JPH09212484A - Discrete cosine transformation method - Google Patents

Discrete cosine transformation method

Info

Publication number
JPH09212484A
JPH09212484A JP1436396A JP1436396A JPH09212484A JP H09212484 A JPH09212484 A JP H09212484A JP 1436396 A JP1436396 A JP 1436396A JP 1436396 A JP1436396 A JP 1436396A JP H09212484 A JPH09212484 A JP H09212484A
Authority
JP
Japan
Prior art keywords
dct
quantization
discrete cosine
transformation
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1436396A
Other languages
Japanese (ja)
Inventor
Hirohisa Yamaguchi
博久 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to JP1436396A priority Critical patent/JPH09212484A/en
Publication of JPH09212484A publication Critical patent/JPH09212484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To design economical DCT for adaption to the MPEG standards by performing a quantization step for a DCT coefficient together with the execution of the DCT when a video signal is encoded. SOLUTION: An image processor 10 inputs input image information consisting of (8 pixels) × (8 lines) blocks to an FDCT transformation/quantization part 14 through a subtracter 12. The FDCT transformation/quantization part 14 transforms the input image information into a signal represented in a frequency space according to a discrete cosine transforming method to generate image data showing 64 DCT coefficients corresponding to the number of pixels, and then generates a quantization coefficient through a quantizing process. At this time, even and odd function blocks are decomposed by different methods and the transformation output is scaled and integrated with a following quantizing process. The step of the decomposition of the odd function blocks in this DCT is carried out according to equations I-IV. In the equations, x0 -x7 are inputs and cn is cos(nπ/16).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は離散コサイン変換に関
し、特にビデオ圧縮信号の処理において有用な高速な離
散コサイン変換の方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discrete cosine transform, and more particularly to a high speed discrete cosine transform method useful in processing a video compression signal.

【0002】[0002]

【従来技術及びその課題】ビデオ圧縮信号の処理の中心
的構成要素として離散コサイン変換(Discrete Cosine T
ransform)(以下DCTという)がある。このDCTに関
しては過去に多数の論文もあり、現在では2次元DCT
の直接演算に対しても関心が寄せられている。しかし、
その直接演算(direct implementation) におけるハード
ウェアの複雑性が課題となっており、一般的に1次元D
CTを転置(transpose) した上で2度繰り返すタンデム
接続がLSI設計の際の最も有効な方法として受け入れ
られているが、この方法においては、20個の乗算用R
OMと4クロック分のパイプライン処理時間が必要であ
り、偶および奇の関数に対応する部分ブロック出力間の
同期化に特別な48ビット・ラッチを含んでしまう。又
乗算のための係数が多いためこれを等価的に実現する回
路が大きくなる。それ故、将来のビジネス・コミュニケ
ーション及び家庭用エンターテイメント用としてビデオ
圧縮の中心的技術に成長しつつあるMPEG規格へ適用
するための、経済的なDCTの設計がより求められてい
る。
2. Description of the Related Art Discrete Cosine Transform (Discrete Cosine Transform) is a central component of video compression signal processing.
ransform) (hereinafter referred to as DCT). There have been many papers on this DCT in the past and now it is a two-dimensional DCT.
There is also interest in the direct computation of. But,
The complexity of the hardware in the direct implementation has become a problem, and in general, one-dimensional D
Tandem connection in which CT is transposed and repeated twice is accepted as the most effective method in LSI design. In this method, 20 multiplication Rs are used.
OM and 4 clocks of pipeline processing time are required, including a special 48-bit latch for synchronization between partial block outputs corresponding to even and odd functions. Further, since there are many coefficients for multiplication, a circuit that equivalently realizes this becomes large. Therefore, there is a greater need for an economical DCT design for application to the growing MPEG standard as the core technology of video compression for future business communications and home entertainment.

【0003】[0003]

【課題を達成するための手段及び作用】本発明は新たな
離散コサイン変換方法を提供する。本発明に係る高速D
CTは偶、奇数関数ブロックの分解を異なる方法で行う
と共にその変換出力をスケーリング(乗算係数により大
きさを調整すること)してこれに続く量子化処理と統合
(同時処理を実行)させることにより、ハードウェア量
を削減させ得る。このDCTにおける奇数関数ブロック
の分解のステップが以下の式を含む。
The present invention provides a new discrete cosine transform method. High speed D according to the invention
CT evenly and evenly decomposes the odd function block by scaling and transforming its transform output (adjusting the size by the multiplication coefficient) and integrating it with the subsequent quantization process (performing simultaneous processing). , Can reduce the amount of hardware. The steps of decomposition of the odd function block in this DCT include the following equations:

【数2】 [Equation 2]

【0004】この新規なDCTは10個の乗算用ROM
と3クロック分のパイプライン処理時間が必要となるだ
けである。本発明をビデオ信号の符号化に適用した場
合、DCT係数の量子化というステップをDCTの実行
と合併して行うことができる。即ち、DCTの実行と、
その実行の結果得られるDCT係数の量子化とを別々に
扱うよりも、経済的にビデオ符号化が成され得る。
This new DCT has 10 multiplication ROMs.
Therefore, pipeline processing time for 3 clocks is required. When the present invention is applied to the coding of a video signal, the step of quantizing DCT coefficients can be performed in combination with the execution of DCT. That is, the execution of DCT,
Video coding can be made more economically than separately treating the quantization of the DCT coefficients resulting from its execution.

【0005】[0005]

【実施例】本発明の一実施例を図面を参照して説明す
る。DCTには正変換と逆変換があるが、信号の流れの
方向が異なるだけであるので、ここでは正変換について
主に説明する。正方向の1次元DCTは次の式で定義さ
れる。
An embodiment of the present invention will be described with reference to the drawings. The DCT has a forward transform and an inverse transform, but since only the direction of the signal flow is different, the forward transform will be mainly described here. The positive one-dimensional DCT is defined by the following equation.

【数3】 (Equation 3)

【0006】式(5)のコサイン項を行列形式で表わす
と以下の様になる。
The cosine term of equation (5) is expressed in matrix form as follows.

【数4】 ここでXは、係数及び入力データ・ベクトルであり、c
n はcos(nπ/16)を意味する。式(6)の行列
の各要素の番号は式(2)に示されるように、モジュー
ロ32によって現象する。
(Equation 4) Where X is the coefficient and input data vector, c
n means cos (nπ / 16). The number of each element of the matrix of Expression (6) is caused by the modulo 32 as shown in Expression (2).

【数5】 行列が偶及び奇関数部分ブロックに分解され得る。(Equation 5) The matrix may be decomposed into even and odd function sub-blocks.

【数6】 (Equation 6)

【0007】左上のサブ・マトリックスは、さらに以下
のように分解され得る。
The upper left sub-matrix can be further decomposed as follows.

【数7】 ここで、sn 及びtn はそれぞれサイン及びタンジェン
トである。DCTの偶数関数ブロックの従来の実行のほ
とんどは式(9a)を用いる。しかし、式(9b)に示
すような共通スケーリング・ファクタを取り除くと、ハ
ードウェアの複雑性も同様に減少し得る。式(9a)及
び式(9b)により、係数の再符号化を除いて、偶数の
関数ブロックの変換を行うためには2つのバタフライ・
ステップが必要である。逆に、奇数の関数ブロックの変
換には、そのような明確な利点はない。しかし、本発明
の一実施例における特徴部である式(1)から式(4)
のように奇数の関数サブ・ブロックを分解するとき、
(10)及び(11)の関係が存在する。
(Equation 7) Here, s n and t n are sine and tangent, respectively. Most conventional implementations of even function blocks of the DCT use equation (9a). However, removing the common scaling factor as shown in equation (9b) may reduce the hardware complexity as well. According to the equations (9a) and (9b), two butterflys are used to perform conversion of an even number of function blocks except for coefficient re-encoding.
Steps required. Conversely, the transformation of odd function blocks does not have such a clear advantage. However, the equations (1) to (4), which are the characteristic portions in the embodiment of the present invention, are used.
When you decompose an odd functional sub-block like
There is a relationship of (10) and (11).

【0008】[0008]

【数8】 (Equation 8)

【0009】これらの関係を用いて、奇数の関数ブロッ
クはさらに以下のように分解され得る。
Using these relationships, the odd function blocks can be further decomposed as follows.

【数9】 [Equation 9]

【0010】式(12)により第2ステージで3入力加
算器を用いた2ステップ・バタフライ実行が可能にな
り、演算から共通スケーリング・ファクタを取り除くこ
とによって、乗算ROMの総数は著しく減少し得る。図
1は本発明に係るDCTのバタフライ構造を示す。図1
において、8入力(x(0)〜x(7))に対して2対
ごとのバタフライ(2つの入力についての対称形演算)
を行う際の各係数と2対の入力値のとり方が表わされて
おり、8入力x(0)〜x(7)に対し最終的に右端に
生成されるものがDCTの係数値に相当する出力
Equation (12) allows a two-step butterfly implementation with a three-input adder in the second stage, and by removing the common scaling factor from the operation, the total number of multiply ROMs can be significantly reduced. FIG. 1 shows a DCT butterfly structure according to the present invention. FIG.
In, butterfly for every two pairs for 8 inputs (x (0) to x (7)) (symmetrical operation for two inputs)
Each coefficient and two pairs of input values at the time of performing are shown. What is finally generated at the right end of 8 inputs x (0) to x (7) corresponds to the DCT coefficient value. Output

【外1】 となる。[Outside 1] Becomes

【0011】段数が3段のバタフライの実行には、10
個の乗算ROMしか必要とされず、偶数関数および奇数
関数ブロックが、第3ステージにおいて処理される。こ
のため従来のバタフライの実行に必要な4×10ビット
・ラッチを節約できる。8×8画素の2次元DCTの乗
算の総数に関して、この新しいアプローチでは、チェン
(chen)のアルゴリズムより37.5%少なく、2次元D
CTのバタフライの非常に複雑な直接実行よりわずか2
0%だけ多い160の乗算が必要となるだけであり、後
者の実行では120個のROMが必要であるのに対し、
同様のROMがわずか20個が必要なだけである。
To execute a butterfly having three stages, 10
Only multiplication ROMs are required and even function and odd function blocks are processed in the third stage. This saves the 4x10 bit latches required to perform a traditional butterfly. With respect to the total number of 2D DCT multiplications of 8 × 8 pixels, this new approach
2D, 37.5% less than the (chen) algorithm
Only 2 than the very complex direct implementation of CT butterfly
Only 160 multiplications, which is 0% more, are needed, whereas the latter implementation requires 120 ROMs.
Only 20 similar ROMs are needed.

【0012】実用上スケーリングがどのように効くかを
説明する。図1に示すバタフライ構造からの出力がスケ
ーリングされ、2次元DCTに関して、1次元DCT係
数が転置FIFOに記憶される。第2DCTへの入力デ
ータが均一にスケーリングされるように、第2パス1次
元DCTはこれらの転置された係数に適用される。この
ように1次元DCTにおけるスケーリングは、第2パス
1次元DCTを介して通りさらにスケーリングされる。
2次元DCT係数の結果は下記のように表される。
How the scaling works in practice will be described. The output from the butterfly structure shown in FIG. 1 is scaled and the one-dimensional DCT coefficients are stored in the transpose FIFO for the two-dimensional DCT. The second pass one-dimensional DCT is applied to these transposed coefficients so that the input data to the second DCT is uniformly scaled. Thus, the scaling in the one-dimensional DCT is further scaled through the second pass one-dimensional DCT.
The result of the two-dimensional DCT coefficient is expressed as follows.

【数10】B=ADA (13) ここでDはC(CX)t で定義された真(true)2次元D
CT係数であり、Aは以下のように定義されるスケーリ
ング・マトリックスである。
(10) B = ADA (13) where D is a true two-dimensional D defined by C (CX) t.
It is a CT coefficient and A is a scaling matrix defined as follows.

【数11】 [Equation 11]

【0013】しかし、後続の量子化と共に統合(merge)
され得るため、2次元DCT出力へのスケーリングは必
ずしも必要ない。量子化において、2次元DCTの結果
はジグザグ状に読みだされ、量子化ステップ・サイズで
分割される(またはROMにアクセスすることによって
同様に処理される)。分割は式(13)、(14)で定
義されたスケーリング・ファクタに応じてスケーリング
され得る。逆方向のDCTは前述した様に正変換の単純
に反対のオペレーションである。つまり、すべての入力
データは図1の右側から供給され、その結果が左側で得
られる。行列はすべて転置され、バタフライ接続が図に
正確に示される。行列反転の転置特性(エルミート特
性)により、ROMの同じセットが逆DCTに用いられ
得る。式(12)の3つの入力加算器も以下のエルミー
ト特性を有する。
However, merge with subsequent quantization
Scaling to a two-dimensional DCT output is not necessary as it can be done. In quantization, the result of the two-dimensional DCT is read in a zigzag pattern and divided by the quantization step size (or processed similarly by accessing ROM). The partition may be scaled according to the scaling factor defined in equations (13), (14). The inverse DCT is simply the opposite operation of the forward transform, as described above. That is, all input data is supplied from the right side of FIG. 1 and the result is available on the left side. The matrices are all transposed and the butterfly connections are shown exactly in the figure. Due to the transpose property of matrix inversion (Hermitian property), the same set of ROMs can be used for the inverse DCT. The three-input adder of equation (12) also has the following Hermitian characteristics.

【数12】 スケーリング・ファクタは正方向DCTの場合と同様で
ある。この係数は符号化されたビット・ストリームの可
変調符号複号の後、再び逆量子化処理に組み込まれ得
る。
(Equation 12) The scaling factor is the same as for the forward DCT. This coefficient can be incorporated into the inverse quantization process again after the tunable code decoding of the encoded bit stream.

【0014】上述した本発明に係る方法を使用すること
によりDCT回路をより縮小することができるが、これ
は、画像信号に対する処理の様に、2次元のDCTを用
いる場合により利点がある。画像信号は2次元のため、
DCTも8×8の部分に2次元的に作用させるため回路
自体が大きくなってしまうからである。本発明に係る方
法においては、「8入力DCTを入力データ数の半分の
4クロックで完了できれば、初めの4クロックで入力信
号に対して行方向の変換を行い、これを完了させた後、
後半の4クロックで転置結果に対して列方向の変換を行
うことができる。即ち、8入力に対してクロックを倍速
にすることなく単一のDCT回路により8クロックで変
換を実行することができる。」という考えに基いてい
る。
Although the DCT circuit can be made smaller by using the method according to the present invention described above, this is more advantageous when a two-dimensional DCT is used, such as a process for an image signal. Since the image signal is two-dimensional,
This is because the DCT also acts on the 8 × 8 portion two-dimensionally, so that the circuit itself becomes large. In the method according to the present invention, “If 8-input DCT can be completed in 4 clocks, which is half the number of input data, the input signal is converted in the row direction in the first 4 clocks, and after this is completed,
In the latter four clocks, the transposition result can be converted in the column direction. That is, the conversion can be performed with 8 clocks by a single DCT circuit without doubling the clock rate for 8 inputs. It is based on the idea.

【0015】図2は、本発明の離散コサイン変換を適用
した動画像圧縮用画像処理装置の一例を示すブロック図
である。画像処理装置10は、(8ピクセル)×(8ラ
イン)のブロックからなる入力画像情報を減算器12を
介して入力するFDCT変換/量子化部14を含む。F
DCT変換/量子化部14は本発明の離散コサイン変換
法に基き入力画像情報を周波数空間に表す信号に変換
し、画素数に対応した64個のDCT係数(周波数係
数)を示す画像データを生成後量子化処理により量子化
係数値を発生する。逆量子化/IDCT部16では量子
化された係数値を信号値へもどす。逆量子化/IDCT
部16は逆量子化後本発明の離散コサイン変換法に基き
画像データを逆DCT変換し、加算器18を介してメモ
リ20へ結果を書き込む。なお、図示はしていないが、
映像として外部で表示されるのはメモリ20の入力であ
る。この画像処理装置1は動き補償を行うためのメモリ
20及び動く補償部22を更に含む。本発明を一実施例
につてい説明したが本発明はこれらに限定されるもので
はない。
FIG. 2 is a block diagram showing an example of a moving image compression image processing apparatus to which the discrete cosine transform of the present invention is applied. The image processing apparatus 10 includes an FDCT transform / quantization unit 14 that inputs input image information composed of blocks of (8 pixels) × (8 lines) via a subtractor 12. F
The DCT transform / quantization unit 14 transforms the input image information into a signal representing in a frequency space based on the discrete cosine transform method of the present invention, and generates image data showing 64 DCT coefficients (frequency coefficients) corresponding to the number of pixels. The quantized coefficient value is generated by the post-quantization processing. The inverse quantization / IDCT unit 16 returns the quantized coefficient value to a signal value. Inverse quantization / IDCT
The unit 16 performs inverse DCT on the image data after the inverse quantization based on the discrete cosine transform method of the present invention, and writes the result to the memory 20 via the adder 18. Although not shown,
Externally displayed as an image is an input of the memory 20. The image processing apparatus 1 further includes a memory 20 for performing motion compensation and a moving compensator 22. The present invention has been described with reference to one embodiment, but the present invention is not limited to this.

【0016】[0016]

【発明の効果】高速かつ経済的な離散コサイン変換が可
能となる。
The fast and economical discrete cosine transform can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る離散コサイン変換を説
明する図。
FIG. 1 is a diagram illustrating a discrete cosine transform according to an embodiment of the present invention.

【図2】本発明の離散コサイン変換を適用した画像処理
装置例のブロック図。
FIG. 2 is a block diagram of an example of an image processing apparatus to which the discrete cosine transform of the present invention is applied.

【符号の説明】[Explanation of symbols]

14 FDCT/量子化部 16 逆量子化/IDCT部 14 FDCT / quantization unit 16 Inverse quantization / IDCT unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 奇数関数ブロックの分解のステップが 【数1】 の式に基くことを特徴とする離散コサイン変換方法。1. The steps of decomposition of an odd function block are as follows: A discrete cosine transform method characterized by being based on the equation of.
JP1436396A 1996-01-30 1996-01-30 Discrete cosine transformation method Pending JPH09212484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1436396A JPH09212484A (en) 1996-01-30 1996-01-30 Discrete cosine transformation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1436396A JPH09212484A (en) 1996-01-30 1996-01-30 Discrete cosine transformation method

Publications (1)

Publication Number Publication Date
JPH09212484A true JPH09212484A (en) 1997-08-15

Family

ID=11858984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1436396A Pending JPH09212484A (en) 1996-01-30 1996-01-30 Discrete cosine transformation method

Country Status (1)

Country Link
JP (1) JPH09212484A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036842A1 (en) * 1998-12-14 2000-06-22 Matsushita Electric Industrial Co., Ltd. Dct arithmetic device
JP2002527011A (en) * 1998-10-02 2002-08-20 メイコム・リミテッド Data compression coding system
JP2012529128A (en) * 2009-06-05 2012-11-15 クゥアルコム・インコーポレイテッド 4x4 conversion for media coding
JP2012529129A (en) * 2009-06-05 2012-11-15 クゥアルコム・インコーポレイテッド 4x4 conversion for media coding
JP2012531670A (en) * 2009-06-24 2012-12-10 クゥアルコム・インコーポレイテッド 8-point conversion for media data encoding
JP2013502624A (en) * 2009-06-24 2013-01-24 クゥアルコム・インコーポレイテッド 8-point conversion for media data encoding
JP2013502625A (en) * 2009-06-24 2013-01-24 クゥアルコム・インコーポレイテッド 16 point conversion for media data coding
JP2013502626A (en) * 2009-06-24 2013-01-24 クゥアルコム・インコーポレイテッド 16 point conversion for media data coding
US8849183B2 (en) 2007-10-05 2014-09-30 Qualcomm Incorporated Location and time based filtering of broadcast information
US9110849B2 (en) 2009-04-15 2015-08-18 Qualcomm Incorporated Computing even-sized discrete cosine transforms
US9280778B2 (en) 2008-12-15 2016-03-08 Qualcomm Incorporated Location logging and location and time based filtering
US9451401B2 (en) 2011-05-27 2016-09-20 Qualcomm Incorporated Application transport level location filtering of internet protocol multicast content delivery
US9485108B2 (en) 2011-03-14 2016-11-01 Qualcomm Incorporated System and apparatus for using multichannel file delivery over unidirectional transport (“FLUTE”) protocol for delivering different classes of files in a broadcast network
US9824066B2 (en) 2011-01-10 2017-11-21 Qualcomm Incorporated 32-point transform for media data coding

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527011A (en) * 1998-10-02 2002-08-20 メイコム・リミテッド Data compression coding system
US6574648B1 (en) 1998-12-14 2003-06-03 Matsushita Electric Industrial Co., Ltd. Dct arithmetic device
WO2000036842A1 (en) * 1998-12-14 2000-06-22 Matsushita Electric Industrial Co., Ltd. Dct arithmetic device
US8849183B2 (en) 2007-10-05 2014-09-30 Qualcomm Incorporated Location and time based filtering of broadcast information
US10027432B2 (en) 2007-10-05 2018-07-17 Qualcomm Incorporated Location and time based filtering of broadcast information
US9312970B2 (en) 2007-10-05 2016-04-12 Qualcomm Incorporated Location and time based filtering of broadcast information
US10158970B2 (en) 2008-12-15 2018-12-18 Qualcomm Incorporated Location logging and location and time based filtering
US9280778B2 (en) 2008-12-15 2016-03-08 Qualcomm Incorporated Location logging and location and time based filtering
US9110849B2 (en) 2009-04-15 2015-08-18 Qualcomm Incorporated Computing even-sized discrete cosine transforms
US9069713B2 (en) 2009-06-05 2015-06-30 Qualcomm Incorporated 4X4 transform for media coding
US8762441B2 (en) 2009-06-05 2014-06-24 Qualcomm Incorporated 4X4 transform for media coding
JP2012529128A (en) * 2009-06-05 2012-11-15 クゥアルコム・インコーポレイテッド 4x4 conversion for media coding
JP2012529129A (en) * 2009-06-05 2012-11-15 クゥアルコム・インコーポレイテッド 4x4 conversion for media coding
US9118898B2 (en) 2009-06-24 2015-08-25 Qualcomm Incorporated 8-point transform for media data coding
US9081733B2 (en) 2009-06-24 2015-07-14 Qualcomm Incorporated 16-point transform for media data coding
JP2013502625A (en) * 2009-06-24 2013-01-24 クゥアルコム・インコーポレイテッド 16 point conversion for media data coding
US9075757B2 (en) 2009-06-24 2015-07-07 Qualcomm Incorporated 16-point transform for media data coding
JP2013502624A (en) * 2009-06-24 2013-01-24 クゥアルコム・インコーポレイテッド 8-point conversion for media data encoding
JP2012531670A (en) * 2009-06-24 2012-12-10 クゥアルコム・インコーポレイテッド 8-point conversion for media data encoding
US9319685B2 (en) 2009-06-24 2016-04-19 Qualcomm Incorporated 8-point inverse discrete cosine transform including odd and even portions for media data coding
JP2013502626A (en) * 2009-06-24 2013-01-24 クゥアルコム・インコーポレイテッド 16 point conversion for media data coding
US8718144B2 (en) 2009-06-24 2014-05-06 Qualcomm Incorporated 8-point transform for media data coding
US9824066B2 (en) 2011-01-10 2017-11-21 Qualcomm Incorporated 32-point transform for media data coding
US9485108B2 (en) 2011-03-14 2016-11-01 Qualcomm Incorporated System and apparatus for using multichannel file delivery over unidirectional transport (“FLUTE”) protocol for delivering different classes of files in a broadcast network
US9451401B2 (en) 2011-05-27 2016-09-20 Qualcomm Incorporated Application transport level location filtering of internet protocol multicast content delivery

Similar Documents

Publication Publication Date Title
US7127482B2 (en) Performance optimized approach for efficient downsampling operations
JP3763968B2 (en) Compression / decompression system and method
JP4874642B2 (en) Lossless conversion for lossy and lossless 2D data compression
EP1359546B1 (en) 2-D transforms for image and video coding
US5659362A (en) VLSI circuit structure for implementing JPEG image compression standard
US5649077A (en) Modularized architecture for rendering scaled discrete cosine transform coefficients and inverse thereof for rapid implementation
JPH09212484A (en) Discrete cosine transformation method
US6067384A (en) Fast scaling of JPEG images
US6317767B2 (en) Methods and systems for performing short integer chen IDCT algorithm with fused multiply/add
JP2002500455A (en) High-speed IDCT / downsampling combined operation method and apparatus
JP4688988B2 (en) Video data compression method and apparatus, and decompression method and apparatus
US7263544B2 (en) Performance optimized approach for efficient numerical computations
US6181831B1 (en) Spatial frequency-domain video signal processing
US7216140B1 (en) Efficient implementation of n-point DCT, n-point IDCT, SA-DCT and SA-IDCT algorithms
KR100377084B1 (en) Discrete cosine conversion circuit, discrete cosine inverse conversion circuit, MPEG video encoder and MPEG video decoder
Walmsley et al. A fast picture compression technique
CA2336255A1 (en) Efficient down-scaling of dct compressed images
US6111989A (en) 1/4 size real time decoding of digital video
KR20030057425A (en) An adaptive inverse transformation device
JP3155383B2 (en) Two-mode processing device, two-dimensional conversion device, and still image data compression system
JPH08180194A (en) Method and device for coding
Rao et al. Implementation of a 2D-DWT system architecture for JPEG2000 using MATLAB and DSP
US6104838A (en) 1/16 size real time decoding of digital video
JP3136785B2 (en) Data compression device
JPH0644291A (en) Discrete cosine converter and information encoder