JPH09213230A - Joint body of electrode plates and metal buried ceramics, and its manufacture - Google Patents

Joint body of electrode plates and metal buried ceramics, and its manufacture

Info

Publication number
JPH09213230A
JPH09213230A JP1341396A JP1341396A JPH09213230A JP H09213230 A JPH09213230 A JP H09213230A JP 1341396 A JP1341396 A JP 1341396A JP 1341396 A JP1341396 A JP 1341396A JP H09213230 A JPH09213230 A JP H09213230A
Authority
JP
Japan
Prior art keywords
metal
ceramics
embedded
electrode plate
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1341396A
Other languages
Japanese (ja)
Other versions
JP3192958B2 (en
Inventor
Yoshinori Kakuno
吉典 覚野
Fumio Yamazaki
文男 山崎
Isamu Inoue
勇 井上
Hiroshi Matsumoto
弘 松本
Koji Yamamoto
弘司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Panasonic Holdings Corp
Original Assignee
Kyocera Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Matsushita Electric Industrial Co Ltd filed Critical Kyocera Corp
Priority to JP01341396A priority Critical patent/JP3192958B2/en
Publication of JPH09213230A publication Critical patent/JPH09213230A/en
Application granted granted Critical
Publication of JP3192958B2 publication Critical patent/JP3192958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To joint electric plates and metal burried ceramics solidly without breaking a ceramics by the shock of the heat of a laser beam, by laminating electrode plates on the metal buried ceramics, and welding and fixing the electrode plates, and the buried metals buried to the metal buried ceramics. SOLUTION: Two electrode plates 4 are provided by placing a ceramics 31 at the center, the laser beam is radiated to the electrode plate 4 from a YAG laser device 7, and the metal chips 2 buried to the metal buried ceramics 31 are melted so as to joint the electrode plate 4 and the buried metals. Such an operation is carried out to both side surfaces of the metal buried ceramics 31 so as to compose a jointed body 6. Consequently, they can be jointed solidly without breaking the ceramics part by the shock of the heat of the laser beam. Since the jointing operation is carried out at a normal temperature, a high accuracy of jointing can be carried out generating no warpage, after the ceramics 31 is jointed to the electrode plates 4 with the different thermal expansion coefficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は画像表示装置の電極
構体などに使用される電極板と絶縁物との接合体に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonded body of an electrode plate and an insulator used for an electrode structure of an image display device.

【0002】[0002]

【従来の技術】特開昭61−114436号公報などに
は、図6に示すような接合方法が開示されている。10
0は電極板で、図示されていないが電子ビーム通過孔を
有している。101は金属板からなる芯材、102は絶
縁膜、103は低融点ガラスからなる接合材であって、
2枚の電極板100を接合材103を用い、約500℃
に全体を加熱して接合材103を溶融させ接合固着して
いる。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 61-114436 discloses a joining method as shown in FIG. 10
An electrode plate 0 has an electron beam passage hole (not shown). 101 is a core material made of a metal plate, 102 is an insulating film, and 103 is a bonding material made of low melting point glass,
Two electrode plates 100 with a bonding material 103, about 500 ℃
Then, the whole is heated to melt and bond the bonding material 103.

【0003】[0003]

【発明が解決しようとする課題】この図6に示した従来
技術を用いて複数枚の電極を積層して電極構体を構成し
画像表示装置に用いる場合、電極板100には同一ロッ
ト内での熱膨張係数のばらつき、製造ロットが異なるこ
とによる熱膨張係数のばらつきが生じる。このため、熱
膨張係数が若干異なる電極板100を高温で接合固着
し、常温に冷却する過程で、接合した2枚の電極板10
0の内、熱膨張係数が大きい電極板100の熱収縮量が
大きいため、熱膨張係数の大きい電極側が凹になる形状
の反りが発生する。
When a plurality of electrodes are laminated to form an electrode assembly by using the conventional technique shown in FIG. 6 and used in an image display device, the electrode plate 100 is used in the same lot. Variations in the coefficient of thermal expansion and variations in the coefficient of thermal expansion occur due to different manufacturing lots. For this reason, the two electrode plates 10 that are bonded together are bonded and fixed at a high temperature, and the two electrode plates 10 that are bonded to each other are cooled to room temperature.
0, the amount of thermal contraction of the electrode plate 100 having a large coefficient of thermal expansion is large, so that the electrode side having a large coefficient of thermal expansion is warped in a concave shape.

【0004】電極板100に反りがあると、電子ビーム
のランディングずれによる色ずれが発生して、画像表示
装置の画像品質が低下する問題がある。また、接合材1
03や絶縁膜102にはフリットガラス材料を用いるこ
とから剥離強度が小さく、製造・取り扱い中にフリット
ガラスに応力が作用すると、フリットガラスの剥離が発
生し、剥離したガラスの破片が飛び散り、電極板100
の電子ビーム通過孔などに付着し、この電子ビーム通過
孔の目づまりが生じる。このため、電子ビームの通過不
良による画像欠陥を引き起こす問題がある。
If the electrode plate 100 has a warp, a color shift occurs due to a landing shift of the electron beam, which causes a problem that the image quality of the image display device deteriorates. Also, the bonding material 1
03 and the insulating film 102 are made of a frit glass material, the peel strength is small, and when stress is applied to the frit glass during manufacturing / handling, the frit glass is peeled off, and fragments of the peeled glass scatter, resulting in the electrode plate. 100
Attached to the electron beam passage hole, and the electron beam passage hole is clogged. Therefore, there is a problem that an image defect is caused by a defective electron beam passage.

【0005】これらの問題を解決する手段として絶縁基
材の表面に金属膜を溶射やメッキ等により形成し、その
金属面と電極板とを常温で溶接固定する方法が考えられ
る。しかし、上記方法で金属膜をセラミック等の絶縁基
材に形成してその金属膜と電極板とをレーザ溶接する場
合、金属膜が約100μm程度では金属膜との溶接強度
は不十分で、極く弱い力で剥離する。
As a means for solving these problems, a method is conceivable in which a metal film is formed on the surface of an insulating base material by thermal spraying or plating, and the metal surface and the electrode plate are welded and fixed at room temperature. However, when a metal film is formed on an insulating base material such as ceramics by the above method and the metal film and the electrode plate are laser-welded, if the metal film is about 100 μm, the welding strength with the metal film is insufficient, so Peel with a weak force.

【0006】金属膜がさらに薄いと、レーザ溶接の熱で
セラミックスの熱破壊が生じる。一方、金属膜をさらに
厚く形成する場合、メッキでは困難であり、溶射法では
セラミックとの接合強度が弱い、膜厚の均一性が得られ
難いなどの問題がある。
When the metal film is thinner, the heat of laser welding causes thermal destruction of the ceramics. On the other hand, when the metal film is formed thicker, it is difficult to perform plating, and the thermal spraying method has problems such as weak bonding strength with ceramics and difficulty in obtaining uniform film thickness.

【0007】本発明は、熱膨張係数の若干異なる電極板
の高温接合により発生する電極板の反りや、接合材の強
度不足から起る破片の飛散による画像欠陥をなくした高
品質な画像表示装置を実現するために、レーザー溶接な
どにより常温での電極板と絶縁基材との接合を可能にす
る接合基材の構造とその製法を提供することを目的とす
る。
The present invention is a high quality image display device which eliminates image defects due to warpage of electrode plates caused by high temperature bonding of electrode plates having slightly different coefficients of thermal expansion and scattering of debris caused by insufficient strength of the bonding material. In order to realize the above, an object of the present invention is to provide a structure of a bonding base material that enables the electrode plate and the insulating base material to be bonded at room temperature by laser welding or the like, and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】請求項1記載の電極板と
金属埋め込みセラミックスとの接合体は、セラミックス
の表面に金属を埋め込んだ金属埋め込みセラミックスの
上に電極板を積層し、前記電極板と金属埋め込みセラミ
ックスに埋め込まれている埋め込み金属を溶接固定した
ことを特徴とする。
A bonded body of an electrode plate and a metal-embedded ceramic according to claim 1, wherein the electrode plate is laminated on the metal-embedded ceramic in which a metal is embedded on the surface of the ceramic, The embedded metal embedded in the metal-embedded ceramic is welded and fixed.

【0009】請求項2記載の電極板と金属埋め込みセラ
ミックスとの接合体の製造方法は、金属埋め込みセラミ
ックスの上に電極板を積層し、前記電極板にビームを照
射して金属埋め込みセラミックスに埋め込まれている埋
め込み金属を溶かして前記電極板と前記埋め込み金属と
を常温の環境下で接合することを特徴とする。
According to a second aspect of the present invention, there is provided a method for manufacturing a joined body of an electrode plate and a metal-embedded ceramic, wherein the electrode plate is laminated on the metal-embedded ceramic and the electrode plate is irradiated with a beam to be embedded in the metal-embedded ceramic. The embedded metal is melted and the electrode plate and the embedded metal are joined together at room temperature.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図5に基づいて説明する。図1〜図4は本発明の、電
極板と金属埋め込みセラミックスとの接合体に使用する
金属埋め込みセラミックスを示す。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIG. 1 to 4 show a metal-embedded ceramic used in a bonded body of an electrode plate and a metal-embedded ceramic according to the present invention.

【0011】図1は焼結後の金属埋め込みセラミックス
の断面図、図2は金属埋め込みセラミックスの製造工程
を示す。図3,図4は金属埋め込みセラミックスの収縮
変化を示す。
FIG. 1 is a sectional view of the metal-embedded ceramics after sintering, and FIG. 2 shows a manufacturing process of the metal-embedded ceramics. 3 and 4 show changes in shrinkage of the metal-embedded ceramics.

【0012】図2において、1a,1bは第1,第2の
グリーンシート(未焼成のセラミックスシート)で、貫
通穴1cが形成されている。なお、第1,第2のグリー
ンシート1a,1bを図2の(A)に示すように積層し
た状態で、第1のグリーンシート1aの貫通穴1cと第
2のグリーンシート1bの貫通穴1cとが連通しないよ
うに互いに位置をずらせて貫通穴1cが形成されてい
る。
In FIG. 2, reference numerals 1a and 1b denote first and second green sheets (unfired ceramic sheets) having through holes 1c. In the state where the first and second green sheets 1a and 1b are stacked as shown in FIG. 2A, the through hole 1c of the first green sheet 1a and the through hole 1c of the second green sheet 1b are stacked. Through holes 1c are formed at different positions so that they do not communicate with each other.

【0013】第1,第2のグリーンシート1a,1b
は、アルミナを主成分としてシリカ、マグネシア、有機
溶剤、溶媒などのバインダーを添加し、それぞれ 200μ
mの厚みに仕上げられている。焼結温度Ts =1500℃で
焼成すると熱膨張係数はαc =70×10-7/℃のセラミッ
クスとなる。貫通穴1cの径は常温(例えば25℃)での
直径d1 = 500μmである。
First and second green sheets 1a and 1b
Is composed of alumina as the main component and silica, magnesia, organic solvents, binders such as solvents are added, and
It has been finished to a thickness of m. When fired at a sintering temperature Ts = 1500 ° C, a ceramic having a coefficient of thermal expansion αc = 70 × 10 -7 / ° C. The diameter of the through hole 1c is a diameter d 1 = 500 μm at room temperature (for example, 25 ° C.).

【0014】積層された第1,第2のグリーンシート1
a,1bの焼成に際しては、それぞれの貫通穴1cに金
属チップ2が挿入される。金属チップ2はモリブデンで
形成し、常温での直径は 450μmで長さは約 200μmで
ある。
The laminated first and second green sheets 1
When firing a and 1b, the metal chip 2 is inserted into each through hole 1c. The metal tip 2 is made of molybdenum and has a diameter of 450 μm and a length of about 200 μm at room temperature.

【0015】モリブデンは、セラミックスの焼結温度T
s より高い2622℃の溶融点の材料で、熱膨張係数はαm
=55×10-7/℃である。なお、焼成に際して積層された
第1,第2のグリーンシート1a,1bは、金属チップ
2が挿入される前あるいは後に圧接される。
Molybdenum has a sintering temperature T of ceramics.
A material with a melting point of 2622 ° C, which is higher than
= 55 × 10 -7 / ° C. In addition, the first and second green sheets 1a and 1b stacked upon firing are pressed before or after the metal chip 2 is inserted.

【0016】ここで、焼成前の金属チップ2と貫通穴1
cの関係は、図3の(A)に示すように貫通穴1cに 5
0 μmの隙間があるが、図2の(A)の状態で焼結温度
Tsに加熱することにより、焼結温度Ts での金属チッ
プ2の直径は、図3の(B)に示すように熱膨張により
2 = 453.65 μmになり、グリーンシートの貫通穴1
cの常温での直径d1 =500 μmとの差δ0 =d1 −d
2 は、46.35 μm となる。
Here, the metal chip 2 and the through hole 1 before firing
As for the relationship of c, as shown in FIG.
Although there is a gap of 0 μm, by heating to the sintering temperature Ts in the state of FIG. 2 (A), the diameter of the metal tip 2 at the sintering temperature Ts is as shown in FIG. 3 (B). Due to thermal expansion, d 2 = 453.65 μm, and the through hole 1 of the green sheet
Difference of c from the diameter d 1 = 500 μm at room temperature δ 0 = d 1 −d
2 is 46.35 μm.

【0017】グリーンシートの焼結温度Ts における焼
成収縮率Pは、グリーンシートの常温時の寸法をS1,
焼結温度Ts における焼成後の寸法をS2としたとき、
P=(S1−S2)/S1とすると、焼成収縮量はδS
=d1 ・Pとなる。例えば焼成収縮率が14%の材料を用
いると、貫通穴1cは焼成後で寸法が70μm収縮してそ
の直径は 430μmとなる。この時の金属チップ2と貫通
穴1cの関係は図3の(B)に示すように23.65 μmの
しまり状態になる。
The firing shrinkage ratio P of the green sheet at the sintering temperature Ts is S1, the dimension of the green sheet at room temperature,
When the dimension after firing at the sintering temperature Ts is S2,
When P = (S1−S2) / S1, the firing shrinkage amount is δ S
= D 1 · P. For example, if a material having a firing shrinkage of 14% is used, the size of the through hole 1c shrinks by 70 μm after firing and the diameter thereof becomes 430 μm. At this time, the relationship between the metal chip 2 and the through hole 1c becomes a tight state of 23.65 μm as shown in FIG.

【0018】この時、前記セラミックスが金属を締め付
ける応力がセラミックスの破壊応力を超えないようδS
とδ0 を選定する。さらに、常温に戻った時、図2の
(B)に示す貫通穴1cの直径は前記熱膨張係数αc =
70×10-7/℃で収縮して425.56μmとなり、金属チップ
2は同様にαm =55×10-7/℃で収縮して、直径は 450
μmとなり両者の関係は、図3の(C)に示すように約
24.44μmのしまり状態となる。
At this time, the stress at which the ceramic tightens the metal does not exceed the fracture stress of the ceramic by δ S
And δ 0 are selected. Further, when the temperature returns to room temperature, the diameter of the through hole 1c shown in FIG.
Shrink at 70 × 10 -7 / ° C to 425.56 μm, and the metal tip 2 similarly shrinks at αm = 55 × 10 -7 / ° C with a diameter of 450.
μm, and the relationship between them is approximately as shown in (C) of FIG.
It becomes a tight state of 24.44 μm.

【0019】したがって、金属チップ2と貫通穴1cが
強固に結合され、図1に示すように焼成セラミックス8
に金属チップ2が埋め込まれた金属埋め込みセラミック
ス31が完成する。
Therefore, the metal chip 2 and the through hole 1c are firmly connected to each other, and the fired ceramics 8 is formed as shown in FIG.
The metal-embedded ceramics 31 having the metal chip 2 embedded therein is completed.

【0020】セラミックスの焼成収縮率は、バインダー
の材料,配合比を変えることで 5〜20%程度まで調整は
可能である。また金属チップ2にモリブデンを用いた例
を示したが、他の熱膨張係数の材料を用いることも可能
である。
The firing shrinkage of ceramics can be adjusted to about 5 to 20% by changing the binder material and the compounding ratio. Further, although an example in which molybdenum is used for the metal tip 2 is shown, it is also possible to use a material having another thermal expansion coefficient.

【0021】セラミックスの収縮率を変えることによ
り、焼成後の穴直径を可変でき、また、使用しているセ
ラミックスの熱膨張係数と金属チップ2の熱膨張係数と
の組み合わせを変えることにより、金属チップ2とセラ
ミックスとの締め付け力を最適な状態にすることができ
セラミックスの応力による割れをなくし、強固な固定の
金属埋め込みセラミックス31が実現できる。
The hole diameter after firing can be changed by changing the shrinkage rate of the ceramics, and the combination of the thermal expansion coefficient of the ceramics used and the thermal expansion coefficient of the metal chip 2 can be changed to change the metal chip. The tightening force between 2 and the ceramics can be optimized, cracks due to the stress of the ceramics can be eliminated, and a strongly fixed metal-embedded ceramics 31 can be realized.

【0022】以上の説明はd1 <d2 +δS の場合であ
るが、d1 >d2 +δS であってもよい。d1 >d2
δS なるときは、温度Ts において図4に示すように前
記セラミックスと前記金属の間に隙間が発生する。Ts
から常温に戻したときに、前記セラミックスと前記金属
との間に、所要のしまり状態が発生するように、前記セ
ラミックスと金属の熱膨張係数を選定すればよい。
Although the above description is for d 1 <d 2 + δ S , it may be d 1 > d 2 + δ S. d 1 > d 2 +
When δ S is reached, a gap is generated between the ceramic and the metal at the temperature Ts as shown in FIG. Ts
The coefficient of thermal expansion of the ceramic and the metal may be selected so that the required tightness is generated between the ceramic and the metal when the temperature is returned to room temperature.

【0023】図5は電極板4と上記のようにして製作し
た金属埋め込みセラミックス31とを電極板4との接合
体の製造状態を示している。セラミックス31は上記の
例で説明した組成と寸法で、電極板4は“42Ni−6C
r−Fe合金”で、その厚みは約 200μmである。
FIG. 5 shows a manufacturing state of a joined body of the electrode plate 4 and the metal-embedded ceramics 31 manufactured as described above with the electrode plate 4. The ceramics 31 has the composition and dimensions described in the above example, and the electrode plate 4 is "42Ni-6C".
r-Fe alloy ”and its thickness is about 200 μm.

【0024】セラミックス31を中央にして2枚の電極
板4を配設し、電極板4にYAGレーザ装置7からレー
ザー光7aを照射して金属埋め込みセラミックスに埋め
込まれている金属チップ2を溶かして電極板4と埋め込
み金属とを接合している。ここではレーザー光7aで金
属チップ2ごとに 5.3Jの熱量を加えて接合した。
Two electrode plates 4 are arranged with the ceramics 31 at the center, and the electrode plate 4 is irradiated with a laser beam 7a from a YAG laser device 7 to melt the metal chips 2 embedded in the metal-embedded ceramics. The electrode plate 4 and the embedded metal are joined. Here, a laser beam 7a was applied to each of the metal chips 2 to apply heat of 5.3 J to bond them.

【0025】この動作を金属埋め込みセラミックス31
の両面に行って図5に示す接合体6を構成している。ま
た、セラミックス31の一方の面と他方の面に埋め込ま
れた金属チップ2の位置は互いに位置がずれているた
め、要求される絶縁性能を充分に満足することができ
る。
This operation is performed by the metal-embedded ceramics 31.
On both sides to form the bonded body 6 shown in FIG. Further, since the positions of the metal chips 2 embedded in the one surface and the other surface of the ceramics 31 are displaced from each other, the required insulation performance can be sufficiently satisfied.

【0026】金属チップ2は円柱形で所定の体積を有す
るため、レーザー光照射時にレーザーの熱による衝撃で
セラミックス部が破壊することなく強固に接合できた。
常温で接合するため、熱膨張係数の異なる電極板4に接
合後も反りが発生することなく、高精度な接合を実現で
きた。
Since the metal tip 2 has a cylindrical shape and has a predetermined volume, the ceramic tip can be firmly bonded without being destroyed by the impact of the heat of the laser when the laser light is irradiated.
Since the bonding is performed at room temperature, the electrode plates 4 having different thermal expansion coefficients do not warp even after being bonded, and highly accurate bonding can be realized.

【0027】また、フリットガラス等の強度の低い接合
部材を用いず、セラミックスに強固に埋め込まれている
金属と電極板とを接合する構造であるため、従来のよう
なフリットガラスの剥離や飛散に伴なう不都合を生じる
ことはない。
Further, since the metal plate strongly embedded in the ceramic and the electrode plate are bonded to each other without using a bonding member such as frit glass having a low strength, it is possible to prevent the frit glass from peeling or scattering as in the conventional case. It does not cause any inconvenience.

【0028】上記の実施の形態では、第1,第2のグリ
ーンシート1a,1bにそれぞれ貫通穴1cを穿設して
これを積層して製造したが、単一のグリーンシートの一
方の面から他方の面に向けて第1の非貫通穴を形成し、
グリーンシートの前記他方の面から前記一方の面に向け
て第2の非貫通穴を形成し、この第1,第2の非貫通穴
に、上記の実施の形態と同様の金属チップを挿入して焼
成することによっても同様のセラミックス31を製造で
きる。第1の非貫通穴と第2の非貫通穴の位置をずらせ
ることによって上記の場合と同様に要求される絶縁性能
を充分に満足することができる。
In the above-mentioned embodiment, the through holes 1c are formed in the first and second green sheets 1a and 1b respectively, and the through holes 1c are laminated to manufacture the single green sheet. Forming a first non-through hole toward the other surface,
A second non-through hole is formed from the other surface of the green sheet toward the one surface, and a metal chip similar to that of the above-mentioned embodiment is inserted into the first and second non-through holes. The same ceramics 31 can be manufactured by firing by firing. By shifting the positions of the first non-through hole and the second non-through hole, it is possible to sufficiently satisfy the required insulation performance as in the above case.

【0029】しかし、歩留りの点では第1,第2のグリ
ーンシート1a,1bにそれぞれ貫通穴1cを穿設して
製造する方法の方が生産性が良好であった。上記の各実
施の形態では、金属埋め込みセラミックスの両面に電極
板を溶接する場合を例に挙げて説明したが、金属埋め込
みセラミックスの片面に電極板を溶接したものや、この
片面に電極板が溶接された接合体を積み重ねて電極構体
を構成する場合などには、第1,第2のグリーンシート
のうちの一方のグリーンシートにだけ貫通穴を形成し、
この貫通穴有りの第1のグリーンシートと貫通穴なしの
第2のグリーンシートを積層し、第1のグリーンシート
の貫通穴に前記と同様の金属を挿入した状態で焼成する
ことによって、必要な金属埋め込みセラミックスを良好
な歩留りで製造できる。
However, in terms of yield, the method of manufacturing by forming the through holes 1c in the first and second green sheets 1a and 1b has better productivity. In each of the above-described embodiments, the case where the electrode plates are welded to both surfaces of the metal-embedded ceramics has been described as an example, but the one in which the electrode plates are welded to the metal-embedded ceramics and the electrode plate is welded to this one surface. In the case where the bonded assembly is stacked to form an electrode assembly, a through hole is formed only in one of the first and second green sheets,
By stacking the first green sheet having the through holes and the second green sheet having no through holes and firing the same with the same metal inserted in the through holes of the first green sheet, the The metal-embedded ceramics can be manufactured with a good yield.

【0030】[0030]

【発明の効果】以上のように本発明の電極板と金属埋め
込みセラミックスとの接合体は、セラミックスの表面に
金属を埋め込んだ金属埋め込みセラミックスの上に電極
板を積層し、前記電極板と金属埋め込みセラミックスに
埋め込まれている埋め込み金属を溶接固定したため、常
温で溶接接合して電極構体を構成することができ、ま
た、金属埋め込みセラミックスとして所要の体積の金属
が埋め込まれたものを使用することによって、埋め込み
金属と電極板を、例えばレーザービームで接合する際に
セラミックスがレーザー光の熱による衝撃で破壊するこ
ともなく強固に接合できる。
As described above, in the bonded body of the electrode plate and the metal-embedded ceramics of the present invention, the electrode plate is laminated on the metal-embedded ceramic in which a metal is embedded on the surface of the ceramic, and the electrode plate and the metal-embedded ceramic are embedded. Since the embedded metal embedded in the ceramics was fixed by welding, it is possible to weld and join at room temperature to form an electrode assembly, and by using a metal-embedded ceramic in which a required volume of metal is embedded, When the embedded metal and the electrode plate are joined by a laser beam, for example, the ceramics can be joined firmly without being destroyed by the impact of the heat of the laser light.

【0031】また、電極板と金属埋め込みセラミックス
との接合体の製造方法によると、金属埋め込みセラミッ
クスの上に電極板を積層し、前記電極板にビームを照射
して金属埋め込みセラミックスに埋め込まれている埋め
込み金属を溶かして前記電極板と前記埋め込み金属とを
常温の環境下で接合するので、熱膨張係数の若干異なる
電極板の高温接合により発生する電極板の反りや、接合
材の強度不足から起る破片の飛散をなくすことができ
る。
Further, according to the method of manufacturing the bonded body of the electrode plate and the metal-embedded ceramic, the electrode plate is laminated on the metal-embedded ceramic, and the electrode plate is irradiated with a beam to be embedded in the metal-embedded ceramic. Since the embedded metal is melted and the electrode plate and the embedded metal are joined in an environment at room temperature, the warpage of the electrode plate caused by the high temperature joining of the electrode plates having slightly different thermal expansion coefficients and the insufficient strength of the joining material are caused. It is possible to eliminate the scattering of debris.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の接合体に使用する金属埋め込みセラミ
ックスの断面図
FIG. 1 is a cross-sectional view of a metal-embedded ceramic used in a joined body of the present invention.

【図2】本発明の接合体に使用する金属埋め込みセラミ
ックスの製造方法の工程図
FIG. 2 is a process diagram of a method for producing a metal-embedded ceramic used in the joined body of the present invention.

【図3】本発明の接合体に使用する金属埋め込みセラミ
ックスの製造過程における材料の収縮変化図
FIG. 3 is a shrinkage change diagram of a material in a manufacturing process of a metal-embedded ceramics used for a joined body of the present invention.

【図4】本発明の接合体に使用する金属埋め込みセラミ
ックスの製造過程における材料の収縮変化図
FIG. 4 is a shrinkage change diagram of a material in a manufacturing process of a metal-embedded ceramic used in the joined body of the present invention.

【図5】本発明の接合体の製造過程の説明図FIG. 5 is an explanatory view of the manufacturing process of the joined body of the present invention.

【図6】従来の平板型画像表示装置の電極構体の断面図FIG. 6 is a sectional view of an electrode structure of a conventional flat panel image display device.

【符号の説明】[Explanation of symbols]

2 金属チップ 4 電極板 31 金属埋め込みセラミックス 2 Metal chip 4 Electrode plate 31 Metal embedded ceramics

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 文男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 井上 勇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松本 弘 京都府京都市山科区東野北井ノ上町5番地 の22 京セラ株式会社内 (72)発明者 山本 弘司 京都府京都市山科区東野北井ノ上町5番地 の22 京セラ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Fumio Yamazaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Isamu 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 72) Inventor Hiroshi Matsumoto 22 Kyocera Co., Ltd. at 5 Inoue Kitanouemachi, Yamashina-ku, Kyoto (72) Inventor Koji Yamamoto 22 Kyocera Co., Ltd. at 5 Higashinokitainoue-cho, Yamashina, Kyoto

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックスの表面に金属を埋め込んだ
金属埋め込みセラミックスの上に電極板を積層し、前記
電極板と金属埋め込みセラミックスに埋め込まれている
埋め込み金属を溶接固定した電極板と金属埋め込みセラ
ミックスとの接合体。
1. An electrode plate and a metal-embedded ceramic in which an electrode plate is laminated on a metal-embedded ceramic in which a metal is embedded on the surface of the ceramic, and the electrode plate and the embedded metal embedded in the metal-embedded ceramic are fixed by welding. Zygote.
【請求項2】 金属埋め込みセラミックスの上に電極板
を積層し、前記電極板にビームを照射して金属埋め込み
セラミックスに埋め込まれている埋め込み金属を溶かし
て前記電極板と前記埋め込み金属とを常温の環境下で接
合する電極板と金属埋め込みセラミックスとの接合体の
製造方法。
2. An electrode plate is laminated on a metal-embedded ceramic, and the electrode plate is irradiated with a beam to melt the embedded metal embedded in the metal-embedded ceramic so that the electrode plate and the embedded metal are kept at room temperature. A method for manufacturing a bonded body of an electrode plate and a metal-embedded ceramic that is bonded in an environment.
JP01341396A 1996-01-30 1996-01-30 Bonded body of electrode plate and embedded metal ceramic and method of manufacturing the same Expired - Fee Related JP3192958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01341396A JP3192958B2 (en) 1996-01-30 1996-01-30 Bonded body of electrode plate and embedded metal ceramic and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01341396A JP3192958B2 (en) 1996-01-30 1996-01-30 Bonded body of electrode plate and embedded metal ceramic and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09213230A true JPH09213230A (en) 1997-08-15
JP3192958B2 JP3192958B2 (en) 2001-07-30

Family

ID=11832458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01341396A Expired - Fee Related JP3192958B2 (en) 1996-01-30 1996-01-30 Bonded body of electrode plate and embedded metal ceramic and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3192958B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109883A (en) * 2005-10-13 2007-04-26 Tdk Corp Ceramic electronic component and method of manufacturing same
JP2010528241A (en) * 2007-05-29 2010-08-19 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Thermal insulation system for liquefied natural gas storage container with welded secondary barrier and its construction method
JP2014521024A (en) * 2011-07-06 2014-08-25 ガズトランスポール エ テクニガズ Support structure integrated sealed heat insulation tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109883A (en) * 2005-10-13 2007-04-26 Tdk Corp Ceramic electronic component and method of manufacturing same
JP2010528241A (en) * 2007-05-29 2010-08-19 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Thermal insulation system for liquefied natural gas storage container with welded secondary barrier and its construction method
JP2014521024A (en) * 2011-07-06 2014-08-25 ガズトランスポール エ テクニガズ Support structure integrated sealed heat insulation tank
US9359130B2 (en) 2011-07-06 2016-06-07 Gaztransport Et Technigaz Sealed and thermally insulative tank integrated into a supporting structure

Also Published As

Publication number Publication date
JP3192958B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
US7635076B2 (en) Method for fabricating large dimension bonds using reactive multilayer joining
US8683682B2 (en) Method for the production of a metal-ceramic substrate
JP3670008B2 (en) How to make an airtight solder joint
JPH09213230A (en) Joint body of electrode plates and metal buried ceramics, and its manufacture
JP2008218978A (en) Electrostatic chuck and manufacturing method therefor
JP3633700B2 (en) Metal-embedded ceramics and manufacturing method thereof
JPH1075042A (en) Circuit board and mounting of electronic component
EP2010354A1 (en) Method for fabricating large dimension bonds using reactive multilayer joining
JP3144216B2 (en) Laminate bonding method for flat electrodes
JP2009170389A (en) Ceramic heater, and manufacturing method thereof
JPH02104119A (en) Method for mounting surface acoustic wave element
JP2002311303A (en) Package for optical communication
KR880000395B1 (en) Magnetic head comprising two spot-welded metal plate
JPH03112638A (en) Directly connected symmetrical metal layered body/substrate structure
JPH04293302A (en) Dielectric filter
JPS63194879A (en) Joining method using insert material
JPH0613161A (en) Ceramic heater
JPS61286059A (en) Joining method for aluminum alloy and aluminum ceramics
JPH07169388A (en) Layering and joining method of flat electrode
JPH08174214A (en) Butt welding method and patching material used to this method
JPS60257969A (en) Brazing method
JP2004320170A (en) Package for piezoelectric component
JPH01141883A (en) Method for joining ceramic to metal
JPH0768678A (en) Production of aluminium honeycomb panel
JPH05101771A (en) Manufacture of plane type display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees