JPH09210620A - Surface position detection device - Google Patents

Surface position detection device

Info

Publication number
JPH09210620A
JPH09210620A JP8019867A JP1986796A JPH09210620A JP H09210620 A JPH09210620 A JP H09210620A JP 8019867 A JP8019867 A JP 8019867A JP 1986796 A JP1986796 A JP 1986796A JP H09210620 A JPH09210620 A JP H09210620A
Authority
JP
Japan
Prior art keywords
light
signal
regions
light receiving
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8019867A
Other languages
Japanese (ja)
Inventor
Yoshihiro Naganuma
義広 長沼
Hitoshi Usami
仁 宇佐美
Akira Takahashi
顕 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8019867A priority Critical patent/JPH09210620A/en
Publication of JPH09210620A publication Critical patent/JPH09210620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface position detection device which has a wide positioning response range and can accurately detect even a transparent object to be inspected with reverse side reflection and an object to be inspected with a narrow surface width to be detected. SOLUTION: A device has a light projection part for projecting the light of a light source to the surface of an object to be inspected and a light reception part for outputting a signal corresponding to the above position by detecting the position of the above reflection light which is displaced on a sensor surface according to the change in distance between the above object to be inspected and a focus position detection device. In this case, a light reception element 26 is constituted of at least four regions (SA-SD) which are linearly arranged and has a signal processing part for generating a detection signal S for detecting that a surface position is located at a specific position according to a signal from two adjacent regions SB and SC and for generating a deviation direction signal Z indicating the deviation direction of the surface position according to signals from at least one region which continue over the above two regions and its both sides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、面位置検出装置に
関し、特に光学機器のオートフォーカスや被検物面高さ
測定に用いる非接触式面位置検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface position detecting device, and more particularly to a non-contact type surface position detecting device used for auto-focusing of optical equipment or measuring the height of an object surface.

【0002】[0002]

【従来の技術】非接触式面位置検出装置として、三角測
量方式の装置が知られている。図7は従来装置の原理の
説明図であり、図8は図7の装置のセンサ及び信号波形
の説明図である。この装置9では、例えばレーザーダイ
オード等の光源1からの光を投影レンズ2によって被検
物表面3に光点4として投射し、被検物表面3で反射さ
れた光を集光レンズ5で集光して、2分割センサ6上に
光点像7を形成する。2分割センサ6は、図8に示すよ
うに狭いギャップをもって隣接する2つの領域、SA´
及びSB´からなるフォトダイオード2分割センサであ
る。
2. Description of the Related Art As a non-contact type surface position detecting device, a triangulation type device is known. FIG. 7 is an explanatory diagram of the principle of the conventional device, and FIG. 8 is an explanatory diagram of sensors and signal waveforms of the device of FIG. In this device 9, for example, light from a light source 1 such as a laser diode is projected as a light spot 4 on a surface 3 to be inspected by a projection lens 2, and light reflected by the surface 3 to be inspected is collected by a condenser lens 5. Light is emitted to form a light spot image 7 on the two-divided sensor 6. As shown in FIG. 8, the two-divided sensor 6 has two areas SA 'adjacent to each other with a narrow gap.
And SB ′ are photodiode two-divided sensors.

【0003】被検物表面3と装置9との距離Kが変化す
ると、センサ6上での光点7の位置が変化し、2分割セ
ンサ6の2つの領域SA´及びSB´からの光電変換信
号(それぞれ、A´及びB´)が変化する。信号A´に
ついて説明すると、(イ)では光点7が領域SA´の外
にあるので出力0である。光点7が領域SA´に差し掛
かると徐々に出力を増し、光点7が領域SA´に含まれ
ると最大出力となる(ロ)。そして、光点7が領域SA
´から離脱する時に出力は徐々に減じ(ハ)、離脱後は
出力0となる。信号SB´はこの逆の経過をたどる。
When the distance K between the object surface 3 and the device 9 changes, the position of the light spot 7 on the sensor 6 changes, and photoelectric conversion from the two areas SA 'and SB' of the two-divided sensor 6 is performed. The signals (A 'and B', respectively) change. Explaining the signal A ′, in (a), since the light spot 7 is outside the area SA ′, the output is 0. The output gradually increases when the light spot 7 approaches the area SA ′, and reaches the maximum output when the light spot 7 is included in the area SA ′ (b). Then, the light spot 7 is the area SA.
The output gradually decreases (c) when leaving from ′, and becomes 0 after leaving. The signal SB 'follows the opposite course.

【0004】被検物表面3が装置9から所定の距離K0
の位置に来た時に、光点7が領域SA´及びSB´の中
央にある((ハ)の状態)ように装置9は調整される。
従って、被検物表面3が装置9から所定の距離K0の位
置に来た時に、両信号の差分(A´−B´)は0とな
る。装置9は、距離Kを変化させる駆動装置8、及び距
離Kの変化量を検出する位置読み取り装置10と、セン
サ6の信号を処理して、(A´−B´)なる差信号と、
A´−B´=0且つA´+B´>T´(但し0<T´<
A´+B´の最大値)なる時に検出信号S´を出力する
信号処理装置50とを備えている。そこで、距離Kを所
定の値K0の前後に変化させ、検出信号S´によって位
置読みとり装置10の値をコンピュータで読み取り、面
の位置を求める。これは、例えば基準面に対する面の高
さ測定に利用され、必要に応じて被検物の交換や、測定
位置を変える為の被検物移動が行われる。
The surface 3 to be inspected is separated from the device 9 by a predetermined distance K0.
The device 9 is adjusted so that the light spot 7 is located at the center of the areas SA ′ and SB ′ (state (C)) when the position (7) is reached.
Therefore, when the object surface 3 comes to the position of the predetermined distance K0 from the device 9, the difference (A′−B ′) between the two signals becomes zero. The device 9 processes the signals of the driving device 8 that changes the distance K, the position reading device 10 that detects the amount of change in the distance K, and the sensor 6, and obtains a difference signal (A′−B ′),
A'-B '= 0 and A' + B '>T' (where 0 <T '<
And a signal processing device 50 that outputs a detection signal S ′ when it reaches the maximum value of A ′ + B ′). Therefore, the distance K is changed before and after a predetermined value K0, the value of the position reading device 10 is read by a computer by the detection signal S ', and the surface position is obtained. This is used, for example, to measure the height of the surface with respect to the reference surface, and the test object is replaced or the test object is moved to change the measurement position as necessary.

【0005】又、求めた面の位置(検出信号S´によっ
て読み取った位置読みとり装置10の値)に基づいて決
めた所定の位置(例えば、図7のKが所定の値となる位
置)を目標位置として駆動装置8を駆動する制御装置を
設けて、装置9が取り付けられた装置を所定の位置に位
置決めすることもできる。これを光学装置の自動焦点合
わせに用いる場合、光学装置の焦点深度程度の精度で位
置決めすれば良い。この方法は、後述の差信号によって
駆動装置8を駆動する位置決めに較べ、位置決め動作中
の外乱光の影響を受け難い。
A target is a predetermined position (for example, a position where K in FIG. 7 has a predetermined value) determined based on the obtained surface position (the value of the position reading device 10 read by the detection signal S '). It is also possible to provide a control device for driving the drive device 8 as a position to position the device to which the device 9 is attached at a predetermined position. When this is used for automatic focusing of the optical device, it is sufficient to position the optical device with accuracy close to the depth of focus of the optical device. This method is less likely to be affected by the ambient light during the positioning operation, as compared with the positioning in which the drive device 8 is driven by the difference signal described later.

【0006】しかしながら、このような従来装置では、
被検物が、例えば板ガラスのような透明体の場合、被検
物表面からの反射光による光点と共に、透明体の裏面か
らの反射光による光点が2分割センサ6上に形成され、
検出信号はその影響を受けて検出位置がずれる。(2つ
の光点の光量比で重み付けられた重心位置が検出され
る。)更に、検出すべき面の幅が狭い被検物では、光点
4の検出すべき面からはみ出した部分の光が、検出面以
外の面で反射されて2分割センサ6上に集光され、その
影響によって検出位置がずれるという欠点があった。
However, in such a conventional device,
When the test object is a transparent body such as a plate glass, a light spot due to the reflected light from the front surface of the test object and a light point due to the reflected light from the back surface of the transparent body are formed on the two-divided sensor 6,
The detection signal is affected by that, and the detection position shifts. (The position of the center of gravity weighted by the light quantity ratio of the two light spots is detected.) Furthermore, in the case of an object in which the width of the surface to be detected is narrow, the light of the portion protruding from the surface to be detected of the light spot 4 is However, there is a drawback in that the light is reflected by a surface other than the detection surface and is condensed on the two-divided sensor 6, and the detection position is displaced due to the influence thereof.

【0007】このような欠点を改善するために、特開平
3−291512号公報に開示された装置がある。図1
0に示したこの装置は、レーザーダイオード12からの
レーザー光を測定対象に照射し、照射方向とは異なる方
向で測定対象からの反射光を受けて測定対象上の照射点
の像を受光素子17上に作り、受光素子17上の照射点
の像の動きより測定対象の位置を検出する変位計であっ
て、受光素子17の受光面における受光を部分的に制限
する手段18、19を備えて、受光面に入射する光のう
ち、裏面反射による光を遮断するものであるが、この装
置では、面位置の検出可能範囲が極端に狭くなり、前記
応答範囲を拡大したいという希望と相容れない。
In order to improve such a defect, there is an apparatus disclosed in Japanese Patent Laid-Open No. 3-291512. FIG.
This device shown in FIG. 0 irradiates the laser light from the laser diode 12 to the measurement target, receives the reflected light from the measurement target in a direction different from the irradiation direction, and forms an image of the irradiation point on the measurement target as the light receiving element 17. A displacement gauge which is formed on the light receiving element 17 and detects the position of the object to be measured from the movement of the image of the irradiation point on the light receiving element 17, and which is provided with means 18 and 19 for partially limiting light reception on the light receiving surface of the light receiving element 17. Of the light incident on the light-receiving surface, the light reflected by the back surface is blocked. However, in this device, the detectable range of the surface position becomes extremely narrow, which conflicts with the desire to expand the response range.

【0008】又、別の用法として差信号(A´−B´)
に比例した駆動速度で駆動装置8を駆動し、装置9を面
から所定の距離(K=K0)の位置に位置決めすること
ができる。この場合、位置決めに用いる前記差信号を出
来るだけ広い範囲で得る(応答範囲を拡大する)ため
に、2分割センサ6は光点の大きさに較べ、大きいサイ
ズのものが使用される。この方法は、例えば光学機器の
自動焦点合わせ等、装置9を備えた装置を面から所定の
位置に位置決めする目的に利用される。この方法は、前
述の検出した面位置に基づいて決めた所定の位置に装置
9を位置決めする方法に対して、信号処理装置50が簡
単に構成できる、コンピュータを必要としない等の利点
がある。
As another usage, the difference signal (A'-B ')
It is possible to drive the driving device 8 at a driving speed proportional to, and position the device 9 at a predetermined distance (K = K0) from the surface. In this case, in order to obtain the difference signal used for positioning in the widest possible range (expand the response range), the two-divided sensor 6 has a size larger than the size of the light spot. This method is used for the purpose of positioning a device provided with the device 9 in a predetermined position from a surface, for example, automatic focusing of optical equipment. This method has advantages in that the signal processing device 50 can be simply configured, a computer is not required, and the like, as compared with the method of positioning the device 9 at a predetermined position determined based on the detected surface position.

【0009】勿論、上記何れの場合も、駆動装置8を被
検物を保持する装置側に設けて、被検物表面3の位置を
変えても良い。しかし、この場合に於いては、光点7が
領域SA´(SB´)に含まれている間は信号A´(B
´)は一定値なので、差信号(A´−B´)は所定位置
の近傍以外では正又は負の一定値(図7参照)となる。
この為、ずれ方向は判るがずれの大きさは判らない。そ
こで、所定位置での減速停止を考慮して最大駆動速度を
決めていた。その結果、面の位置が所定位置から大きく
ずれていても駆動速度を上げることができず、位置決め
に時間がかかるという欠点もあった。
Of course, in any of the above cases, the position of the test object surface 3 may be changed by providing the driving device 8 on the device side for holding the test object. However, in this case, while the light spot 7 is included in the area SA '(SB'), the signal A '(B
Since ') is a constant value, the difference signal (A'-B') is a positive or negative constant value (see FIG. 7) except near the predetermined position.
Therefore, the displacement direction can be known, but the size of the displacement cannot be known. Therefore, the maximum drive speed is determined in consideration of deceleration and stop at a predetermined position. As a result, even if the position of the surface is largely deviated from the predetermined position, the driving speed cannot be increased, and it takes a long time for positioning.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、広い
位置決め応答範囲を有し、透明体や幅の狭い被検物でも
精度良く検出できる面位置検出装置を提供すること、位
置決め時間の短い面位置検出装置を提供すること、及び
前記各装置を最良の状態に容易に調整する方法を提案す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a surface position detecting device having a wide positioning response range and capable of accurately detecting even a transparent body or an object having a narrow width, and positioning time is short. It is an object to provide a surface position detecting device and to propose a method for easily adjusting each of the above devices to the best condition.

【0011】[0011]

【課題を解決するための手段】請求項1に記載の発明で
は、光源の光を被検物表面に投射する投光部(1、2)
と、前記投射された光の被検物表面による反射光を受光
して、前記被検物と面位置検出装置との距離変化に応じ
て受光素子(26)上を変位する前記反射光の位置を検
知して、前記位置に応じた信号を出力する受光部(5、
26)とを備える面位置検出装置において、前記受光素
子(26)を、直線状に配置された、少なくとも4つの
領域(SA〜SD)で構成し、前記受光素子(26)の
最も外側を含まない、2つの隣接した領域(SB、S
C)からの信号によって面位置が所定位置にあることを
検出する検出信号(S)を生成すると共に、前記2つの
隣接する領域(SB、SC)、及びその外側に連続す
る、夫々1つ以上の領域(SB、SC)からの信号によ
って、面位置のずれ方向を表す、ずれ方向信号(Z)を
生成する信号処理部(100)を設けた。
According to a first aspect of the invention, a light projecting section (1, 2) for projecting light from a light source onto the surface of an object to be inspected.
And a position of the reflected light which receives the reflected light of the projected light from the surface of the test object and displaces on the light receiving element (26) according to a change in the distance between the test object and the surface position detection device. Is detected and outputs a signal corresponding to the position (5,
26), the light receiving element (26) includes at least four regions (SA to SD) linearly arranged, and includes the outermost portion of the light receiving element (26). Not two adjacent areas (SB, S
A signal from (C) is used to generate a detection signal (S) for detecting that the surface position is at a predetermined position, and at least one of each of the two adjacent regions (SB, SC) and the outside thereof is continuous. The signal processing unit (100) that generates the displacement direction signal (Z) that represents the displacement direction of the surface position by the signal from the area (SB, SC) is provided.

【0012】請求項2に記載の発明では、光源の光を被
検物表面に投射する投光部(1、2)と、前記投射され
た光の被検物表面による反射光を受光して、前記被検物
と面位置検出装置との距離変化に応じて受光素子(2
6)上を変位する前記反射光の位置を検知して、前記位
置に応じた信号を出力する受光部(5、26)とを備え
る面位置検出装置において、前記受光素子(26)を、
直線状に配置された、少なくとも4つの領域(SA〜S
D)で構成し、前記受光素子(26)の最も外側を含ま
ない、2つの隣接した領域(SB、SC)からの信号、
及びその外側に連続する、夫々1つ以上の領域(SA、
SD)からの信号によって、面位置のずれ方向を表す、
ずれ方向信号(Z)を生成する信号処理部(100)を
備え、前記信号処理部(100)に各領域(SA〜S
D)からの信号を増幅して前記信号処理部(100)の
後段に出力する増幅器(32a〜32d)を設けると共
に、該各増幅器(32a〜32d)の増幅率を前記2つ
の隣接する領域から離れる程大きな増幅率となるように
調整し、前記ずれ方向信号(Z)が、面位置の基準位置
に対するずれの大きさに応じて変化するようにした。
According to a second aspect of the present invention, a light projecting portion (1, 2) for projecting light from a light source onto the surface of the object to be inspected and light reflected by the surface of the object to be inspected of the projected light are received. , The light receiving element (2
6) In a surface position detecting device including a light receiving section (5, 26) for detecting a position of the reflected light displaced above and outputting a signal according to the position, the light receiving element (26),
At least four areas (SA to S) arranged linearly
D), signals from two adjacent regions (SB, SC) not including the outermost part of the light receiving element (26),
And one or more areas (SA, continuous to the outside of the area)
The signal from SD) indicates the direction of displacement of the surface position,
A signal processing unit (100) that generates a displacement direction signal (Z) is provided, and each region (SA to S) is provided in the signal processing unit (100).
The amplifiers (32a to 32d) for amplifying the signal from D) and outputting to the subsequent stage of the signal processing unit (100) are provided, and the amplification factor of each of the amplifiers (32a to 32d) from the two adjacent regions. The gain is adjusted so as to increase as the distance increases, and the deviation direction signal (Z) changes according to the magnitude of the deviation of the surface position from the reference position.

【0013】請求項3に記載した如く、請求項1〜請求
項2の何れに於いても、前記受光素子(26)は、前記
受光素子上の光点の大きさにほぼ等しい前記2つの隣接
する領域と、領域の配列方向により長い領域とを含むこ
とが好ましい。請求項4に記載の発明では、隣接する2
つの光電変換領域(SB、SC)からなる受光素子を有
し、前記受光素子からの信号を処理して、前記受光素子
上に形成された光点が所定の位置にあることを検出する
光点位置検出装置において、前記受光素子の前記領域の
両外側に隣接して、夫々1つ以上の光電変換領域(S
A、SD)を設けて、以下の工程を含んで調整する。
As described in claim 3, in any one of claims 1 and 2, the light receiving element (26) is arranged such that the two adjacent elements are substantially equal in size to the light spot on the light receiving element. It is preferable to include a region to be formed and a region that is longer in the arrangement direction of the regions. In the invention according to claim 4, adjacent two
A light spot having a light receiving element composed of two photoelectric conversion regions (SB, SC), processing a signal from the light receiving element, and detecting that the light spot formed on the light receiving element is at a predetermined position. In the position detecting device, one or more photoelectric conversion regions (S) are provided adjacent to both outer sides of the region of the light receiving element.
A, SD) are provided, and adjustment is performed including the following steps.

【0014】前記受光素子又は前記光点を前記領域の
配列方向に移動して、前記受光素子の最も外側の領域を
含まない、2つの隣接する領域からの信号の差を“0”
にする工程。 前記受光素子又は前記光点を前記配列方向の直角方向
に移動して、前記2つの隣接する領域からの信号の和を
“最大”にする工程。
By moving the light receiving element or the light spot in the array direction of the areas, the difference between the signals from two adjacent areas not including the outermost area of the light receiving element is "0".
The process of making. Moving the light receiving elements or the light spots in a direction perpendicular to the arrangement direction to maximize the sum of signals from the two adjacent regions.

【0015】前記受光素子を光軸方向に移動して、又
は前記光点の大きさを調節して前記2つの隣接する領域
の両外側に隣接する2つの領域を含む、前記2つの隣接
する領域以外からの信号の和を“最小”にする工程。
The two adjoining regions including two regions adjoining both outer sides of the two adjoining regions by moving the light receiving element in the optical axis direction or adjusting the size of the light spot. The process of "minimizing" the sum of signals from other sources.

【0016】[0016]

【発明の実施の形態】図1〜図4は本発明の1実施形態
の説明図であり、図2は全体構成の説明図、図1は信号
処理の概要を示すブロック図、図3は信号波形図、図4
は裏面反射の有る場合の波形図である。図2に於いて、
図5の従来装置と同一の部材には同一符号を付した。光
源1から放射された光が投光光学系2によって集光さ
れ、被検物表面3上に斜めに投射され光点4を形成す
る。被検物表面3で反射した光は受光光学系5で集光さ
れる。センサ26は図1に示したように、直線状に配置
された4つの領域SA、SB、SC、SDからり、領域
SBと領域SCとを合わせた大きさとほぼ同じ大きさの
光点像7を形成する。被検物表面3と面位置検出装置2
9との距離Kの変化につれて、光点7の位置がセンサ2
6の各領域の配列方向に変化する。
1 to 4 are explanatory views of one embodiment of the present invention, FIG. 2 is an explanatory view of the entire configuration, FIG. 1 is a block diagram showing an outline of signal processing, and FIG. 3 is a signal. Waveform diagram, Figure 4
[Fig. 4] is a waveform diagram when there is back surface reflection. In FIG.
The same members as those of the conventional device of FIG. 5 are designated by the same reference numerals. The light emitted from the light source 1 is condensed by the light projecting optical system 2 and obliquely projected onto the surface 3 of the object to be examined to form a light spot 4. The light reflected by the surface 3 to be inspected is condensed by the light receiving optical system 5. As shown in FIG. 1, the sensor 26 is composed of four areas SA, SB, SC, and SD arranged in a straight line, and the light spot image 7 having substantially the same size as the combined size of the areas SB and SC. To form. Object surface 3 and surface position detection device 2
As the distance K from the sensor 2 changes, the position of the light spot 7
6 changes in the arrangement direction of each region.

【0017】センサ26からの信号は信号処理部100
に入力される。信号処理部100は、被検物表面3と装
置9との距離Kが所定値K0になった時に検出信号S
を、それ以外の時は、被検物表面3が所定距離K0に対
して大きい側(K>K0)にある場合と、小さい側(K
<K0)にある場合とを識別するずれ方向信号Zとを出
力する。
The signal from the sensor 26 is sent to the signal processor 100.
Is input to The signal processing unit 100 detects the detection signal S when the distance K between the object surface 3 and the device 9 reaches a predetermined value K0.
At other times, the surface 3 of the object to be inspected is on the larger side (K> K0) with respect to the predetermined distance K0 and on the smaller side (K> K0).
A deviation direction signal Z for identifying the case of <K0) is output.

【0018】次に、信号処理部100の詳細を図1によ
って説明する。センサ26はSA、SB、SC、SDの
4つの領域で構成される。各領域からの信号a、b、
c、dは、それぞれ電流−電圧変換アンプ32a、32
b、32c、32dで増幅され、それぞれ信号A、B、
C、Dとなる。ここで、各アンプ32a〜32dの変換
定数(ゲイン定数)は等しく設定されている。加算器3
3に信号A及びBが入力され、和信号(A+B)が出力
される。減算器34に信号B及びCが入力され、差信号
(B−C)が出力される。加算器35に信号B及びCが
入力され、和信号(B+C)が出力される。加算器36
に信号C及びDが入力され、和信号(C+D)が出力さ
れる。減算器37に加算器33及び36の出力が入力さ
れ、差信号((A+B)−(C+D))が出力される。
この差信号((A+B)−(C+D))が前述のずれ方
向信号Zである。
Next, details of the signal processing unit 100 will be described with reference to FIG. The sensor 26 is composed of four areas of SA, SB, SC and SD. Signals a, b from each area
c and d are current-voltage conversion amplifiers 32a and 32, respectively.
b, 32c, and 32d are amplified, and signals A, B, and
It becomes C and D. Here, the conversion constants (gain constants) of the amplifiers 32a to 32d are set to be equal. Adder 3
Signals A and B are input to 3 and a sum signal (A + B) is output. The signals B and C are input to the subtractor 34, and the difference signal (BC) is output. The signals B and C are input to the adder 35, and the sum signal (B + C) is output. Adder 36
The signals C and D are input to and the sum signal (C + D) is output. The outputs of the adders 33 and 36 are input to the subtractor 37, and the difference signal ((A + B)-(C + D)) is output.
This difference signal ((A + B)-(C + D)) is the above-mentioned shift direction signal Z.

【0019】38は0Vを出力する基準電圧発生器、3
9は和信号(B+C)の最大値より低い所定の電圧TV
を出力する基準電圧発生器である。40は電圧比較器
で、減算器34の出力(B−C)(以下、差信号と言
う)及び基準電圧発生器38の出力(0V)を入力と
し、両者が等しい、即ちB−C=0の時に信号を出力す
る。41は電圧比較器で、加算器35の出力(B+C)
(以下、和信号と言う)及び基準電圧発生器39の出力
(TV)を入力とし、B+C>Tの時に信号を出力す
る。トリガー信号発生器43は2つの電圧比較器40、
41の出力を入力とし、両信号のアンド信号を出力す
る。つまり、B−C=0、且つB+C>Tの時にトリガ
ー信号が出力される。このトリガー信号が前述の検出信
号Sである。検出信号Sは、被検物表面3と装置29と
の距離Kの変化量を検出する位置読み取り装置40のカ
ウンタ44に入力され、検出信号Sが入力された瞬間の
カウンタ44の値が図示しないコンピュータに読み取ら
れる。。これを高さの異なる複数の面について行えば、
夫々の面に対するカウンタ44の値から各面の間隔が知
れる。
38 is a reference voltage generator for outputting 0 V, 3
9 is a predetermined voltage TV lower than the maximum value of the sum signal (B + C)
Is a reference voltage generator that outputs Reference numeral 40 denotes a voltage comparator, which receives an output (BC) of the subtractor 34 (hereinafter referred to as a difference signal) and an output (0V) of the reference voltage generator 38, and both are equal, that is, BC = 0. The signal is output at. 41 is a voltage comparator, which is the output (B + C) of the adder 35.
(Hereinafter, referred to as sum signal) and the output (TV) of the reference voltage generator 39 are input, and a signal is output when B + C> T. The trigger signal generator 43 includes two voltage comparators 40,
The output of 41 is input, and the AND signal of both signals is output. That is, the trigger signal is output when B−C = 0 and B + C> T. This trigger signal is the above-mentioned detection signal S. The detection signal S is input to the counter 44 of the position reading device 40 that detects the amount of change in the distance K between the object surface 3 and the device 29, and the value of the counter 44 at the moment when the detection signal S is input is not shown. Read by computer. . If you do this for multiple surfaces with different heights,
The interval of each surface can be known from the value of the counter 44 for each surface.

【0020】ここで、距離Kの変化に伴うセンサ26上
の光点7の位置変化による、信号A、B、C、D及び差
信号、並びに和信号の波形を図3に示す。光点7が図3
の上方から領域SAに差し掛かると信号Aは徐々に増大
し、光点7が領域SAに含まれている間(イ)、最大出
力となる。光点7が領域SAから離脱するにつれて信号
Aは徐々に減じ(ロ)、離脱すると出力は0となる
(ハ)〜(ホ)。一方、光点7は領域SAからの離脱に
つれて領域SBに進入し、信号Bが徐々に増大する
(ロ)。つまり、SA〜SDの隣接する領域の、一方か
らの信号の減少と他方からの信号の増大が同時に進行す
る。被検物表面3が装置29から所定の距離K0の位置
に来た時に、光点7が領域SB及びSCの中央にある
((ハ)の状態)ように装置29は調整される。従っ
て、被検物表面3が装置29から所定の距離K0の位置
に来た時に、B=Cとなる。
FIG. 3 shows the waveforms of the signals A, B, C, D and the difference signal and the sum signal due to the change in the position of the light spot 7 on the sensor 26 with the change in the distance K. The light spot 7 is shown in FIG.
When approaching the area SA from above, the signal A gradually increases and reaches the maximum output while the light spot 7 is included in the area SA (b). As the light spot 7 leaves the area SA, the signal A gradually decreases (b), and when it leaves, the output becomes 0 (c) to (e). On the other hand, the light spot 7 enters the area SB as it leaves the area SA, and the signal B gradually increases (B). That is, the decrease of the signal from one side and the increase of the signal from the other side of the adjacent areas SA to SD simultaneously proceed. The device 29 is adjusted so that the light spot 7 is located at the center of the areas SB and SC (state (C)) when the surface 3 to be inspected is located at a predetermined distance K0 from the device 29. Therefore, when the object surface 3 comes to the position of the predetermined distance K0 from the device 29, B = C.

【0021】差信号は、光点7が領域SAにある時は出
力0である。光点7が領域SBに差し掛かると出力が徐
々に正側に増大し、光点7が領域SCに差し掛かると減
少に転ずる(ロ)。そして、光点7が領域SBと領域S
Cの中央に来た時に、出力は0をよぎる(ハ)。その
後、出力は負側に増大して、光点7が領域SBから離脱
すると出力は減少に転ずる(ニ)。そして、光点7が領
域SDに来ると出力は0となる(ホ)。
The difference signal has an output of 0 when the light spot 7 is in the area SA. When the light spot 7 approaches the area SB, the output gradually increases to the positive side, and when the light spot 7 approaches the area SC, the output starts to decrease (B). Then, the light spot 7 is the area SB and the area S.
When it reaches the center of C, the output crosses 0 (C). After that, the output increases to the negative side, and when the light spot 7 leaves the area SB, the output starts to decrease (d). When the light spot 7 reaches the area SD, the output becomes 0 (e).

【0022】一方、和信号は、光点7が領域SAにある
時は出力0である。光点7が領域SBに差し掛かると出
力が徐々に正側に増大し、光点7が領域SBと領域SC
の中央に来た時に、出力は最大となる。その後、出力は
減少に転じ、光点7が領域SDに来ると出力は0とな
る。和信号の波形図中に基準電圧発生器39の出力Tを
記した。出力Tのレベルは、基準電圧発生器39を調整
して変えることができ、和信号に含まれるノイズレベル
よりも高く、和信号の最大値よりも低いレベルに設定さ
れる。光点7が領域SBと領域SCの中央に来た時にB
−C=0となり、トリガー信号発生器43から検出信号
Sが出力される(差信号及び和信号の波形図参照)。こ
の時、装置9は被検物表面3から所定の距離の位置にあ
る。
On the other hand, the sum signal has an output of 0 when the light spot 7 is in the area SA. When the light spot 7 approaches the area SB, the output gradually increases to the positive side, and the light spot 7 becomes the area SB and the area SC.
When it comes to the center of, the output becomes maximum. After that, the output starts to decrease, and when the light spot 7 reaches the area SD, the output becomes 0. The output T of the reference voltage generator 39 is shown in the waveform diagram of the sum signal. The level of the output T can be changed by adjusting the reference voltage generator 39, and is set to a level higher than the noise level included in the sum signal and lower than the maximum value of the sum signal. B when the light spot 7 comes to the center of the area SB and the area SC
-C = 0, and the detection signal S is output from the trigger signal generator 43 (see the waveform diagrams of the difference signal and the sum signal). At this time, the device 9 is located at a predetermined distance from the surface 3 to be inspected.

【0023】次に、裏面反射のある被検物の場合を説明
する。図4は、かかる場合の信号B、C、及び差信号並
びに和信号である。7は被検物表面3での反射光による
センサ26上の光点であり、11は被検物の裏面からの
反射光によってセンサ26上に形成された光点である。
光点7の大きさを領域SBとSCとを合わせた大きさと
ほぼ等しくしたから、裏面反射による光点11も領域S
BとSCとを合わせた大きさとほぼ等しい。従って、光
点7が領域SBとSCの中央にある時には裏面反射によ
る光点11はセンサ26の他の領域にある。裏面反射に
よる光点11が領域SBとSCの中央にある時には光点
7はセンサ26の他の領域にある。
Next, the case of an object having a back surface reflection will be described. FIG. 4 shows the signals B and C, the difference signal, and the sum signal in such a case. Reference numeral 7 denotes a light spot on the sensor 26 due to the reflected light on the surface 3 of the test object, and 11 denotes a light spot formed on the sensor 26 by the reflected light from the back surface of the test object.
Since the size of the light spot 7 is made substantially equal to the combined size of the areas SB and SC, the light spot 11 due to the back surface reflection also has the area S.
It is almost equal to the combined size of B and SC. Therefore, when the light spot 7 is in the center of the areas SB and SC, the light spot 11 due to the back surface reflection is in the other area of the sensor 26. When the light spot 11 due to back surface reflection is in the center of the areas SB and SC, the light spot 7 is in the other area of the sensor 26.

【0024】信号B及びCは図3の波形に裏面反射光に
よる光点11による波形が重畳したものとなる(図4参
照)。光点11は光点7とずれているので、裏面反射に
よる波形のピークは図3の波形のピークと位置がずれ
る。又、裏面反射光は一般に表面反射光よりも弱いの
で、それに起因する波形のピークは表面反射による波形
のピークよりも小さい。駆動装置8を駆動して、一旦、
被検物表面3と装置9との距離を所定の距離以上とした
後に両者の距離を近づけて行き、差信号が最初に正から
負に転ずる(0を過ぎる)時(図4のイ)が被検物表面
3が所定位置に来た時であり、2番目に正から負に転ず
る(0を過ぎる)時(図4のロ)が被検物裏面が所定位
置に来た時である。
The signals B and C are obtained by superimposing the waveform of the light spot 11 due to the back surface reflected light on the waveform of FIG. 3 (see FIG. 4). Since the light spot 11 is deviated from the light spot 7, the position of the peak of the waveform due to the back surface reflection deviates from that of the waveform of FIG. Further, since the back surface reflected light is generally weaker than the front surface reflected light, the peak of the waveform due to it is smaller than the peak of the waveform due to the front surface reflection. Drive the driving device 8 and
When the distance between the surface 3 to be inspected and the device 9 is set to a predetermined distance or more and then the two are brought close to each other, and the difference signal first turns from positive to negative (passes 0) (a in FIG. 4). The front surface 3 of the object to be inspected comes to a predetermined position, and the second time it turns from positive to negative (passes 0) (B in FIG. 4) is the time to bring the back surface of the object to come to a predetermined position.

【0025】そこで、透明な被検物の表面の位置を検出
するには、トリガー信号発生器43が出力する最初の検
出信号Sによって位置読み取り装置40のカウンタ44
の値がコンピュータ(不図示)に読み取られ、その後駆
動装置8は減速・停止する。最初の検出信号Sの出力
後、停止するまでの被検物表面3と装置9との距離の変
化量が透明な被検物の厚さより大きいと、被検物裏面が
検出され第2の検出信号がトリガー信号発生器43から
出力される。この第2の検出信号によって前記コンピュ
ータに読み込まれたカウンタ44の値は無効な値として
棄却する。かくして、透明な被検物の表面の位置を、裏
面反射の影響を受けることなく高精度に求めることがで
きる。
Therefore, in order to detect the position of the transparent surface of the object, the counter 44 of the position reading device 40 is operated by the first detection signal S output from the trigger signal generator 43.
Is read by a computer (not shown), and then the drive device 8 decelerates and stops. After the output of the first detection signal S, when the change amount of the distance between the object surface 3 and the device 9 before the stop is larger than the thickness of the transparent object, the back surface of the object is detected and the second detection is performed. A signal is output from the trigger signal generator 43. The value of the counter 44 read by the computer by the second detection signal is rejected as an invalid value. Thus, the position of the transparent front surface of the test object can be obtained with high accuracy without being affected by the back surface reflection.

【0026】前記コンピュータによるデータ処理方法を
変更して、最初の検出信号によって読み込んだカウンタ
44の値を棄却し、第2の検出信号によって読み込んだ
カウンタ44の値を有効とすれば、透明な被検物の裏面
に位置を求められる。尚、高精度の測定値を得る為に、
前記の被検物表面3と装置9と近づける時の速度は一定
速度(速度変動がない)であること、及び両者を一旦離
した時の所定の距離は、前記一定速度を得る為に必要な
最小限の距離(停止状態からの加速領域を含む)である
ことが好ましい。
If the data processing method by the computer is changed so that the value of the counter 44 read by the first detection signal is rejected and the value of the counter 44 read by the second detection signal is made effective, the transparent object is transparent. The position is required on the back of the specimen. In order to obtain highly accurate measurement values,
The speed at which the surface 3 of the object to be inspected and the device 9 are brought close to each other is a constant speed (there is no speed fluctuation), and a predetermined distance when the two are once separated is necessary for obtaining the constant speed. The minimum distance (including the acceleration region from the stopped state) is preferable.

【0027】又、基準電圧発生器39を調整してその出
力Tを和信号の裏面反射による山よりも高く、表面反射
による山よりも低いT1とすれば、裏面反射に対応する
検出信号Sは出力されず、表面反射による検出信号Sの
みが検出される。これは、前述した検出すべき面の幅が
狭く、光点4の検出すべき面からはみ出した部分の光
が、検出面以外の面で反射されてセンサ26上に集光さ
れて外乱信号となる場合のように、外乱信号が真の信号
の前側に来るか後側に来るか不明である場合に、特に有
効である。
If the reference voltage generator 39 is adjusted so that its output T is higher than the peak due to the back surface reflection of the sum signal and lower than the peak due to the front surface reflection, the detection signal S corresponding to the back surface reflection is obtained. Only the detection signal S due to surface reflection is detected without being output. This is because the width of the surface to be detected is narrow, and the light of the portion of the light spot 4 protruding from the surface to be detected is reflected by a surface other than the detection surface and is condensed on the sensor 26 to generate a disturbance signal. It is particularly effective when it is unknown whether the disturbance signal comes before or after the true signal.

【0028】次に、ずれ方向信号Zを用いた位置決めに
ついて説明する。図2において、光源1、投光光学系
2、受光光学系5及びセンサ26を備える面位置検出装
置29は、装置29と被検物表面3との距離Kを変化さ
せる駆動装置8、及び距離Kの変化量を検出する位置読
み取り装置10を備えている。前記ずれ方向信号Zを駆
動装置8の駆動回路42に入力して駆動装置8を駆動
し、装置29を被検物表面3から所定の距離(K=K
0)の位置に位置決めすることができる。
Next, the positioning using the shift direction signal Z will be described. In FIG. 2, a surface position detecting device 29 including a light source 1, a light projecting optical system 2, a light receiving optical system 5, and a sensor 26 includes a drive device 8 for changing a distance K between the device 29 and the surface 3 of the object to be inspected, and a distance. A position reading device 10 for detecting the amount of change in K is provided. The displacement direction signal Z is input to the drive circuit 42 of the drive device 8 to drive the drive device 8 to move the device 29 from the object surface 3 at a predetermined distance (K = K).
It can be positioned at the position 0).

【0029】図3を参照して、減算器37の出力((A
+B)−(C+D))、即ちずれ方向信号Zの波形は、
光点7が領域SAにある時には正の出力であり(イ)、
光点7が領域SBに差し掛かっても出力は変化しない
(ロ)。そして、光点7が領域SCに差し掛かると出力
は減少し、光点7が領域SBと領域SCの中央に来た時
に出力は0を過ぎる(ハ)。その後、出力は、光点7が
領域SBから離脱するまで負側に増大し(ニ)、その後
は負の一定値となる(ホ)。
Referring to FIG. 3, the output ((A
+ B)-(C + D)), that is, the waveform of the displacement direction signal Z is
When the light spot 7 is in the area SA, the output is positive (a),
The output does not change even when the light spot 7 approaches the area SB (b). Then, when the light spot 7 approaches the area SC, the output decreases, and when the light spot 7 comes to the center of the areas SB and SC, the output passes 0 (c). After that, the output increases to the negative side until the light spot 7 leaves the area SB (d), and then becomes a constant negative value (e).

【0030】従って、このずれ方向信号Zによって、被
検物表面3が所定の位置(K=K0)に対して、遠い側
(K>K0)にあるか、近い側(K<K0)にあるかを
識別できる。そして、この信号を距離Kを変化させる駆
動装置8の駆動回路42に入力してずれ方向信号Zの大
きさに比例した速度で駆動装置8を駆動して、被検物表
面3を所定に位置(K=K0)に位置決めすることがで
きる。検出信号Sの生成に用いる領域SB及びSCの外
側の領域SA及びSDからの信号をも使用しているの
で、従来装置より広い範囲でずれ方向信号が得られ、応
答範囲が広くなっている。
Therefore, according to the displacement direction signal Z, the surface 3 of the object to be inspected is on the far side (K> K0) or the near side (K <K0) with respect to the predetermined position (K = K0). Can be identified. Then, this signal is input to the drive circuit 42 of the drive device 8 that changes the distance K, and the drive device 8 is driven at a speed proportional to the magnitude of the displacement direction signal Z to position the object surface 3 at a predetermined position. It can be positioned at (K = K0). Since the signals from the areas SA and SD outside the areas SB and SC used to generate the detection signal S are also used, the shift direction signal can be obtained in a wider range than in the conventional device, and the response range is widened.

【0031】センサ26を図5に示すように領域SB及
びSCの外側に夫々複数の領域を有するものとし、例え
ば領域SBの外側に連続する領域からの信号の和信号を
図2のアンプ32aに、領域SCの外側に連続する領域
からの信号の和信号を図2のアンプ32dに入力するよ
うにすると、更に広い応答範囲が得られる。信号処理の
方法は、これ以外の種々の方法とすることができる。こ
の装置は、面の位置決め以外の目的、例えば各領域から
の信号を夫々別の表示装置に接続して、面の位置のずれ
量の目安表示に用いることもできる。領域SB及びSC
の外側の領域が、連続する領域であることは、不感帯を
生じない為に必要である。更に、センサ26の領域SA
及びSDを、被検物表面3と装置9との距離Kの変化に
伴う光点7の移動方向に長い形状とすれば、センサを構
成する領域数が少なくても広い応答範囲が得られ、且つ
処理する信号の数が少なくて済むので信号処理回路が簡
単にできる。
As shown in FIG. 5, the sensor 26 has a plurality of regions outside the regions SB and SC, and the sum signal of signals from the regions continuous outside the region SB is output to the amplifier 32a in FIG. , A wider response range can be obtained by inputting the sum signal of the signals continuous from the area SC to the amplifier 32d in FIG. The signal processing method may be various other methods. This device can also be used for purposes other than surface positioning, for example, by connecting signals from respective areas to different display devices and displaying a standard deviation of the position of the surface. Area SB and SC
It is necessary that the area outside the area be a continuous area in order to prevent a dead zone. Further, the area SA of the sensor 26
And SD are long in the moving direction of the light spot 7 according to the change in the distance K between the object surface 3 and the device 9, a wide response range can be obtained even if the number of regions forming the sensor is small. Moreover, since the number of signals to be processed is small, the signal processing circuit can be simplified.

【0032】図6は、図2のアンプ32a〜32dによ
る変換定数(ゲイン定数)na、nb、nc、ndを、
na=nd、nb=nc、na>nbとした場合の信号
a〜d、信号A〜D及びずれ方向信号Zを模式的に示し
たものである。信号A、Dは信号B、Cよりも大きく、
その結果、ずれ方向信号Z=((na×a+nb×b)
−(nc×c+nd×d))は、面の所定位置からのず
れが大きいほど大きい信号となる。その結果、駆動装置
8は、被測定物表面の所定位置からのずれが大きいほど
より高速で駆動される。検出信号Sの生成に用いる領域
SB及びSCの外側に、夫々複数の領域を設けた場合に
は、夫々の領域に接続されるアンプを設け、領域SB及
びSCからの距離が大きい領域ほどアンプの変換定数を
大きく設定すると、装置29と被測定物表面3との距離
が所定の距離から離れる程、装置29は高速で駆動され
ることとなる。その結果、装置29の位置決め時間が短
縮される。
FIG. 6 shows conversion constants (gain constants) na, nb, nc and nd by the amplifiers 32a to 32d of FIG.
3 schematically shows signals a to d, signals A to D, and displacement direction signal Z when na = nd, nb = nc, and na> nb. Signals A and D are larger than signals B and C,
As a result, the deviation direction signal Z = ((na × a + nb × b)
-(Nc * c + nd * d)) becomes a larger signal as the deviation of the surface from the predetermined position is larger. As a result, the drive device 8 is driven at a higher speed as the deviation of the surface of the object to be measured from the predetermined position is larger. When a plurality of regions are provided outside the regions SB and SC used to generate the detection signal S, amplifiers connected to the respective regions are provided, and the larger the distance from the regions SB and SC is, the more amplifiers are connected. When the conversion constant is set to a large value, the device 29 is driven at a higher speed as the distance between the device 29 and the surface 3 of the object to be measured is farther from the predetermined distance. As a result, the positioning time of the device 29 is reduced.

【0033】次に、この装置の調整方法を図9によって
説明する。各領域SA、SB、SC、SDの出力A、
B、C、Dは図示しない計測器に入力し、(B−C)、
(B+C)及び(A+D)を観測する。そして、光点7
が受光素子6の領域SB、SCの中央部に来るように予
備調整した後、以下の工程によって調整する。 前記受光素子6を領域SA〜SDの配列方向(x方
向)に移動して、(B−C)を“0”にする。この調整
によって、光点7は領域SA〜SDの配列方向(x方
向)において、領域SBとSCの中央に位置する(図9
(a))。
Next, a method of adjusting this device will be described with reference to FIG. Output A of each area SA, SB, SC, SD,
B, C and D are input to a measuring instrument (not shown), (BC),
Observe (B + C) and (A + D). And the light spot 7
Is preliminarily adjusted so as to come to the central portions of the areas SB and SC of the light receiving element 6, and then adjusted by the following steps. The light receiving element 6 is moved in the array direction (x direction) of the areas SA to SD to set (BC) to "0". By this adjustment, the light spot 7 is located at the center of the areas SB and SC in the arrangement direction (x direction) of the areas SA to SD (FIG. 9).
(A)).

【0034】前記受光素子6を領域SA〜SDの配列
方向の直角方向(y方向)に移動して、(B+C)を
“最大”にする。この調整によって、光点7は領域SA
〜SDの配列方向の直角方向(y方向)において、領域
SBとSCの幅の中央に位置する(図9(b))。 前記受光素子を光軸方向(z方向)に移動して、(A
+D)を“最小”にする。ここで言う“最小”にすると
は、“0”ではないが極力小さくすること、又は(A+
D)が小さくなる方向に調整して行き、(A+D)が
“0”になる時の位置にすることである。この調整によ
って、光点7は領域SB及びSCを合わせた大きさとほ
ぼ同じ大きさになる(図9(c))。
The light-receiving element 6 is moved in the direction (y direction) perpendicular to the array direction of the areas SA to SD to make (B + C) "maximum". By this adjustment, the light spot 7 becomes the area SA.
It is located at the center of the width of the regions SB and SC in the direction (y direction) perpendicular to the array direction of SD (FIG. 9B). By moving the light receiving element in the optical axis direction (z direction), (A
+ D) to "minimum". Here, "minimum" means not being "0" but being as small as possible, or (A +
D) is adjusted so that (A + D) becomes "0". By this adjustment, the light spot 7 has almost the same size as the combined size of the areas SB and SC (FIG. 9C).

【0035】上記調整方法は図2の装置に限定されるも
のではなく、隣接する2つの光電変換領域の両外側に夫
々1つ以上の光電変換領域を設けた受光素子を用いて、
例えばレーザースポット位置検出装置のような、光点の
位置を検出する装置全般に適用できる。
The above adjusting method is not limited to the apparatus shown in FIG. 2, and a light receiving element having one or more photoelectric conversion regions provided on both outsides of two adjacent photoelectric conversion regions is used.
For example, it can be applied to all devices that detect the position of a light spot, such as a laser spot position detection device.

【0036】[0036]

【発明の効果】請求項1に記載の発明では、位置決め応
答範囲が広くとれると共に、裏面反射のある透明体の被
検物や検出すべき面の幅が狭い被検物でも、裏面反射や
検出すべき面以外からの反射光の影響を受けず、正確に
面位置を検出できる。請求項2に記載の発明では、更
に、面のずれの大きさに応じた速度で装置が駆動される
ので、位置決め時間が短縮される。
According to the first aspect of the present invention, the positioning response range can be widened, and the back surface reflection and the detection can be performed even on the transparent object having the back surface reflection or the object having the narrow width of the surface to be detected. The surface position can be accurately detected without being affected by the reflected light from other than the surface to be processed. According to the invention described in claim 2, the apparatus is driven at a speed according to the magnitude of the surface deviation, so that the positioning time can be shortened.

【0037】請求項3に記載の発明では、更に、裏面反
射光の影響をより受け難くなると共に、構成する領域数
が少ないセンサで広い応答範囲を得られる。その結果、
センサの制作が容易で、信号処理回路も簡単に、安価に
できる。請求項4に記載の本発明の方法によれば、光点
の位置が最も感度良く検出できる状態に、容易に装置を
調整できる。
According to the third aspect of the present invention, further, it is possible to obtain a wide response range with a sensor that is less susceptible to the back surface reflected light and has a small number of regions. as a result,
The sensor is easy to manufacture, and the signal processing circuit is simple and inexpensive. According to the method of the present invention described in claim 4, the device can be easily adjusted to a state in which the position of the light spot can be detected with the highest sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1の装置の信号処理のブロック図。1 is a block diagram of signal processing of the apparatus of FIG.

【図2】本発明の1実施形態の原理説明図。FIG. 2 is an explanatory view of the principle of one embodiment of the present invention.

【図3】 図1の装置の信号波形説明図。3 is an explanatory diagram of signal waveforms of the apparatus of FIG.

【図4】裏面反射のある場合の信号波形説明図。FIG. 4 is an explanatory diagram of a signal waveform when there is back reflection.

【図5】本発明の変形例に用いるセンサの説明図。FIG. 5 is an explanatory diagram of a sensor used in a modified example of the present invention.

【図6】アンプの変換定数に重み付けをした場合の信号
波形説明図。
FIG. 6 is an explanatory diagram of a signal waveform when the conversion constant of the amplifier is weighted.

【図7】 従来装置の原理説明図。FIG. 7 is an explanatory diagram of the principle of a conventional device.

【図8】図7の装置のセンサの説明図。FIG. 8 is an explanatory diagram of a sensor of the apparatus of FIG.

【図9】本発明の装置の調整方法の説明図。FIG. 9 is an explanatory view of a method for adjusting the device of the present invention.

【図10】別の従来装置の一部破断斜視図。FIG. 10 is a partially cutaway perspective view of another conventional device.

【符号の説明】[Explanation of symbols]

1…………光源 3…………被検物表面 4…………被検物上に投射された光点 7…………光点像 8…………駆動装置 10………位置読み取り装置 11………裏面反射による光点像 26………センサ(受光素子) 29………面位置検出装置 32a〜32d……アンプ(増幅器) 100……信号処理装置 SA、SB、SC、SD……センサ26を構成する領域 1 ………… light source 3 ………… the surface of the object to be inspected 4 ………… the light spot projected on the object to be inspected 7 ………… the image of the light spot 8 ………… the drive 10 ……… position Reading device 11 ... Light spot image due to back surface reflection 26 ... Sensor (light receiving element) 29 ... Surface position detection device 32a to 32d ... Amplifier (amplifier) 100 ... Signal processing device SA, SB, SC, SD: Area forming the sensor 26

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源の光を被検物表面に投射する投光部
と、前記投射された光の被検物表面による反射光を受光
して、被検物と面位置検出装置との距離変化に応じて受
光部の受光素子の面上を変位する前記反射光の位置を検
知して、前記位置に応じた信号を出力する受光部とを備
える面位置検出装置において、 前記受光素子を、直線状に配置された、少なくとも4つ
の領域で構成し、前記受光素子の最も外側の領域を含ま
ない、2つの隣接した領域からの信号によって面位置が
所定位置にあることを検出する検出信号を生成すると共
に、前記2つの隣接する領域からの信号、及びその外側
に連続する、夫々1つ以上の領域からの信号とによっ
て、面位置の基準位置に対するずれ方向を表す、ずれ方
向信号を生成する信号処理部を備えたことを特徴とする
面位置検出装置。
1. A distance between a test object and a surface position detecting device, which receives a light projecting section for projecting light from a light source onto the test object surface and reflected light of the projected light from the test object surface. In a surface position detection device including a light receiving unit that detects a position of the reflected light that is displaced on the surface of the light receiving unit of the light receiving unit according to a change, and outputs a signal according to the position, the light receiving unit is A detection signal for detecting that the surface position is at a predetermined position is formed by signals from two adjacent regions which are linearly arranged and include at least four regions and which do not include the outermost region of the light receiving element. In addition to the generation, the displacement direction signal that represents the displacement direction of the surface position with respect to the reference position is generated by the signals from the two adjacent regions and the signals continuous from the two adjacent regions from each one or more regions. Having a signal processor Surface position detecting apparatus according to symptoms.
【請求項2】 光源の光を被検物表面に投射する投光部
と、前記投射された光の被検物表面による反射光を受光
して、被検物と面位置検出装置との距離変化に応じて受
光部の受光素子の面上を変位する前記反射光の位置を検
知して、前記位置に応じた信号を出力する受光部とを備
える面位置検出装置において、 前記受光素子を、直線状に配置された、少なくとも4つ
の領域で構成し、前記受光素子の最も外側の領域を含ま
ない、2つの隣接した領域からの信号、及びその外側に
連続する、夫々1つ以上の領域からの信号とによって、
面位置の基準位置に対するずれ方向を表す、ずれ方向信
号を生成する信号処理部を備え、前記信号処理部に前記
各領域からの信号を増幅して前記信号処理部の後段に出
力する増幅器を設けると共に、該各増幅器の増幅率を前
記2つの隣接する領域から離れる程大きな増幅率となる
ように調整し、前記ずれ方向信号が面位置の基準位置に
対するずれの大きさに応じて変化するようになしたこと
を特徴とする面位置検出装置。
2. A distance between a test object and a surface position detecting device, which receives a light projecting portion for projecting light from a light source onto the surface of the test object and light reflected by the surface of the test object of the projected light. In a surface position detection device including a light receiving unit that detects a position of the reflected light that is displaced on the surface of the light receiving unit of the light receiving unit according to a change, and outputs a signal according to the position, the light receiving unit is Signals from two adjacent regions, which are linearly arranged and include at least four regions and do not include the outermost region of the light-receiving element, and one or more regions each continuous to the outside thereof. And the signal of
A signal processing unit that generates a displacement direction signal that represents a displacement direction of the surface position with respect to the reference position is provided, and the signal processing unit is provided with an amplifier that amplifies the signal from each of the regions and outputs the signal to the subsequent stage of the signal processing unit. At the same time, the amplification factor of each of the amplifiers is adjusted so that the amplification factor increases as the distance from the two adjacent regions increases, and the displacement direction signal changes in accordance with the displacement amount of the surface position with respect to the reference position. A surface position detection device characterized by what is done.
【請求項3】 請求項1〜請求項2のいずれかに記載の
装置において、 前記受光素子は、前記受光素子上の光点の大きさにほぼ
等しい、前記2つの隣接する領域と、領域の配列方向を
長手とする領域とを含むことを特徴とする面位置検出装
置。
3. The device according to claim 1, wherein the light receiving element has two adjacent areas that are substantially equal to the size of a light spot on the light receiving element. A surface position detecting device including a region having a longitudinal direction in the arrangement direction.
【請求項4】 隣接する2つの光電変換領域からなる受
光素子を有し、前記受光素子からの信号を処理して、前
記受光素子上に形成された光点が所定の位置にあること
を検出する光点位置検出装置において、前記受光素子の
前記領域の両外側に隣接して、夫々1つ以上の光電変換
領域を設けて、以下の工程を含んで調整することを特徴
とする光点位置検出装置の調整方法。 前記受光素子又は前記光点を前記領域の配列方向に移
動して、前記受光素子の最も外側の領域を含まない、2
つの隣接する領域からの信号の差を“0”にする工程。 前記受光素子又は前記光点を前記配列方向の直角方向
に移動して、前記2つの隣接する領域からの信号の和を
“最大”にする工程。 前記受光素子を光軸方向に移動して、又は前記光点の
大きさを調節して前記2つの隣接する領域の両外側に隣
接する2つの領域を含む、前記2つの隣接する領域以外
からの信号の和を“最小”にする工程。
4. A light-receiving element having two adjacent photoelectric conversion regions, wherein a signal from the light-receiving element is processed to detect that a light spot formed on the light-receiving element is at a predetermined position. In the light spot position detecting device, one or more photoelectric conversion regions are provided adjacent to both outer sides of the region of the light receiving element, and the light spot position is adjusted by the following steps. Adjustment method of detection device. The light receiving element or the light spot is moved in the array direction of the area, and the outermost area of the light receiving element is not included.
The step of setting the difference between signals from two adjacent areas to "0". Moving the light receiving elements or the light spots in a direction perpendicular to the arrangement direction to maximize the sum of signals from the two adjacent regions. The light receiving element is moved in the optical axis direction or the size of the light spot is adjusted to include two regions adjacent to both outer sides of the two adjacent regions. The process of "minimizing" the sum of signals.
JP8019867A 1996-02-06 1996-02-06 Surface position detection device Pending JPH09210620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8019867A JPH09210620A (en) 1996-02-06 1996-02-06 Surface position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8019867A JPH09210620A (en) 1996-02-06 1996-02-06 Surface position detection device

Publications (1)

Publication Number Publication Date
JPH09210620A true JPH09210620A (en) 1997-08-12

Family

ID=12011181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8019867A Pending JPH09210620A (en) 1996-02-06 1996-02-06 Surface position detection device

Country Status (1)

Country Link
JP (1) JPH09210620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309532A (en) * 2007-06-13 2008-12-25 Lasertec Corp Three-dimensional measuring apparatus and inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309532A (en) * 2007-06-13 2008-12-25 Lasertec Corp Three-dimensional measuring apparatus and inspection apparatus

Similar Documents

Publication Publication Date Title
JP3614741B2 (en) Defect detection optical system and the surface defect inspection apparatus
KR101085014B1 (en) Optical surface measuring apparatus and method
JPH04319615A (en) Optical height measuring apparatus
US5202740A (en) Method of and device for determining the position of a surface
JP3162364B2 (en) Optical sensor device
JPH09210620A (en) Surface position detection device
JPH0226164B2 (en)
JP2003097924A (en) Shape measuring system and method using the same
JPH056643B2 (en)
JPS61240103A (en) Optical minute displacement meter
JPS61223604A (en) Gap measuring instrument
JPH05231848A (en) Optical displacement sensor
JPH0471453B2 (en)
JPH074909A (en) Laser sensor apparatus
JP2517406B2 (en) T-plane shape measuring device
JP2002236003A (en) Apparatus of measuring very small height
JPH0648399Y2 (en) Non-contact micro surface abnormality detector
JPH06109435A (en) Surface displacement meter
JPS63222207A (en) Apparatus for measuring depth of recessed part and thickness of film
JPH0357914A (en) Optical probe
KR880004297Y1 (en) Optical sensor for focusing control
JPH0518747A (en) Optical axis adjusting method
JPH02226034A (en) Eccentricity measuring apparatus for lens
JPS63193004A (en) Visual inspection apparatus
JPH0458884B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511