JPH0921316A - Cooling device for vertical type engine for vehicle - Google Patents
Cooling device for vertical type engine for vehicleInfo
- Publication number
- JPH0921316A JPH0921316A JP17088695A JP17088695A JPH0921316A JP H0921316 A JPH0921316 A JP H0921316A JP 17088695 A JP17088695 A JP 17088695A JP 17088695 A JP17088695 A JP 17088695A JP H0921316 A JPH0921316 A JP H0921316A
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- gap
- vehicle
- insulating member
- branch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Silencers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は車両用縦置き式エン
ジンの冷却装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for a vertical engine for a vehicle.
【0002】[0002]
【従来の技術】エンジン本体が、長手軸線が車両の移動
方向に対しぼほ平行となるように配置されており、エン
ジン本体に、エンジンの長手軸線に沿って複数の排気管
が互いに離間して接続されており、これら排気管を車両
走行風により冷却するようにした車両用縦置き式エンジ
ンの冷却装置であって、これら排気管の外方外壁面が排
気管から間隙を隔てて配置された外方断熱部材により覆
われており、排気管の内方外壁面が排気管から間隙を隔
てて配置された内方断熱部材により覆われており、これ
ら外方断熱部材と内方断熱部材とにより画定される空間
内に車両走行風を導くことによってこれら排気管を冷却
するようにした冷却装置が公知である(実開平2−78
718号公報参照)。この冷却装置では車両走行風によ
り排気管を冷却することによって排気管がその内部空間
を流通する排気ガスの熱でもって過熱されないようにし
て排気管の熱歪ができるだけ小さくなるようにしてい
る。一方、外方断熱部材および内方断熱部材は排気管か
らの放熱を遮断してエンジンルーム内の他の部品が過熱
されるのを阻止し、或いは機関始動時に触媒コンバータ
が速やかに加熱されるようにしている。2. Description of the Related Art An engine body is arranged such that its longitudinal axis is substantially parallel to the moving direction of a vehicle, and a plurality of exhaust pipes are spaced apart from each other along the engine longitudinal axis. A cooling device for a vertically installed engine for a vehicle, which is connected to and cools these exhaust pipes by a vehicle traveling wind, wherein outer outer wall surfaces of these exhaust pipes are arranged with a gap from the exhaust pipes. It is covered with an outer heat insulating member, the inner outer wall surface of the exhaust pipe is covered with an inner heat insulating member spaced from the exhaust pipe, and the outer heat insulating member and the inner heat insulating member There is known a cooling device that cools these exhaust pipes by guiding a vehicle running wind into a defined space (actually, Kaihei 2-78).
718). In this cooling device, the exhaust pipe is cooled by the vehicle running wind so that the exhaust pipe is not overheated by the heat of the exhaust gas flowing through the internal space of the exhaust pipe, and the thermal strain of the exhaust pipe is minimized. On the other hand, the outer heat insulating member and the inner heat insulating member block the heat radiation from the exhaust pipe to prevent other parts in the engine room from overheating, or the catalytic converter is heated quickly when the engine is started. I have to.
【0003】[0003]
【発明が解決しようとする課題】ところで、通常のエン
ジンでは各排気管の、シリンダヘッド底面からの高さが
ほぼ一定にされており、したがって車両の前方から見た
ときに各排気管が互いに重なって見え、しかもこの重な
りが極めて大きくなっている。ところが、このようなエ
ンジンにおいて上述の冷却装置におけるようにこれら排
気管を車両走行風によって冷却するようにすると車両の
後方に位置する排気管程車両走行風が十分に当たらず、
すなわち車両の後方に位置する排気管程十分に冷却され
ず、したがって排気管に対する冷却作用に大きなばらつ
きが生ずるという問題がある。By the way, in a normal engine, the heights of the exhaust pipes from the bottom surface of the cylinder head are substantially constant. Therefore, when viewed from the front of the vehicle, the exhaust pipes overlap each other. It looks like this, and this overlap is extremely large. However, in such an engine, when the exhaust pipes are cooled by the vehicle traveling wind as in the cooling device described above, the vehicle traveling wind is not sufficiently hit as much as the exhaust pipe located at the rear of the vehicle,
That is, there is a problem that the exhaust pipe located at the rear of the vehicle is not cooled sufficiently, and thus the cooling action on the exhaust pipe varies widely.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に1番目の発明によれば、エンジン本体が、長手軸線が
車両の移動方向に対しぼほ平行となるように配置されて
おり、エンジン本体に、エンジンの長手軸線に沿って複
数の排気管が互いに離間して接続されており、これら排
気管を車両走行風により冷却するようにした車両用縦置
き式エンジンの冷却装置において、これら排気管の外壁
面が排気管から間隙を隔てて配置された断熱部材により
覆われており、断熱部材に、排気管に向けて突出する凸
部を設けて凸部により、排気管と断熱部材間の間隙内を
流通する車両走行風の少なくとも一部を互いに隣接する
排気管間に形成される間隙内に導くようにしている。According to the first aspect of the present invention, the engine body is arranged such that its longitudinal axis is substantially parallel to the moving direction of the vehicle. A plurality of exhaust pipes are connected to the main body along the longitudinal axis of the engine so as to be separated from each other, and these exhaust pipes are cooled by the vehicle traveling wind. The outer wall surface of the pipe is covered with a heat insulating member that is arranged with a gap from the exhaust pipe, and the heat insulating member is provided with a convex portion that projects toward the exhaust pipe. At least a part of the vehicle running wind flowing in the gap is guided into the gap formed between the exhaust pipes adjacent to each other.
【0005】2番目の発明によれば上記課題を解決する
ために、エンジン本体が、長手軸線が車両の移動方向に
対しぼほ平行となるように配置されており、エンジン本
体に、エンジンの長手軸線に沿って複数の排気管が互い
に離間して接続されており、これら排気管を車両走行風
により冷却するようにした車両用縦置き式エンジンの冷
却装置において、これら排気管の外壁面が排気管から間
隙を隔てて配置された断熱部材により覆われており、断
熱部材と各排気管間に形成される間隙を互いに隣接する
排気管において互いに異ならしめて排気管と断熱部材間
の間隙内を流通する車両走行風の少なくとも一部を互い
に隣接する排気管間に形成される間隙内に導くようにし
ている。According to the second aspect of the invention, in order to solve the above-mentioned problems, the engine body is arranged so that its longitudinal axis is substantially parallel to the moving direction of the vehicle. In a cooling device for a vertical engine for a vehicle, in which a plurality of exhaust pipes are connected to be spaced apart from each other along an axis, and the exhaust pipes are cooled by vehicle wind, the outer wall surfaces of these exhaust pipes are exhausted. It is covered by a heat insulating member arranged with a gap from the pipe, and the gap formed between the heat insulating member and each exhaust pipe is made different from each other in the adjacent exhaust pipes and flows through the gap between the exhaust pipe and the heat insulating member. At least a part of the traveling wind of the vehicle is guided into the gap formed between the exhaust pipes adjacent to each other.
【0006】3番目の発明によれば上記課題を解決する
ために、エンジン本体が、長手軸線が車両の移動方向に
対しぼほ平行となるように配置されており、エンジン本
体に、エンジンの長手軸線に沿って複数の排気管が互い
に離間して接続されており、これら排気管を車両走行風
により冷却するようにした車両用縦置き式エンジンの冷
却装置において、これら排気管の外壁面が排気管から間
隙を隔てて配置された断熱部材により覆われており、排
気管に、断熱部材に向けて突出する突出部を設けて突出
部により、排気管と断熱部材間の間隙内を流通する車両
走行風の少なくとも一部を互いに隣接する排気管間に形
成される間隙内に導くようにしている。According to the third aspect of the invention, in order to solve the above problems, the engine body is arranged so that its longitudinal axis is substantially parallel to the moving direction of the vehicle. In a cooling device for a vertical engine for a vehicle, in which a plurality of exhaust pipes are connected to be spaced apart from each other along an axis, and the exhaust pipes are cooled by vehicle wind, the outer wall surfaces of these exhaust pipes are exhausted. A vehicle that is covered with a heat insulating member that is arranged with a gap from the pipe, and that has a protruding portion that projects toward the heat insulating member on the exhaust pipe, and that the protruding portion allows the vehicle to flow in the gap between the exhaust pipe and the heat insulating member. At least a part of the traveling wind is guided into a gap formed between the exhaust pipes adjacent to each other.
【0007】[0007]
【作用】排気管と断熱部材間の間隙内を流通する車両走
行風の少なくとも一部が互いに隣接する排気管間に形成
される間隙内に導かれるので全ての排気管がほぼ全周に
わたって走行風に接触して冷却される。Since at least a part of the vehicle running wind flowing in the gap between the exhaust pipe and the heat insulating member is guided into the gap formed between the exhaust pipes adjacent to each other, all the exhaust pipes travel over almost the entire circumference. To be cooled.
【0008】[0008]
【実施例】図1を参照すると、車両1のエンジンルーム
2内にはエンジン本体3が縦置きに配置されている。す
なわち、エンジン本体3の長手軸線K−Kが車両1の移
動方向、正確に云うと直進方向に対しほぼ平行になるよ
うにエンジン本体3が配置されている。また、図1に示
されるようにエンジン本体3には長手軸線K−Kに沿っ
て例えば4個の気筒が設けられる。以下では、これら気
筒を車両1の前方側に位置する気筒から順に1番気筒#
1、2番気筒#2、3番気筒#3、4番気筒#4と称す
ることにする。各気筒#1〜#4はエンジン本体3のシ
リンダヘッド内に形成されたそれぞれ対応する吸気ポー
トと、吸気枝管とを介し長手軸線K−Kの一側に配置さ
れた、各気筒に対し共通のサージタンク4に接続され
る。サージタンク4は図示しない吸気ダクトを介してエ
アフローメータ(図示しない)に接続される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, an engine body 3 is vertically arranged in an engine room 2 of a vehicle 1. That is, the engine body 3 is arranged so that the longitudinal axis K-K of the engine body 3 is substantially parallel to the moving direction of the vehicle 1, to be precise, the straight traveling direction. Further, as shown in FIG. 1, the engine body 3 is provided with, for example, four cylinders along the longitudinal axis KK. In the following, these cylinders will be referred to as the first cylinder # in order from the cylinder located on the front side of the vehicle 1.
The first and second cylinders # 2, the third cylinder # 3, and the fourth cylinder # 4 will be referred to. Each of the cylinders # 1 to # 4 is common to each cylinder arranged on one side of the longitudinal axis KK through the corresponding intake port formed in the cylinder head of the engine body 3 and the intake branch pipe. Connected to the surge tank 4. The surge tank 4 is connected to an air flow meter (not shown) via an intake duct (not shown).
【0009】また、各気筒#1〜#4はシリンダヘッド
10内に形成されたそれぞれ対応する排気ポートを介し
長手軸線K−Kの他側に配置された、各気筒に対し共通
の排気マニホルド5に接続される。排気マニホルド5は
図1に示されるようにエンジン本体3の長手軸線K−K
に沿い互いに離間して設けられた4つの分岐部51,5
2,53,54を具備しており、第1の分岐部51は1
番気筒#1に、第2の分岐部52は2番気筒#2に、第
3の分岐部53は3番気筒#3に、第4の分岐部54は
4番気筒#4にそれぞれ接続されている。これら分岐部
51,52,53,54は排気管を構成する。また、本
実施例において各分岐部51,52,53,54の各中
心軸線は図3に示されるように直線L−L上にそれぞれ
整列されている。この直線L−Lはエンジン本体3の長
手軸線K−Kに対しほぼ平行に延びている。なお、排気
マニホルド5の集合部50は触媒コンバータ(図示しな
い)に接続される。Further, each of the cylinders # 1 to # 4 is arranged on the other side of the longitudinal axis K-K via a corresponding exhaust port formed in the cylinder head 10, and the exhaust manifold 5 common to each cylinder is provided. Connected to. The exhaust manifold 5 has a longitudinal axis K-K of the engine body 3 as shown in FIG.
Four branch parts 51, 5 that are provided apart from each other along the
2, 53, 54, and the first branch portion 51
The second branch portion 52 is connected to the second cylinder # 2, the third branch portion 53 is connected to the third cylinder # 3, and the fourth branch portion 54 is connected to the fourth cylinder # 4. ing. These branch parts 51, 52, 53, 54 constitute an exhaust pipe. Further, in the present embodiment, the central axes of the branch parts 51, 52, 53, 54 are aligned on the straight line L-L as shown in FIG. This straight line L-L extends substantially parallel to the longitudinal axis K-K of the engine body 3. The collecting portion 50 of the exhaust manifold 5 is connected to a catalytic converter (not shown).
【0010】再び図1を参照すると、車両1の前方側に
位置するエンジン本体3の端面には機関駆動式の冷却フ
ァン7が取付けられる。冷却ファン7の車両前方にはラ
ジエータ8が配置され、ラジエータ8の車両前方にはエ
ンジンルーム2と大気とを連通するフロントグリル9が
設けられる。したがって、車両1が走行することによっ
てフロントグリル9を介しエンジンルーム2内に、エン
ジン本体3の長手軸線K−K方向に進行する車両走行風
Aが流入する。Referring again to FIG. 1, an engine-driven cooling fan 7 is attached to the end surface of the engine body 3 located on the front side of the vehicle 1. A radiator 8 is arranged in front of the cooling fan 7 in the vehicle, and a front grill 9 which communicates between the engine room 2 and the atmosphere is provided in front of the radiator 8 in the vehicle. Therefore, as the vehicle 1 travels, the vehicle traveling wind A that advances in the longitudinal axis KK direction of the engine body 3 flows into the engine room 2 through the front grill 9.
【0011】特に図2および図3からわかるように、排
気マニホルド5の内方外壁面5in、すなわちエンジン
本体3側外壁面は、排気マニホルド5から間隙11in
を隔てて配置された内方断熱部材10inにより覆われ
ており、排気マニホルド5の外方外壁面5outは、排
気マニホルド5から間隙11outを隔てて配置された
外方断熱部材10outにより覆われている。したがっ
て、各分岐部の内方外壁面が共通の内方断熱部材10i
nにより覆われることになり、各分岐部の外方外壁面が
共通の外方断熱部材10outにより覆われることにな
る。云い換えると、内方断熱部材10inと外方断熱部
材10outとにより画定される空間19内に排気マニ
ホルド5が配置されることになり、後述するようにこの
空間19内に車両走行風Aが導入されることになる。し
たがって、第1の分岐部51側に位置する内方断熱部材
10inの端部と外方断熱部材10outの端部間の間
隙20は空気取込み口を形成し、第4の分岐部54側に
位置する内方断熱部材10inの端部と外方断熱部材1
0outの端部間の間隙21は空気排出口を形成してい
る。一方、これら内方断熱部材10inおよび外方断熱
部材10outは排気マニホルド5からの放熱を遮断し
てエンジンルーム2内の他の部品が過熱されるのを阻止
し、或いは機関始動時に触媒コンバータが速やかに加熱
されるようにしている。また、特に内方断熱部材10i
nは排気マニホルド5がエンジン本体3から受熱するの
も阻止している。なお、これら内方断熱部材10inお
よび外方断熱部材10outは図示しない支持部材によ
り例えば排気マニホルド5により支持されている。As can be seen in particular from FIGS. 2 and 3, the inner and outer wall surfaces 5 in of the exhaust manifold 5, that is, the outer wall surface on the engine body 3 side, has a gap of 11 in from the exhaust manifold 5.
Is covered by an inner heat insulating member 10in arranged apart from each other, and the outer outer wall surface 5out of the exhaust manifold 5 is covered by an outer heat insulating member 10out arranged apart from the exhaust manifold 5 by a gap 11out. . Therefore, the inner heat insulating member 10i in which the inner and outer wall surfaces of the respective branch parts are common
Thus, the outer outer wall surface of each branch portion is covered with the common outer heat insulating member 10out. In other words, the exhaust manifold 5 is arranged in the space 19 defined by the inner heat insulating member 10in and the outer heat insulating member 10out, and the vehicle traveling wind A is introduced into the space 19 as described later. Will be done. Therefore, the gap 20 between the end of the inner heat insulating member 10in located on the side of the first branch 51 and the end of the outer heat insulating member 10out forms an air intake port, and is located on the side of the fourth branch 54. The end of the inner heat insulating member 10 in and the outer heat insulating member 1
The gap 21 between the ends of 0out forms an air outlet. On the other hand, the inner heat insulating member 10in and the outer heat insulating member 10out block heat radiation from the exhaust manifold 5 to prevent other parts in the engine room 2 from being overheated, or the catalytic converter operates quickly when the engine is started. It is heated to. Also, particularly the inner heat insulating member 10i
n also prevents the exhaust manifold 5 from receiving heat from the engine body 3. The inner heat insulating member 10in and the outer heat insulating member 10out are supported by, for example, the exhaust manifold 5 by a supporting member (not shown).
【0012】さらに図3を参照すると、外方断熱部材1
0outの排気マニホルド5側壁面上には排気マニホル
ド5に向けて突出する凸部12a,12cが設けられ、
内方断熱部材10inの排気マニホルド5側壁面上にも
排気マニホルド5に向けて突出する凸部13bが設けら
れる。凸部12aは第1の分岐部51と第2の分岐部5
2間に形成される第1の分岐部間間隙14a上に位置せ
しめられ、凸部13bは第2の分岐部52と第3の分岐
部53間に形成される第2の分岐部間間隙14b上に位
置せしめられ、凸部12cは第3の分岐部53と第4の
分岐部54間に形成される第3の分岐部間間隙14c上
に位置せしめられる。したがって、内方断熱部材10i
nに形成される凸部と、外方断熱部材10outに形成
される凸部とがエンジン本体3の長手軸線K−K方向に
おいて交互に配置されることになる。なお、内方断熱部
材10inおよび外方断熱部材10outは凸部を除い
てほぼ平板状をなしており、本実施例においてこれら内
方断熱部材10inおよび外方断熱部材10outは直
線L−Lに対しそれぞれ平行に延びている。Still referring to FIG. 3, the outer heat insulating member 1
Projections 12a and 12c projecting toward the exhaust manifold 5 are provided on the side wall surface of the exhaust manifold 5 of 0out,
On the side wall surface of the exhaust manifold 5 of the inner heat insulating member 10in, a convex portion 13b protruding toward the exhaust manifold 5 is also provided. The convex portion 12a includes the first branch portion 51 and the second branch portion 5
The convex portion 13b is positioned on the first inter-branch portion gap 14a formed between the two, and the convex portion 13b is formed between the second branch portion 52 and the third branch portion 53. The convex portion 12c is positioned above, and the convex portion 12c is positioned above the third inter-branch portion gap 14c formed between the third branch portion 53 and the fourth branch portion 54. Therefore, the inner heat insulating member 10i
The convex portions formed in n and the convex portions formed in the outer heat insulating member 10out are alternately arranged in the longitudinal axis K-K direction of the engine body 3. The inner heat insulating member 10in and the outer heat insulating member 10out have a substantially flat plate shape except for the convex portion, and in the present embodiment, the inner heat insulating member 10in and the outer heat insulating member 10out have a straight line L-L. Each extends in parallel.
【0013】次に図3を参照して本実施例による冷却装
置の作用について説明する。車両1の走行によりエンジ
ンルーム2内に車両走行風Aが流入するとこの車両走行
風Aの一部が空気取込み口20から排気管空間19内に
流入する。排気管空間19内に流入した車両走行風Aは
図3において矢印でもって示すように次いで各分岐部と
外方断熱部材10out間に形成される間隙11ou
t、および各分岐部と内方断熱部材10in間に形成さ
れる間隙11inを順次流通して排気マニホルド5に接
触し、それによって排気マニホルド5を冷却する。その
結果排気マニホルド5が過熱されるのが阻止される。排
気管空間19内を流通した走行風は次いで空気排出口2
1から排出される。Next, the operation of the cooling device according to this embodiment will be described with reference to FIG. When the vehicle traveling wind A flows into the engine room 2 due to the traveling of the vehicle 1, a part of the vehicle traveling wind A flows into the exhaust pipe space 19 from the air intake port 20. The vehicle running wind A that has flowed into the exhaust pipe space 19 then has a gap 11ou formed between each branch and the outer heat insulating member 10out as shown by an arrow in FIG.
t and the gap 11in formed between each branch portion and the inner heat insulating member 10in, are sequentially circulated to contact the exhaust manifold 5, thereby cooling the exhaust manifold 5. As a result, the exhaust manifold 5 is prevented from overheating. The traveling wind that has circulated in the exhaust pipe space 19 is then discharged to the air outlet 2
Emitted from 1.
【0014】ところが、図2からわかるように車両1の
前方から見たときに排気マニホルド5の各分岐部が互い
に重なって見え、しかもこの重なりが極めて大きくなっ
ているので車両1の後方に位置する分岐部程車両走行風
が十分に当たらず、すなわち車両の後方に位置する分岐
部程十分に冷却されなくなる。云い換えると、各分岐部
に対する冷却作用に大きなばらつきが生ずることにな
る。特に、本実施例におけるように分岐部が排気マニホ
ルド5の一部である場合に各分岐部に対する冷却作用に
大きなばらつきが生ずると排気マニホルド5に大きな熱
歪が生じて排気マニホルド5の耐久性および信頼性が低
下せしめられる。そこで、本実施例では内方断熱部材1
0inおよび外方断熱部材10outに凸部を設けてこ
の凸部により、分岐部間間隙14a,14b,14c内
に車両走行風Aの一部を導くようにしている。However, as can be seen from FIG. 2, when viewed from the front of the vehicle 1, the respective branch portions of the exhaust manifold 5 appear to overlap each other, and the overlap is so large that they are located behind the vehicle 1. The vehicle traveling wind is not sufficiently exposed to the branch portion, that is, the branch portion located rearward of the vehicle is not sufficiently cooled. In other words, there will be a large variation in the cooling action for each branch. In particular, when the branch portion is a part of the exhaust manifold 5 as in the present embodiment and a great variation occurs in the cooling action for each branch portion, a large thermal strain occurs in the exhaust manifold 5 and durability of the exhaust manifold 5 and The reliability is reduced. Therefore, in this embodiment, the inner heat insulating member 1 is used.
A convex portion is provided on 0 in and the outer heat insulating member 10out, and the convex portion guides a part of the vehicle traveling wind A into the inter-branch gaps 14a, 14b, 14c.
【0015】すなわち、空気取込み口20から排気管空
間19内に流入した車両走行風Aは次いで第1の分岐部
51周りの間隙11outおよび間隙11inを介し流
通する。その結果第1の分岐部51がこれらの走行風に
接触して冷却される。第1の分岐部51周りの間隙11
out内を流通した走行風は次いで凸部12aに沿い進
行して案内され、斯くしてこの走行風の一部A1が第1
の分岐部間間隙14aを横断し、残りは第2の分岐部5
2周りの間隙11out内に流入する。第1の分岐部間
間隙14aを横断する走行風A1は第1の分岐部51の
背壁面、すなわち走行風の下流側壁面に接触してこの背
壁面を冷却する。したがって、第1の分岐部51はほぼ
全周にわたって走行風と接触することになり、斯くして
第1の分岐部51がさらに良好に冷却される。さらに、
走行風A1は第2の分岐部52の前壁面、すなわち走行
風の上流側壁面にも接触してこの前壁面を冷却し、した
がって第2の分岐部52もさらに良好に冷却される。That is, the vehicle traveling wind A flowing into the exhaust pipe space 19 from the air intake port 20 then flows through the gap 11out and the gap 11in around the first branch portion 51. As a result, the first branch portion 51 comes into contact with these traveling winds and is cooled. Gap 11 around the first branch 51
The traveling wind that has circulated inside out then travels along the convex portion 12a and is guided, so that part A1 of this traveling wind is the first portion.
Across the inter-branch gap 14a of the second branch 5
2 flows into the gap 11out. The traveling wind A1 that crosses the first inter-branch gap 14a contacts the back wall surface of the first branch portion 51, that is, the downstream side wall surface of the traveling wind, and cools this back wall surface. Therefore, the first branch portion 51 comes into contact with the traveling wind over substantially the entire circumference, and thus the first branch portion 51 is cooled more favorably. further,
The traveling wind A1 also contacts the front wall surface of the second branch portion 52, that is, the upstream side wall surface of the traveling wind to cool the front wall surface, so that the second branch portion 52 is also cooled more favorably.
【0016】第1の分岐部51周りを流通した走行風は
次いで第2の分岐部52周りの間隙11outおよび間
隙11inを介し流通する。その結果第2の分岐部52
がこれらの走行風に接触して冷却される。第2の分岐部
52周りの間隙11in内を流通した走行風は次いで凸
部13bに沿い進行して案内され、斯くしてこの走行風
の一部A2が第2の分岐部間間隙14bを横断し、残り
が第3の分岐部53周りの間隙11in内に流入する。
第2の分岐部間間隙14bを横断する走行風A2は第2
の分岐部52の背壁面に接触してこの背壁面を冷却す
る。したがって、第2の分岐部52もほぼ全周にわたっ
て走行風と接触することになり、斯くして第2の分岐部
52がさらに良好に冷却される。さらに、走行風A2は
第3の分岐部53の前壁面にも接触してこの前壁面を冷
却し、したがって第3の分岐部53もさらに良好に冷却
される。The traveling wind flowing around the first branch portion 51 then flows through the gap 11out and the gap 11in around the second branch portion 52. As a result, the second branch portion 52
Are cooled by contacting these traveling winds. The traveling wind that has circulated in the gap 11in around the second branch portion 52 then travels along the convex portion 13b and is guided, and thus a part A2 of this traveling wind crosses the second gap portion 14b between the branch portions. Then, the rest flows into the gap 11in around the third branch portion 53.
The traveling wind A2 that crosses the second inter-branch gap 14b is the second
The back wall surface of the branch portion 52 is contacted to cool this back wall surface. Therefore, the second branch portion 52 also comes into contact with the traveling wind over substantially the entire circumference, and thus the second branch portion 52 is cooled more favorably. Further, the traveling wind A2 also contacts the front wall surface of the third branch portion 53 and cools this front wall surface, so that the third branch portion 53 is also cooled even better.
【0017】第2の分岐部52周りを流通した走行風は
次いで第3の分岐部53周りの間隙11outおよび間
隙11inを介し流通する。その結果第3の分岐部53
がこれらの走行風に接触して冷却される。第3の分岐部
53周りの間隙11out内を流通した走行風は次いで
凸部12cに沿い進行して案内され、斯くしてこの走行
風の一部A3が第3の分岐部間間隙14cを横断し、残
りが第4の分岐部54周りの間隙11out内に流入す
る。第3の分岐部間間隙14cを横断する走行風A3は
第3の分岐部53の背壁面に接触してこの背壁面を冷却
する。したがって、第3の分岐部53もほぼ全周にわた
って走行風と接触することになり、斯くして第3の分岐
部53がさらに良好に冷却される。さらに、走行風A3
は第4の分岐部54の前壁面にも接触してこの前壁面を
冷却し、したがって第4の分岐部54もさらに良好に冷
却される。The traveling wind flowing around the second branch portion 52 then flows through the gap 11out and the gap 11in around the third branch portion 53. As a result, the third branch portion 53
Are cooled by contacting these traveling winds. The traveling wind that has circulated in the gap 11out around the third branch portion 53 then travels along the convex portion 12c and is guided, so that part A3 of this traveling wind crosses the third inter-branch portion gap 14c. Then, the rest flows into the gap 11out around the fourth branch portion 54. The traveling wind A3 crossing the third inter-branch gap 14c contacts the back wall surface of the third branch portion 53 to cool the back wall surface. Therefore, the third branch portion 53 also comes into contact with the traveling wind over almost the entire circumference, and thus the third branch portion 53 is cooled more favorably. Furthermore, traveling wind A3
Also contacts and cools the front wall of the fourth branch 54, so that the fourth branch 54 is also cooled better.
【0018】第3の分岐部53周りを流通した走行風は
次いで第4の分岐部54周りの間隙11outおよび間
隙11inを介し流通する。その結果第4の分岐部54
がこれらの走行風に接触して冷却される。走行風は次い
で空気排出口21から排出される。この場合、外方断熱
部材10outの空気排出口側端部は排気マニホルド5
に向けて湾曲されており、このため第4の分岐部54周
りの間隙11out内を流通した走行風が第4の分岐部
54の背壁面に接触する。その結果第4の分岐部54も
ほぼ全周にわたって走行風と接触することになり、斯く
して第4の分岐部54がさらに良好に冷却される。The traveling wind flowing around the third branch portion 53 then flows through the gap 11out and the gap 11in around the fourth branch portion 54. As a result, the fourth branch 54
Are cooled by contacting these traveling winds. The traveling wind is then discharged from the air discharge port 21. In this case, the end of the outer heat insulating member 10out on the side of the air discharge port is the exhaust manifold 5.
The traveling wind flowing in the gap 11out around the fourth branch portion 54 comes into contact with the back wall surface of the fourth branch portion 54. As a result, the fourth branch portion 54 also comes into contact with the traveling wind over almost the entire circumference, and thus the fourth branch portion 54 is cooled more favorably.
【0019】このように本実施例では、分岐部間間隙1
4a,14b,14c内に走行風を導くようにしている
ので前方視したときに分岐部が互いに重なり合う場合で
あっても車両1の後方に位置する分岐部を良好に冷却す
ることができ、したがって各分岐部に対する冷却作用の
ばらつきを低減することができる。その結果、排気マニ
ホルド5に作用する熱負荷にばらつきが生ずるのを阻止
することができるので排気マニホルド5に大きな熱歪が
生ずるのを阻止することができ、斯くして排気マニホル
ド5の耐久性および信頼性を向上させることができる。
また、本実施例では分岐部間間隙14a,14b,14
c内に走行風を導くための凸部を外方断熱部材10ou
tおよび内方断熱部材10in上に一体的に設けてお
り、したがって部品点数を増大させることなく排気マニ
ホルド5の良好な冷却を確保することができる。さら
に、外方断熱部材10outおよび内方断熱部材10i
nを湾曲させて凸部を形成することにより凸部を容易に
形成することができる。As described above, in this embodiment, the inter-branch gap 1
Since the running wind is guided into the interiors of the vehicles 4a, 14b, 14c, the branch located behind the vehicle 1 can be satisfactorily cooled even when the branches overlap each other when viewed from the front. It is possible to reduce variations in the cooling action for each branch. As a result, it is possible to prevent the heat load acting on the exhaust manifold 5 from varying, so that it is possible to prevent a large thermal strain from occurring in the exhaust manifold 5, and thus the durability of the exhaust manifold 5 and The reliability can be improved.
Further, in the present embodiment, the inter-branch gaps 14a, 14b, 14
The convex portion for guiding the traveling wind into the c is provided with the outer heat insulating member 10 ou.
t and the inner heat insulating member 10in are integrally provided. Therefore, good cooling of the exhaust manifold 5 can be ensured without increasing the number of parts. Further, the outer heat insulating member 10out and the inner heat insulating member 10i
The convex portion can be easily formed by curving n to form the convex portion.
【0020】図4に別の実施例を示す。本実施例の冷却
装置も図1に示されるような縦置き式エンジンに適用さ
れる。図4を参照すると、この実施例では図3の実施例
におけるような内方断熱部材10inが省略されてお
り、したがって排気管空間19は外方断熱部材10ou
tとエンジン本体3の外壁面とにより画定されることに
なる。なお、排気マニホルド5の各分岐部はエンジン本
体3の外壁面から間隙22inを隔てて配置されてい
る。また、図4に示されるように外方断熱部材10ou
tには排気マニホルド5に向けて突出する凸部12a,
12b,12cが形成される。凸部12aは第1の分岐
部間間隙14a上に、凸部12bは分岐部間間隙14b
上に、凸部12cは分岐部間間隙14c上にそれぞれ配
置される。FIG. 4 shows another embodiment. The cooling device of the present embodiment is also applied to the vertical engine as shown in FIG. Referring to FIG. 4, in this embodiment, the inner heat insulating member 10in as in the embodiment of FIG. 3 is omitted, so that the exhaust pipe space 19 has the outer heat insulating member 10ou.
It is defined by t and the outer wall surface of the engine body 3. In addition, each branch portion of the exhaust manifold 5 is arranged with a gap 22 in from the outer wall surface of the engine body 3. Moreover, as shown in FIG.
At t, a convex portion 12a protruding toward the exhaust manifold 5,
12b and 12c are formed. The convex portion 12a is on the first inter-branch portion gap 14a, and the convex portion 12b is on the first inter-branch portion gap 14b.
The convex portions 12c are arranged above the inter-branch gaps 14c.
【0021】図4に示す例においても、第1の分岐部5
1周りの間隙11out内を流通した走行風は次いで凸
部12aに沿い進行し、その結果この走行風の一部A1
が第1の分岐部間間隙14aを横断し、残りは第2の分
岐部52周りの間隙11out内に流入する。また、第
2の分岐部52周りの間隙11out内を流通した走行
風は次いで凸部12bに沿い進行し、その結果この走行
風の一部A2が第2の分岐部間間隙14bを横断し、残
りは第3の分岐部53周りの間隙11out内に流入す
る。同様に、第3の分岐部53周りの間隙11out内
を流通した走行風は次いで凸部12cに沿い進行し、そ
の結果この走行風の一部A3が第3の分岐部間間隙14
cを横断し、残りは第4の分岐部54周りの間隙11o
ut内に流入する。このため、各分岐部をほぼ全周にわ
たって冷却することができ、したがって各分岐部に対す
る冷却作用のばらつきを低減することができる。その結
果排気マニホルド5に大きな熱歪が生ずるのを阻止する
ことができ、斯くして排気マニホルド5の耐久性および
信頼性を向上させることができる。なお、その他の冷却
装置の構成および作用は図1から図3に示す実施例と同
様であるので説明を省略する。Also in the example shown in FIG. 4, the first branch portion 5
The traveling wind that has circulated in the gap 11out around the 1 then travels along the convex portion 12a, and as a result, a part A1 of this traveling wind is generated.
Crosses the first inter-branch gap 14a, and the rest flows into the gap 11out around the second branch 52. Further, the traveling wind that has circulated in the gap 11out around the second branch portion 52 then travels along the convex portion 12b, and as a result, a part A2 of this traveling wind crosses the second inter-branch portion gap 14b, The rest flows into the gap 11out around the third branch portion 53. Similarly, the traveling wind that has circulated in the gap 11out around the third branch portion 53 then travels along the convex portion 12c, and as a result, a part A3 of this traveling wind is generated in the gap 14 between the third branch portions.
c, and the rest is the gap 11o around the fourth branch 54.
flows into ut. For this reason, it is possible to cool each of the branch portions over substantially the entire circumference, and thus it is possible to reduce variations in the cooling action for each of the branch portions. As a result, it is possible to prevent a large thermal strain from occurring in the exhaust manifold 5, so that the durability and reliability of the exhaust manifold 5 can be improved. Note that the other configurations and operations of the cooling device are similar to those of the embodiment shown in FIGS.
【0022】図5にさらに別の実施例を示す。図5を参
照すると、外方断熱部材10outには図4に示す実施
例と同様の凸部12a,12b,12cが設けられる。
しかしながら、図5に示す例において外方断熱部材10
outは直線L−Lに対し角θ1だけ傾斜した直線M−
M上に配置される。その結果、各分岐部と外方断熱部材
10out間に形成される間隙11outが走行風の下
流に向かうにつれて小さくされる。FIG. 5 shows still another embodiment. Referring to FIG. 5, the outer heat insulating member 10out is provided with protrusions 12a, 12b, 12c similar to those of the embodiment shown in FIG.
However, in the example shown in FIG.
out is a straight line M− inclined by an angle θ1 with respect to the straight line L−L.
It is placed on M. As a result, the gap 11out formed between each branch portion and the outer heat insulating member 10out is made smaller toward the downstream side of the traveling wind.
【0023】この実施例でも第1の分岐部51周りの間
隙11outを流通した走行風の一部A1が凸部12a
により案内されて第1の分岐部間間隙14aを横断し、
第2の分岐部52周りの間隙11outを流通した走行
風の一部A2が凸部12bにより案内されて第2の分岐
部間間隙14bを横断し、第3の分岐部53周りの間隙
11outを流通した走行風の一部A3が凸部12cに
より案内されて第3の分岐部間間隙14cを横断する。
その結果各分岐部がほぼ全周にわたって走行風と接触し
て冷却されることになる。Also in this embodiment, a part A1 of the traveling wind that has circulated through the gap 11out around the first branch portion 51 is the convex portion 12a.
Is guided by and crosses the first inter-branch gap 14a,
A part A2 of the traveling wind flowing through the gap 11out around the second branch portion 52 is guided by the convex portion 12b and crosses the second inter-branch portion gap 14b, and the gap 11out around the third branch portion 53 is formed. A part A3 of the circulating running wind is guided by the convex portion 12c and crosses the third inter-branch gap 14c.
As a result, each of the branch portions comes into contact with the running wind and is cooled over almost the entire circumference.
【0024】ところで、図4を参照して説明した実施例
では各分岐部と外方断熱部材10out間に形成される
間隙11outの大きさは走行風の流れ方向に関してほ
ぼ一定にされている。ところが、凸部12a,12b,
12cにより分岐部間間隙14a,14b,14c内に
走行風の一部A1,A2,A3が案内されると間隙11
out内を流通する走行風が次第に減少してくる。その
結果走行風の下流側に位置する分岐部程、外方断熱部材
10out側の壁面が十分に冷却されなくなってしま
う。そこで図5に示す実施例では各分岐部と外方断熱部
材10out間に形成される間隙11outを走行風の
下流に向かうにつれて小さくし、それによって走行風の
流速が走行風の下流に向かうにつれて高くなるようにし
ている。走行風の流速が高くなるとそれによる冷却性能
も高められる。したがって、走行風の下流側に位置する
分岐部をも良好に冷却できることになるので排気マニホ
ルド5の分岐部をほぼ均一に冷却することができること
になる。斯くして排気マニホルド5の耐久性および信頼
性をさらに向上させることができる。その他の冷却装置
の構成および作用は図4に示す実施例と同様であるので
説明を省略する。By the way, in the embodiment described with reference to FIG. 4, the size of the gap 11out formed between each branch portion and the outer heat insulating member 10out is substantially constant with respect to the flow direction of traveling wind. However, the protrusions 12a, 12b,
When part of the traveling wind A1, A2, A3 is guided into the inter-branch gaps 14a, 14b, 14c by 12c, the gap 11
The running wind that circulates in out gradually decreases. As a result, the wall surface on the outer heat insulating member 10out side is not sufficiently cooled in the branch portion located on the downstream side of the traveling wind. Therefore, in the embodiment shown in FIG. 5, the gap 11out formed between each branch portion and the outer heat insulating member 10out is reduced toward the downstream side of the traveling wind, whereby the flow velocity of the traveling wind is increased toward the downstream side of the traveling wind. I am trying to become. As the flow velocity of the traveling wind increases, the cooling performance due to it increases. Therefore, the branch portion located on the downstream side of the traveling wind can be cooled well, so that the branch portion of the exhaust manifold 5 can be cooled substantially uniformly. Thus, the durability and reliability of the exhaust manifold 5 can be further improved. The other structure and operation of the cooling device are similar to those of the embodiment shown in FIG.
【0025】図6にさらに別の実施例を示す。図6を参
照すると、この実施例では図3の例と同様に内方断熱部
材10inおよび外方断熱部材10outが設けられ、
これら断熱部材により画定される排気管空間19内に排
気マニホルド5が配置される。しかしながら、この実施
例における内方断熱部材10inおよび外方断熱部材1
0outはそれぞれ平板状をなしている。また、各分岐
部の中心軸線は直線L−L上に整列されるが、この直線
L−Lはエンジン本体3の長手軸線K−Kに対し平行を
なす直線N−Nに対し角θ2だけ傾斜して設けられる。
その結果、前方視図において各分岐部の重なりが例えば
図3に示す例に比べて小さくされている。FIG. 6 shows still another embodiment. Referring to FIG. 6, in this embodiment, an inner heat insulating member 10in and an outer heat insulating member 10out are provided as in the example of FIG.
The exhaust manifold 5 is arranged in the exhaust pipe space 19 defined by these heat insulating members. However, the inner heat insulating member 10 in and the outer heat insulating member 1 in this embodiment are
Each 0out has a flat plate shape. Further, the central axis of each branch portion is aligned on a straight line L-L, which is inclined by an angle θ2 with respect to a straight line N-N parallel to the longitudinal axis K-K of the engine body 3. Is provided.
As a result, the overlap of the branch portions in the front view is smaller than that in the example shown in FIG. 3, for example.
【0026】図6に示されるように、第1の分岐部51
周りの間隙11inを流通した走行風Aは次いで第2の
分岐部52の外壁面に衝突し、その結果この走行風の一
部A1が分岐部間間隙14a内を横断し、残りは第2の
分岐部52周りの間隙11in内に流入する。第2の分
岐部52周りの間隙11inを流通した走行風は次いで
第3の分岐部53の外壁面に衝突し、その結果この走行
風の一部A2が分岐部間間隙14b内を横断し、残りは
第3の分岐部53周りの間隙11in内に流入する。第
3の分岐部53周りの間隙11inを流通した走行風は
次いで第4の分岐部54の外壁面に衝突し、その結果こ
の走行風の一部A3が分岐部間間隙14c内を横断し、
残りは第4の分岐部54周りの間隙11in内に流入す
る。その結果各分岐部がほぼ全周にわたって走行風と接
触して冷却されることになる。さらに、本実施例では図
5に示す例と同様に各分岐部と内方断熱部材10in間
の間隙11inが走行風の下流に向かうにつれて小さく
されており、その結果走行風の流速が走行風の下流に向
かうにつれて高められているので排気マニホルド5の分
岐部をほぼ均一に冷却することができる。したがって、
排気マニホルド5の耐久性および信頼性をさらに向上さ
せることができる。その他の冷却装置の構成および作用
は図3に示す実施例と同様であるので説明を省略する。As shown in FIG. 6, the first branch portion 51.
The traveling wind A flowing through the surrounding gap 11in then collides with the outer wall surface of the second branch portion 52, and as a result, a part A1 of this traveling wind crosses the inside of the inter-branch gap 14a and the rest is the second. It flows into the gap 11 in around the branch portion 52. The traveling wind that has circulated through the gap 11in around the second branch portion 52 then collides with the outer wall surface of the third branch portion 53, and as a result, a part A2 of this traveling wind crosses the inside of the gap 14b between the branch portions, The rest flows into the gap 11in around the third branch portion 53. The traveling wind that has circulated through the gap 11in around the third branch portion 53 then collides with the outer wall surface of the fourth branch portion 54, and as a result, a part A3 of this traveling wind crosses the inside of the gap 14c between the branch portions,
The rest flows into the gap 11in around the fourth branch 54. As a result, each of the branch portions comes into contact with the running wind and is cooled over almost the entire circumference. Further, in the present embodiment, similarly to the example shown in FIG. 5, the gap 11in between each branch portion and the inner heat insulating member 10in is made smaller toward the downstream side of the traveling wind, and as a result, the flow velocity of the traveling wind becomes smaller. Since the height increases as it goes downstream, the branch portion of the exhaust manifold 5 can be cooled substantially uniformly. Therefore,
The durability and reliability of the exhaust manifold 5 can be further improved. Other configurations and operations of the cooling device are similar to those of the embodiment shown in FIG.
【0027】図7にさらに別の実施例を示す。図7を参
照すると、本実施例では図6に示す例と同様な平板状を
なす内方断熱部材10inおよび外方断熱部材10ou
tが設けられる。しかしながら、本実施例において排気
マニホルド5の第1および第3の分岐部51,53の各
中心軸線は直線L1−L1上に配置されており、第2お
よび第4の分岐部52,54の各中心軸線は直線L1−
L1とは異なる直線L2−L2上に配置されている。し
たがって、第1の分岐部51の中心軸線と第2の分岐部
52の中心軸線とが互いにずらして配置され、第2の分
岐部52の中心軸線と第3の分岐部53の中心軸線とが
互いにずらして配置され、第3の分岐部53の中心軸線
と第4の分岐部54の中心軸線とが互いにずらして配置
されることになる。その結果、第1の分岐部51周りの
間隙11outと第2の分岐部52周りの間隙11ou
tとが互いに異ならしめられることになり、第2の分岐
部52周りの間隙11outと第3の分岐部53周りの
間隙11outとが互いに異ならしめられることにな
り、第3の分岐部53周りの間隙11outと第4の分
岐部54周りの間隙11outとが互いに異ならしめら
れることになる。また、第1の分岐部51周りの間隙1
1inと第2の分岐部52周りの間隙11inとが互い
に異ならしめられることになり、第2の分岐部52周り
の間隙11inと第3の分岐部53周りの間隙11in
とが互いに異ならしめられることになり、第3の分岐部
53周りの間隙11inと第4の分岐部54周りの間隙
11inとが互いに異ならしめられることになる。な
お、これら直線L1−L1およびL2−L2はエンジン
本体3の長手軸線K−Kに対しそれぞれ平行をなしてい
る。FIG. 7 shows still another embodiment. Referring to FIG. 7, in the present embodiment, a flat plate-like inner heat insulating member 10in and outer heat insulating member 10ou similar to the example shown in FIG.
t is provided. However, in the present embodiment, the central axis lines of the first and third branch portions 51, 53 of the exhaust manifold 5 are arranged on the straight line L1-L1, and the central axis lines of the second and fourth branch portions 52, 54 are respectively arranged. The central axis is the straight line L1-
It is arranged on a straight line L2-L2 different from L1. Therefore, the central axis of the first branch part 51 and the central axis of the second branch part 52 are arranged so as to be offset from each other, and the central axis of the second branch part 52 and the central axis of the third branch part 53 are The central axis of the third branch portion 53 and the central axis of the fourth branch portion 54 are displaced from each other. As a result, the gap 11out around the first branch portion 51 and the gap 11ou around the second branch portion 52.
Since t is different from each other, the gap 11out around the second branch portion 52 and the gap 11out around the third branch portion 53 are different from each other, and the gap around the third branch portion 53 is The gap 11out and the gap 11out around the fourth branch portion 54 are made different from each other. In addition, the gap 1 around the first branch portion 51
1 in and the gap 11 in around the second branch part 52 are made different from each other, and the gap 11 in around the second branch part 52 and the gap 11 in around the third branch part 53.
And the gap 11in around the third branch portion 53 and the gap 11in around the fourth branch portion 54 are different from each other. The straight lines L1-L1 and L2-L2 are parallel to the longitudinal axis K-K of the engine body 3.
【0028】図7に示されるように、第1の分岐部51
周りの間隙11inを流通した走行風Aは次いで第2の
分岐部52の外壁面に衝突し、その結果この走行風の一
部A1が分岐部間間隙14a内を横断し、残りは第2の
分岐部52周りの間隙11in内に流入する。第2の分
岐部52周りの間隙11outを流通した走行風は次い
で第3の分岐部53の外壁面に衝突し、その結果この走
行風の一部A2が分岐部間間隙14b内を横断し、残り
は第3の分岐部53周りの間隙11out内に流入す
る。第3の分岐部53周りの間隙11inを流通した走
行風は次いで第4の分岐部54の外壁面に衝突し、その
結果この走行風の一部A3が分岐部間間隙14c内を横
断し、残りは第4の分岐部54周りの間隙11in内に
流入する。その結果各分岐部がほぼ全周にわたって走行
風と接触して冷却されることになり、斯くして排気マニ
ホルド5の耐久性および信頼性をさらに向上させること
ができる。その他の冷却装置の構成および作用は図4に
示す実施例と同様であるので説明を省略する。As shown in FIG. 7, the first branch portion 51
The traveling wind A flowing through the surrounding gap 11in then collides with the outer wall surface of the second branch portion 52, and as a result, a part A1 of this traveling wind crosses the inside of the inter-branch gap 14a and the rest is the second. It flows into the gap 11 in around the branch portion 52. The traveling wind that has flowed through the gap 11out around the second branch portion 52 then collides with the outer wall surface of the third branch portion 53, and as a result, a part A2 of this traveling wind crosses the inside of the gap 14b between the branch portions, The rest flows into the gap 11out around the third branch portion 53. The traveling wind that has circulated through the gap 11in around the third branch portion 53 then collides with the outer wall surface of the fourth branch portion 54, and as a result, a part A3 of this traveling wind crosses the inside of the gap 14c between the branch portions, The rest flows into the gap 11in around the fourth branch 54. As a result, the respective branch portions come into contact with the running wind and are cooled over substantially the entire circumference, and thus the durability and reliability of the exhaust manifold 5 can be further improved. The other structure and operation of the cooling device are similar to those of the embodiment shown in FIG.
【0029】図8にさらに別の実施例を示す。これまで
述べてきた実施例における排気マニホルド5の各分岐部
は円形状断面を有している。しかしながら、本実施例に
おける各分岐部の外方断熱部材10out側壁面上には
外方断熱部材10outに向けてかつ走行風の上流側に
向けて突出する突出部5aが設けられている。さらに各
分岐部のエンジン本体3側壁面上にもエンジン本体3に
向けて突出する突出部が設けられており、したがって各
分岐部は菱形状の断面を有することになる。FIG. 8 shows still another embodiment. Each branch of the exhaust manifold 5 in the embodiments described thus far has a circular cross section. However, on the side wall surface of the outer heat insulating member 10out of each branch portion in the present embodiment, there is provided a projecting portion 5a that projects toward the outer heat insulating member 10out and toward the upstream side of traveling wind. Further, a projecting portion projecting toward the engine body 3 is also provided on the side wall surface of the engine body 3 of each branch portion, and therefore each branch portion has a diamond-shaped cross section.
【0030】図8に示されるように、第1の分岐部51
周りの間隙11outを流通した走行風Aは次いで第2
の分岐部52の突出部5aに衝突し、その結果この走行
風の一部A1が分岐部間間隙14a内を横断し、残りは
第2の分岐部52周りの間隙11out内に流入する。
第2の分岐部52周りの間隙11outを流通した走行
風は次いで第3の分岐部53の突出部5aに衝突し、そ
の結果この走行風の一部A2が分岐部間間隙14b内を
横断し、残りは第3の分岐部53周りの間隙11out
内に流入する。第3の分岐部53周りの間隙11out
を流通した走行風は次いで第4の分岐部54の突出部5
aに衝突し、その結果この走行風の一部A3が分岐部間
間隙14c内を横断し、残りは第4の分岐部54と外方
断熱部材10out間の間隙11out内に流入する。
その結果各分岐部がほぼ全周にわたって走行風と接触し
て冷却されることになり、斯くして排気マニホルド5の
耐久性および信頼性をさらに向上させることができる。As shown in FIG. 8, the first branch 51
The traveling wind A that has circulated through the surrounding gap 11out is the second
Colliding with the projecting portion 5a of the branch portion 52, part of the traveling wind A1 crosses the inter-branch gap 14a, and the rest flows into the gap 11out around the second branch portion 52.
The traveling wind that has circulated through the gap 11out around the second branch portion 52 then collides with the protruding portion 5a of the third branch portion 53, and as a result, a portion A2 of this traveling wind traverses within the inter-branch portion gap 14b. , The rest is the gap 11out around the third branch portion 53
Flows into. Gap 11out around the third branch portion 53
The traveling wind flowing through
As a result, a part A3 of the traveling wind traverses the inter-branch gap 14c, and the rest flows into the gap 11out between the fourth branch 54 and the outer heat insulating member 10out.
As a result, the respective branch portions come into contact with the running wind and are cooled over substantially the entire circumference, and thus the durability and reliability of the exhaust manifold 5 can be further improved.
【0031】図8に示す例では分岐部の断面形状を例え
ば菱形状とすることによって突出部5aを分岐部と一体
的に形成しているが、円状断面の分岐部に、別個に形成
した突出部を取付けるようにしてもよい。しかしなが
ら、図8の例のように突出部を分岐部と一体的に設ける
ことによって部品点数を低減することができると共に製
造工程を簡素化することができる。また、図8に示す例
では全ての分岐部に突出部5aを設けている。しかしな
がら、走行風Aの最も上流側に位置する第1の分岐部5
1には突出部5aを設ける必要はなく、したがって第1
の分岐部51は円形状断面としてもよい。その他の冷却
装置の構成および作用は図4に示す実施例と同様である
ので説明を省略する。In the example shown in FIG. 8, the projecting portion 5a is formed integrally with the branch portion by making the cross-sectional shape of the branch portion into, for example, a rhombus shape, but it is formed separately at the branch portion having a circular cross section. You may make it attach a protrusion part. However, by providing the projecting portion integrally with the branch portion as in the example of FIG. 8, the number of parts can be reduced and the manufacturing process can be simplified. Further, in the example shown in FIG. 8, the projecting portions 5a are provided at all the branch portions. However, the first branch portion 5 located on the most upstream side of the traveling wind A
1 does not need to be provided with a protrusion 5a, so
The branch portion 51 may have a circular cross section. The other structure and operation of the cooling device are similar to those of the embodiment shown in FIG.
【0032】上述の図4、図5および図8に示す実施例
では、内方断熱部材10inを省略している。しかしな
がら、例えば平板状をなす内方断熱部材10inを設け
るようにすることもできる。In the embodiment shown in FIGS. 4, 5 and 8, the inner heat insulating member 10 in is omitted. However, for example, a flat plate-shaped inner heat insulating member 10 in may be provided.
【0033】[0033]
【発明の効果】全ての排気管をほぼ全周にわたって走行
風に接触させて冷却することができるので各排気管に対
する冷却作用のばらつきを低減することができる。EFFECTS OF THE INVENTION Since all the exhaust pipes can be cooled by contacting them with the running wind over substantially the entire circumference, it is possible to reduce variations in the cooling action for the exhaust pipes.
【図1】縦置き式エンジンの上視図である。FIG. 1 is a top view of a vertically mounted engine.
【図2】縦置き式エンジンの前方視図である。FIG. 2 is a front view of a vertically mounted engine.
【図3】図2の線III−IIIに沿ってみた排気マニ
ホルドおよび断熱部材の断面図である。3 is a cross-sectional view of the exhaust manifold and heat insulating member taken along line III-III of FIG.
【図4】別の実施例を示す図3と同様な排気マニホルド
および断熱部材の断面図である。FIG. 4 is a sectional view of an exhaust manifold and a heat insulating member similar to FIG. 3 showing another embodiment.
【図5】さらに別の実施例を示す図3と同様な排気マニ
ホルドおよび断熱部材の断面図である。FIG. 5 is a cross-sectional view of an exhaust manifold and a heat insulating member similar to FIG. 3 showing still another embodiment.
【図6】さらに別の実施例を示す図3と同様な排気マニ
ホルドおよび断熱部材の断面図である。FIG. 6 is a cross-sectional view of an exhaust manifold and a heat insulating member similar to FIG. 3 showing still another embodiment.
【図7】さらに別の実施例を示す図3と同様な排気マニ
ホルドおよび断熱部材の断面図である。FIG. 7 is a sectional view of an exhaust manifold and a heat insulating member similar to FIG. 3 showing still another embodiment.
【図8】さらに別の実施例を示す図3と同様な排気マニ
ホルドおよび断熱部材の断面図である。FIG. 8 is a cross-sectional view of an exhaust manifold and a heat insulating member similar to FIG. 3 showing still another embodiment.
1…車両 3…エンジン本体 5…排気マニホルド 10in…内方断熱部材 10out…外方断熱部材 12a,12b,12c,13b…凸部 14a,14b,14c…分岐部間の間隙 51,52,53,54…排気マニホルドの分岐部 A…車両走行風 K…エンジン本体の長手軸線 DESCRIPTION OF SYMBOLS 1 ... Vehicle 3 ... Engine main body 5 ... Exhaust manifold 10in ... Inner heat insulating member 10out ... Outer heat insulating member 12a, 12b, 12c, 13b ... Convex part 14a, 14b, 14c ... Gap between branch parts 51, 52, 53, 54 ... Exhaust manifold branch A ... Vehicle running wind K ... Engine longitudinal axis
Claims (3)
方向に対しぼほ平行となるように配置されており、エン
ジン本体に、エンジンの長手軸線に沿って複数の排気管
が互いに離間して接続されており、これら排気管を車両
走行風により冷却するようにした車両用縦置き式エンジ
ンの冷却装置において、これら排気管の外壁面が排気管
から間隙を隔てて配置された断熱部材により覆われてお
り、該断熱部材に、排気管に向けて突出する凸部を設け
て凸部により、排気管と断熱部材間の間隙内を流通する
車両走行風の少なくとも一部を互いに隣接する排気管間
に形成される間隙内に導くようにした冷却装置。1. An engine body is arranged such that its longitudinal axis is substantially parallel to the moving direction of a vehicle, and a plurality of exhaust pipes are spaced apart from each other along the engine longitudinal axis. In a vertical engine cooling device for a vehicle, which is connected to and cools the exhaust pipes by the vehicle traveling wind, the outer wall surfaces of the exhaust pipes are covered with a heat insulating member which is arranged with a gap from the exhaust pipes. The heat insulating member is provided with a convex portion that projects toward the exhaust pipe, and the convex portions allow at least some of the vehicle traveling air flowing in the gap between the exhaust pipe and the heat insulating member to be adjacent to each other. A cooling device designed to be guided into the gap formed between them.
方向に対しぼほ平行となるように配置されており、エン
ジン本体に、エンジンの長手軸線に沿って複数の排気管
が互いに離間して接続されており、これら排気管を車両
走行風により冷却するようにした車両用縦置き式エンジ
ンの冷却装置において、これら排気管の外壁面が排気管
から間隙を隔てて配置された断熱部材により覆われてお
り、該断熱部材と各排気管間に形成される間隙を互いに
隣接する排気管において互いに異ならしめて排気管と断
熱部材間の間隙内を流通する車両走行風の少なくとも一
部を互いに隣接する排気管間に形成される間隙内に導く
ようにした冷却装置。2. The engine body is arranged such that its longitudinal axis is substantially parallel to the moving direction of the vehicle, and a plurality of exhaust pipes are spaced apart from each other along the engine longitudinal axis. In a vertical engine cooling device for a vehicle, which is connected to and cools the exhaust pipes by the vehicle traveling wind, the outer wall surfaces of the exhaust pipes are covered with a heat insulating member which is arranged with a gap from the exhaust pipes. The gaps formed between the heat insulating member and each exhaust pipe are made different from each other in the adjacent exhaust pipes so that at least a part of the vehicle traveling wind flowing in the gap between the exhaust pipe and the heat insulating member is adjacent to each other. A cooling device that is introduced into the space formed between the exhaust pipes.
方向に対しぼほ平行となるように配置されており、エン
ジン本体に、エンジンの長手軸線に沿って複数の排気管
が互いに離間して接続されており、これら排気管を車両
走行風により冷却するようにした車両用縦置き式エンジ
ンの冷却装置において、これら排気管の外壁面が排気管
から間隙を隔てて配置された断熱部材により覆われてお
り、排気管に、断熱部材に向けて突出する突出部を設け
て該突出部により、排気管と断熱部材間の間隙内を流通
する車両走行風の少なくとも一部を互いに隣接する排気
管間に形成される間隙内に導くようにした冷却装置。3. The engine body is arranged so that its longitudinal axis is substantially parallel to the moving direction of the vehicle, and a plurality of exhaust pipes are spaced apart from each other along the engine longitudinal axis. In a vertical engine cooling device for a vehicle, which is connected to and cools the exhaust pipes by the vehicle traveling wind, the outer wall surfaces of the exhaust pipes are covered with a heat insulating member which is arranged with a gap from the exhaust pipes. The exhaust pipe is provided with a projecting portion projecting toward the heat insulating member, and the projecting portion causes at least some of vehicle running winds flowing in the gap between the exhaust pipe and the heat insulating member to be adjacent to each other. A cooling device designed to be guided into the gap formed between them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7170886A JP3003548B2 (en) | 1995-07-06 | 1995-07-06 | Cooling system for vertical engine for vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7170886A JP3003548B2 (en) | 1995-07-06 | 1995-07-06 | Cooling system for vertical engine for vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0921316A true JPH0921316A (en) | 1997-01-21 |
JP3003548B2 JP3003548B2 (en) | 2000-01-31 |
Family
ID=15913147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7170886A Expired - Fee Related JP3003548B2 (en) | 1995-07-06 | 1995-07-06 | Cooling system for vertical engine for vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3003548B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010144586A (en) * | 2008-12-17 | 2010-07-01 | Toyota Motor Corp | Engine exhaust pipe cooling structure |
JP2010190051A (en) * | 2009-02-16 | 2010-09-02 | Toyota Motor Corp | Exhaust manifold |
DE102013210159A1 (en) * | 2013-05-31 | 2014-12-04 | Friedrich Boysen Gmbh & Co. Kg | exhaust manifold |
GB2564086A (en) * | 2017-05-08 | 2019-01-09 | Jaguar Land Rover Ltd | Heat retention apparatus and method |
US10240510B2 (en) | 2016-03-21 | 2019-03-26 | Hyundai Motor Company | Structure for cooling exhaust manifold and method for controlling the same |
JP2021021343A (en) * | 2019-07-25 | 2021-02-18 | マツダ株式会社 | Intake device of engine |
-
1995
- 1995-07-06 JP JP7170886A patent/JP3003548B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010144586A (en) * | 2008-12-17 | 2010-07-01 | Toyota Motor Corp | Engine exhaust pipe cooling structure |
JP2010190051A (en) * | 2009-02-16 | 2010-09-02 | Toyota Motor Corp | Exhaust manifold |
DE102013210159A1 (en) * | 2013-05-31 | 2014-12-04 | Friedrich Boysen Gmbh & Co. Kg | exhaust manifold |
US10240510B2 (en) | 2016-03-21 | 2019-03-26 | Hyundai Motor Company | Structure for cooling exhaust manifold and method for controlling the same |
GB2564086A (en) * | 2017-05-08 | 2019-01-09 | Jaguar Land Rover Ltd | Heat retention apparatus and method |
GB2564086B (en) * | 2017-05-08 | 2019-09-18 | Jaguar Land Rover Ltd | Heat retention apparatus and method |
JP2021021343A (en) * | 2019-07-25 | 2021-02-18 | マツダ株式会社 | Intake device of engine |
Also Published As
Publication number | Publication date |
---|---|
JP3003548B2 (en) | 2000-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6361704B2 (en) | Engine exhaust structure | |
US10100787B2 (en) | EGR cooler for vehicle | |
JPH08312960A (en) | Combustion chamber with multi-hole of shaft tilting and undefined tangent | |
KR20100018090A (en) | Exhaust gas heat exchanger, in particular an exhaust gas cooler for exhaust gas recirculation in a motor vehicle | |
US11725569B1 (en) | Air duct for water ingress management in a vehicle | |
JP3219157B2 (en) | Engine exhaust structure | |
JPH0921316A (en) | Cooling device for vertical type engine for vehicle | |
JPH05169986A (en) | Engine room structure | |
US4766983A (en) | Muffler for V-type engine | |
US11548571B2 (en) | Vehicle undercover | |
CA2705669A1 (en) | Exhaust gas diffuser | |
JP3196523B2 (en) | Exhaust heat insulator for internal combustion engine | |
KR100534694B1 (en) | An exhaust system for a v-type engine | |
JPH01289780A (en) | Radiator cooling system for motorcycle, etc. | |
US11945423B2 (en) | Air guide duct for vehicle | |
JPS597004B2 (en) | Automotive internal combustion engine exhaust system | |
JPH1113550A (en) | Egr cooler | |
JP6376519B2 (en) | Vehicle exhaust system | |
JP2921434B2 (en) | Cooling structure of vertical engine for vehicles | |
JP3385758B2 (en) | V-type engine exhaust system | |
US20240309795A1 (en) | Air/exhaust system for a vehicle | |
JPH0720333Y2 (en) | Exhaust pipe cooling system | |
JP7275873B2 (en) | vehicle front structure | |
JP3856207B2 (en) | Exhaust device for multi-cylinder internal combustion engine | |
JPS6238144Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |