JPH0921362A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JPH0921362A
JPH0921362A JP7170654A JP17065495A JPH0921362A JP H0921362 A JPH0921362 A JP H0921362A JP 7170654 A JP7170654 A JP 7170654A JP 17065495 A JP17065495 A JP 17065495A JP H0921362 A JPH0921362 A JP H0921362A
Authority
JP
Japan
Prior art keywords
cylinder
fuel
reformed gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7170654A
Other languages
Japanese (ja)
Other versions
JP3460391B2 (en
Inventor
Minoru Osuga
大須賀  稔
Takashige Oyama
宜茂 大山
Ryoichi Komuro
亮一 古室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17065495A priority Critical patent/JP3460391B2/en
Publication of JPH0921362A publication Critical patent/JPH0921362A/en
Application granted granted Critical
Publication of JP3460391B2 publication Critical patent/JP3460391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To feed a reformed gas sufficiently to the quenching layer of the combustion chamber of an internal combustion engine which uses a hydrocarbon as the fuel, by making the reformed gas collide directly with the inner wall of a cylinder, and distributing the main fuel at the center of the cylinder and the reformed gas around the center of the cylinder respectively. SOLUTION: Together with the starting of an engine, a control unit 10 opens a solenoid valve 83, delivers a fuel to the catalyst 71 of a reformer 7, and a heater 72 heats the catalyst 71. An air amount control unit 82 delivers a specific amount of air to the catalyst 71. A hydrocarbon fuel is reformed there by the function of the catalyst 71, so as to produce H2 and CO. A nozzle 6 is installed to direct in the advancing direction of a swirl, and to make the gas collide with the inner wall of a cylinder 1. The reformed gas such as H2 and CO reformed in the reformer 7 are made collide directly with the inner wall of the cylinder form the nozzle 6, and the main fuel is distributed to the center f the cylinder 1, while the reformed gas is distributed around the center of the cylinder 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化水素を燃料とする内
燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrocarbon fueled internal combustion engine.

【0002】[0002]

【従来の技術】炭化水素を燃料とする内燃機関では、シ
リンダ内壁近くに消炎層ができる。消炎層内の燃料の多
くは未燃の燃料としての排出が避けられない。これは消
炎層で火炎が消えるからである。これを回避するため筒
内に燃料を噴射する方式がある。しかし、空気と燃料の
混合が不十分ですすを発生し易い。従って、排気管に触
媒を設け炭化水素を酸化する方法が採用されている。し
かし始動時触媒の温度が低いときは充分に反応せず炭化
水素が放出されている。これを打開するため燃料を改質
し、改質したガスを供給する方法が提案されている(特
開平3−145558号,特開平3−145559号,特開平2−161163
号公報)。しかし、大量の燃料を改質するためには大型
の触媒コンバータを装着する必要があることと機構が複
雑なことにより、車の重さが増大し燃費増を招く欠点が
ある。
2. Description of the Related Art In an internal combustion engine that uses hydrocarbon as a fuel, a quenching layer is formed near the inner wall of the cylinder. Most of the fuel in the quenching layer must be discharged as unburned fuel. This is because the flame disappears in the quenching layer. In order to avoid this, there is a method of injecting fuel into the cylinder. However, the mixture of air and fuel is insufficient and soot is easily generated. Therefore, a method has been adopted in which a catalyst is provided in the exhaust pipe to oxidize hydrocarbons. However, when the temperature of the catalyst at the time of starting is low, the reaction is not sufficient and hydrocarbons are released. To overcome this, a method of reforming the fuel and supplying the reformed gas has been proposed (JP-A-3-145558, JP-A-3-145559, JP-A-2-161163).
Issue). However, in order to reform a large amount of fuel, it is necessary to mount a large catalytic converter and the mechanism is complicated, so that there is a drawback that the weight of the vehicle increases and fuel consumption increases.

【0003】また、第8回内燃機関合同シンポジウム講
演論文集('90−1−24,25,東京,日本機械学
会)の123頁−128頁の“触媒エンジン………ディ
ーゼル機関低公害化へ向けての新しいコンセプト”に、
燃料の一部を改質して、水素を含む改質ガスを発生さ
せ、この改質ガスを用いて、ディーゼル燃焼プロセスを
改善すると共に、改質ガス中の水素からアンモニアを合
成して、エンジンから排出される窒素酸化物を還元処理
により分解する方法が開示されている。しかし、下記の
欠点がある。
In addition, "catalyst engine ..." on pages 123-128 of the 8th Internal Combustion Engine Joint Symposium Proceedings ('90 -1-24, 25, Tokyo, Japan Society of Mechanical Engineers) ... To reduce pollution of diesel engines To a new concept for
A part of the fuel is reformed to generate a reformed gas containing hydrogen, the reformed gas is used to improve the diesel combustion process, and ammonia is synthesized from hydrogen in the reformed gas to produce an engine. There is disclosed a method of decomposing nitrogen oxides discharged from the plant by reduction treatment. However, it has the following drawbacks.

【0004】(1)改質ガスが加圧後、筒内に噴射され
るので、圧縮に伴うエネルギ損失が大きい。
(1) Since the reformed gas is pressurized and then injected into the cylinder, energy loss due to compression is large.

【0005】(2)改質ガス中に、水や未分解炭化水素
等の液状排出物が含まれ、筒内噴射弁の耐久性を劣化さ
せる。
(2) The reformed gas contains liquid exhaust such as water and undecomposed hydrocarbon, which deteriorates the durability of the in-cylinder injection valve.

【0006】(3)改質ガス中に、カーボンが含まれ、
これが、触媒表面に析出し、燃焼し、触媒が熱劣化す
る。これを回避するため、水添加を行っているが、水タ
ンクを別置する手間がかかる。
(3) Carbon is contained in the reformed gas,
This deposits on the surface of the catalyst, burns, and the catalyst is thermally deteriorated. In order to avoid this, water is added, but it takes time and effort to separately install the water tank.

【0007】(4)軽油燃焼の後期に改質ガスを噴射す
るので、噴射系が2重になり、複雑になる。
(4) Since the reformed gas is injected in the latter stage of light oil combustion, the injection system becomes double and becomes complicated.

【0008】(5)加速時に、排気管から放出されるア
ンモニアが増大する。
(5) Ammonia released from the exhaust pipe increases during acceleration.

【0009】(6)燃料量の5%程度を改質し、他は、
従来の燃料噴射弁から噴射されるので、すす等の発生を
皆無にすることはできない。
(6) About 5% of the fuel quantity is reformed,
Since the fuel is injected from the conventional fuel injection valve, the generation of soot cannot be eliminated.

【0010】[0010]

【発明が解決しようとする課題】従来の改質ガスを用い
たシステムでは、シリンダに入る前に燃料中に改質ガス
を供給しているので、シリンダ内の消炎層の部分に改質
ガスが行き渡らないという問題点があった。本発明の目
的は、炭化水素を燃料とする内燃機関の燃焼室の消炎層
に改質ガス(例えば、H2 ,COなど)を十分に供給で
きるようにすることである。
In the conventional system using the reformed gas, the reformed gas is supplied to the fuel before entering the cylinder, so that the reformed gas is not supplied to the portion of the quenching layer in the cylinder. There was a problem that it did not spread. An object of the present invention is to make it possible to sufficiently supply the reformed gas (eg, H 2 , CO, etc.) to the quenching layer of the combustion chamber of an internal combustion engine that uses hydrocarbon as a fuel.

【0011】[0011]

【課題を解決するための手段】本発明の要件は炭化水素
を含まないガスの層を安定にシリンダ内壁,ピストン壁
面上に造ることにある。
The requirement of the present invention is to stably form a hydrocarbon-free gas layer on the cylinder inner wall and the piston wall surface.

【0012】シリンダ内の消炎層に、安定なガス層を造
る手段としては混合気を半径方向に旋回させて遠心力を
利用してガス層を壁面に押し付ける方法が効果的であ
る。シリンダ内における大規模な乱流によるガス層の拡
散を防止しかつシリンダヘッドとピストンとの隙間に生
じるスキュッシによる乱れの生成を防止する。従って燃
焼室の形状はパンケーキに近く、吸気にスワール装置を
付ける。スワール装置は吸気弁にシュラウドを設ける方
法,吸気通路をねじる方法,スワールコントロールバル
ブを設ける方法,補助ノズルを設ける方法がある。改質
ガスをシリンダに供給する補助ノズルの方向をシリンダ
の壁面に向けかつシリンダ中心軸からの傾きを45度以
上とし吸気弁が開いたときに改質ガスが直接シリンダへ
衝突するようにする。これにより改質ガスの薄い膜がシ
リンダ壁に形成される。傾き角が小さい場合には、補助
ノズルからでた改質ガスの衝突が弱まり安定した膜がで
きなくなる。またガスがピストンの方に流れすぎシリン
ダヘッドのガスの膜が薄くなる。
As a means for forming a stable gas layer on the quenching layer in the cylinder, it is effective to swirl the air-fuel mixture in the radial direction and press the gas layer against the wall surface by utilizing centrifugal force. The diffusion of the gas layer due to a large-scale turbulent flow in the cylinder is prevented, and the generation of turbulence due to the scushing generated in the gap between the cylinder head and the piston is prevented. Therefore, the shape of the combustion chamber is close to the pancake, and the swirl device is attached to the intake. As for the swirl device, there are a method of providing a shroud on the intake valve, a method of twisting the intake passage, a method of providing a swirl control valve, and a method of providing an auxiliary nozzle. The direction of the auxiliary nozzle that supplies the reformed gas to the cylinder is directed toward the wall surface of the cylinder, and the inclination from the center axis of the cylinder is 45 degrees or more so that the reformed gas directly collides with the cylinder when the intake valve opens. This forms a thin film of reformed gas on the cylinder wall. When the tilt angle is small, the collision of the reformed gas from the auxiliary nozzle is weakened and a stable film cannot be formed. Further, the gas flows too much toward the piston, and the gas film on the cylinder head becomes thin.

【0013】また、改質ガスの製造方法は、炭化水素燃
料から水素をつくる方法(参考文献,触媒エンジン……
…ディーゼル機関低公害化へ向けての新しいコンセプ
ト,第8回内燃機関合同シンポジウム講演論文集,90
−1−24,25,東京,日本機械学会)や排ガス改質
(参考文献 M.R.Jones, Thermodynamic feasibility st
udies of the exhaustgas reforming of fuels, IMechE
1990,C394/014)などの方法がある。こ
のとき効果的にガスを造るためには燃料量と空気量、あ
るいは排ガス量を正確に制御する必要がある。
The reformed gas is produced by producing hydrogen from a hydrocarbon fuel (reference document, catalytic engine ...
… New concept for low pollution of diesel engine, Proc. Of the 8th Joint Symposium on Internal Combustion Engine, 90
-1-24, 25, Tokyo, Japan Society of Mechanical Engineers) and exhaust gas reforming (references MR Jones, Thermodynamic feasibility st
udies of the exhaustgas reforming of fuels, IMechE
1990, C394 / 014). At this time, in order to effectively produce gas, it is necessary to accurately control the amount of fuel and the amount of air, or the amount of exhaust gas.

【0014】[0014]

【作用】本発明は大型の触媒コンバータを装着すること
なく、改質燃料を燃焼室の消炎層にのみに供給し、少な
い改質ガスで炭化水素の未燃分を減少させることにあ
る。消炎層のガスは水素あるいは一酸化炭素であり、ガ
ス層に囲まれた中の炭化水素は完全に燃焼する。数ミリ
メートル以内の厚さのガス層は、混合気を旋回させるこ
とにより遠心力の作用で安定に保持される。
According to the present invention, the reformed fuel is supplied only to the quenching layer of the combustion chamber without mounting a large-sized catalytic converter, and the unburned hydrocarbon content is reduced with a small amount of reformed gas. The gas in the quenching layer is hydrogen or carbon monoxide, and the hydrocarbons surrounded by the gas layer burn completely. The gas layer having a thickness within several millimeters is stably held by the action of centrifugal force by swirling the air-fuel mixture.

【0015】600回転/分の運転時の、3.5 %の燃
料を改質すれば良い。点火プラグの電極が改質ガス層の
中にはいるので従来に比べ点火が向上する。潤滑油が炭
化水素燃料によって希釈されるのも防止できる。
It is sufficient to reform 3.5% of fuel during the operation of 600 rpm. Since the electrode of the spark plug is inside the reformed gas layer, the ignition is improved as compared with the conventional case. It is also possible to prevent the lubricating oil from being diluted with the hydrocarbon fuel.

【0016】[0016]

【実施例】本発明の実施例を図面によって詳細に説明す
る。図1において、シリンダ1は通常の円筒状でスキュ
シュが生じない平らなヘッド2と平らなピストン3が配
置されている。吸気弁5の近くに公知の燃料噴射弁4が
設けられている。各シリンダの吸気弁5の近くにガスノ
ズル6が設けられている。ノズル6はスワールの進行方
向を向いている。またガスがシリンダ壁面に衝突するよ
うにノズル6が取り付けられる。ノズル6の上流の分岐
部61の上流に燃料改質器7が取り付けられている。改
質器7の上流に燃料−空気量制御装置8がある。改質器
7は触媒71とヒータ72から構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, a cylinder 1 has a normal cylindrical shape, and a flat head 2 and a flat piston 3 which do not cause scush are arranged. A known fuel injection valve 4 is provided near the intake valve 5. A gas nozzle 6 is provided near the intake valve 5 of each cylinder. The nozzle 6 faces the swirl advancing direction. Further, the nozzle 6 is attached so that the gas collides with the cylinder wall surface. The fuel reformer 7 is attached upstream of the branch portion 61 upstream of the nozzle 6. A fuel-air amount control device 8 is provided upstream of the reformer 7. The reformer 7 is composed of a catalyst 71 and a heater 72.

【0017】制御装置8は燃料量制御器81と空気量制
御器82から構成されている。制御器81は電磁弁83
を含む。弁83のオンオフの時間を変えて燃料量を制御
する。燃料は燃料ポンプ9から制御器に送られる。電磁
弁はコントロールユニット10で制御される。燃料圧力
は300kPaである。弁83のオン時間を長くすると
燃料量が増す。
The controller 8 comprises a fuel amount controller 81 and an air amount controller 82. The controller 81 is a solenoid valve 83
including. The amount of fuel is controlled by changing the on / off time of the valve 83. Fuel is sent from the fuel pump 9 to the controller. The solenoid valve is controlled by the control unit 10. The fuel pressure is 300 kPa. Increasing the on-time of the valve 83 increases the fuel amount.

【0018】エンジンの始動スイッチが入るとユニット
10が弁83を開き、改質器7の触媒71に燃料を送
る。一方、ヒータ72の電流が流れ触媒を加熱する。空
気量制御器82が作動し所定の空気を触媒71に送る。
これにより触媒71の作用で炭化水素燃料が改質され水
素と一酸化炭素が造られる。これらのガスは各ノズル6
に分配される。改質器7には公知の部分酸化法を用い、
図6にその詳細を示す。この反応は発熱反応であるた
め、多量の熱を外部から加えてやる必要がない。炭化水
素Cn2n,酸素O2 が反応し、
When the engine start switch is turned on, the unit 10 opens the valve 83 and sends fuel to the catalyst 71 of the reformer 7. On the other hand, the current of the heater 72 flows to heat the catalyst. The air amount controller 82 operates to send predetermined air to the catalyst 71.
As a result, the action of the catalyst 71 reforms the hydrocarbon fuel to produce hydrogen and carbon monoxide. These gases are supplied to each nozzle 6
Distributed to A known partial oxidation method is used for the reformer 7,
FIG. 6 shows the details. Since this reaction is an exothermic reaction, it is not necessary to apply a large amount of heat from the outside. Hydrocarbon C n H 2n and oxygen O 2 react,

【0019】[0019]

【化1】 Cn2n+n/2O2 → nCO+nH2 …(化1) COとH2 が生成される。Embedded image C n H 2n + n / 2O 2 → nCO + nH 2 (Formula 1) CO and H 2 are generated.

【0020】燃料タンク76の燃料は、ポンプ25によ
って、20〜30kPaに加圧され、蒸発器13に送ら
れる。蒸発器13は、電気ヒータによって300℃程度
に加熱されている。空気は、始動補助ヒータ14で加熱
され、300℃に昇温、混合室15で、燃料と混合され
る。混合気は触媒コンバータ16で改質され、熱交換器
17を通って、改質器出口18に達する。コンバータ1
6にはニッケル系の触媒100ccが充填されている。空
気はエアポンプ19によって加圧され、熱交換器17で
昇温され、混合室15に供給される。
The fuel in the fuel tank 76 is pressurized to 20 to 30 kPa by the pump 25 and sent to the evaporator 13. The evaporator 13 is heated to about 300 ° C. by an electric heater. The air is heated by the starting auxiliary heater 14, heated to 300 ° C., and mixed with the fuel in the mixing chamber 15. The air-fuel mixture is reformed in the catalytic converter 16, passes through the heat exchanger 17, and reaches the reformer outlet 18. Converter 1
6 is filled with 100 cc of nickel-based catalyst. The air is pressurized by the air pump 19, heated by the heat exchanger 17, and supplied to the mixing chamber 15.

【0021】始動時、混合室15内の空燃比を15に
し、クロープラグ20によって、反応を開始させ、コン
バータ16の出口の温度が600℃に達したら、空燃比
を5付近にし、H2 の収率を高める。コンバータ16が
充分昇温されたら、燃料バルブ22を開放し、コンバー
タ16の熱で燃料を加熱し、蒸発器13のヒータの電流
を遮断する。
At the time of start-up, the air-fuel ratio in the mixing chamber 15 is set to 15, the reaction is started by the claw plug 20, and when the temperature at the outlet of the converter 16 reaches 600 ° C., the air-fuel ratio is set to around 5 and H 2 Increase the yield. When the converter 16 is sufficiently heated, the fuel valve 22 is opened, the fuel is heated by the heat of the converter 16, and the current of the heater of the evaporator 13 is cut off.

【0022】改質ガスには、H2 が20%,COが20
%,CO2 が4%、O2 が0.2%,N2 が56%含まれ
る。
The reformed gas contains 20% of H 2 and 20% of CO.
%, CO 2 4%, O 2 0.2%, N 2 56%.

【0023】図1において、吸気管41には通常の噴射
弁4が取り付けられている。弁4に作用する燃料の圧力
はレギュレータ91によって制御される。噴射弁4から
も空気量に比例した燃料がシリンダ1に供給される。噴
射弁4の噴流は図1のAで示すように吸気弁5の点火プ
ラグ11の方を向いているのでシリンダ1の中央部に供
給される。これに対しガスノズル6から噴出した水素ガ
スはBのようにシリンダ1の壁面に沿うように供給され
る。従ってシリンダ1,ヘッド2,ピストン3の表面は
水素ガスの薄い膜でおおわれる。
In FIG. 1, a normal injection valve 4 is attached to the intake pipe 41. The pressure of the fuel acting on the valve 4 is controlled by the regulator 91. Fuel proportional to the amount of air is also supplied to the cylinder 1 from the injection valve 4. Since the jet flow of the injection valve 4 is directed toward the spark plug 11 of the intake valve 5 as shown by A in FIG. 1, it is supplied to the central portion of the cylinder 1. On the other hand, the hydrogen gas ejected from the gas nozzle 6 is supplied along the wall surface of the cylinder 1 like B. Therefore, the surfaces of the cylinder 1, head 2, and piston 3 are covered with a thin film of hydrogen gas.

【0024】壁面の消炎層の厚さは1mm程度である。今
シリンダ1のボア径を70mm,ストロークを70mmとす
るとシリンダ1の容積は267cm3 となる。これに対し
消炎層の容積は23cm3 となる。
The thickness of the quenching layer on the wall surface is about 1 mm. If the bore diameter of the cylinder 1 is 70 mm and the stroke is 70 mm, the volume of the cylinder 1 is 267 cm 3 . On the other hand, the volume of the quenching layer is 23 cm 3 .

【0025】いま、燃料をC816 とすると1モルの燃
料から8モルの水素が作られる。燃料1モルの重さは1
12gである。空気はこの10倍となるので1120g
となる。これは約40モルとなる。図2において消炎層
12の容積は8.6 %である。従って燃料のうち8.6
%を水素に変換し消炎層12に供給すれば均一混合気が
シリンダ1内に形成される。上に述べたように水素の場
合はガソリンに比べモルが増大する。すなわち、消炎層
に発生した水素を供給すると、混合気の容積が増大する
ので実際はこれより少ない燃料で消炎層12を形成する
ことができる。また、水素はガソリンに比べ可熱範囲が
広いので燃料の割合を少なくすることができる。
Now, assuming that the fuel is C 8 H 16 , 8 mol of hydrogen is produced from 1 mol of fuel. 1 mol of fuel weighs 1
It is 12 g. Air is 10 times as much, so 1120g
Becomes This will be about 40 moles. In FIG. 2, the volume of the quenching layer 12 is 8.6%. Therefore 8.6 out of fuel
If% is converted to hydrogen and supplied to the quenching layer 12, a uniform air-fuel mixture is formed in the cylinder 1. As mentioned above, hydrogen has a larger molar amount than gasoline. That is, when hydrogen generated in the quenching layer is supplied, the volume of the air-fuel mixture increases, so that the quenching layer 12 can actually be formed with less fuel. Further, since hydrogen has a wider heatable range than gasoline, the proportion of fuel can be reduced.

【0026】シリンダ1の中のバルク28のガスの割合
は空気40モルに対しガソリン1モルである。従って、
ガソリン1に対する容積は41である。これに対し消炎
層12のガソリン1、すなわち水素8に対する容積は4
8となる。すなわち、20%程度容積が増える。消炎層
12の厚さを同じとすると20%程度消炎層12の燃料
が低減される。消炎層12の割合は8.6%であるので
1.72%の燃料が低減できる。さらに水素は可熱範囲
が広いので消炎層12内の燃料の濃度を低減することが
できる。消炎層12には6.9 %の燃料が存在するがこ
れを半分にしても可燃範囲である。従って、3.5 %の
燃料をさらに低減することができる。
The proportion of gas in the bulk 28 in the cylinder 1 is 1 mol of gasoline to 40 mol of air. Therefore,
The volume for gasoline 1 is 41. On the other hand, the volume of the quenching layer 12 with respect to gasoline 1, that is, hydrogen 8, is 4
It becomes 8. That is, the volume increases by about 20%. If the thickness of the quenching layer 12 is the same, the fuel in the quenching layer 12 is reduced by about 20%. Since the ratio of the quenching layer 12 is 8.6%, 1.72% of fuel can be reduced. Further, since hydrogen has a wide heatable range, it is possible to reduce the concentration of fuel in the quenching layer 12. There is 6.9% of fuel in the quenching layer 12, but it is within the flammable range even if it is halved. Therefore, the fuel of 3.5% can be further reduced.

【0027】バルク28にはガソリンが供給されるので
消炎層12には3.5 %の燃料を供給すれば良い。また
高速運転時には消炎層12の厚さが回転数に反比例して
小さくなるので水素の量は少なくて良い。600rpm の
時の燃料を1とすると図3に示すようにそのときの水素
は0.035である。600rpmのときは燃料は10にな
るが水素は3.5%の0.35ではなく消炎層の厚さが1
/10になっているので0.034ですむ。従って改質
器7からは運転状態に関わらず常に0.035の割合の
燃料を供給すればよい。回転が600rpm より低い始動
時には消炎層12が厚くなり完全に炭化水素燃料の残存
を防止する。
Since gasoline is supplied to the bulk 28, it is sufficient to supply 3.5% of fuel to the quenching layer 12. Moreover, since the thickness of the flame-extinguishing layer 12 decreases in inverse proportion to the rotation speed during high-speed operation, the amount of hydrogen may be small. If the fuel at 600 rpm is 1, the hydrogen at that time is 0.035 as shown in FIG. At 600 rpm, the fuel becomes 10, but hydrogen is 3.5%, not 0.35, and the thickness of the quenching layer is 1
Since it is / 10, it is 0.034. Therefore, it is sufficient to always supply the fuel from the reformer 7 at a rate of 0.035 regardless of the operating state. The flame-extinguishing layer 12 becomes thicker at the time of starting when the rotation speed is lower than 600 rpm to completely prevent the hydrocarbon fuel from remaining.

【0028】図4でガスノズル6はシリンダ1の中心軸
Cに対しEの傾きで取り付けられる。従ってガス流Bは
シリンダ1のDに衝突し上下左右に膜となって広がる。
Dは図4に示すように吸気弁5を通ってシリンダ1には
いる吸気流Gが上下に分岐する近くである。Eは45度
以上である。これより小さいと上方に向かうガスの量が
少なくなりシリンダヘッドの消炎層12が薄くなる。シ
リンダ1を上方からみた構成を図5に示す。ノズル6の
ガス流Bは壁面Dに衝突しスワールFによって壁面に沿
って流される。
In FIG. 4, the gas nozzle 6 is mounted at an inclination of E with respect to the central axis C of the cylinder 1. Therefore, the gas flow B collides with D of the cylinder 1 and spreads vertically and horizontally as a film.
As shown in FIG. 4, D is near the point where the intake flow G passing through the intake valve 5 and entering the cylinder 1 branches up and down. E is 45 degrees or more. If it is smaller than this, the amount of gas directed upward is small, and the quenching layer 12 of the cylinder head becomes thin. FIG. 5 shows the configuration of the cylinder 1 viewed from above. The gas flow B of the nozzle 6 collides with the wall surface D and is swept along the wall surface by the swirl F.

【0029】図5でシリンダ1にもう一つの吸気弁51
が設けられているときは吸気弁5のスワールが弱くなる
のを防止するため吸気弁51の動作を低速運転時に停止
する。
In FIG. 5, another intake valve 51 is attached to the cylinder 1.
In order to prevent the swirl of the intake valve 5 from becoming weak, the operation of the intake valve 51 is stopped during low speed operation.

【0030】改質器7に供給される燃料の量は運転状態
に関わらず一定であるので常に安定したガスを造ること
ができる。改質器7の圧力を200kPaとすると吸気
管41の圧力が運転状態によって変化したときノズル6
からの流量が変化する。高負荷で吸気管41の圧力が高
くなり流量が低下する。しかしこのときは燃焼が早くな
り消炎層の厚さも薄くなっているので都合がよい。図1
で改質器7の下流に圧力調節器62が設けられ吸気管4
1の圧力の変動に関わらず改質器7の圧力を一定に維持
する。このとき空気量制御器82,燃料量制御器81に
よって改質器にはいる空気量/燃料量比が一定に維持さ
れる。この比は5程度である。このとき改質器7の温度
が多少変化するのでヒータ72で一定温度に維持する。
Since the amount of fuel supplied to the reformer 7 is constant regardless of the operating state, it is possible to always produce a stable gas. When the pressure of the reformer 7 is set to 200 kPa, when the pressure of the intake pipe 41 changes depending on the operating state, the nozzle 6
The flow rate from changes. At high load, the pressure in the intake pipe 41 increases and the flow rate decreases. However, at this time, combustion is accelerated and the thickness of the extinction layer is thin, which is convenient. FIG.
The pressure regulator 62 is provided downstream of the reformer 7 at the intake pipe 4
The pressure of the reformer 7 is maintained constant regardless of the fluctuation of the pressure of 1. At this time, the air amount controller 82 and the fuel amount controller 81 maintain a constant air amount / fuel amount ratio in the reformer. This ratio is about 5. At this time, the temperature of the reformer 7 changes somewhat, so that the heater 72 maintains a constant temperature.

【0031】改質ガスの量を一定にするためには吸気管
41の圧力の変動に応じて流量制御弁63を制御し流量
を一定にする。このとき空気量制御器82,燃料量制御
器81から供給される空気量,燃料量が一定なら改質器
7の圧力,温度は一定に維持される。改質器7の圧力,
温度が運転状態によって変化しないので運転状態に関わ
らず一定の改質ガスがシリンダ1に遅れなく供給され
る。しかし主燃料の方は一般に空気量の変化に対して遅
れるので排気管に取り付けられた触媒の排ガスの濃度が
理論混合比になるように閉ループ制御される。排気の触
媒が三元触媒の時は理論混合比に制御されるが、それ以
外の所定の混合比に制御する場合もある。希薄混合気運
転の時は空燃比が22〜25程度で閉ループ制御され
る。
In order to make the amount of reformed gas constant, the flow rate control valve 63 is controlled according to the fluctuation of the pressure in the intake pipe 41 to make the flow rate constant. At this time, if the amount of air and the amount of fuel supplied from the air amount controller 82 and the fuel amount controller 81 are constant, the pressure and temperature of the reformer 7 are maintained constant. Pressure of the reformer 7,
Since the temperature does not change depending on the operating state, a constant reforming gas is supplied to the cylinder 1 without delay regardless of the operating state. However, since the main fuel is generally delayed with respect to the change in the air amount, the closed-loop control is performed so that the exhaust gas concentration of the catalyst attached to the exhaust pipe becomes the theoretical mixing ratio. When the exhaust catalyst is a three-way catalyst, the theoretical mixing ratio is controlled, but it may be controlled to a predetermined mixing ratio other than that. In the lean air-fuel mixture operation, the air-fuel ratio is about 22 to 25 and the closed loop control is performed.

【0032】図7に、別の改質器30をエンジンに装着
した実施例を示す。改質器30には公知の燃料改質方法
を用いる。これは排気ガスから反応に必要な水H2O と
熱を得て、改質触媒36により反応を行わせる。炭化水
素Cn2n,水H2Oが反応し、
FIG. 7 shows an embodiment in which another reformer 30 is attached to the engine. A known fuel reforming method is used for the reformer 30. This obtains water H 2 O and heat necessary for the reaction from the exhaust gas, and causes the reforming catalyst 36 to carry out the reaction. Hydrocarbon C n H 2n and water H 2 O react,

【0033】[0033]

【化2】 Cn2n+nH2O → 2nH2+nCO …(化2) 水素H2 と一酸化炭素COが生成される。Embedded image C n H 2n + nH 2 O → 2nH 2 + nCO (Chemical formula 2) Hydrogen H 2 and carbon monoxide CO are produced.

【0034】排気管31側に設けられた導入管32,3
3は、排気ガス圧力により排気ガスを改質器30に導入
する。導入管32より導入された排気ガスは、流量制御
弁34により一定量が管101に送られる。燃料タンク
113の燃料は、ポンプ93によって加圧され、流量制
御弁105により一定量が燃料加熱管39に送られ、管
101で混合気となり、熱伝導管106へ送られる。一
方、導入管33より導入された排気ガスは熱伝導管10
6と燃料加熱管39を加熱し排出管38より排出され
る。熱伝導管106内に内装された改質触媒36は、熱
伝導管106より熱を受け取り活性化し、混合気を改質
し、水素と一酸化炭素を発生させる。始動時を含む改質
触媒36の温度が改質反応を起こすのに十分な温度帯に
ない場合には、加熱ヒータ37a,37bおよび流量制
御弁35を起動させ、コントロールユニット50によ
り、温度を制御する。生成された改質ガスは分岐部61
を通りノズル6よりシリンダ1へ同様に供給される。管
38は導入管33から離れた位置で排気管31と合流す
る。また、合流部53をベンチュリ管の構造にすること
により効果的に管38から排気管31へ加熱に使われた
排気ガスを戻すことができる。
Introductory pipes 32, 3 provided on the exhaust pipe 31 side
3 introduces the exhaust gas into the reformer 30 by the exhaust gas pressure. The exhaust gas introduced through the introduction pipe 32 is sent to the pipe 101 in a fixed amount by the flow control valve 34. The fuel in the fuel tank 113 is pressurized by the pump 93, a fixed amount is sent to the fuel heating pipe 39 by the flow control valve 105, becomes a mixture in the pipe 101, and is sent to the heat conduction pipe 106. On the other hand, the exhaust gas introduced through the introduction pipe 33 is the heat conduction pipe 10
6 and the fuel heating pipe 39 are heated and discharged from the discharge pipe 38. The reforming catalyst 36 installed in the heat conducting tube 106 receives heat from the heat conducting tube 106 and activates it to reform the air-fuel mixture and generate hydrogen and carbon monoxide. When the temperature of the reforming catalyst 36 including the start-up is not in a temperature zone sufficient to cause the reforming reaction, the heaters 37a and 37b and the flow control valve 35 are activated, and the temperature is controlled by the control unit 50. To do. The generated reformed gas is sent to the branch section 61.
Similarly, it is supplied from the nozzle 6 to the cylinder 1. The pipe 38 joins the exhaust pipe 31 at a position apart from the introduction pipe 33. Further, by forming the confluence portion 53 into a Venturi structure, the exhaust gas used for heating can be effectively returned from the pipe 38 to the exhaust pipe 31.

【0035】請求項8に対する実施例を示す。図1に示
されるような内燃機関の吸入過程で、図8(a)に示すよ
うに吸気弁5の開放度が小さければ、吸入空気の流速は
大きく、図8(b)に示すように開放度が大きければ、吸
入空気の流速は小さい。そこで図9に示すように、吸気
弁開放初期66aにおいては、吸気弁の開放度を小さめ
にし、高速な吸入空気の流れを誘発し、シリンダ内に強
力なスワールを発生させる。この直後に主燃料の多くを
噴射して、高速流により主燃料の微粒化を促進すると共
に、主燃料の消炎層への侵入を減らす。吸気弁開放後期
66bでは、吸気弁の開放度を大きくし、必要な空気流
量を確保する。図10に、その実施装置を示す。吸気弁
5の開放度を変えるには、吸気弁を起動するカム125
の形状を、従来のカムの断面形状120から段付きカム
の断面形状121のようにすれば良い。カムの形状変更
はカム取付軸124をカムの回転方向と垂直方向にスラ
イドさせることにより行い、必要とする断面形状にまで
無段階に変化させる。段の数は2以上でも良い。
An embodiment for claim 8 will be described. In the intake process of the internal combustion engine as shown in FIG. 1, if the opening degree of the intake valve 5 is small as shown in FIG. 8 (a), the flow velocity of the intake air is large, and as shown in FIG. 8 (b), it is opened. If the degree is high, the flow velocity of the intake air is low. Therefore, as shown in FIG. 9, in the initial stage 66a of opening the intake valve, the degree of opening of the intake valve is made small, a high-speed intake air flow is induced, and a strong swirl is generated in the cylinder. Immediately after this, much of the main fuel is injected to accelerate atomization of the main fuel by the high-speed flow and reduce the invasion of the main fuel into the quenching layer. In the latter stage 66b of opening the intake valve, the degree of opening of the intake valve is increased to secure the required air flow rate. FIG. 10 shows an apparatus for implementing the above. To change the opening degree of the intake valve 5, a cam 125 that activates the intake valve is used.
The shape may be changed from the conventional cam sectional shape 120 to the stepped cam sectional shape 121. The shape of the cam is changed by sliding the cam mounting shaft 124 in the direction perpendicular to the rotation direction of the cam, and the shape of the cross section is continuously changed to the required cross-sectional shape. The number of steps may be two or more.

【0036】図11に、請求項6に対する実施例を示
す。シリンダ1は通常の円筒状でスキュシュが生じない
平らなヘッド2と平らなピストン3が配置されている。
吸気弁5の近くに公知の燃料噴射弁4が設けられてい
る。各シリンダ内の上部壁に改質ガスがシリンダ1壁面
に45度以上の角度で直接入射衝突するようにノズル1
40が取り付けられ、その上流に逆止弁141,流量制
御弁142,燃料改質器7が設けられている。流量制御
弁142は燃料噴射弁4と同期して作動する。また、逆
止弁141は、シリンダ内からの逆流を防止する。ガス
ノズル140から射出された改質ガスはシリンダ1に衝
突し、シリンダ1,ヘッド2,ピストン3の壁面に沿う
ように供給され、改質ガスの薄い層で覆われる。燃料改
質器7は改質器30であっても良い。ノズル140は図
12に示すようにシリンダヘッドに平行な旋回を与える
ものであっても良い。また、ノズルが複数あっても良
い。
FIG. 11 shows an embodiment for claim 6. The cylinder 1 has a normal cylindrical shape and has a flat head 2 and a flat piston 3 which do not cause scush.
A known fuel injection valve 4 is provided near the intake valve 5. The reforming gas is directly incident on the wall surface of the cylinder 1 at an angle of 45 degrees or more and collides with the upper wall of each cylinder.
40 is attached, and the check valve 141, the flow rate control valve 142, and the fuel reformer 7 are provided upstream thereof. The flow rate control valve 142 operates in synchronization with the fuel injection valve 4. Further, the check valve 141 prevents a backflow from the inside of the cylinder. The reformed gas injected from the gas nozzle 140 collides with the cylinder 1, is supplied along the wall surfaces of the cylinder 1, the head 2 and the piston 3, and is covered with a thin layer of the reformed gas. The fuel reformer 7 may be the reformer 30. The nozzle 140 may be one that imparts a swirl parallel to the cylinder head as shown in FIG. Further, there may be a plurality of nozzles.

【0037】請求項9,10,11に対する実施例を示
す。図1に示されるような内燃機関の吸入過程で、図1
3(a)に示すように、改質ガスを吸気過程全般にわた
って行うことにより、シリンダ内の消炎層全般に改質ガ
ス層145、その内側に主燃料層を生成することができ
る。図13(b)に示すように、改質ガスを吸気過程前
半に行うことにより、シリンダ内の消炎層のピストン3
付近に改質ガス層145を生成することができる。図1
3(c)に示すように、改質ガスを吸気過程中盤に行う
ことにより、シリンダ内の消炎層のシリンダ壁付近に改
質ガス層145を生成することができる。図13(d)
に示すように、改質ガスを吸気過程後半に行うことによ
り、シリンダ内の消炎層のヘッド2付近に改質ガス層1
45を生成することができる。点火プラグ11付近に改
質ガス層を生成することは、始動時など主燃料の点火性
が悪い場合に点火性を向上させることができる。図13
(e)に示すように、改質ガスを吸気過程前期と後期に分
けて行うことにより、シリンダ内の消炎層のヘッド2付
近とピストン3付近に改質ガス層145を生成すること
ができる。図14に回路図を示す。燃料噴射弁,改質ガ
ス噴射弁は運転状況に応じてCPUによりコントロール
制御される。
An embodiment for claims 9, 10 and 11 will be described. In the intake process of the internal combustion engine as shown in FIG.
As shown in FIG. 3 (a), the reformed gas is supplied throughout the intake process, so that the reformed gas layer 145 can be formed in the entire quenching layer in the cylinder and the main fuel layer can be formed inside the reformed gas layer 145. As shown in FIG. 13B, the reforming gas is supplied in the first half of the intake process, so that the piston 3 of the quenching layer in the cylinder is
The reformed gas layer 145 can be generated in the vicinity. FIG.
As shown in FIG. 3 (c), a reformed gas layer 145 can be generated near the cylinder wall of the quenching layer in the cylinder by performing reformed gas in the middle of the intake process. FIG. 13 (d)
As shown in FIG. 3, by performing reformed gas in the latter half of the intake process, the reformed gas layer 1 is formed near the head 2 of the quenching layer in the cylinder.
45 can be generated. Producing the reformed gas layer in the vicinity of the spark plug 11 can improve the ignitability when the ignitability of the main fuel is poor such as at the time of starting. FIG.
As shown in (e), the reformed gas is divided into the first half and the second half of the intake process, so that the reformed gas layer 145 can be generated near the head 2 and the piston 3 of the quenching layer in the cylinder. FIG. 14 shows a circuit diagram. The fuel injection valve and the reformed gas injection valve are controlled and controlled by the CPU according to the operating conditions.

【0038】[0038]

【発明の効果】本発明により、内燃機関において、大型
の触媒コンバータを装着することなく、少量の改質ガス
により炭化水素の排出を安定的に低減することができ
る。
EFFECTS OF THE INVENTION According to the present invention, in an internal combustion engine, the emission of hydrocarbons can be stably reduced with a small amount of reformed gas without mounting a large catalytic converter.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の系統図。FIG. 1 is a system diagram of one embodiment.

【図2】シリンダ内の断面図。FIG. 2 is a sectional view of the inside of a cylinder.

【図3】回転数と消炎層厚さと燃料量との関係の説明
図。
FIG. 3 is an explanatory diagram of a relationship between a rotational speed, a thickness of a quenching layer and a fuel amount.

【図4】シリンダの断面図。FIG. 4 is a sectional view of a cylinder.

【図5】シリンダの水平断面図。FIG. 5 is a horizontal sectional view of a cylinder.

【図6】燃料改質器の断面図。FIG. 6 is a sectional view of a fuel reformer.

【図7】第二実施例の系統図。FIG. 7 is a system diagram of a second embodiment.

【図8】吸気弁付近の断面図。FIG. 8 is a cross-sectional view near the intake valve.

【図9】吸気弁開度の説明図。FIG. 9 is an explanatory diagram of an intake valve opening degree.

【図10】吸気弁起動カムの形状の説明図。FIG. 10 is an explanatory diagram of the shape of an intake valve starting cam.

【図11】シリンダの断面図。FIG. 11 is a sectional view of a cylinder.

【図12】シリンダの水平断面図。FIG. 12 is a horizontal sectional view of a cylinder.

【図13】改質燃料噴射時期の説明図。FIG. 13 is an explanatory diagram of a reformed fuel injection timing.

【図14】改質燃料噴射時期の説明図。FIG. 14 is an explanatory diagram of a reformed fuel injection timing.

【図15】回路のブロック図。FIG. 15 is a block diagram of a circuit.

【符号の説明】[Explanation of symbols]

1…シリンダ、2…ヘッド、3…ピストン、4…燃料噴
射弁、5…吸気弁、6…ガスノズル、7…燃料改質器、
8…燃料−空気量制御装置、9…燃料ポンプ、10…コ
ントロールユニット、11…点火プラグ、41…吸気
管、61…分岐部、62…圧力調節器、71…触媒、7
2…ヒータ、81…燃料制御器、82…空気量制御器、
83…電磁弁、91…レギュレータ。
1 ... Cylinder, 2 ... Head, 3 ... Piston, 4 ... Fuel injection valve, 5 ... Intake valve, 6 ... Gas nozzle, 7 ... Fuel reformer,
8 ... Fuel-air amount control device, 9 ... Fuel pump, 10 ... Control unit, 11 ... Spark plug, 41 ... Intake pipe, 61 ... Branch part, 62 ... Pressure regulator, 71 ... Catalyst, 7
2 ... Heater, 81 ... Fuel controller, 82 ... Air quantity controller,
83 ... Solenoid valve, 91 ... Regulator.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】主燃料をエンジンに供給する噴射弁,改質
ガスを生成する改質器および前記改質ガスを前記エンジ
ンに供給する手段を有した内燃機関において、前記改質
ガスがシリンダ内壁に直接衝突するようにして、前記シ
リンダの中心部に主燃料、その周囲に前記改質ガスを分
布するようにしたことを特徴とする内燃機関。
1. An internal combustion engine having an injection valve for supplying main fuel to an engine, a reformer for generating reformed gas, and means for supplying the reformed gas to the engine, wherein the reformed gas is an inner wall of a cylinder. The internal combustion engine is characterized in that the main fuel is distributed to the center of the cylinder and the reformed gas is distributed around the main fuel so as to directly collide with the fuel.
【請求項2】請求項1において、前記改質器の燃料,空
気量を電気的に制御する手段を備え、前記改質ガスの流
量を運転状態に関わらず一定に制御する手段を備えた内
燃機関。
2. The internal combustion engine according to claim 1, comprising means for electrically controlling the amount of fuel and air in the reformer, and means for uniformly controlling the flow rate of the reformed gas regardless of operating conditions. organ.
【請求項3】請求項1において、前記改質ガスをエンジ
ンに供給するノズルを設けた内燃機関。
3. The internal combustion engine according to claim 1, further comprising a nozzle for supplying the reformed gas to the engine.
【請求項4】請求項3において、前記ノズルの傾きを前
記シリンダの中心軸から45度以上にする内燃機関。
4. The internal combustion engine according to claim 3, wherein the inclination of the nozzle is 45 degrees or more from the central axis of the cylinder.
【請求項5】請求項3において、前記改質ガスを噴出す
るノズルを吸気弁近くに設けた内燃機関。
5. The internal combustion engine according to claim 3, wherein a nozzle for ejecting the reformed gas is provided near an intake valve.
【請求項6】請求項3において、前記ノズルの開口部を
前記シリンダ内の上部壁に設けた内燃機関。
6. The internal combustion engine according to claim 3, wherein the opening of the nozzle is provided in an upper wall of the cylinder.
【請求項7】請求項5において、吸気に旋回流を与える
ために、前記シリンダに2吸気弁を設け、一方の前記吸
気弁近くに改質ガスを噴出するノズルを設け、もう一方
の吸気弁の動作を吸気工程に停止する内燃機関。
7. The cylinder according to claim 5, wherein two intake valves are provided in the cylinder, and a nozzle for ejecting reformed gas is provided near one of the intake valves, and the other intake valve is provided in order to give a swirl flow to the intake air. Internal combustion engine that stops the operation in the intake stroke.
【請求項8】請求項3において、吸気に旋回流を与える
ために、前記吸気弁の開閉を段階的に行うような形状の
吸気弁起動カムを備えた内燃機関。
8. The internal combustion engine according to claim 3, comprising an intake valve actuating cam shaped to open and close the intake valve stepwise in order to impart a swirl flow to the intake air.
【請求項9】請求項1において、改質ガスの前記シリン
ダへの供給時期を可変とする内燃機関。
9. The internal combustion engine according to claim 1, wherein the supply timing of the reformed gas to the cylinder is variable.
【請求項10】請求項9において、改質ガスの前記シリ
ンダへの供給時期をエンジン回転数同期して可変に行う
内燃機関。
10. The internal combustion engine according to claim 9, wherein the timing of supplying the reformed gas to the cylinder is variable in synchronization with the engine speed.
【請求項11】請求項10において、改質ガスの前記シ
リンダへの供給時期を環境の変化に応じて可変に行う内
燃機関。
11. The internal combustion engine according to claim 10, wherein the timing of supplying the reformed gas to the cylinder is variable according to changes in the environment.
JP17065495A 1995-07-06 1995-07-06 Internal combustion engine Expired - Fee Related JP3460391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17065495A JP3460391B2 (en) 1995-07-06 1995-07-06 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17065495A JP3460391B2 (en) 1995-07-06 1995-07-06 Internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0921362A true JPH0921362A (en) 1997-01-21
JP3460391B2 JP3460391B2 (en) 2003-10-27

Family

ID=15908896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17065495A Expired - Fee Related JP3460391B2 (en) 1995-07-06 1995-07-06 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP3460391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997142B2 (en) 2003-01-28 2006-02-14 Toyota Jidosha Kabushiki Kaisha Internal combustion engine and method of operating internal combustion engine
KR20180005781A (en) * 2016-07-06 2018-01-17 현대자동차주식회사 Fuel reforming system for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997142B2 (en) 2003-01-28 2006-02-14 Toyota Jidosha Kabushiki Kaisha Internal combustion engine and method of operating internal combustion engine
KR20180005781A (en) * 2016-07-06 2018-01-17 현대자동차주식회사 Fuel reforming system for vehicle

Also Published As

Publication number Publication date
JP3460391B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
US6655130B1 (en) System and controls for near zero cold start tailpipe emissions in internal combustion engines
US7037349B2 (en) Method and apparatus for fuel/air preparation in a fuel cell
US5992141A (en) Ammonia injection in NOx control
CA2701770C (en) Compact fuel processor
US5339634A (en) Fuel supply system for engines and combustion processes therefor
CA1070501A (en) Hydrogen-rich gas generator
US8561578B2 (en) Hydrogen generator and internal combustion engine provided with hydrogen generator
US6302683B1 (en) Catalytic combustion chamber and method for igniting and controlling the catalytic combustion chamber
US7735315B2 (en) Device and method for producing an operating medium for a motor vehicle
US4131086A (en) Fuel reforming apparatus for use with internal combustion engine
US20030000145A1 (en) Method for starting a fast light-off catalytic fuel reformer
US20050274107A1 (en) Reforming unvaporized, atomized hydrocarbon fuel
US20150136047A1 (en) Mixed-Mode Combustion Methods Enabled by Fuel Reformers and Engines Using the Same
US3955538A (en) Fuel reforming system for an internal combustion engine
US3897225A (en) Method and apparatus for generating a gas mixture to be formed through catalytic conversion of fuel and a gas serving as an oxygen carrier
US20050198900A1 (en) Method and apparatus for fuel/air preparation for a hydrocarbon reformer
US20090283058A1 (en) HySPIKE MULTIFUEL ENGINE
EP0891473B1 (en) AMMONIA INJECTION IN NOx CONTROL
US4023539A (en) Fuel-reforming device for internal combustion engines
JP3460391B2 (en) Internal combustion engine
US11268434B1 (en) Method and system for extending dilution limit of a prechamber spark ignition engine
CN109630245A (en) A kind of lighter hydrocarbons/Reforming Diesel Fuel system and reforming method
EP0698655A1 (en) Method and apparatus for generating fuel gas
JP2004284891A (en) Fuel reformer
JPH03145559A (en) Alcohol reforming engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees