JPH09213684A - Plasma processing apparatus - Google Patents

Plasma processing apparatus

Info

Publication number
JPH09213684A
JPH09213684A JP8020842A JP2084296A JPH09213684A JP H09213684 A JPH09213684 A JP H09213684A JP 8020842 A JP8020842 A JP 8020842A JP 2084296 A JP2084296 A JP 2084296A JP H09213684 A JPH09213684 A JP H09213684A
Authority
JP
Japan
Prior art keywords
electrode
high frequency
applying
plasma
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8020842A
Other languages
Japanese (ja)
Other versions
JP3812966B2 (en
Inventor
Jun Kanamori
順 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP02084296A priority Critical patent/JP3812966B2/en
Publication of JPH09213684A publication Critical patent/JPH09213684A/en
Application granted granted Critical
Publication of JP3812966B2 publication Critical patent/JP3812966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the etching characteristics of a sample to be etched enhance by a method wherein high frequency applying electrodes, which are applied with high frequencies, are arranged on an insulating material and at the same time, grounding electrodes are arranged in close proximity of these high-frequency applying electrodes to make plasma discharge stably in the vicinity of the insulating material even in a high-vacuum state. SOLUTION: A sample to he etched is placed on a bias applying electrode 2. Subsequently, after the pressure in a reduced container 1 is reduced to a prescribed pressure, discharge gas is introduced in the container 1 through microscopic holes 7 and the pressure in the container 1 is adjusted to a prescribe processing pressure. After that, high frequencies are applied from a high-frequency power supply 5 between high-frequency applying electrodes 16a and 16b, which are placed on a plasma generating electrode body 4, and grounding electrodes 17, which are placed on the electrode body 4. Whereupon, discharge is caused in the reduced container 1 and plasma is generated in the chamber 1. At the same time, high frequencies are applied to the electrode 2 placed with the sample to be etched from a bias applying power supply 6. Whereupon, ions in the plasma generated in the container 1 are vertically incided in the sample to be etched and an etching is anisotropically progressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置で
あるプラズマ処理装置、特に反応性ガスプラズマを利用
したドライエッチングにおけるプラズマ処理装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus which is a semiconductor manufacturing apparatus, and more particularly to a plasma processing apparatus for dry etching using reactive gas plasma.

【0002】[0002]

【従来の技術】今日、ドライエッチング装置には各種の
ものが知られている。このうちの一つに、RIE(リア
クティブ・イオン・エッチング)方式と呼ばれているも
のがある。また、これに変わる新しい方式として、高真
空で高密度プラズマが得られる種々の方式、例えばマグ
ネトロン、ヘリコン波、ECR(電子サイクロトロン共
鳴)あるいはICP(誘導結合プラズマ)方式と呼ばれ
るものも開発されてきた。
2. Description of the Related Art Today, various dry etching apparatuses are known. One of these is called the RIE (reactive ion etching) method. In addition, as a new method that replaces this, various methods that can obtain high-density plasma in a high vacuum, such as magnetron, helicon wave, ECR (electron cyclotron resonance) or ICP (inductively coupled plasma) methods have been developed. .

【0003】図11はRIE(リアクティブ・イオン・
エッチング)方式を用いた従来におけるドライエッチン
グ装置の一例を示す概略構成図である。図11におい
て、符号101は減圧容器であり、この減圧容器101
内には一対の電極102,103が平行に配置されてい
る。このうち、一方の電極102の表面には、減圧容器
101内に放電ガス(プロセスガス)を導入するための
多数の微細孔104が設けられている。なお、減圧容器
101には、電極102の微細孔104より導入された
放電ガスを排気するための排気口105も設けられてい
る。また、一対の電極102,103のうち、一方の電
極102(以下、「プラズマ発生電極102」と言
う。)には高周波電源106が接続され、この高周波電
源106より高周波が印加できるようになっており、他
方の電極103(以下、「接地電極103」と言う。)
は接地されている。
FIG. 11 shows an RIE (Reactive Ion
It is a schematic block diagram which shows an example of the conventional dry etching apparatus using the (etching) system. In FIG. 11, reference numeral 101 denotes a decompression container, and this decompression container 101
A pair of electrodes 102 and 103 are arranged in parallel inside. Of these, a large number of fine holes 104 for introducing a discharge gas (process gas) into the decompression container 101 are provided on the surface of one electrode 102. The decompression container 101 is also provided with an exhaust port 105 for exhausting the discharge gas introduced through the fine holes 104 of the electrode 102. A high frequency power supply 106 is connected to one of the pair of electrodes 102 and 103 (hereinafter referred to as “plasma generating electrode 102”), and a high frequency power can be applied from the high frequency power supply 106. And the other electrode 103 (hereinafter referred to as "ground electrode 103").
Is grounded.

【0004】次に、このドライエッチング装置の動作を
説明する。まず、図示せぬ被エッチング試料(被処理試
料)が同じく図示せぬロードロック室から搬入され、接
地電極103の上に載置される。続いて、所定圧力まで
減圧した後、微細孔104より放電ガスが導入されて処
理所定圧に調整される。その後、高周波電源106より
高周波がプラズマ発生電極102に印加される。する
と、プラズマ発生電極102と接地電極103の間で放
電が起こり、プラズマが発生する。このプラズマ中のイ
オンは被エッチング試料に垂直に入射され、エッチング
が進行する。
Next, the operation of this dry etching apparatus will be described. First, a sample to be etched (sample to be processed) (not shown) is similarly loaded from a load lock chamber (not shown) and placed on the ground electrode 103. Then, after the pressure is reduced to a predetermined pressure, a discharge gas is introduced through the fine holes 104 and adjusted to a predetermined processing pressure. Then, a high frequency is applied to the plasma generating electrode 102 from the high frequency power supply 106. Then, a discharge occurs between the plasma generation electrode 102 and the ground electrode 103, and plasma is generated. Ions in the plasma are vertically incident on the sample to be etched, and the etching proceeds.

【0005】図12はICP(誘導結合プラズマ)方式
を用いた従来におけるドライエッチング装置の一例を示
す概略構成図である。図12において、符号201は減
圧容器であり、この減圧容器201内には図示せぬ被エ
ッチング試料を載置するバイアス印加電極202が水平
に配置されている。このバイアス印加電極202にはバ
イアス印加電源206が接続されている。また、減圧容
器201には、バイアス印加電極202と平行にして、
石英板203が減圧容器201の一部(天壁の一部)を
なす状態にして配置されており、この石英板203の上
に高周波電源としての高周波アンテナ204を設置して
いる。その高周波アンテナ204は、図13に上から見
た模式図として示すように、両端204a,204bを
僅かに離して略リング状に屈曲された形状を成す、いわ
ゆる1ターンアンテナと呼ばれているもので、両端20
4a,204bとの間には高周波電源205が接続され
ている。加えて、減圧容器201には、この減圧容器2
01内に放電ガスを導入するための多数の微細孔207
が設けられているとともに、この微細孔207より導入
された放電ガスを排気するための排気口208も設けら
れている。
FIG. 12 is a schematic configuration diagram showing an example of a conventional dry etching apparatus using an ICP (inductively coupled plasma) system. In FIG. 12, reference numeral 201 denotes a decompression container, and a bias application electrode 202 on which a sample to be etched (not shown) is placed is horizontally arranged in the decompression container 201. A bias applying power source 206 is connected to the bias applying electrode 202. In the decompression container 201, the bias applying electrode 202 is parallel to
A quartz plate 203 is arranged so as to form a part (a part of the ceiling wall) of the decompression container 201, and a high frequency antenna 204 as a high frequency power source is installed on the quartz plate 203. The high-frequency antenna 204 is a so-called one-turn antenna that is bent in a substantially ring shape with both ends 204a and 204b slightly separated, as shown in a schematic view seen from above in FIG. And both ends 20
A high frequency power source 205 is connected between 4a and 204b. In addition, the decompression container 201 includes the decompression container 2
01 a large number of fine holes 207 for introducing a discharge gas
And an exhaust port 208 for exhausting the discharge gas introduced through the fine holes 207.

【0006】次に、このドライエッチング装置の動作を
説明する。まず、図示せぬ被エッチング試料(被処理試
料)が同じく図示せぬロードロック室から搬入され、バ
イアス印加電極202の上に載置される。続いて、所定
圧力まで減圧した後、微細孔207より放電ガスが導入
されて処理所定圧に調整される。その後、高周波アンテ
ナ204に高周波電源205より高周波が印加されると
ともに、バイアス印加電極202にバイアス印加電源2
06より高周波を印加する。すると、高周波アンテナ2
04とバイアス印加電極202との間で放電が起こり、
プラズマが発生し、このプラズマ中のイオンが被エッチ
ング試料に垂直に入射されて、エッチングが異方的に進
行する。
Next, the operation of this dry etching apparatus will be described. First, a sample to be etched (sample to be processed) (not shown) is similarly carried in from a load lock chamber (not shown) and placed on the bias applying electrode 202. Then, after the pressure is reduced to a predetermined pressure, a discharge gas is introduced through the fine holes 207 to adjust the pressure to a predetermined processing pressure. After that, a high frequency power is applied to the high frequency antenna 204 from the high frequency power supply 205, and the bias applying power supply 2 is applied to the bias applying electrode 202.
A high frequency is applied from 06. Then, the high frequency antenna 2
04 and the bias applying electrode 202, discharge occurs,
Plasma is generated, ions in the plasma are vertically incident on the sample to be etched, and etching proceeds anisotropically.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
たドライエッチング装置の何れの構造も、今後の微細パ
ターンを形成するためのドライエッチングシステムとし
ては不十分な点がある。すなわち、RIE(リアクティ
ブ・イオン・エッチング)方式では高真空位置での放電
が不安定であり(安定する放電領域は概略10mtorr 程
度)、また高密度プラズマを得るために狭電極間隔とし
た場合に、その傾向はさらに著しくなり、種々の改良を
行ったものが提案されているが、未だ十分とは言えな
い。次に、ICP(誘導結合プラズマ)のような方式で
あるが、このような方式は容易に高真空・高密度プラズ
マが得られることから、今後のドライエッチング装置と
して非常に期待されていたが、ガスの解離が進み過ぎて
好ましくないと言う欠点が明かになりつつある。これは
エッチング処理にとって不要な、あるいは不適な活性種
が生成されたり、エッチング反応生成物が再解離し、不
必要なデポジション現象を起こしてしまうことによるも
のと推定される。
However, any structure of the above-mentioned dry etching apparatus is insufficient as a dry etching system for forming a fine pattern in the future. That is, in the RIE (reactive ion etching) method, the discharge at a high vacuum position is unstable (a stable discharge area is about 10 mtorr), and when a narrow electrode interval is used to obtain high density plasma, However, the tendency becomes more remarkable, and various improvements have been proposed, but it cannot be said to be sufficient yet. Next, there is a method such as ICP (inductively coupled plasma), which has been highly expected as a dry etching apparatus in the future because a high vacuum / high density plasma can be easily obtained. Disadvantages of undesired gas dissociation are becoming apparent. It is presumed that this is due to the generation of unnecessary or unsuitable active species for the etching process or the re-dissociation of the etching reaction product, which causes an unnecessary deposition phenomenon.

【0008】本発明は、上記問題点に鑑みてなされたも
のであり、その目的はエッチング特性を向上させること
ができるプラズマ処理装置を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a plasma processing apparatus capable of improving etching characteristics.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、次の技術手段を講じたことを特徴とする。
すなわち、高周波印加電極と接地電極を絶縁材上に設け
てなるプラズマ発生電極体と、前記高周波印加電極に高
周波を印加する高周波電源と、前記プラズマ発生電極体
と対向配置されている、被処理試料が載せられるバイア
ス印加電極と、前記バイアス印加電極に高周波を印加す
るバイアス印加電源とを備え、前記絶縁材を通してプラ
ズマを発生する構成としたものである。これによれば、
高周波が印加される高周波印加電極を絶縁材上に配置す
るとともに、この高周波印加電極の直近に接地電極を配
置できるので、高真空でもプラズマは絶縁材の近傍に安
定して放電できる。また、高周波は正負が交互に来る正
弦波のため、電子は加速と減速が加わり、エッチング特
性が向上する。
Means for Solving the Problems The present invention is characterized by taking the following technical means in order to achieve the above object.
That is, a sample to be processed, which is arranged to face the plasma generating electrode body, a plasma generating electrode body having a high frequency applying electrode and a ground electrode provided on an insulating material, a high frequency power source for applying a high frequency to the high frequency applying electrode. And a bias applying power source for applying a high frequency to the bias applying electrode, and plasma is generated through the insulating material. According to this,
Since the high frequency applying electrode to which a high frequency is applied can be arranged on the insulating material and the ground electrode can be arranged in the immediate vicinity of this high frequency applying electrode, the plasma can be stably discharged in the vicinity of the insulating material even in a high vacuum. In addition, since the high frequency is a sine wave in which positive and negative are alternating, electrons are accelerated and decelerated, and the etching characteristics are improved.

【0010】また、本発明は上記目的を達成するため
に、次の技術手段を講じたことを特徴とする。すなわ
ち、プラズマ処理を行うための減圧容器と、絶縁材を間
に介在させて高周波印加電極と接地電極を組み合わせて
板状にし、前記減圧容器内に配置したプラズマ発生電極
体と、前記高周波印加電極に高周波を印加する高周波電
源と、前記減圧容器内に前記プラズマ発生電極体と対向
配置した、被処理試料が載せられるバイアス印加電極
と、前記バイアス印加電極に高周波を印加するバイアス
印加電源とを備えた構成としたものである。 これによ
れば、減圧容器内で、しかも絶縁材等を介さずに直接、
プラズマ放電が行われるので、高真空での放電が安定し
て可能になるとともに、プラズマ密度を高密度化して、
エッチングに適したプラズマを得ることができる。
Further, in order to achieve the above object, the present invention is characterized by taking the following technical means. That is, a decompression container for performing plasma processing, a high-frequency applying electrode and a ground electrode with an insulating material interposed therebetween to form a plate, and a plasma generating electrode body arranged in the decompression container, and the high-frequency applying electrode. A high-frequency power source for applying a high-frequency wave, a bias applying electrode on which the sample to be processed is placed in the decompression container facing the plasma generating electrode body, and a bias applying power source for applying a high frequency to the bias applying electrode. It has a different structure. According to this, in the decompression container, and directly without using an insulating material or the like,
Since plasma discharge is performed, it is possible to stably discharge in a high vacuum and increase the plasma density.
A plasma suitable for etching can be obtained.

【0011】[0011]

【発明の実施の形態】図1は本発明の第1の形態例とし
て示すドライエッチング装置の概略構成図である。図1
において、符号1はプラズマ処理を行うための減圧容器
であり、この減圧容器1内には図示せぬ被エッチング試
料を載置するバイアス印加電極2が水平に配置されてい
る。このバイアス印加電極2にはバイアス印加電源6が
接続されている。
FIG. 1 is a schematic configuration diagram of a dry etching apparatus shown as a first embodiment of the present invention. FIG.
In FIG. 1, reference numeral 1 is a decompression container for performing a plasma treatment. In the decompression container 1, a bias applying electrode 2 on which a sample to be etched (not shown) is placed is horizontally arranged. A bias applying power source 6 is connected to the bias applying electrode 2.

【0012】また、減圧容器1には、バイアス印加電極
2と平行にしてプラズマ発生電極体4が設置されてい
る。このプラズマ発生電極体4は減圧容器1の一部(本
形態例では減圧容器1の天壁の一部)をなす状態にして
配置されている石英板3と、この石英板3上、すなわち
減圧容器1の外側面に配置されている3つの電極16
a,16b,17とで構成されており、これら3つの電
極16a,16b,17は図2に上から見た模式図とし
て示すように、電極16aが中心に配置され、この外側
を順に囲って電極17,電極16bが略等間隔づつ離れ
て配置されている。また、この3つの電極16a,16
b,17のうち、電極16a,16bは電極17を挟ん
で内側と外側に分けられている高周波印加電極で、電極
17は接地電極である。そこで、以下の説明では電極1
6a,電極16bを「高周波印加電極16a」,「高周
波印加電極16b」と言い、電極17を「接地電極1
7」と言う。そして、高周波印加電極16a,16bに
はそれぞれ同じ高周波電源5が接続され、接地電極17
は接地されている。加えて、減圧容器1には、この減圧
容器1内に放電ガス(プロセスガス)を導入するための
多数の微細孔7が設けられているとともに、この微細孔
7より導入された放電ガスを排気するための排気口8も
設けられている。
A plasma generating electrode assembly 4 is installed in the decompression container 1 in parallel with the bias applying electrode 2. The plasma generating electrode body 4 is a quartz plate 3 arranged so as to form a part of the decompression container 1 (a part of the ceiling wall of the decompression container 1 in the present embodiment), and the quartz plate 3, that is, the decompression Three electrodes 16 arranged on the outer surface of the container 1
a, 16b, 17 and these three electrodes 16a, 16b, 17 are arranged in the center of the electrode 16a as shown in the schematic view seen from above in FIG. The electrodes 17 and 16b are arranged at substantially equal intervals. Also, these three electrodes 16a, 16
Of the electrodes b and 17, the electrodes 16a and 16b are high-frequency applying electrodes which are divided into an inner side and an outer side with the electrode 17 interposed therebetween, and the electrode 17 is a ground electrode. Therefore, in the following description, the electrode 1
6a and electrode 16b are referred to as "high frequency applying electrode 16a" and "high frequency applying electrode 16b", and electrode 17 is referred to as "ground electrode 1".
7 ”. The same high-frequency power source 5 is connected to the high-frequency applying electrodes 16a and 16b, and the ground electrode 17
Is grounded. In addition, the decompression container 1 is provided with a large number of fine holes 7 for introducing a discharge gas (process gas) into the decompression container 1, and the discharge gas introduced through the fine holes 7 is exhausted. An exhaust port 8 for doing so is also provided.

【0013】次に、このドライエッチング装置の動作を
説明する。まず、図示せぬ被エッチング試料(被処理試
料)が図示せぬロードロック室から搬入され、バイアス
印加電極2の上に載置される。続いて、所定圧力まで減
圧した後、微細孔7より放電ガスが導入されて処理所定
圧に調整される。その後、プラズマ発生電極体4におけ
る高周波印加電極16a,16bと接地電極17との間
に高周波電源5より高周波が印加される。すると、減圧
容器1内に放電が起こり、プラズマが発生する。これと
同時に、被エッチング試料を載置したバイアス印加電極
2にバイアス印加電源6より高周波が印加される。する
と、減圧容器1内に発生したプラズマ中のイオンが被エ
ッチング試料に垂直に入射し、エッチングが異方的に進
行する。
Next, the operation of this dry etching apparatus will be described. First, a sample to be etched (sample to be processed) not shown is carried in from a load lock chamber not shown and placed on the bias applying electrode 2. Then, after the pressure is reduced to a predetermined pressure, a discharge gas is introduced through the fine holes 7 and adjusted to a predetermined processing pressure. After that, a high frequency is applied from the high frequency power supply 5 between the high frequency applying electrodes 16a and 16b of the plasma generating electrode body 4 and the ground electrode 17. Then, electric discharge occurs in the decompression container 1 and plasma is generated. At the same time, a high frequency is applied from the bias applying power source 6 to the bias applying electrode 2 on which the sample to be etched is placed. Then, the ions in the plasma generated in the decompression container 1 are vertically incident on the sample to be etched, and the etching proceeds anisotropically.

【0014】ここで、プラズマ発生電極体4とバイアス
印加電極2に印加する高周波は同じ周波数のものでも、
異なる周波数のものでも構わない。例えば、プラズマ発
生電極体4には13.56MHz、バイアス印加電極2には400K
Hzと言う場合もあれば、両方共に13.56MHzと言うことも
可能である。これは、必要なエッチング特性を得るのに
合わせて選択すれば良い。また、両方に同じ周波数の高
周波を印加する場合、各々の高周波の位相をずらして印
加することも可能である。さらに、プラズマ発生電極体
4における高周波印加電極16a,16b及び接地電極
17を設けている石英板3は必ずしも石英板である必要
はなく、例えば放電ガス(プロセスガス)としてフロロ
カーボン系のガスを使用する場合には、材料が石英では
消耗が激しいことが予想される。そのような場合には、
他の絶縁性材料、例えばアルミナ板等を使用すれば消耗
は大幅に低減できる。
Here, even if the high frequencies applied to the plasma generating electrode body 4 and the bias applying electrode 2 are the same,
Different frequencies may be used. For example, the plasma generating electrode body 4 is 13.56MHz, and the bias applying electrode 2 is 400K.
Sometimes it can be called Hz, or both can be called 13.56MHz. This may be selected according to the required etching characteristics. Further, when applying high frequencies of the same frequency to both, it is also possible to shift the phases of the respective high frequencies and apply them. Further, the quartz plate 3 provided with the high-frequency applying electrodes 16a and 16b and the ground electrode 17 in the plasma generating electrode body 4 does not necessarily have to be a quartz plate, and for example, a fluorocarbon-based gas is used as the discharge gas (process gas). In this case, if the material is quartz, it is expected that the consumption will be severe. In such a case,
If another insulating material such as an alumina plate is used, the consumption can be greatly reduced.

【0015】したがって、この第1の形態例の構造によ
れば、高周波が印加される高周波印加電極16a,16
bを石英板3上に配置するとともに、この高周波印加電
極16a,16bの直近に接地電極17を配置している
ので、従来のRIE(リアクティブ・イオン・エッチン
グ)方式に比較してより高真空域(概略1torrの領域)
での安定放電が可能となる。すなわち、RIE方式で
は、放電を安定して得るためには、圧力と電極間隔の関
係から、高真空で安定に放電するには電極間隔を非常に
狭くする必要がある。しかし、それには限度があり1cm
以下の電極間隔では難しくなり、またバルクプラズマが
被エッチング材料に近すぎるとエッチング特性を制御す
るのが難しくなるが、この第1の形態例の電極構造をと
れば、高真空でもプラズマは石英板3の近傍に安定して
放電できる。また、ICP(誘導結合プラズマ)方式の
ような1ターンアンテナ構造(図13参照)にした電極
を用いていないので、プラズマの解離状態はRIE方式
に近い状態となり、エッチング特性の向上が期待され
る。すなわち、ICP方式は、アンテナに高周波電流が
流れることにより、電磁誘導の法則で電界が生じ、この
電界で電子が加速されることにより高密度プラズマが発
生するが、この第1の形態例の構造では、高周波は正負
が交互に来る正弦波のため、電子は加速と減速が加わ
り、ICP方式のような高密度にはならない。
Therefore, according to the structure of the first embodiment, the high frequency applying electrodes 16a, 16 to which a high frequency is applied.
Since b is arranged on the quartz plate 3 and the ground electrode 17 is arranged in the immediate vicinity of the high frequency applying electrodes 16a and 16b, a higher vacuum than that of the conventional RIE (reactive ion etching) method is provided. Area (area of approximately 1 torr)
A stable discharge can be achieved. That is, in the RIE method, in order to obtain stable discharge, it is necessary to make the electrode interval very narrow in order to achieve stable discharge in high vacuum because of the relationship between the pressure and the electrode interval. However, it has a limit of 1 cm
It becomes difficult with the following electrode spacing, and it becomes difficult to control the etching characteristics if the bulk plasma is too close to the material to be etched. However, with the electrode structure of this first embodiment, plasma is generated even when the plasma is high vacuum. It is possible to stably discharge in the vicinity of 3. Moreover, since the electrode having the one-turn antenna structure (see FIG. 13) such as the ICP (inductively coupled plasma) system is not used, the plasma dissociation state is close to that of the RIE system, and improvement of etching characteristics is expected. . That is, in the ICP method, a high-frequency current flows through the antenna to generate an electric field according to the law of electromagnetic induction, and electrons are accelerated by this electric field to generate high-density plasma. Then, since the high frequency is a sine wave in which positive and negative are alternating, electrons are accelerated and decelerated, and the density is not as high as in the ICP method.

【0016】図3乃至図5は第1の形態例に使用してい
るプラズマ発生電極体4の変形例を示すものである。次
に、その変形例について説明する。なお、図3乃至図5
において図1及び図2と同一符号を付したものは図1及
び図2と同一のものを示している。まず、図3はプラズ
マ発生電極体4の第1の変形例を示す上面模式図であ
る。この第1の変形例では、石英板3上に、中心に高周
波印加電極16aを配置し、この外側を順に囲って接地
電極17a,高周波印加電極16b,接地電極17b,
高周波印加電極16c,接地電極17cが略等間隔づつ
離れて配置されている構造にしたもので、高周波印加電
極16a,16b,16cにはそれぞれ同じ高周波電源
5が接続され、接地電極17a,17b,17cはそれ
ぞれ接地されている。したがって、プラズマは電極の端
部近傍で濃い部分が発生し、電極間隔が広い場合にはそ
れによりプラズマの濃淡ができる可能性があるが、この
第1の変形例の場合では、高周波印加電極(16a〜1
6c)と接地電極(17a〜17c)の数が第1の形態
例の場合に比べて1つづ多いので密度が高い。このた
め、高周波印加電極(16a〜16c)と接地電極(1
7a〜17c)との距離を近づけることができるので、
プラズマの均一性が向上するとともに、高密度のプラズ
マが得られる。なお、各電極の配置関係を逆、すなわち
高周波印加電極と接地電極の数は、これ以外にも可能な
範囲で増加させ、高周波印加電極と接地電極との距離を
近づけても良いことは勿論のことである。また、中心に
接地電極17aを配置し、この外側を順に囲って高周波
印加電極16a,接地電極17b,高周波印加電極16
b,接地電極17c,高周波印加電極16cが配置され
た構造としても差し支えないものである。
3 to 5 show modifications of the plasma generating electrode body 4 used in the first embodiment. Next, a modification thereof will be described. 3 to 5
In FIG. 1, the same reference numerals as those in FIGS. 1 and 2 indicate the same parts as those in FIGS. First, FIG. 3 is a schematic top view showing a first modification of the plasma generating electrode body 4. In the first modification, a high frequency applying electrode 16a is arranged at the center on the quartz plate 3, and the outside thereof is sequentially surrounded so that the ground electrode 17a, the high frequency applying electrode 16b, the ground electrode 17b,
The high frequency applying electrode 16c and the ground electrode 17c are arranged at substantially equal intervals, and the same high frequency power source 5 is connected to the high frequency applying electrodes 16a, 16b, 16c, and the ground electrodes 17a, 17b, Each of 17c is grounded. Therefore, the plasma generates a dark portion near the end of the electrode, and there is a possibility that the plasma may be shaded when the electrode interval is wide. However, in the case of the first modification, the high frequency applying electrode ( 16a-1
6c) and the number of ground electrodes (17a to 17c) are larger by one than in the case of the first embodiment, so that the density is high. Therefore, the high frequency applying electrodes (16a to 16c) and the ground electrode (1
7a to 17c), the distance from
The uniformity of plasma is improved and a high density plasma is obtained. It should be noted that the arrangement relationship of the respective electrodes may be reversed, that is, the number of high frequency applying electrodes and the number of ground electrodes may be increased within a range other than this, and the distance between the high frequency applying electrodes and the ground electrodes may be reduced. That is. Further, the ground electrode 17a is arranged at the center, and the high frequency applying electrode 16a, the ground electrode 17b, and the high frequency applying electrode 16 are sequentially surrounded by the ground electrode 17a.
b, the ground electrode 17c, and the high frequency applying electrode 16c may be arranged.

【0017】次に、図4はプラズマ発生電極体4の第2
の変形例を示す概略縦断側面図である。この第2の変形
例では、石英板3上に、中心に高周波印加電極16aを
配置し、この外側を順に囲って接地電極17a,高周波
印加電極16b,接地電極17b,高周波印加電極16
cが互いに離れて配置されている構造にしたものであ
る。そして、高周波印加電極16a,16b,16cに
はそれぞれ同じ高周波電源5が接続され、接地電極17
a,17bはそれぞれ接地されている。また、各電極1
6a,17a,16b,17b,16cの間隔は、外側
から中心に向かって電極間隔が少しづつ広がっていく構
成をとっている。例えば、図4に示す本例の場合では、
電極間隔t1は5mm、電極間隔t2は 5.5mm、電極間隔t3は
6mm、電極間隔t4は 6.5mmで、中心に最も近い電極間隔
まで 0.5mmづつ間隔を広げている。この第2の変形例の
ように、外側にいくに従い電極間隔を狭くすると、次の
ような効果がある。すなわち、減圧容器1内で発生した
プラズマは減圧容器1の構成上、拡散により周囲に広が
り、外側が密度として薄くなる場合がある。また、側面
の壁等でのプラズマ中の活性種が失活することによって
も、外側が薄くなる傾向にある。さらに、エッチング反
応の進み具合によっても外側が薄くなる場合がある。そ
のような場合には、この第2の変形例のように外側に行
くに従い電極間隔が狭くなるようにしておくと、プラズ
マの発生自体は電極の外側に近い方が濃いプラズマとな
り、それにより拡散や側壁での活性種の失活があっても
被エッチング試料の表面近傍でより均一なプラズマを得
ることができ、処理の均一性が向上する。
Next, FIG. 4 shows the second part of the plasma generating electrode body 4.
It is a schematic longitudinal cross-sectional side view which shows the modification. In the second modification, a high frequency applying electrode 16a is arranged at the center on the quartz plate 3, and the outside thereof is sequentially surrounded so that the ground electrode 17a, the high frequency applying electrode 16b, the ground electrode 17b, and the high frequency applying electrode 16 are provided.
This is a structure in which c are arranged apart from each other. The same high-frequency power source 5 is connected to the high-frequency applying electrodes 16a, 16b, 16c, and the ground electrode 17
Each of a and 17b is grounded. Also, each electrode 1
The distance between the electrodes 6a, 17a, 16b, 17b, 16c is such that the electrode distance gradually increases from the outside toward the center. For example, in the case of this example shown in FIG.
The electrode spacing t1 is 5 mm, the electrode spacing t2 is 5.5 mm, the electrode spacing t3 is 6 mm, the electrode spacing t4 is 6.5 mm, and the spacing is increased by 0.5 mm to the electrode spacing closest to the center. As in the case of the second modification, if the electrode interval is made narrower toward the outside, the following effects are obtained. That is, the plasma generated in the decompression container 1 may spread to the surroundings due to diffusion due to the structure of the decompression container 1, and the outside may become thin as a density. In addition, deactivation of active species in plasma on the side wall or the like also tends to make the outside thin. Further, the outer side may be thinned depending on the progress of the etching reaction. In such a case, if the electrode interval is made narrower toward the outside as in the second modification, the plasma generation itself becomes a deep plasma near the outside of the electrode, which causes diffusion. Even if the active species are deactivated on the side wall or the side wall, more uniform plasma can be obtained in the vicinity of the surface of the sample to be etched, and the uniformity of processing is improved.

【0018】次に、図5はプラズマ発生電極体4の第3
の変形例を示す概略縦上面図である。この第3の変形例
では、高周波印加電極16と接地電極17をそれぞれ櫛
状に形成したものである。すなわち、高周波印加電極1
6には電極歯16A,16B,16C,16Dを一体に
設け、接地電極17には電極歯17A,17B,17
C,17Dを一体に設けている。そして、高周波印加電
極16の電極歯16A〜16Dの間に接地電極17の電
極歯17A〜17Dをそれぞれ非接触の状態で入り込ま
せて石英板3上に配置したものであって、高周波印加電
極16には高周波電源5が接続され、接地電極17は接
地している。したがって、この第3の変形例の場合で
は、高周波印加電極16と接地電極17の加工がし易く
なり、また同心円状に配置するものに比較して設置も容
易となる。例えば、同心円状の場合には、各電極の中心
位置がズレると、電極間隔に差異が生じるが、櫛状の場
合にはその不安定性は低く抑えられる。
Next, FIG. 5 shows the third part of the plasma generating electrode body 4.
FIG. 8 is a schematic vertical top view showing a modification example of FIG. In the third modification, the high frequency applying electrode 16 and the ground electrode 17 are formed in a comb shape. That is, the high frequency applying electrode 1
6 is integrally provided with electrode teeth 16A, 16B, 16C, 16D, and the ground electrode 17 is provided with electrode teeth 17A, 17B, 17D.
C and 17D are integrated. Then, the electrode teeth 17A to 17D of the ground electrode 17 are inserted in a non-contact state between the electrode teeth 16A to 16D of the high frequency applying electrode 16 and arranged on the quartz plate 3, respectively. The high frequency power source 5 is connected to the ground electrode 17, and the ground electrode 17 is grounded. Therefore, in the case of the third modification, the high-frequency applying electrode 16 and the ground electrode 17 can be easily processed, and the installation can be facilitated as compared with the case where they are arranged concentrically. For example, in the case of concentric circles, when the center position of each electrode shifts, a difference occurs in the electrode interval, but in the case of a comb, the instability can be suppressed to a low level.

【0019】図6は本発明の第2の形態例として示すド
ライエッチング装置の概略構成図である。図6におい
て、符号21はプラズマ処理を行うための減圧容器であ
り、この減圧容器21内にはプラズマ発生電極体24と
バイアス印加電極22が互いに平行、かつ水平にして配
置されている。このうち、バイアス印加電極22には図
示せぬ被エッチング試料が載置可能になっており、この
バイアス印加電極22にバイアス印加電源26が接続さ
れている。
FIG. 6 is a schematic configuration diagram of a dry etching apparatus shown as a second embodiment of the present invention. In FIG. 6, reference numeral 21 is a decompression container for performing plasma processing. In this decompression container 21, a plasma generating electrode body 24 and a bias applying electrode 22 are arranged in parallel and horizontally. Of these, a sample to be etched (not shown) can be placed on the bias applying electrode 22, and the bias applying power source 26 is connected to the bias applying electrode 22.

【0020】これに対して、プラズマ発生電極体24
は、図7に上から見た模式図として示すように、同心円
状に配置された3つの電極36a,36b,37a,3
7bとで構成されている。すなわち、電極37aが中心
に配置され、この外側を囲った状態にして電極36a,
電極37b,電極36bが略等間隔づつ離れて配置され
ているとともに、各電極37a,36a,37b,36
bとの間に絶縁材23が介装され、これら各電極37
a,36a,37b,36b,絶縁材23が一体化され
て、円板状をしたプラズマ発生電極体24が形成された
状態になっている。そして、電極37bを挟んで内側と
外側に分けられている電極36a,36bをそれぞれ高
周波電源25に接続させて高周波印加電極としていると
ともに、電極37a,37bを接地させて接地電極とし
ている。また、絶縁材23内には減圧容器21内に放電
ガス(プロセスガス)を導入するための多数の微細孔2
7が、その開口をバイアス印加電極22側に向けて設け
られている。なお、減圧容器21には、微細孔27より
導入された放電ガスを排気するための排気口28が設け
られている。
On the other hand, the plasma generating electrode body 24
Are three electrodes 36a, 36b, 37a, 3 arranged concentrically as shown in FIG.
7b. That is, the electrode 37a is arranged in the center, and the electrode 36a,
The electrode 37b and the electrode 36b are arranged at substantially equal intervals, and each of the electrodes 37a, 36a, 37b, 36
The insulating material 23 is interposed between the electrodes 37 and
The disk-shaped plasma generating electrode body 24 is formed by integrating the a, 36a, 37b, 36b and the insulating material 23. The electrodes 36a and 36b, which are divided into the inner side and the outer side with the electrode 37b interposed therebetween, are connected to the high-frequency power source 25 to serve as high-frequency applying electrodes, and the electrodes 37a and 37b are grounded to serve as ground electrodes. In addition, the insulating material 23 has a large number of fine holes 2 for introducing a discharge gas (process gas) into the decompression container 21.
7 is provided with its opening facing the bias applying electrode 22 side. The decompression container 21 is provided with an exhaust port 28 for exhausting the discharge gas introduced through the fine holes 27.

【0021】次に、このドライエッチング装置の動作を
説明する。まず、図示せぬ被エッチング試料(被処理試
料)が図示せぬロードロック室から搬入され、バイアス
印加電極22の上に載置される。続いて、所定圧力まで
減圧した後、微細孔27より放電ガスが導入されて処理
所定圧に調整される。その後、プラズマ発生電極体24
における高周波印加電極36a,36bと接地電極37
a,37bとの間に高周波電源25より高周波が印加さ
れる。すると、減圧容器21内に放電が起こり、プラズ
マが発生する。これと同時に、被エッチング試料を載置
したバイアス印加電極22にバイアス印加電源26より
高周波を印加する。すると、減圧容器21内に発生した
プラズマ中のイオンが被エッチング試料に垂直に入射
し、エッチングが異方的に進行する。
Next, the operation of this dry etching apparatus will be described. First, a sample to be etched (sample to be processed) (not shown) is carried in from a load lock chamber (not shown) and placed on the bias applying electrode 22. Then, after the pressure is reduced to a predetermined pressure, a discharge gas is introduced through the fine holes 27 and adjusted to a predetermined processing pressure. After that, the plasma generating electrode body 24
High frequency applying electrodes 36a and 36b and ground electrode 37 in
A high frequency is applied from the high frequency power supply 25 between a and 37b. Then, electric discharge occurs in the decompression container 21 and plasma is generated. At the same time, a high frequency is applied from the bias applying power source 26 to the bias applying electrode 22 on which the sample to be etched is placed. Then, the ions in the plasma generated in the decompression container 21 vertically enter the sample to be etched, and the etching proceeds anisotropically.

【0022】ここで、プラズマ発生電極体24とバイア
ス印加電極22に印加する高周波は、第1の形態例の場
合と同様に、同じ周波数のものでも、異なる周波数のも
のでも構わない。また、両方に同じ周波数の高周波を印
加する場合、各々の高周波の位相をずらして印加するこ
とも可能である。
Here, the high frequencies applied to the plasma generating electrode body 24 and the bias applying electrode 22 may be the same or different, as in the case of the first embodiment. Further, when applying high frequencies of the same frequency to both, it is also possible to shift the phases of the respective high frequencies and apply them.

【0023】したがって、この第2の形態例の構造によ
れば、第1の形態例の構造のように石英板等の絶縁材を
介して高周波を印加するのに比較して、より高真空での
放電が安定して可能になる。また、プラズマ密度も第1
の形態例の構造よりも高密度化することができ、さらに
エッチングに適したプラズマが得られることが期待でき
る。
Therefore, according to the structure of the second embodiment, as compared with the case of applying the high frequency through the insulating material such as the quartz plate as in the structure of the first embodiment, a higher vacuum is applied. The stable discharge is possible. The plasma density is also the first
It is expected that the density can be made higher than that of the structure of the above example and plasma suitable for etching can be obtained.

【0024】図8乃至図10は第2の形態例に使用して
いるプラズマ発生電極体24の変形例を示すものであ
る。次に、その変形例について説明する。なお、図8乃
至図10において図6及び図7と同一符号を付したもの
は図6及び図7と同一のものを示している。まず、図8
はプラズマ発生電極体24の第1の変形例を示す上面模
式図である。この第1の変形例では、中心に高周波印加
電極36aを配置し、この外側を順に囲って接地電極3
7a,高周波印加電極36b,接地電極37b,高周波
印加電極36c,接地電極37cが略等間隔づつ離れて
配置され、各電極36a,37a,36b,37b,3
6cとの間に絶縁材23が介装され、これら各電極36
a,37a,36b,37b,36c,37cと絶縁材
23が一体化されて、円板状をした構造にしたものであ
り、高周波印加電極36a,36b,36cにはそれぞ
れ同じ高周波電源25が接続され、接地電極37a,3
7b,37cは接地されている。また、絶縁材23内に
は、第2の形態例の場合と同様に、減圧容器21内に放
電ガスを導入するための多数の微細孔27が設けられて
いる。したがって、第2の形態例における第1の変形例
の場合では、高周波印加電極(36a〜36c)と接地
電極(37a〜37c)の数が第2の形態例の場合に比
べて1つづ多い分だけで密度が高い。このため、高周波
印加電極と接地電極との距離を近づけることができるの
で、プラズマの均一性が向上するとともに、高密度のプ
ラズマが得られることになる。なお、高周波印加電極と
接地電極の数は、これ以外にも可能な範囲で増加させ、
高周波印加電極と接地電極との距離を近づけても良いこ
とは勿論のことである。また、各電極の配置関係を逆、
すなわち中心に接地電極37aを配置し、この外側を順
に囲って高周波印加電極36a,接地電極37b,高周
波印加電極36b,接地電極37c,高周波印加電極3
6cが配置された構造としても差し支えないものであ
る。
8 to 10 show a modification of the plasma generating electrode body 24 used in the second embodiment. Next, a modification thereof will be described. 8 to 10, the same reference numerals as those in FIGS. 6 and 7 denote the same parts as those in FIGS. 6 and 7. First, FIG.
FIG. 6 is a schematic top view showing a first modified example of the plasma generating electrode body 24. In the first modification, the high frequency applying electrode 36a is arranged at the center, and the ground electrode 3 is surrounded by the outside in order.
7a, the high frequency applying electrode 36b, the ground electrode 37b, the high frequency applying electrode 36c, and the ground electrode 37c are arranged at substantially equal intervals, and each electrode 36a, 37a, 36b, 37b, 3
The insulating material 23 is interposed between the electrodes 6c and 6c, and these electrodes 36
a, 37a, 36b, 37b, 36c, 37c and the insulating material 23 are integrated into a disk-shaped structure, and the same high-frequency power supply 25 is connected to the high-frequency applying electrodes 36a, 36b, 36c, respectively. Ground electrodes 37a, 3
7b and 37c are grounded. Further, in the insulating material 23, as in the case of the second embodiment, a large number of fine holes 27 for introducing the discharge gas into the decompression container 21 are provided. Therefore, in the case of the first modification of the second embodiment, the number of high-frequency applying electrodes (36a to 36c) and the number of ground electrodes (37a to 37c) are increased by one as compared with the case of the second embodiment. Just dense. Therefore, the high-frequency applying electrode and the ground electrode can be made closer to each other, so that the uniformity of plasma is improved and high-density plasma can be obtained. In addition, the number of high frequency applying electrodes and the number of ground electrodes should be increased in other possible ranges.
Of course, the high frequency applying electrode and the ground electrode may be close to each other. Also, the arrangement relationship of each electrode is reversed,
That is, the ground electrode 37a is arranged in the center, and the high-frequency applying electrode 36a, the ground electrode 37b, the high-frequency applying electrode 36b, the ground electrode 37c, and the high-frequency applying electrode 3 are arranged so as to surround the outside in order.
It does not matter even if the structure of 6c is arranged.

【0025】次に、図9は第2の形態例におけるプラズ
マ発生電極体24の第2の変形例を示す概略縦断側面図
である。この第2の変形例では、中心に高周波印加電極
36aを配置し、この外側を順に囲って接地電極37
a,高周波印加電極36b,接地電極37b,高周波印
加電極36cが互いに離れて配置され、各電極36a,
37a,36b,37b,36cとの間に絶縁材23が
介装され、これら各電極36a,37a,36b,37
b,36cと絶縁材23が一体化されて、円板状をした
構造にしたものであり、高周波印加電極36a,36
b,36cにはそれぞれ同じ高周波電源25が接続さ
れ、接地電極37a,37bは接地されている。また、
絶縁材23内には、第2の形態例の場合と同様に、減圧
容器21内に放電ガスを導入するための多数の微細孔2
7が設けられている。さらに、各電極36a,37a,
36b,37b,36cの間隔は、外側から中心に向か
って電極間隔が少しづつ広がっていく構成をとってい
る。例えば、図9に示す本例の場合では、電極間隔t1は
5mm、電極間隔t2は 5.5mm、電極間隔t3は6mm、電極間
隔t4は 6.5mmで、中心に最も近い電極間隔まで 0.5mmづ
つ間隔を広げている。この第2の変形例のように、外側
にいくに従い電極間隔を狭くすることにより、第1の形
態例における第2の変形例で説明したのと同様の理由に
より、被エッチング試料の表面近傍でより均一なプラズ
マを得ることができ、処理の均一性が向上する。
Next, FIG. 9 is a schematic vertical sectional side view showing a second modification of the plasma generating electrode body 24 in the second embodiment. In the second modification, the high-frequency applying electrode 36a is arranged at the center, and the ground electrode 37 is surrounded by the outside in order.
a, the high frequency applying electrode 36b, the ground electrode 37b, and the high frequency applying electrode 36c are arranged apart from each other, and each electrode 36a,
The insulating material 23 is interposed between the electrodes 37a, 36b, 37b, and 36c, and these electrodes 36a, 37a, 36b, and 37 are provided.
b, 36c and the insulating material 23 are integrated into a disk-shaped structure, and the high frequency applying electrodes 36a, 36
The same high frequency power supply 25 is connected to each of b and 36c, and the ground electrodes 37a and 37b are grounded. Also,
In the insulating material 23, as in the case of the second embodiment, a large number of fine holes 2 for introducing the discharge gas into the decompression container 21.
7 are provided. Furthermore, each electrode 36a, 37a,
The distance between the electrodes 36b, 37b, 36c is such that the electrode distance gradually increases from the outside toward the center. For example, in the case of this example shown in FIG. 9, the electrode interval t1 is 5 mm, the electrode interval t2 is 5.5 mm, the electrode interval t3 is 6 mm, the electrode interval t4 is 6.5 mm, and the interval between the electrodes closest to the center is 0.5 mm. Is spreading. As in the second modification, the electrode interval is made narrower toward the outside, and for the same reason as described in the second modification of the first embodiment, near the surface of the sample to be etched. A more uniform plasma can be obtained and the processing uniformity is improved.

【0026】次に、図10は第2の形態例におけるプラ
ズマ発生電極体24の第3の変形例を示す概略上面図で
ある。この第3の変形例では、高周波印加電極36と接
地電極37をそれぞれ櫛状に形成したものである。すな
わち、高周波印加電極36には電極歯36A,36B,
36C,36Dを一体に設け、接地電極37には電極歯
37A,37B,37C,37Dを一体に設けている。
そして、高周波印加電極36の電極歯36A〜36Dの
間に接地電極37の電極歯37A〜37Dをそれぞれ非
接触の状態で、この間に絶縁材23を介在させて位置決
めしたものであり、高周波印加電極36には高周波電源
25が接続され、接地電極37は接地している。したが
って、この第2の形態例における第3の変形例の場合で
は、高周波印加電極と接地電極の加工がし易くなり、ま
た同心円状に配置するものに比較して設置も容易とな
る。そして、第1の形態例における第3の変形例で述べ
たことと同様に、同心円状の場合には、各電極の中心位
置がズレると、電極間隔に差異が生じるが、櫛状の場合
にはその不安定性は低く抑えられることになる。
Next, FIG. 10 is a schematic top view showing a third modification of the plasma generating electrode body 24 in the second embodiment. In the third modification, the high frequency applying electrode 36 and the ground electrode 37 are formed in a comb shape. That is, the high frequency applying electrode 36 has electrode teeth 36A, 36B,
36C and 36D are integrally provided, and the ground electrode 37 is integrally provided with electrode teeth 37A, 37B, 37C and 37D.
The electrode teeth 37A to 37D of the ground electrode 37 are positioned in a non-contact state between the electrode teeth 36A to 36D of the high frequency applying electrode 36 with the insulating material 23 interposed therebetween. The high frequency power supply 25 is connected to 36, and the ground electrode 37 is grounded. Therefore, in the case of the third modified example of the second embodiment, the high-frequency applying electrode and the ground electrode can be easily processed, and the installation can be facilitated as compared with the case where they are arranged concentrically. Then, as described in the third modified example of the first embodiment, in the case of concentric circles, when the center position of each electrode shifts, a difference occurs in the electrode spacing, but in the case of comb-like cases Will have low instability.

【0027】[0027]

【発明の効果】以上説明したとおり、本発明に係るプラ
ズマ処理装置によれば、エッチングに適したプラズマ特
性を得ることができる。
As described above, according to the plasma processing apparatus of the present invention, plasma characteristics suitable for etching can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の形態例として示すドライエッチ
ング装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a dry etching apparatus shown as a first embodiment of the present invention.

【図2】第1の形態例で使用しているプラズマ発生電極
体の上面図である。
FIG. 2 is a top view of a plasma generating electrode body used in the first embodiment.

【図3】第1の形態例におけるプラズマ発生電極体の第
1の変形例を示す図である。
FIG. 3 is a diagram showing a first modification of the plasma generating electrode body according to the first embodiment.

【図4】第1の形態例におけるプラズマ発生電極体の第
2の変形例を示す図である。
FIG. 4 is a diagram showing a second modification of the plasma generating electrode body in the first embodiment.

【図5】第1の形態例におけるプラズマ発生電極体の第
3の変形例を示す図である。
FIG. 5 is a diagram showing a third modification of the plasma generating electrode body in the first embodiment.

【図6】本発明の第2の形態例として示すドライエッチ
ング装置の概略構成図である。
FIG. 6 is a schematic configuration diagram of a dry etching apparatus shown as a second embodiment of the present invention.

【図7】第2の形態例で使用しているプラズマ発生電極
体の上面図である。
FIG. 7 is a top view of a plasma generating electrode body used in the second embodiment.

【図8】第2の形態例におけるプラズマ発生電極体の第
1の変形例を示す図である。
FIG. 8 is a diagram showing a first modification of the plasma generating electrode body in the second embodiment.

【図9】第2の形態例におけるプラズマ発生電極体の第
2の変形例を示す図である。
FIG. 9 is a diagram showing a second modification of the plasma generating electrode body in the second embodiment.

【図10】第2の形態例におけるプラズマ発生電極体の
第3の変形例を示す図である。
FIG. 10 is a diagram showing a third modification of the plasma generating electrode body according to the second embodiment.

【図11】従来のドライエッチング装置の一例を示す概
略構成図である。
FIG. 11 is a schematic configuration diagram showing an example of a conventional dry etching apparatus.

【図12】従来のドライエッチング装置の他の例を示す
概略構成図である。
FIG. 12 is a schematic configuration diagram showing another example of a conventional dry etching apparatus.

【図13】図12に示した同上装置におけるアンテナの
概略構成図である。
FIG. 13 is a schematic configuration diagram of an antenna in the same apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1,21 減圧容器 2,22 バイアス印加電極 3 石英板(絶縁材) 4,24 プラズマ発生電極体 5,25 高周波電源 6,26 バイアス印加電源 16,16a,16b,16c,16d 高周波印加電
極 16A,16B,16C,16D 電極歯 17,17a,17b,17c,17d 接地電極 17A,17B,17C,17D 電極歯 23 絶縁材 36,36a,36b,36c,36d 高周波印加電
極 36A,36B,36C,36D 電極歯 37,37a,37b,37c,37d 接地電極 37A,37B,37C,37D 電極歯
1, 21 Decompression container 2, 22 Bias applying electrode 3 Quartz plate (insulating material) 4, 24 Plasma generating electrode body 5, 25 High frequency power source 6, 26 Bias applying power source 16, 16a, 16b, 16c, 16d High frequency applying electrode 16A, 16B, 16C, 16D Electrode tooth 17, 17a, 17b, 17c, 17d Ground electrode 17A, 17B, 17C, 17D Electrode tooth 23 Insulating material 36, 36a, 36b, 36c, 36d High frequency applying electrode 36A, 36B, 36C, 36D Electrode Teeth 37, 37a, 37b, 37c, 37d Ground electrode 37A, 37B, 37C, 37D Electrode tooth

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 高周波印加電極と接地電極を絶縁材上に
設けてなるプラズマ発生電極体と、 前記高周波印加電極に高周波を印加する高周波電源と、 前記プラズマ発生電極体と対向配置されている、被処理
試料が載せられるバイアス印加電極と、 前記バイアス印加電極に高周波を印加するバイアス印加
電源とを備え、 前記絶縁材を通してプラズマを発生することを特徴とす
るプラズマ処理装置。
1. A plasma generating electrode body having a high frequency applying electrode and a ground electrode provided on an insulating material; a high frequency power source for applying a high frequency to the high frequency applying electrode; A plasma processing apparatus comprising: a bias applying electrode on which a sample to be processed is placed; and a bias applying power source for applying a high frequency to the bias applying electrode, and plasma is generated through the insulating material.
【請求項2】 前記バイアス印加電極を減圧容器内に設
置するとともに、前記絶縁材を前記減圧容器の一部と
し、前記減圧容器の外側となる前記絶縁材上に前記高周
波印加電極と前記接地電極を設けてなる請求項1に記載
のプラズマ処理装置。
2. The bias applying electrode is installed in a decompression container, the insulating material is part of the decompression container, and the high frequency applying electrode and the ground electrode are provided on the insulating material outside the decompression container. The plasma processing apparatus according to claim 1, further comprising:
【請求項3】 前記プラズマ発生電極体の前記高周波印
加電極と前記接地電極を交互に同心円状に複数配置した
請求項1に記載のプラズマ処理装置。
3. The plasma processing apparatus according to claim 1, wherein a plurality of the high frequency applying electrodes and the ground electrodes of the plasma generating electrode body are alternately arranged concentrically.
【請求項4】 前記プラズマ発生電極体の前記高周波印
加電極と前記接地電極との電極間隔がどの部分でもほぼ
等しくなるように構成した請求項1に記載のプラズマ処
理装置。
4. The plasma processing apparatus according to claim 1, wherein an electrode interval between the high frequency applying electrode and the ground electrode of the plasma generating electrode body is configured to be substantially equal in any portion.
【請求項5】 前記プラズマ発生電極体の前記高周波印
加電極と前記接地電極との電極間隔を中心から離れるに
したがって少しづつ狭くなるように形成した請求項1に
記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein an electrode interval between the high frequency applying electrode and the ground electrode of the plasma generating electrode body is formed so as to be gradually narrowed away from the center.
【請求項6】 前記プラズマ発生電極体の前記高周波印
加電極と前記接地電極にそれぞれ互いに入り組まれて配
置される複数の電極歯を設けて、前記高周波印加電極と
前記接地電極を櫛状に各々形成した請求項1に記載のプ
ラズマ処理装置。
6. The high frequency applying electrode and the ground electrode of the plasma generating electrode body are provided with a plurality of electrode teeth arranged in a mutually intertwined manner, and the high frequency applying electrode and the ground electrode are respectively formed in a comb shape. The plasma processing apparatus according to claim 1, which is formed.
【請求項7】 前記絶縁材として石英板を用いた請求項
1に記載のプラズマ処理装置。
7. The plasma processing apparatus according to claim 1, wherein a quartz plate is used as the insulating material.
【請求項8】 プラズマ処理を行うための減圧容器と、 絶縁材を間に介在させて高周波印加電極と接地電極を組
み合わせて板状にし、前記減圧容器内に配置したプラズ
マ発生電極体と、 前記高周波印加電極に高周波を印加する高周波電源と、
前記減圧容器内に前記プラズマ発生電極体と対向配置し
た、被処理試料が載せられるバイアス印加電極と、 前記バイアス印加電極に高周波を印加するバイアス印加
電源、 とを備えたことを特徴とするプラズマ処理装置。
8. A decompression container for performing plasma treatment, a plasma generating electrode body arranged in the decompression container in a plate shape by combining an RF applying electrode and a ground electrode with an insulating material interposed therebetween, A high frequency power source for applying a high frequency to the high frequency applying electrode,
A plasma treatment, comprising: a bias applying electrode, which is disposed in the decompression container and faces the plasma generating electrode body, on which a sample to be treated is placed; and a bias applying power source which applies a high frequency to the bias applying electrode. apparatus.
【請求項9】 前記プラズマ発生電極体の前記高周波印
加電極と前記接地電極を交互に同心円状に複数配置した
請求項8に記載のプラズマ処理装置。
9. The plasma processing apparatus according to claim 8, wherein a plurality of the high frequency applying electrodes and the ground electrodes of the plasma generating electrode body are alternately arranged concentrically.
【請求項10】 前記プラズマ発生電極体の前記高周波
印加電極と前記接地電極との電極間隔がどの部分でもほ
ぼ等しくなるように構成した請求項8に記載のプラズマ
処理装置。
10. The plasma processing apparatus according to claim 8, wherein an electrode interval between the high frequency applying electrode and the ground electrode of the plasma generating electrode body is configured to be substantially equal in any portion.
【請求項11】 前記プラズマ発生電極体の前記高周波
印加電極と前記接地電極との電極間隔を中心から離れる
にしたがって少しづつ狭くなるように形成した請求項8
に記載のプラズマ処理装置。
11. The electrode gap between the high frequency applying electrode and the ground electrode of the plasma generating electrode body is formed so as to be gradually narrowed away from the center.
3. The plasma processing apparatus according to 1.
【請求項12】 前記プラズマ発生電極体の前記高周波
印加電極と前記接地電極にそれぞれ互いに入り組まれて
配置される複数の電極歯を設けて、前記高周波印加電極
と前記接地電極を櫛状に各々形成した請求項8に記載の
プラズマ処理装置。
12. The high frequency applying electrode and the ground electrode of the plasma generating electrode body are provided with a plurality of electrode teeth arranged in a mutually intertwined manner, and the high frequency applying electrode and the ground electrode are respectively formed in a comb shape. The plasma processing apparatus according to claim 8, which is formed.
JP02084296A 1996-02-07 1996-02-07 Plasma processing apparatus and plasma processing method Expired - Fee Related JP3812966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02084296A JP3812966B2 (en) 1996-02-07 1996-02-07 Plasma processing apparatus and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02084296A JP3812966B2 (en) 1996-02-07 1996-02-07 Plasma processing apparatus and plasma processing method

Publications (2)

Publication Number Publication Date
JPH09213684A true JPH09213684A (en) 1997-08-15
JP3812966B2 JP3812966B2 (en) 2006-08-23

Family

ID=12038334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02084296A Expired - Fee Related JP3812966B2 (en) 1996-02-07 1996-02-07 Plasma processing apparatus and plasma processing method

Country Status (1)

Country Link
JP (1) JP3812966B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018198A1 (en) * 1998-09-24 2000-03-30 Seiko Epson Corporation Substrate electrode plasma generator and substance/material processing method
JP2006093669A (en) * 2004-08-18 2006-04-06 Nanofilm Technologies Internatl Pte Ltd Method and device for removing material from substrate surface
WO2008087843A1 (en) * 2007-01-15 2008-07-24 Tokyo Electron Limited Plasma processing apparatus, plasma processing method and storage medium
KR101105907B1 (en) * 2008-10-20 2012-01-17 한양대학교 산학협력단 Apparatus for generating remote plasma
WO2014172112A1 (en) * 2013-04-17 2014-10-23 Tokyo Electron Limited Capacitively coupled plasma equipment with uniform plasma density
KR20210060384A (en) * 2013-04-08 2021-05-26 램 리써치 코포레이션 Multi-segment electrode assembly and methods therefor
CN113169020A (en) * 2018-10-02 2021-07-23 牛津仪器纳米技术工具有限公司 Electrode array

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018198A1 (en) * 1998-09-24 2000-03-30 Seiko Epson Corporation Substrate electrode plasma generator and substance/material processing method
KR100701489B1 (en) * 1998-09-24 2007-03-29 세이코 엡슨 가부시키가이샤 Substrate electrode plasma generator and substance/material processing method
JP2006093669A (en) * 2004-08-18 2006-04-06 Nanofilm Technologies Internatl Pte Ltd Method and device for removing material from substrate surface
WO2008087843A1 (en) * 2007-01-15 2008-07-24 Tokyo Electron Limited Plasma processing apparatus, plasma processing method and storage medium
JP2008172168A (en) * 2007-01-15 2008-07-24 Tokyo Electron Ltd Plasma treatment apparatus, plasma treatment method, and storage medium
KR101124924B1 (en) * 2007-01-15 2012-04-12 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, plasma processing method and storage medium
US8636871B2 (en) 2007-01-15 2014-01-28 Tokyo Electron Limited Plasma processing apparatus, plasma processing method and storage medium
KR101105907B1 (en) * 2008-10-20 2012-01-17 한양대학교 산학협력단 Apparatus for generating remote plasma
KR20210060384A (en) * 2013-04-08 2021-05-26 램 리써치 코포레이션 Multi-segment electrode assembly and methods therefor
WO2014172112A1 (en) * 2013-04-17 2014-10-23 Tokyo Electron Limited Capacitively coupled plasma equipment with uniform plasma density
CN113169020A (en) * 2018-10-02 2021-07-23 牛津仪器纳米技术工具有限公司 Electrode array

Also Published As

Publication number Publication date
JP3812966B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US11476093B2 (en) Plasma etching systems and methods with secondary plasma injection
JP3438696B2 (en) Plasma processing method and apparatus
US5605637A (en) Adjustable dc bias control in a plasma reactor
US6433297B1 (en) Plasma processing method and plasma processing apparatus
JP3482904B2 (en) Plasma processing method and apparatus
JP2748886B2 (en) Plasma processing equipment
JP3374796B2 (en) Plasma processing method and apparatus
JPH08288096A (en) Plasma treatment device
JPH08107101A (en) Plasma processing device and plasma processing method
KR20150086530A (en) Capacitively coupled plasma equipment with uniform plasma density
JP7085828B2 (en) Plasma processing equipment
JP4601104B2 (en) Plasma processing equipment
US20160300738A1 (en) Plasma Generation and Control Using a DC Ring
KR100317915B1 (en) Apparatus for plasma etching
JP4013674B2 (en) Plasma doping method and apparatus
JP3812966B2 (en) Plasma processing apparatus and plasma processing method
JPH11288798A (en) Plasma production device
JP3343629B2 (en) Plasma processing equipment
JP3417328B2 (en) Plasma processing method and apparatus
JP2005079416A (en) Plasma processing device
JP4384295B2 (en) Plasma processing equipment
JP3940467B2 (en) Reactive ion etching apparatus and method
JP3379506B2 (en) Plasma processing method and apparatus
JP2001077091A (en) Plasma processing device
JP3374828B2 (en) Plasma processing method and apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees