はこのよう
にして、二つの異なるサイズの放射導体板で2つの異な
る周波数で共振を起こさせることにより、一つのアンテ
ナで2共振又は広帯域化を図っている。2. Description of the Related Art FIGS. 1 and 2 are views showing a conventional antenna device. FIG. 1 shows a printed antenna having two upper and lower radiation conductor plates, and FIG. This is the case when the antennas are arranged side by side in parallel.
Here, 101A and 101B are radiation conductor plates, which are composed of two conductor plates having different lengths or widths. 102 is a power supply line,
103 is a short-circuit metal plate between the radiation plate and the ground plate, 104 is the ground plate, 1
20 is a dielectric plate. In this way, the conventional antenna device achieves two resonances or a wide band with one antenna by causing resonances at two different frequencies in the radiation conductor plates of two different sizes.
【0003】この場合、二つの共振周波数FL,FHの比が
1.5 程度以上(1.5FL<FH) であれば比較的容易に実現
出来る。しかし、非常に近い周波数、例えば二つの周波
数の比が1.5 程度未満(FL<FH<1.5FL) で共振させる
こと、又は二つの周波数を近接させて実質的に広帯域化
を図ることは非常に難しい。これは、二つの共振波長が
接近し、かつ2つの放射導体板が非常に近接しているた
め、2つの放射導体間の電磁結合が大となり、電気的に
2枚の放射板が一つに見えてしまい、放射導体板を2枚
とする効果が全く無くなるのである。この現象は図1の
ように放射導体板を上下2枚としたものが顕著である
が、図2のアンテナにおいても同様である。[0003] In this case, two resonance frequencies F L, the ratio of F H
If it is about 1.5 or more (1.5F L <F H ), it can be realized relatively easily. However, it is not possible to resonate at frequencies very close to each other, for example, when the ratio of the two frequencies is less than about 1.5 (F L <F H <1.5F L ), or to bring the two frequencies close to each other to substantially widen the band. extremely difficult. This is because the two resonance wavelengths are close to each other and the two radiation conductor plates are very close to each other, so that the electromagnetic coupling between the two radiation conductors is large and the two radiation plates are electrically combined into one. It is visible, and the effect of using two radiation conductor plates is completely lost. This phenomenon is remarkable when two radiation conductor plates are provided on the upper and lower sides as shown in FIG. 1, but the same is true for the antenna of FIG.
【0004】しかも、この現象を抑制するには2つの放
射導体板の間隔を大きく取る必要があるので、アンテナ
が大きくなるという欠点があった。一方、放射導体板の
結合が強い(間隔が狭い)状態で、整合回路などで強制
的に近接した2つの周波数で共振させると、整合回路の
損失があり、アンテナ利得が下がってしまうという欠点
もあった。Moreover, in order to suppress this phenomenon, it is necessary to make a large gap between the two radiation conductor plates, so that there is a drawback that the antenna becomes large. On the other hand, when the radiating conductor plates are strongly coupled (narrow gap), if the matching circuit is forced to resonate at two frequencies close to each other, there is a loss in the matching circuit and the antenna gain decreases. there were.
【0005】従って、従来のアンテナでは(a) 2つの放
射導体板が非常に近接しているため、これらの結合が大
変強く、任意の2つの周波数で共振させることが出来な
いという欠点、さらに、(b) 非常に近接した2つの周波
数で共振させる場合、又はこれらをさらに近接させて広
帯域化を図る場合には放射導体板の結合を減らすため
に、これらの間隔を取る必要があるのでアンテナが大き
くなるという欠点、また、(c) 放射導体板の間隔を狭く
して、整合回路などで強制的に近接した2つの周波数で
共振させるとアンテナ利得が低下するという欠点があっ
た。Therefore, in the conventional antenna, (a) the two radiating conductor plates are so close to each other that their coupling is so strong that they cannot be resonated at any two frequencies. (b) When resonating at two frequencies that are very close to each other, or when making them closer to each other to broaden the band, in order to reduce the coupling of the radiating conductor plates, it is necessary to provide a space between them, so that the antenna There is a drawback that it becomes large, and (c) there is a drawback that the antenna gain decreases when the distance between the radiating conductor plates is narrowed and forcibly resonating at two frequencies that are close to each other in a matching circuit or the like.
【0006】この発明の目的は、これら従来の欠点を解
決して、任意の2つの周波数で共振させることができ、
さらに非常に近接した2つの周波数で共振させる場合で
も、放射導体板の間隔を狭くでき、従って小型で、かつ
アンテナ利得の低下する恐れのない二周波共振アンテナ
装置を提供しようとするものである。The object of the present invention is to solve these drawbacks of the prior art and to resonate at any two frequencies.
Further, it is an object of the present invention to provide a dual-frequency resonant antenna device that can reduce the distance between the radiation conductor plates even when resonating at two frequencies that are very close to each other, and thus is small in size and has no fear of lowering the antenna gain.
【0007】[0007]
【課題を解決するための手段】この発明による二周波共
振アンテナ装置は、地板と、上記地板に平行に配置され
た誘電体板と、上記誘電体板上に上記地板と平行に互い
に間隔をおいて配置され、一端がそれぞれ上記地板に電
気的に接地された少なくとも2枚の放射導体板と、実質
的に上記2枚の放射導体板の少なくとも一方と上記地板
とにそれぞれ接続された中心導体と外部導体を有する給
電線と、上記2枚の放射導体板間に接続された結合制御
用容量素子と、を含み、上記結合制御用容量素子の容量
は、上記2枚の放射導体板の一方から他方へ結合される
電流と、上記一方の放射導体板から上記結合制御用容量
素子を介して上記他方の放射導体板へ供給される電流が
上記他方の放射導体板において互いに逆相となるよう選
ばれている。A dual-frequency resonant antenna device according to the present invention has a ground plane, a dielectric plate arranged in parallel with the ground plane, and a space on the dielectric plate in parallel with the ground plane. And at least one radiation conductor plate whose one end is electrically grounded to the ground plate, and a central conductor substantially connected to at least one of the two radiation conductor plates and the ground plate, respectively. A power supply line having an outer conductor; and a coupling control capacitive element connected between the two radiation conductor plates, wherein the capacitance of the coupling control capacitive element is from one of the two radiation conductor plates. The current coupled to the other and the current supplied from the one radiation conductor plate to the other radiation conductor plate through the coupling control capacitive element are selected so that they have opposite phases in the other radiation conductor plate. Has been.
【0008】この様に2枚の放射導体板を結合制御用容
量で接続したため、2枚の放射導体板を接近して配置す
ることができ、しかも2つの共振周波数を接近して選ぶ
ことができる。Since the two radiation conductor plates are connected by the coupling control capacitor as described above, the two radiation conductor plates can be arranged close to each other, and two resonance frequencies can be selected close to each other. .
【0009】[0009]
実施例1 図3はこの発明の第1の実施例を示す。四辺形の誘電体
板20を挟んで互いに対向して配置された四辺形の2枚
の放射導体板1A,1Bの各一辺の2点、この例では両
端を接地金属板5A,5Bでそれぞれ地板6と接続し、
それらの接地された辺と対向する辺(以降、開放端辺と
呼ぶ)1a,1b上の一点、この例では互いに反対側の
一端をそれぞれ共振制御用容量素子4A,4Bを介して
地板6と接続する。この実施例ではこれら容量素子4
A,4Bが接続された開放端辺1a,1b同士は平行で
は無く、互いに逆方向の斜辺となっている。これら2つ
の逆向き斜辺間に、この発明の原理に従って結合制御用
の容量素子2が接続されている。この結合制御用容量素
子2は、2つの対向した放射導体板1A,1Bの一方か
ら他方へ結合される電流と、上記一方からこの結合制御
用容量素子を介して他方へ供給された電流とがその他方
の放射導体板において互いに逆相となるようにキャパシ
タンスが調節されている。Embodiment 1 FIG. 3 shows a first embodiment of the present invention. Two points on each side of the two quadrilateral radiating conductor plates 1A and 1B, which are arranged to face each other with the quadrilateral dielectric plate 20 interposed therebetween, in this example, ground metal plates 5A and 5B are provided on both sides of the ground plane. Connect with 6,
One point on a side (hereinafter referred to as an open end side) 1a, 1b opposite to the grounded side, one end on the opposite side in this example, is connected to the ground plane 6 via resonance control capacitive elements 4A, 4B, respectively. Connecting. In this embodiment, these capacitive elements 4
The open end sides 1a and 1b to which A and 4B are connected are not parallel to each other, but are oblique sides opposite to each other. A capacitive element 2 for coupling control is connected between these two opposite hypotenuses according to the principle of the present invention. In this coupling control capacitive element 2, a current coupled from one of the two opposing radiation conductor plates 1A, 1B to the other and a current supplied from the one through the coupling control capacitive element to the other are provided. The capacitances of the other radiation conductor plates are adjusted so as to have opposite phases.
【0010】3は同軸給電線、5A,5Bは接地金属
板、6は地板である。なお2枚の放射導体板1A,1B
の開放端辺1a,1bを互いに逆向きの傾斜辺とするの
は、共定在波を立たせるZ軸方向の長さを変えることに
よって、各放射導体板の持つ共振周波数帯域幅を広げる
ためである。また非平行としているのは、対向する放射
導体板同士に重ならない部分を設けて、各々の容量素子
4A,4Bによる共振点の調整をしやすくするためであ
る。同軸給電線3の中心導体は2つの接地金属板5A,
5B間において、一方の放射導体板、ここでは1A、の
側辺に接続され、給電線3の外部導体は地板6に接続さ
れている。その中心導体の接続点位置は、接続点からア
ンテナ装置を見たインピーダンスが給電線3の特性イン
ピーダンスとほぼ一致する例えば50Ωとなるような位
置を測定により決定する。Reference numeral 3 is a coaxial feeder line, 5A and 5B are ground metal plates, and 6 is a ground plate. Two radiation conductor plates 1A and 1B
The open end sides 1a and 1b of the above are inclined sides opposite to each other in order to widen the resonance frequency bandwidth of each radiating conductor plate by changing the length in the Z-axis direction for standing a co-standing wave. Is. In addition, the reason why they are made non-parallel is to provide a portion that does not overlap between the opposing radiation conductor plates to facilitate adjustment of the resonance point by each of the capacitive elements 4A and 4B. The center conductor of the coaxial feeder 3 is composed of two ground metal plates 5A,
Between 5B, it is connected to the side of one radiation conductor plate, here 1A, and the outer conductor of the power supply line 3 is connected to the ground plate 6. The position of the connection point of the central conductor is determined by measurement such that the impedance of the antenna device viewed from the connection point is, for example, 50Ω, which is substantially the same as the characteristic impedance of the feeder line 3.
【0011】このように、放射導体板1A,1Bを近接
対向させて、地板6とほぼ平行に配置し、放射導体板1
A,1Bの間に結合制御用容量素子2を接続することに
より、放射導体板間の結合を制御できる。ただし、結合
制御用の容量素子2と共振制御用の容量素子4A,4B
は各放射板の形状や共振周波数によってその容量を調整
しなければならない。放射導体板1A,1Bの地板6か
らの高さL3+L4,L4 は放射導体板のZ方向平均長(L1-L5
/2) と共にそれぞれの放射導体板による共振周波数を決
める要因の1つであり、2つの放射導体板1A,1B間
の距離L3はそれらの共振周波数の差を決める要因の1つ
である。これらの長さL1,L3,L4,L5及び容量C1,C2を
調整することにより、おのおのの放射導体板を任意の周
波数で共振させることが出来るとともに、非常に近接し
た2つの周波数で共振させる場合でも、2つの放射導体
板の間隔L3を比較的に狭くできるので、アンテナが大き
くなるという欠点が無くなる。In this way, the radiation conductor plates 1A and 1B are closely opposed to each other and are arranged substantially parallel to the ground plane 6, and the radiation conductor plate 1 is arranged.
The coupling between the radiation conductor plates can be controlled by connecting the coupling control capacitive element 2 between A and 1B. However, the capacitive element 2 for coupling control and the capacitive elements 4A, 4B for resonance control
Has to adjust its capacity according to the shape and resonance frequency of each radiation plate. The heights L 3 + L 4 and L 4 of the radiation conductor plates 1A and 1B from the ground plane 6 are the average lengths of the radiation conductor plates in the Z direction (L 1 -L 5
/ 2) is one of the factors that determine the resonance frequency of each radiation conductor plate, and the distance L 3 between the two radiation conductor plates 1A and 1B is one of the factors that determines the difference between the resonance frequencies. By adjusting the lengths L 1 , L 3 , L 4 , L 5 and the capacitances C 1 , C 2 , each radiating conductor plate can be resonated at any frequency and very close to each other. Even when resonating at one frequency, the distance L 3 between the two radiating conductor plates can be made relatively small, so that the disadvantage of increasing the size of the antenna is eliminated.
【0012】このことを実証するために、図3の構造の
アンテナ装置についての測定を行った結果を図4に示
す。ただし、アンテナ装置の図中に示す各部の寸法はL1
=L2=30mm,L3=1.6mm,L4=5mm,L5=10mmであり、各容量
はC0=1.5pF,C1=0.5pF,C2=1pFであり、誘電体板20の
比誘電率εr はεr=3.6 である。測定はこのアンテナ装
置を130×40×20mm の方形の金属筐体(図示せず)上に
設置して行った。図4にリターンロス周波数特性を示
す。図4より明らかに2共振特性を示しており、約820M
Hzと875MHzで共振している。この場合の両者の周波数の
差は、約6%程度である。このような簡単な構成で、し
かも2枚の放射導体板1A,1Bの間隔L3をわずか1.6m
m としても、非常に近接した2周波数で共振させること
が可能となり、このようなことは従来出来なかったもの
である。さらに、図から明らかなように、両周波数にお
いて非常に高いアンテナ利得が得られる。また本アンテ
ナの効率を測定したところ、820MHzで-2.4dB、875MHzで
-1.8dBと高い値となった。このように、本アンテナ装置
は、非常に小型なアンテナでありながら、任意の2つの
周波数で共振させることが可能で、かつ小型、高利得な
アンテナであることが実験により確かめられた。In order to verify this, FIG. 4 shows the result of measurement performed on the antenna device having the structure shown in FIG. However, the dimensions of each part shown in the figure of the antenna device are L 1
= L 2 = 30mm, L 3 = 1.6mm, L 4 = 5mm, L 5 = 10mm, each capacitance is C 0 = 1.5pF, C 1 = 0.5pF, C 2 = 1pF, and the dielectric plate 20 The relative permittivity ε r of is ε r = 3.6. The measurement was performed by installing this antenna device on a square metal housing (not shown) of 130 × 40 × 20 mm. FIG. 4 shows the return loss frequency characteristic. It clearly shows two resonance characteristics from Fig. 4, which is about 820M.
Resonating at Hz and 875MHz. In this case, the difference between the two frequencies is about 6%. With such a simple structure, the distance L 3 between the two radiation conductor plates 1A and 1B is only 1.6 m.
Even with m, it is possible to resonate at two frequencies that are very close to each other, which is something that could not be done conventionally. Furthermore, as is clear from the figure, a very high antenna gain is obtained at both frequencies. Also, when the efficiency of this antenna was measured, it was -2.4 dB at 820 MHz and at 875 MHz.
It was a high value of -1.8 dB. As described above, it was confirmed by experiments that the present antenna device is a very small antenna, yet it can resonate at any two frequencies and is a small and high gain antenna.
【0013】この場合、アンテナの条件としては放射導
体板が2枚あれば良く、これらの形状、大きさなどを違
うものとしても、放射導体板1A,1Bの地板6に対す
る高さL4や共振制御用容量素子4A,4Bの容量等の定
数を適切に選ぶことにより同様の効果を得ることが出来
る。また、容量素子2,4A,4Bの構成法も集中素子
ではなく、基板上にプリント導体で構成した分布素子的
なものでも良い。 実施例2 図5は本発明の第2の実施例を示すもので、接地金属板
5を一枚とした場合である。2枚の放射導体板1A,1
Bは同じ直角四辺形であり、かつ寸法も同じであり、同
じ形状の誘電体板20を挟んで対向して設けられてい
る。この例では更に、結合制御用容量素子2の両端は放
射導体板1A,1Bの、接地金属板5が接続されている
辺にそれぞれ接続されている。また、一方の放射導体板
1Bに対する共振制御用容量素子4Bは接地金属板5の
接続された辺と隣接する辺の中間点に接続されている。
これらの2つの放射導体板1A,1Bによる共振周波数
はそれぞれ共振制御用容量素子4Aと4Bの容量C1,C2
によって所望の値に調整されている。この例ではC1=0.5
pF,C2=1pFである。結合制御用容量素子2の容量C0はC0
=0.5pFとされている。図中に示す各部の寸法はL1=L2=30
mm,L3=1.6mm,L4=5mmであり、誘電体板20の比誘電率
はεr=2.6 である。この様な容量素子の位置、各部の寸
法は実験的に検討した結果得られたものである。このよ
うにすることにより、小型かつ広帯域の二周波共振アン
テナ装置を実現出来る。In this case, as the condition of the antenna, it is sufficient that there are two radiation conductor plates, and even if the shapes and sizes of these are different, the height L 4 of the radiation conductor plates 1A and 1B with respect to the ground plane 6 and the resonance. Similar effects can be obtained by appropriately selecting constants such as the capacitances of the control capacitive elements 4A and 4B. Further, the capacitive elements 2, 4A and 4B may be constructed by a distributed element configured by a printed conductor on the substrate instead of the lumped element. Second Embodiment FIG. 5 shows a second embodiment of the present invention, which is a case where the number of ground metal plates 5 is one. Two radiation conductor plates 1A, 1
B have the same right-angled quadrilateral shape and the same size, and are provided so as to face each other with the dielectric plate 20 having the same shape interposed therebetween. Further, in this example, both ends of the coupling control capacitive element 2 are connected to the sides of the radiation conductor plates 1A and 1B to which the ground metal plate 5 is connected. The resonance controlling capacitive element 4B for one radiation conductor plate 1B is connected to the midpoint of the side adjacent to the side to which the ground metal plate 5 is connected.
The resonance frequencies due to these two radiation conductor plates 1A and 1B are the capacitances C 1 and C 2 of the resonance control capacitive elements 4A and 4B, respectively.
Has been adjusted to the desired value. In this example C 1 = 0.5
pF and C 2 = 1pF. The capacitance C 0 of the coupling control capacitive element 2 is C 0
= 0.5pF. The dimensions of each part shown in the figure are L 1 = L 2 = 30
mm, L 3 = 1.6 mm, L 4 = 5 mm, and the relative permittivity of the dielectric plate 20 is ε r = 2.6. The position of such a capacitive element and the dimension of each part are obtained as a result of experimental examination. By doing so, a small-sized and wide-band dual-frequency resonant antenna device can be realized.
【0014】図6に図5に示すアンテナ装置のリターン
ロス周波数特性を示す。この場合も130×40×20mm の長
方形の金属ケース上に設置して測定を行った。図6から
明らかに約820MHz及び875MHzの2点で共振している。ま
た、本アンテナの効率を測定したところ、820MHzで-1.2
dB、875MHzで-0.9dBと非常に高い値となった。このよう
に、接地金属板5を一枚とした場合でも本アンテナ装置
は、非常に小型なアンテナでありながら、任意の2つの
周波数で共振させることが可能で、かつ高利得なアンテ
ナであることが実験により確かめられた。 実施例3 図7は本発明の第3の実施例を示すもので、直角四辺形
の放射導体板1A,1Bを小形化し、更にそれらの対向
する一辺をその全長に渡って短絡金属板1Cで接続した
場合である。この短絡金属板1Cは、その長さ方向の中
央で接地金属線5により地板6に接続され、同軸給電線
3は短絡金属板1Cに接続されている。共振制御用容量
素子4A,4Bは短絡金属板1Cと対向する開放端辺1
a,1bの互いに反対側の一端に接続され、それらの開
放端片辺1a,1bの中間点に結合制御用容量素子2が
接続されている。この様な構成とすることにより、さら
に小型で、かつ広帯域の二周波共振アンテナ装置を実現
出来る。FIG. 6 shows the return loss frequency characteristic of the antenna device shown in FIG. In this case as well, the measurement was carried out by mounting on a rectangular metal case of 130 × 40 × 20 mm. It is apparent from Fig. 6 that resonance occurs at two points of about 820MHz and 875MHz. Moreover, when the efficiency of this antenna was measured, it was -1.2 at 820MHz.
It was a very high value of -0.9 dB at 875 MHz. As described above, even when the number of the ground metal plates 5 is one, the present antenna device is a very small antenna, yet it can resonate at any two frequencies and has a high gain. Was confirmed by experiments. Third Embodiment FIG. 7 shows a third embodiment of the present invention in which right-angled quadrangular radiating conductor plates 1A and 1B are miniaturized, and the opposing sides thereof are short-circuited metal plates 1C over the entire length thereof. This is the case when connected. The short-circuit metal plate 1C is connected to the base plate 6 by a ground metal wire 5 at the center in the length direction, and the coaxial power supply line 3 is connected to the short-circuit metal plate 1C. The resonance control capacitors 4A and 4B are open end sides 1 facing the short-circuit metal plate 1C.
The coupling control capacitance element 2 is connected to the opposite ends of a and 1b, and to the midpoint between the open end sides 1a and 1b. With such a configuration, it is possible to realize a more compact and wideband dual-frequency resonant antenna device.
【0015】図8に図7のアンテナ装置のリターンロス
周波数特性を示す。このアンテナ装置の各部の寸法及び
容量素子の容量はL1=L2=25mm,L3=0.6mm,L4=5mm,C0=2
pF,C1=0.4pF,C2=0.3pFであり、誘電体板20の比誘電
率はεr=2.6 である。この場合も前実施例と同一の方形
の金属筐体上に設置している。このように非常に小形で
ありながら、明らかに約818MHz及び875MHzの2点で共振
している。ただし、やや各帯域幅は狭い。この場合の効
果は上記実施例と同様である。 実施例4 図9は本発明の第4の実施例を示すもので、図7の第3
実施例において短絡金属板1Cの下側辺に、その一端か
ら接地金属線5の接続点までを一辺として接続された三
角形のテーパ金属板7が地板6に向かって垂直に延長し
て配置され、三角形の下端頂点が地板6と間隔をおいて
対向するように構成し、同軸給電線3はインピーダンス
調整用キャパシタ8を介してその三角形金属板7の下端
頂点に接続させた場合である。このような三角形の金属
板7の頂点から給電する事により、帯域の広がった共振
特性が得られる。さらに小型で、かつ広帯域の二周波共
振アンテナ装置を実現出来る。FIG. 8 shows the return loss frequency characteristic of the antenna device of FIG. The dimensions of each part of this antenna device and the capacitance of the capacitive element are L 1 = L 2 = 25mm, L 3 = 0.6mm, L 4 = 5mm, C 0 = 2
pF, C 1 = 0.4pF, C 2 = 0.3pF, and the relative permittivity of the dielectric plate 20 is ε r = 2.6. Also in this case, it is installed on the same rectangular metal housing as in the previous embodiment. Although it is very small, it obviously resonates at two points of about 818MHz and 875MHz. However, each bandwidth is rather narrow. The effect in this case is similar to that of the above embodiment. Fourth Embodiment FIG. 9 shows a fourth embodiment of the present invention, which corresponds to the third embodiment of FIG.
In the embodiment, on the lower side of the short-circuit metal plate 1C, a triangular taper metal plate 7 connected from one end thereof to the connection point of the ground metal wire 5 as one side is arranged vertically extending toward the main plate 6, This is a case where the lower end apex of the triangle is configured to face the base plate 6 with a space therebetween, and the coaxial feed line 3 is connected to the lower end apex of the triangular metal plate 7 via the impedance adjusting capacitor 8. By feeding power from the apex of such a triangular metal plate 7, resonance characteristics with a wide band can be obtained. Furthermore, it is possible to realize a compact and wideband dual-frequency resonant antenna device.
【0016】この場合のリターンロスとVSWRの測定結果
をそれぞれ図10A,10Bに示す。アンテナの寸法パ
ラメータは図7の実施例3と同様である。図でも明らか
なように、非常に小形でありながら、明らかに約818MHz
及び875MHzの2点で共振する。実施例3の特性(図7)
と比較して818MHzの共振帯域はやや狭く、875MHzの共振
帯域はかなり広がっていることがわかる。この場合、各
マーカ点でVSWR<2.5に収まっている。 実施例5 図11は本発明の第5の実施例を示すもので、各容量素
子を地板6上に配置し、これらの容量素子を金属線で各
放射板と接続した場合である。短絡金属板1Cで2枚の
放射導体板1A,1Bの対応する一側辺の全長を互いに
接続し、その短絡金属板1Cと地板6に同軸給電線3の
中心導体と外部導体を接続し、更に短絡金属板1Cと地
板6間を接地金属線5で接続している点は図7の実施例
と同様である。この実施例では、放射導体板1A,1B
の開放端辺1a,1bの互いに反対側の一端にそれぞれ
接続された金属リード線9A,9Bが地板6に向かって
延長して設けられ、地板6の上面に放射導体板の開放端
辺1a,1bと対向して設けられた長方形の絶縁スペー
サ11上で直角に曲げられ、金属リード線10A,10
Bとして互いに接近するようにスペーサ11上を更に延
長されている。共振制御用の容量素子4A,4Bは金属
リード線9A,9Bから10A,10Bへの折れ曲がり
点にそれぞれ一方の端子が接続され、他方の端子は地板
に接続されている。金属リード線10A,10Bの端部
は間隔をおいて互いに対向し、それら端部に結合制御用
の容量素子2の一方と他方の端子がそれぞれ接続されて
いる。The return loss and VSWR measurement results in this case are shown in FIGS. 10A and 10B, respectively. The dimension parameter of the antenna is the same as that of the third embodiment shown in FIG. As you can see in the figure, although it is very small, it is clearly about 818 MHz.
And resonate at two points of 875MHz. Characteristics of Example 3 (FIG. 7)
Compared with, the resonance band of 818MHz is a little narrower, and the resonance band of 875MHz is considerably wider. In this case, VSWR <2.5 at each marker point. Fifth Embodiment FIG. 11 shows a fifth embodiment of the present invention in which each capacitive element is arranged on the ground plane 6 and these capacitive elements are connected to each radiation plate by a metal wire. The short-circuit metal plate 1C connects the two radiation conductor plates 1A and 1B to each other over the entire lengths of the corresponding one side, and the short-circuit metal plate 1C and the ground plate 6 are connected to the central conductor and the outer conductor of the coaxial feeder line 3, Further, the point that the short-circuit metal plate 1C and the ground plate 6 are connected by the ground metal wire 5 is similar to the embodiment of FIG. In this embodiment, the radiation conductor plates 1A and 1B are used.
Metal lead wires 9A and 9B respectively connected to opposite ends of the open end sides 1a and 1b of the are provided to extend toward the base plate 6, and the open end side 1a of the radiation conductor plate is provided on the upper surface of the base plate 6. 1b is bent at a right angle on a rectangular insulating spacer 11 provided so as to face the metal lead wires 10A, 10b.
As B, they are further extended on the spacer 11 so as to approach each other. Resonance control capacitive elements 4A and 4B have one terminal connected to each of the bending points from metal lead wires 9A and 9B to 10A and 10B, and the other terminal connected to the ground plane. The ends of the metal lead wires 10A and 10B are opposed to each other with a space therebetween, and one end and the other terminal of the coupling control capacitive element 2 are connected to these ends.
【0017】このように金属リード線9A,9B,10
A,10Bを用いることにより容量素子2及び4A,4
Bを地板6上にスペーサ11を介して、或いは地板6上
に直接、無線機のその他の部品(図示せず)と共に同じ
工程で実装できるので、製造効率がよくなり、都合がよ
い。図11の実施例によるアンテナ装置のリターンロス
の測定結果を図12に示す。アンテナ装置の各部の寸法
はL1=L2=30mm,L3=1.6mm,L4=5mmである。各容量素子の
容量はC0=1.5pF,C1=0.3pF,C2=0.8pFである。本図で明
らかなように、容量素子を地板上に配置しても、前記実
施例と同様に、明らかに2共振特性を示している。 実施例6 図13は本発明の第6の実施例を示す。この実施例で
は、2枚の放射導体板1A,1Bを直角四辺形の誘電体
板20の同一面上に互いに間隔Dをおいて形成する。こ
の2つの放射導体板1A,1Bの配列方向に延びる誘電
体板20の一側壁面の全長に渡って延びる接地金属板5
が設けられ、その上側辺は2枚の放射導体板1A,1B
の一側辺の全長とそれぞれ接続され、下側辺は地板6に
接続されている。更に、2つの放射導体板1A,1Bを
接続する幅Wの金属板1Cがそれらと同一面内で接地金
属線5と側縁が接続されて形成されている。共振制御用
容量素子4A,4Bは放射導体板1A,1Bの開放端辺
1a,1bの互いに離れた一端と地板6間にそれぞれ接
続されている。これに対し、結合制御用容量素子2は2
つの放射導体板1A,1Bの開放端辺1a,1bの互い
に近接する一端の近傍間に接続されている。同軸給電線
3の中心導体は一方の放射導体板、ここでは1B、の外
側辺に接続されているが、内側辺に接続してもよい。こ
の構成によっても、平板でありながら、かつ広帯域の二
周波共振アンテナ装置を実現出来る。Thus, the metal lead wires 9A, 9B, 10
By using A and 10B, the capacitive elements 2 and 4A and 4
Since B can be mounted on the main plate 6 via the spacer 11 or directly on the main plate 6 together with other components (not shown) of the radio in the same step, the manufacturing efficiency is improved, which is convenient. FIG. 12 shows the measurement result of the return loss of the antenna device according to the embodiment of FIG. The dimensions of each part of the antenna device are L 1 = L 2 = 30 mm, L 3 = 1.6 mm, L 4 = 5 mm. The capacitance of each capacitor is C 0 = 1.5pF, C 1 = 0.3pF, C 2 = 0.8pF. As is clear from this figure, even if the capacitive element is arranged on the ground plane, the two-resonance characteristic is clearly shown as in the above-mentioned embodiment. Sixth Embodiment FIG. 13 shows a sixth embodiment of the present invention. In this embodiment, two radiation conductor plates 1A and 1B are formed on the same surface of a rectangular quadrilateral dielectric plate 20 with a distance D therebetween. The ground metal plate 5 extending over the entire length of one side wall surface of the dielectric plate 20 extending in the arrangement direction of the two radiation conductor plates 1A and 1B.
Is provided, the upper side of which is two radiation conductor plates 1A and 1B.
Is connected to the entire length of one side, and the lower side is connected to the main plate 6. Further, a metal plate 1C having a width W for connecting the two radiation conductor plates 1A and 1B is formed by connecting the ground metal wire 5 and the side edge in the same plane as those. The resonance controlling capacitive elements 4A and 4B are connected between the grounded plate 6 and one ends of the open end sides 1a and 1b of the radiation conductor plates 1A and 1B, which are separated from each other. On the other hand, the coupling control capacitive element 2 has 2
It is connected between the open ends 1a and 1b of the two radiation conductor plates 1A and 1B in the vicinity of one ends which are close to each other. The center conductor of the coaxial feeder 3 is connected to the outer side of one radiation conductor plate, here, 1B, but may be connected to the inner side. Also with this configuration, it is possible to realize a dual-frequency resonant antenna device that is a flat plate and has a wide band.
【0018】図13の実施例のアンテナ装置について測
定したリターンロスを図14に示す。各部の寸法はL1=L
2=30mm,L3=4.8mm,D=1mm,W=3mmである。また各容量素
子の容量はC0=2.0pF,C1=0.8pF,C2=1.1pFである。本図
で明らかなように、820MHzと875MHzで共振を示してい
る。この様に2つの放射導体板1A,1Bをわずか1mm
の間隔で同一平面に並列して構成したアンテナ装置であ
っても、前記実施例と同様に互いに接近した2つの周波
数で共振させることが可能であり、小型、高利得なアン
テナが得られる。FIG. 14 shows the return loss measured for the antenna device of the embodiment shown in FIG. The dimensions of each part are L 1 = L
2 = 30mm, L 3 = 4.8mm , D = 1mm, a W = 3 mm. The capacitance of each capacitor is C 0 = 2.0pF, C 1 = 0.8pF, C 2 = 1.1pF. As is clear from this figure, resonance is shown at 820 MHz and 875 MHz. In this way, the two radiation conductor plates 1A and 1B are only 1 mm
Even in the case of the antenna devices arranged in parallel on the same plane at intervals of, it is possible to resonate at two frequencies close to each other as in the above embodiment, and a small-sized and high-gain antenna can be obtained.
【0019】図3、図5、図7、図9、図11の実施例
における放射導体板1A,1Bを図13と同様に同一平
面上に並列に並べてもよい。 実施例7 図15は本発明の第7の実施例を示すもので、ホイップ
アンテナと本発明のアンテナとでダイバーシチを構成し
ているような場合である。本発明によるアンテナ50と
ホイップアンテナ12のそれぞれの利得が最大となる偏
波方向50A,12Aが互いに直交するように設置して
いる。ここで、1〜10は前記実施例と同様であり、1
2はホイップアンテナ、13は無線機の筐体、14はホ
イップアンテナの給電線、15は内部無線回路である。
このように2つのアンテナを配置することにより、本発
明のアンテナ50の広帯域特性は維持しながら、無線機
全体としてはホイップアンテナ12と本発明のアンテナ
50の結合が減り、互いの利得が高くなる。これは、ホ
イップアンテナと内蔵アンテナの偏波が直交しているか
らである。The radiation conductor plates 1A and 1B in the embodiments of FIGS. 3, 5, 7, 9 and 11 may be arranged in parallel on the same plane as in FIG. Seventh Embodiment FIG. 15 shows a seventh embodiment of the present invention, which is a case where a whip antenna and the antenna of the present invention constitute a diversity. The antenna 50 according to the present invention and the whip antenna 12 are installed so that the polarization directions 50A and 12A at which the respective gains are maximum are orthogonal to each other. Here, 1 to 10 are the same as in the above embodiment,
Reference numeral 2 is a whip antenna, 13 is a radio housing, 14 is a feed wire for the whip antenna, and 15 is an internal radio circuit.
By arranging the two antennas in this way, the coupling between the whip antenna 12 and the antenna 50 of the present invention is reduced and the mutual gain is increased as a whole, while maintaining the wide band characteristic of the antenna 50 of the present invention. . This is because the polarized waves of the whip antenna and the built-in antenna are orthogonal to each other.
【0020】即ち、本例によっても任意の2つの周波数
で共振させることが可能で、かつ小型・高利得なアンテ
ナであり、さらに、ダイバーシチ構成等のように他のア
ンテナを併用する場合にも高い利得が得られる。In other words, this example is also a small-sized and high-gain antenna that can resonate at any two frequencies, and is also high when another antenna is used in combination such as a diversity structure. Gain is obtained.
【0021】[0021]
【発明の効果】以上説明したように、本アンテナ装置は
2つの放射導体板1A,1Bの間にそれらの結合制御用
に容量素子2を接続すると共に、各放射導体板と地板と
の間に必要に応じ共振制御用に容量素子4A,4Bを接
続することによって、任意の2つの周波数で共振させる
ことが出来ると共に、非常に近接した2つの周波数で共
振させる場合でも、放射導体板の間隔を狭めることがで
きるので、アンテナが大きくなることは無く、小型でか
つ広帯域な又は2共振可能なアンテナ装置を提供出来
る。As described above, in the present antenna device, the capacitive element 2 is connected between the two radiating conductor plates 1A and 1B for controlling their coupling, and the radiating conductor plates and the ground plate are connected to each other. By connecting the capacitive elements 4A and 4B for resonance control as needed, it is possible to resonate at any two frequencies, and even when resonating at two frequencies very close to each other, the spacing between the radiation conductor plates is Since it can be narrowed, the antenna does not become large, and it is possible to provide a small-sized and wideband or two-resonant antenna device.
【図1】従来のアンテナ装置の斜視図。FIG. 1 is a perspective view of a conventional antenna device.
【図2】従来のアンテナ装置の他の例を示す斜視図。FIG. 2 is a perspective view showing another example of a conventional antenna device.
【図3】この発明の第1の実施例を金属筐体と共に示す
斜視図。FIG. 3 is a perspective view showing a first embodiment of the present invention together with a metal housing.
【図4】図3のアンテナ装置のリターンロス周波数特性
を示す図。4 is a diagram showing a return loss frequency characteristic of the antenna device of FIG.
【図5】この発明の第2の実施例を示す斜視図。FIG. 5 is a perspective view showing a second embodiment of the present invention.
【図6】図5のアンテナ装置のリターンロス周波数特性
を示す図。6 is a diagram showing a return loss frequency characteristic of the antenna device of FIG.
【図7】この発明の第3の実施例を示す斜視図。FIG. 7 is a perspective view showing a third embodiment of the present invention.
【図8】図7のアンテナ装置のリターンロス周波数特性
を示す図。8 is a diagram showing a return loss frequency characteristic of the antenna device of FIG.
【図9】この発明の第4の実施例を示す斜視図。FIG. 9 is a perspective view showing a fourth embodiment of the present invention.
【図10】Aは図9のアンテナ装置のリターンロス周波
数特性を示す図、Bは図9のアンテナ装置のVSWR周
波数特性を示す図。10A is a diagram showing a return loss frequency characteristic of the antenna device of FIG. 9, and FIG. 10B is a diagram showing a VSWR frequency characteristic of the antenna device of FIG.
【図11】この発明の第5の実施例を示す斜視図。FIG. 11 is a perspective view showing a fifth embodiment of the present invention.
【図12】図11のアンテナ装置のリターンロス周波数
特性を示す図。12 is a diagram showing a return loss frequency characteristic of the antenna device of FIG.
【図13】この発明の第6の実施例を示す斜視図。FIG. 13 is a perspective view showing a sixth embodiment of the present invention.
【図14】図13のアンテナ装置のリターンロス周波数
特性を示す図。14 is a diagram showing a return loss frequency characteristic of the antenna device of FIG.
【図15】この発明の第7の実施例を示す斜視図。FIG. 15 is a perspective view showing a seventh embodiment of the present invention.
Claims (18)
配置され、一端がそれぞれ上記地板に電気的に接地され
た少なくとも2枚の放射導体板と、 実質的に上記2枚の放射導体板の少なくとも一方と上記
地板とにそれぞれ接続された中心導体と外部導体を有す
る給電線と、 上記2枚の放射導体板間に接続された結合制御用容量素
子と、を含み、上記結合制御用容量素子の容量は、上記
2枚の放射導体板の一方から他方へ結合される電流と、
上記一方の放射導体板から上記結合制御用容量素子を介
して上記他方の放射導体板へ供給される電流が上記他方
の放射導体板において互いに逆相となるよう選ばれてい
る二周波共振アンテナ装置。1. A ground plane, a dielectric plate arranged parallel to the ground plane, and a dielectric plate disposed on the dielectric plane parallel to the ground plane with a space therebetween, and one end of each of which is electrically grounded to the ground plane. At least two radiating conductor plates, a feed line having a central conductor and an outer conductor, which are substantially connected to at least one of the two radiating conductor plates and the ground plate, respectively, and the two radiating conductors A coupling control capacitive element connected between the plates, wherein the capacitance of the coupling control capacitive element is a current coupled from one of the two radiation conductor plates to the other;
A dual-frequency resonant antenna device in which currents supplied from the one radiation conductor plate to the other radiation conductor plate via the coupling control capacitive element are selected so as to have mutually opposite phases in the other radiation conductor plate. .
いて、上記2枚の放射導体板は上記誘電体板の対向する
一方の面と他方の面にそれぞれ設けられ、上記誘電体板
は上記地板と間隔をおいて平行に配置されている。2. The dual-frequency resonant antenna device according to claim 1, wherein the two radiating conductor plates are provided on one surface and the other surface of the dielectric plate that face each other, and the dielectric plate is the ground plate. And are arranged in parallel at intervals.
いて、上記2枚の放射導体板は上記地板上に配置された
上記誘電体板の上面の同一平面上に間隔をおいて配列さ
れている。3. The dual-frequency resonant antenna device according to claim 1, wherein the two radiating conductor plates are arranged at intervals on the same plane of the upper surface of the dielectric plate arranged on the base plate. .
ナ装置において、上記2枚の放射導体板の少なくとも一
方と上記地板との間に上記一方の放射導体板の共振制御
用に第1の共振制御用容量素子が接続されている。4. The dual-frequency resonant antenna device according to claim 1, 2 or 3, wherein at least one of the two radiation conductor plates and the ground plate are provided with a first one for resonance control of the one radiation conductor plate. Is connected to the resonance controlling capacitive element.
いて、上記2枚の放射導体板の他方と上記地板との間に
上記他方の放射導体板の共振制御用に第2の共振制御用
容量素子が接続されている。5. The two-frequency resonance antenna device according to claim 4, wherein a second resonance control capacitor is provided between the other of the two radiation conductor plates and the ground plate for resonance control of the other radiation conductor plate. The elements are connected.
ナ装置において、上記2枚の放射導体板にそれぞれ接続
された金属リード線が上記地板と近接し、かつ先端が互
いに接近するように延長され、それらの金属リード線の
先端部間に上記結合制御用容量素子が接続されている。6. The dual-frequency resonant antenna device according to claim 1, 2 or 3, wherein the metal lead wires respectively connected to the two radiating conductor plates are close to the ground plate and the tips are close to each other. The capacitive element for coupling control is extended and connected between the tip portions of the metal lead wires.
いて、上記金属リード線は上記地板上に設けられた絶縁
スペーサの上面を互いに接近するように延長して配線さ
れており、上記絶縁スペーサ上に配線された上記金属リ
ード線の少なくとも一方と上記地板間に共振制御用容量
素子が接続されている。7. The dual-frequency resonant antenna device according to claim 6, wherein the metal lead wires are wired such that the upper surfaces of the insulating spacers provided on the ground plane are extended so as to be close to each other, and the metal spacers are provided on the insulating spacers. A resonance controlling capacitance element is connected between at least one of the metal lead wires wired to the base plate and the ground plane.
ナ装置において、上記2枚の放射導体板はそれぞれの少
なくとも一辺が互いに平行な四辺形であり、上記互いに
平行な一辺をそれぞれ上記地板に接地する金属接地手段
が設けられている。8. The dual-frequency resonant antenna device according to claim 1, 2 or 3, wherein the two radiating conductor plates are quadrilaterals in which at least one side is parallel to each other, and the parallel sides are respectively the ground plane. Metal grounding means for grounding is provided.
いて、上記金属接地手段は上記2枚の放射導体板の上記
互いに平行な一辺のそれぞれ少なくとも一部と上記地板
とを接続する少なくとも1枚の接地金属板を含む。9. The dual-frequency resonant antenna apparatus according to claim 8, wherein the metal grounding means connects at least a part of each of the two parallel sides of the two radiation conductor plates to the ground plane. Includes a ground metal plate.
おいて、上記金属接地手段は上記2枚の放射導体板の上
記互いに平行な一辺を全長に渡って互いに短絡する短絡
金属板と、上記短絡金属板と上記地板間を接続する接地
金属線とを含む。10. The dual-frequency resonant antenna device according to claim 8, wherein the metal grounding means short-circuits metal plates that short-circuit the parallel sides of the two radiating conductor plates over the entire length, and the short-circuit metal. It includes a plate and a ground metal wire connecting the ground plate.
おいて、上記金属接地手段は上記2枚の放射導体板の上
記互いに平行な一辺を全長に渡って互いに短絡する短絡
金属板を含み、上記短絡金属板の一側辺が上記地板に接
続されている。11. The dual-frequency resonant antenna device according to claim 8, wherein the metal grounding means includes a short-circuit metal plate that short-circuits the parallel sides of the two radiating conductor plates to each other over the entire length. One side of the metal plate is connected to the base plate.
おいて、上記2枚の放射導体板は少なくとも一辺が互い
に平行な四辺形であり、上記2枚の放射導体板の上記互
いに平行な辺と対向する辺は互いに非平行である。12. The dual-frequency resonant antenna device according to claim 2, wherein the two radiating conductor plates are quadrilaterals having at least one side parallel to each other, and face the mutually parallel sides of the two radiating conductor plates. The sides to be done are not parallel to each other.
において、上記非平行な辺は上記互いに平行な辺に対し
互いに逆向の傾斜を有し、互いに交差している。13. The dual-frequency resonant antenna device according to claim 12, wherein the non-parallel sides have inclinations opposite to each other with respect to the parallel sides and intersect each other.
において、上記給電線の中心導体は上記短絡金属板に電
気的に接続されている。14. The dual-frequency resonant antenna device according to claim 10, wherein the center conductor of the feed line is electrically connected to the short-circuit metal plate.
において、上記短絡金属板に接続された一辺を有し、そ
の一辺と対向して有する頂点が上記地板に近接対向する
三角形のテーパ金属板が設けられ、上記給電線の中心導
体は上記テーパ金属板の上記頂点に電気的に接続されて
いる。15. The dual-frequency resonant antenna device according to claim 13, wherein a triangular taper metal plate having one side connected to the short-circuit metal plate and having a vertex opposite to the one side and closely facing the ground plate is provided. A central conductor of the power supply line is electrically connected to the apex of the tapered metal plate.
において、上記給電線の中心導体はインピーダンス制御
容量素子を介して上記テーパ金属板の上記頂点に接続さ
れている。16. The dual-frequency resonant antenna device according to claim 15, wherein the center conductor of the feed line is connected to the apex of the tapered metal plate via an impedance control capacitive element.
において、上記結合制御用容量素子は上記2枚の放射導
体板の上記互いに平行な辺とそれぞれ対向する辺間に接
続されている。17. The dual-frequency resonant antenna device according to claim 10, wherein the coupling control capacitive element is connected between sides of the two radiating conductor plates that face the mutually parallel sides, respectively.
テナ装置において、ホイップアンテナと併用して用いら
れ、かつ偏波方向がそのホイップアンテナの偏波方向と
直交するように配置されていることを特徴とするアンテ
ナ装置。18. The dual-frequency resonant antenna device according to claim 1, 2 or 3, which is used in combination with a whip antenna and is arranged such that the polarization direction is orthogonal to the polarization direction of the whip antenna. An antenna device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29865796A JP3185856B2 (en) | 1995-11-29 | 1996-11-11 | Dual-frequency resonant antenna device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-310754 | 1995-11-29 | ||
JP31075495 | 1995-11-29 | ||
JP29865796A JP3185856B2 (en) | 1995-11-29 | 1996-11-11 | Dual-frequency resonant antenna device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09214244A true JPH09214244A (en) | 1997-08-15 |
JP3185856B2 JP3185856B2 (en) | 2001-07-11 |
Family
ID=26561608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29865796A Expired - Fee Related JP3185856B2 (en) | 1995-11-29 | 1996-11-11 | Dual-frequency resonant antenna device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3185856B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11312923A (en) * | 1998-02-24 | 1999-11-09 | Murata Mfg Co Ltd | Antenna system and radio to device using the same |
KR20020094578A (en) * | 2001-06-12 | 2002-12-18 | 고영혁 | Dual-frequency microstrip antenna |
JP2004529592A (en) * | 2001-06-12 | 2004-09-24 | アルカテル | Small multi-band antenna |
KR100612052B1 (en) * | 2004-05-03 | 2006-08-11 | (주)에이스안테나 | Internal antenna for using a wireless telecommunication terminal |
KR100651375B1 (en) * | 2001-10-11 | 2006-11-28 | 삼성전자주식회사 | Antenna |
US7345631B2 (en) | 2002-08-28 | 2008-03-18 | Electronics And Telecommunications Research Institute | Radiation device for planar inverted F antenna |
JP2011045099A (en) * | 2003-08-07 | 2011-03-03 | Sony Ericsson Mobile Communications Ab | Tunable parasitic resonator |
-
1996
- 1996-11-11 JP JP29865796A patent/JP3185856B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11312923A (en) * | 1998-02-24 | 1999-11-09 | Murata Mfg Co Ltd | Antenna system and radio to device using the same |
KR20020094578A (en) * | 2001-06-12 | 2002-12-18 | 고영혁 | Dual-frequency microstrip antenna |
JP2004529592A (en) * | 2001-06-12 | 2004-09-24 | アルカテル | Small multi-band antenna |
KR100651375B1 (en) * | 2001-10-11 | 2006-11-28 | 삼성전자주식회사 | Antenna |
US7345631B2 (en) | 2002-08-28 | 2008-03-18 | Electronics And Telecommunications Research Institute | Radiation device for planar inverted F antenna |
JP2011045099A (en) * | 2003-08-07 | 2011-03-03 | Sony Ericsson Mobile Communications Ab | Tunable parasitic resonator |
KR100612052B1 (en) * | 2004-05-03 | 2006-08-11 | (주)에이스안테나 | Internal antenna for using a wireless telecommunication terminal |
Also Published As
Publication number | Publication date |
---|---|
JP3185856B2 (en) | 2001-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5917450A (en) | Antenna device having two resonance frequencies | |
JP3132664B2 (en) | Microstrip antenna device | |
US6836248B2 (en) | Antenna device | |
US6864844B2 (en) | Antenna device capable of being commonly used at a plurality of frequencies and electronic equipment having the same | |
JP3580654B2 (en) | Common antenna and portable radio using the same | |
EP1209759B1 (en) | Antenna and wireless device incorporating the same | |
JP2007089234A (en) | Antenna | |
JP2004088218A (en) | Planar antenna | |
KR100616545B1 (en) | Multi-band laminated chip antenna using double coupling feeding | |
EP0860896B1 (en) | Antenna device | |
JPS6141205A (en) | Antenna for wide-band transmission line | |
JP2005020266A (en) | Multiple frequency antenna system | |
JPH07303005A (en) | Antenna system for vehicle | |
JPH10145125A (en) | Antenna system | |
JP2525545Y2 (en) | Broadband microstrip antenna | |
JP2001251128A (en) | Multifrequency antenna | |
JPH1168453A (en) | Composite antenna | |
JP3185856B2 (en) | Dual-frequency resonant antenna device | |
JP2004147327A (en) | Multiband antenna | |
US20040125033A1 (en) | Dual-band antenna having high horizontal sensitivity | |
JP2999754B1 (en) | Dual frequency inverted F-type antenna | |
JP2008060762A (en) | Feeding structure of antenna | |
KR20030007716A (en) | Narrow-band, crossed-element, offset-tuned dual band, dual mode meander line loaded antenna | |
JPH09232854A (en) | Small planar antenna system for mobile radio equipment | |
EP0929116B1 (en) | Antenna device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |