JPH09210055A - Cylindrical roller bearing - Google Patents

Cylindrical roller bearing

Info

Publication number
JPH09210055A
JPH09210055A JP8016203A JP1620396A JPH09210055A JP H09210055 A JPH09210055 A JP H09210055A JP 8016203 A JP8016203 A JP 8016203A JP 1620396 A JP1620396 A JP 1620396A JP H09210055 A JPH09210055 A JP H09210055A
Authority
JP
Japan
Prior art keywords
roller
preload
inner ring
outer ring
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8016203A
Other languages
Japanese (ja)
Inventor
Hirotoshi Aramaki
宏敏 荒牧
Yukio Sato
幸夫 佐藤
Ichita Horiuchi
一太 堀内
Hideo Fujiwara
英雄 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP8016203A priority Critical patent/JPH09210055A/en
Publication of JPH09210055A publication Critical patent/JPH09210055A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical roller bearing which suppresses revolution slide of a roller by giving the minimum required axial pre-load properly without relying on trial and error. SOLUTION: Axial load Fa having the following relationship is given to a roller 3 of a radial cylindrical roller bearing through a collar 5 to suppress slide between the roller 3 and races (outer ring 1, inner ring 2). Fc.Z/Fa<= 0.70 in the case of pre-load between an inner ring collar and an outer ring collar, and Fc.Z/Fa<=1.0 in the case of pre-load between the inner ring collar or the outer ring collar, wherein Fc is revolution centrifugal force of the roller, m is mass of the roller, dm is diameter of roller pitch circle, and Wt is roller revolution angle speed, and Fc has the relationship, Fc=m.1/2.dm.Wt<2> . Z is the number of rollers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、円筒ころ軸受の改
良に関し、特に、ころの公転滑りに起因する軌道面の損
傷の防止を図ったものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a cylindrical roller bearing, and more particularly, to prevent damage to a raceway surface due to revolving sliding of rollers.

【0002】[0002]

【従来の技術】従来、円筒ころ軸受は低荷重から高荷重
までに及びいろいろな条件で幅広く使用されている。し
かして、最近は転がり軸受の高速化が進んでおり、それ
に伴う摩耗現象や損傷が新たな問題になりはじめてい
る。特に、例えばジェットエンジンやガスタービンエン
ジンの主軸のように、高速回転,低荷重の条件下に使用
される円筒ころ軸受の場合、ころと内輪(内輪回転にお
いて)又は外輪(外輪回転において)との間の回転駆動
力が十分に与えられず、ころの転がり抗力に打ち勝てな
くなって軌道輪ところとの表面速度に差を生じて互いに
滑りはじめる危険を伴う。こうした大きな滑りが発生す
ると、当該軌道輪の軌道面に、スキッディング損傷と呼
ばれるところの白色変質層を伴う損傷或いはスミアリン
グと呼ばれる熱損傷を招くおそれがある。一般に、スミ
アリングは鉄鋼関連で使用されるような大型あるいは超
大型軸受の場合にしょうじ易い。
2. Description of the Related Art Conventionally, cylindrical roller bearings have been widely used under various conditions from low load to high load. Recently, however, the speed of rolling bearings has been increasing, and the wear phenomenon and damage accompanying it have become new problems. In particular, in the case of a cylindrical roller bearing used under conditions of high speed rotation and low load, such as a main shaft of a jet engine or a gas turbine engine, a roller and an inner ring (in inner ring rotation) or an outer ring (outer ring rotation) The rotation driving force between the rollers is not sufficiently applied, and the rolling resistance of the rollers cannot be overcome. When such a large slip occurs, there is a possibility that the raceway surface of the bearing ring may be damaged with a white alteration layer, which is called skidding damage, or thermal damage, which is called smearing. In general, smearing is easy on large or very large bearings such as those used in steel.

【0003】そこで、このようなころの公転滑りを抑え
るために、円筒ころ軸受のつばを介してアキシアル予圧
を円筒ころ軸受に付与することが従来から行われてい
る。
Therefore, in order to suppress such orbital slip of the roller, it has been conventionally practiced to apply an axial preload to the cylindrical roller bearing via the flange of the cylindrical roller bearing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、スキッ
ディング損傷あるいはスミアリング損傷の発生条件や発
生機構については未だ殆ど明らかにされていないことか
ら、つばを介してアキシアル予圧を付与するにしても、
その適切な値がわからず、試行錯誤を繰り返さなければ
ならなかった。
However, since the conditions and mechanism of occurrence of skidding damage or smearing damage have not been clarified yet, even if axial preload is applied through the collar,
I didn't know the proper value, so I had to repeat trial and error.

【0005】本発明は、そのような試行錯誤を繰り返す
ことなく、必要最小限のアキシアル予圧を適切に付与し
うる円筒ころ軸受を提供するものである。
The present invention provides a cylindrical roller bearing which can appropriately apply a minimum required axial preload without repeating such trial and error.

【0006】[0006]

【課題を解決するための手段】本発明に係る円筒ころ軸
受は、ラジアル円筒ころ軸受のころに、次の関係を有す
るアキシアル荷重Faを、つばを介して与えてころと軌
道輪間の滑りを抑制したものである。 内輪つば及び外輪つば間予圧の場合は、Fc・Z/Fa
≦0.70 内輪つば又は外輪つば間予圧の場合は、Fc・Z/Fa
≦1.0 ここに、Fcはころの公転遠心力で、ころ質量m,ころ
ピッチ円直径dm,ころ公転角速度ωc との間にFc=
m・1/2 ・dm・ωc 2 の関係を有する。
In the cylindrical roller bearing according to the present invention, an axial load Fa having the following relationship is applied to the roller of the radial cylindrical roller bearing through a collar to cause a slip between the roller and the bearing ring. It was suppressed. In case of preload between inner ring collar and outer ring collar, Fc · Z / Fa
≦ 0.70 Fc · Z / Fa for inner ring collar or outer ring collar preload
≦ 1.0 where Fc is the revolving centrifugal force of the roller, and Fc = between the roller mass m, the roller pitch circle diameter dm, and the roller revolution angular velocity ω c.
It has a relationship of m · 1/2 · dm · ω c 2 .

【0007】Zは、ころ数である。本発明に係る円筒こ
ろ軸受によれば、円筒ころ軸受の回転速度に応じて適切
なアキシアル荷重を予め求め、つばを介してころを予圧
するので、必要最小限のアキシアル予圧を円筒ころ軸受
に与えることが可能である。そのため、高速回転,低荷
重の使用条件においても滑りを抑制し、ひいてはスキッ
ディングやスミアリング等の損傷を未然に防ぐことがで
きる。
Z is the number of rollers. According to the cylindrical roller bearing of the present invention, an appropriate axial load is determined in advance in accordance with the rotational speed of the cylindrical roller bearing, and the roller is preloaded via the collar. Therefore, a minimum required axial preload is applied to the cylindrical roller bearing. It is possible. Therefore, it is possible to suppress slipping even under use conditions of high speed rotation and low load, and eventually prevent damage such as skidding and smearing.

【0008】[0008]

【発明の実施の形態】以下に、本発明の実施形態を図面
を参照して説明する。図1は円筒ころ軸受の断面図,図
2はそのII矢視で示す部分図で、図中、1は外輪、2は
つば付内輪、3はころ、4は保持器である。上述のよう
に、円筒ころ軸受のスキッディング損傷やスミアリング
損傷などの滑りに起因する損傷(以下、滑り損傷とい
う)は、殆どの場合、ころ3の公転滑りを伴う。通常、
ころ3は公転しながら保持器4を押し、その押す力によ
って保持器4がころ3の公転に同期して回転する。しか
るに、ころ3が公転滑りを生じると、保持器4の回転数
が幾何学的な回転数からずれる。ころ3が保持器4を押
す力が内輪回転の場合のように小さくなると保持器の回
転数は遅れ、逆に外輪回転の場合のように大きくなると
保持器の回転数は速くなる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a cylindrical roller bearing, and FIG. 2 is a partial view thereof as viewed from the arrow II, in which 1 is an outer ring, 2 is a collared inner ring, 3 is a roller, and 4 is a cage. As described above, in most cases, damage caused by sliding such as skidding damage and smearing damage of the cylindrical roller bearing (hereinafter referred to as sliding damage) is accompanied by the revolution slip of the roller 3. Normal,
The roller 3 pushes the cage 4 while revolving, and the pushing force causes the cage 4 to rotate in synchronization with the revolution of the roller 3. However, when the rollers 3 revolve, the rotational speed of the cage 4 deviates from the geometrical rotational speed. When the roller 3 pushes the retainer 4 with a smaller force as in the case of inner ring rotation, the number of revolutions of the retainer is delayed.

【0009】図3は、外輪回転の場合の、負荷圏内のこ
ろ3,保持器4にかかる力の様子を示している。図3の
記号中、Fcaはころ3が保持器4を押す力、Fsoはころ
3が外輪1の軌道面から受ける(ころ〜外輪軌道面間)
滑り摩擦力、Fsiはころ3が内輪2の軌道面から受ける
(ころ〜内輪軌道面間)滑り摩擦力、Fd は潤滑剤によ
る回転抵抗(ドラッグ力)を表す。
FIG. 3 shows the state of the force applied to the rollers 3 and the cage 4 in the load range when the outer ring rotates. In the symbols in FIG. 3, F ca is the force with which the roller 3 pushes the cage 4, and F so is the roller 3 receives from the raceway of the outer ring 1 (between the roller and the outer ring raceway).
The sliding frictional force, F si represents the sliding frictional force that the roller 3 receives from the raceway surface of the inner ring 2 (between the roller and the inner ring raceway surface), and F d represents the rotational resistance (drag force) by the lubricant.

【0010】ころの円周方向の力の釣り合いの関係から
次式(1)が成り立つ。 Fca=Fso−Fsi+Fd ……(1) すなわち、ころ3が保持器4を押す力Fcaは、内・外輪
(軌道輪)との滑り摩擦及び潤滑剤の抵抗によって決ま
る。次に、前記同様のことを、非負荷圏ころについて考
察する。
The following equation (1) is established from the relationship of the balance of the forces in the circumferential direction of the rollers. F ca = F so −F si + F d (1) That is, the force F ca that the roller 3 pushes the cage 4 is determined by the sliding friction between the inner and outer rings (race rings) and the resistance of the lubricant. Next, the same thing as above will be considered for the non-loaded zone.

【0011】非負荷圏ではころ3と内輪2とは接触しな
いため、ころ〜内輪軌道面間滑り摩擦力Fsiは零であ
り、したがってころ3が保持器4を押す力Fcaは、 Fca=Fso+Fd ……(2) となる。すなわち、全ての非負荷圏ころは保持器4を押
して、保持器回転数を上げようとする。軸受に加わる荷
重が小さくなるにつれて非負荷圏ころの数が増し、その
結果保持器4の回転数は上がっていく(但し外輪回転の
場合についてであり、内輪回転の場合には逆になる)。
Since the roller 3 and the inner ring 2 do not come into contact with each other in the non-loaded area, the sliding frictional force F si between the roller and the inner ring raceway surface is zero, so the force F ca that the roller 3 pushes the cage 4 is F ca. = F so + F d (2) That is, all the non-loaded zones rollers push the cage 4 to increase the cage rotation speed. As the load applied to the bearing becomes smaller, the number of non-loaded bearing rollers increases, and as a result, the rotation speed of the cage 4 increases (however, in the case of outer ring rotation, the reverse is true of inner ring rotation).

【0012】したがって、非負荷圏ころが保持器4を押
す力Fcaを減じれば、保持器4の公転数が変化すること
を防ぎ、ひいては滑り損傷をなくすことができる。そこ
で、Fcaを減らす手段として、軌道輪のつばを介してこ
ろに予圧としてのアキシアル荷重を負荷し、ころとつば
との接触によりころ〜外輪軌道面間の滑り摩擦力Fso
は方向反対の滑り摩擦力Fsfi を生じさせるものとす
る。
Therefore, if the force F ca for pushing the cage 4 by the non-loaded zone roller is reduced, it is possible to prevent the revolution number of the cage 4 from changing and to prevent slip damage. Therefore, as a means of reducing the F ca, the axial load as preload the time through the flange of the bearing ring and the load, a direction opposite to the sliding friction force F so between rollers - the outer ring raceway surface by contact between the roller and the collar Shall produce a sliding friction force of F sfi .

【0013】ここでは問題を簡略化するため、軸受荷重
が全く作用しない場合を考える。このとき、ころ3に作
用する力は、予圧形式に応じて概ね図4のようにモデル
化することができる(内輪つば間予圧の場合)。図4
は、図1に示す円筒ころ軸受において、外輪回転におけ
る非負荷圏ころ3(一列分)に、つば5を介して「内輪
つば荷重(アキシアル荷重)Fa」をころ両側面に予圧
として付与した場合を示している。
In order to simplify the problem, consider the case where the bearing load does not act at all. At this time, the force acting on the roller 3 can be modeled as shown in FIG. 4 according to the preload type (in the case of preload between inner ring flanges). FIG.
In the cylindrical roller bearing shown in FIG. 1, when the “inner ring collar load (axial load) Fa” is applied as a preload to both sides of the roller via the collar 5 to the unloaded spherical roller 3 (one row) in outer ring rotation. Is shown.

【0014】図4中の記号Zはころ数(1列分)であ
る。記号Fcは、ころ3の公転遠心力[kgf] (及び外輪
軌道面から受けるその反作用)で、次の通り表される。 Fc=mc×rc×ωc2 ただし、mcは、ころ質量[ kgf ・sec2/mm]。
The symbol Z in FIG. 4 is the number of rollers (for one row). The symbol Fc is the revolution centrifugal force [kgf] of the roller 3 (and its reaction received from the outer ring raceway surface) and is represented as follows. Fc = mc × rc × ωc 2 where mc is the roller mass [kgf · sec 2 / mm].

【0015】rcは、ころ公転半径[mm]。ωcは、ころ
公転角速度[rad/sec] で、 ωc=1/2(1-da/dm)ωi +1/2(1+da/dm) ωo 又は ωc=π・ころ公転速度/30 ここに、 da:ころ直径[mm] dm:ころピッチ円直径[mm] ωi : 内輪角速度[rad/sec ] ωo : 外輪角速度[rad/sec ] この場合、ころ3には内輪つば5(図1)との接触によ
って滑り摩擦力Fsfiが生じている。この滑り摩擦力F
sfi は前記ころ〜外輪軌道面間の滑り摩擦力F soとは方
向反対であり、したがって非負荷圏においてアキシアル
荷重下にあるころ3が保持器4を押す力Fcaは、 Fca=Fso+Fd −2Fsfi ……(2’) となる。滑り摩擦力Fsfi を2倍したのは、両側の内輪
つば5,5と接触することによる。ここで、ころが保持
器を押す力Fca≦0であればころ3は保持器4に押さ
れ、反対にFca≧0であればころ3は保持器4を押すこ
とを意味する。先に述べたように、保持器4の公転数変
化を防いで滑り損傷をなくすには、非負荷圏ころが保持
器4を押す力Fcaを減じれば良いのであるからFca≦0
したがって、 Fso+Fd −2Fsfi ≦0 ……(3) (但し、外輪回転、内輪両つば付の場合)が軸受の滑り
損傷防止の条件である。
Rc is the roller revolution radius [mm]. ωc is around
At revolution angular velocity [rad / sec], ωc = 1/2 (1-da / dm) ωi+1/2 (1 + da / dm) ωo Or ωc = π / Roller revolution speed / 30 where da: Roller diameter [mm] dm: Roller pitch circle diameter [mm] ωi: Inner ring angular velocity [rad / sec] ωo: Outer ring angular velocity [rad / sec] In this case, the roller 3 comes into contact with the inner ring collar 5 (Fig. 1).
So sliding friction force FsfiHas occurred. This sliding friction force F
sfiIs a sliding frictional force F between the roller and the outer ring raceway surface. soWhat is
Opposite, and therefore axial in the unload zone
Force F that roller 3 pushes cage 4 under loadcaIs Fca= Fso+ Fd-2Fsfi ... (2 '). Sliding friction force FsfiIs the inner ring on both sides
By contact with the brims 5 and 5. Where the rollers hold
Force F to push the vesselcaIf ≦ 0, the roller 3 is pushed by the cage 4.
On the contrary, FcaIf ≧ 0, the roller 3 should push the cage 4.
Means As described above, the revolution number variation of the cage 4
To prevent slipping and eliminate slip damage
Force F to push the container 4caF should be reduced because Fca≤0
Therefore, Fso+ Fd-2Fsfi≤ 0 (3) (However, with outer ring rotation and inner ring double collars) bearing slip
It is a condition for preventing damage.

【0016】いま、ころ転動面〜外輪軌道面間の摩擦係
数をμ0 とし、又ころ端面〜内輪つば面間の摩擦係数を
μfiとすると、 Fso=μ0 c ……(4) Fsfi =μfia /Z ……(5) の関係になる。この(4),(5)を上式(3)に代入
して整理すると、次のように表すことができる。
Assuming that the friction coefficient between the roller rolling surface and the outer ring raceway surface is μ 0 and the friction coefficient between the roller end surface and the inner ring collar surface is μ fi , F so = μ 0 F c (4 ) F sfi = μ fi F a / Z (5). By substituting these (4) and (5) into the above equation (3) and rearranging, the following can be expressed.

【0017】 μ0 c +Fd −2μfia /Z≦0 ……(6) ゆえに、 Fc (μ0 +Fd /Fc )≦2μfia /Z すなわち、 Fc ・Z/Fa ≦2μfi/(μ0 +Fd /Fc )≡Kii……(7) (7)式の右辺は概ね一定値となると見なすと、下式
(8)を得る。
Μ 0 F c + F d −2 μ fi F a / Z ≦ 0 (6) Therefore, F c0 + F d / F c ) ≦ 2 μ fi F a / Z, that is, F c · Z / F a ≦ 2 μ fi / (μ 0 + F d / F c ) ≡K ii (7) When the right side of the equation (7) is considered to be a substantially constant value, the following equation (8) is obtained.

【0018】 Fa ≧Fc ・Z/Kii ……(8) なお、上記は[内輪つば間予圧]の場合であるが、外輪
つば間予圧の場合も略同様に扱うことができる。これに
対して、予圧形式が[内輪つば及び外輪つば間予圧]の
場合は、図5に示すようにモデル化される。この場合、
ころ3と外輪つばとの接触による滑り摩擦力Fsfo が要
因に加わることになるから、軸受の滑り損傷防止の条件
式は次のようになる。
F a ≧ F c · Z / K ii (8) Although the above is the case of [preload between inner ring collars], the case of preload between outer ring collars can be treated in substantially the same way. On the other hand, when the preload type is [preload between inner ring collar and outer ring collar], it is modeled as shown in FIG. in this case,
Since the sliding frictional force F sfo due to the contact between the roller 3 and the outer ring brim is added to the factor, the conditional expression for preventing the sliding damage of the bearing is as follows.

【0019】 Fso+Fsfo +Fd −Fsfi ≦0 ……(9) いま、ころ端面〜外輪つば面間の摩擦係数をμfoとする
と、 Fsfo =μfoa /Z …(10) の関係になる。上記(4),(5)及び(10)式を
(9)に代入して整理すると、次のように表すことがで
きる。
F so + F sfo + F d −F sfi ≦ 0 (9) Now, if the friction coefficient between the roller end face and the outer ring flange face is μ fo , then F sfo = μ fo F a / Z (10) It becomes a relationship. By substituting the equations (4), (5) and (10) into (9) and rearranging, the following can be expressed.

【0020】 Fc ・Z/Fa ≦(μfi−μfo)/(μ0 +Fd /Fc )≡Kio…(11) (11)式の右辺は概ね一定値となると見なすと、下式
(12)を得る。 Fa ≧Fc ・Z/Kio …(12) なお、以上は全て外輪回転の場合についてのものである
が、内輪回転の場合も同じKii,Kioになる。
F c · Z / F a ≦ (μ fi −μ fo ) / (μ 0 + F d / F c ) ≡K io (11) When the right side of the equation (11) is considered to be a substantially constant value, The following formula (12) is obtained. F a ≧ F c · Z / K io (12) It should be noted that although all of the above are for the outer ring rotation, the same K ii , K io are also for the inner ring rotation.

【0021】このKii,Kioの適切な値(ころ遠心力/
予圧力比の値)は、下記のようにして実験的に求めるこ
とができる。すなわち円筒ころ軸受のころ軸方向予圧試
験を行い、その試験データより「滑りを生じない適切な
ii,Kio値を概算する。以後は、そのKii,Kio値に
基づき(8)または(12)から、つばにより負荷すべ
き必要最小限のころ軸方向予圧力Fa を簡単に算出して
円筒ころ軸受に設定すれば良い。
Appropriate values of K ii and K io (roller centrifugal force /
The value of the preload ratio) can be experimentally obtained as follows. That is, a preload test is performed on the cylindrical roller bearing in the roller axis direction, and "the appropriate K ii and K io values that do not cause slippage are roughly estimated from the test data. Thereafter, based on the K ii and K io values, (8) or (12), to easily calculate the axial preload force F a time of the minimum required to be loaded by the flange may be set to a cylindrical roller bearing.

【0022】以下に、ころ遠心力/予圧力比Kii,Kio
を決定する試験の内容を述べる。試験軸受諸元は次の通
りとした。 軸受の種類:複列円筒ころ軸受 軸受内径 :400mm 軸受外径 :573mm 軸受ピッチ径:457mm ころ数 :36個/1列 ころ径 :30mm ころ重量 :0.364kg ころピッチ円直径:457mm 試験条件 外輪回転数:140〜830rpm 内輪は静止 ころ軸方向予圧力:2〜25KN ころ予圧方式:内輪つば間予圧及び内輪つば〜外輪つば
間予圧 試験方法 被試験軸受の外輪回転数が140rpmの状態で、ころ
軸方向予圧(アキシアル荷重)を0から25KNまで段
階的に大きくしていき、ころ公転速度を実測した。次
に、外輪回転数を370rpmにして、同じ試験を実施
した。一連の試験は外輪回転数140rpm,370r
pm,600rpm,830rpmの順で実施した。
Below, the roller centrifugal force / preload ratio K ii , K io
Describe the contents of the test to determine. The test bearing specifications are as follows. Bearing type: Double-row cylindrical roller bearing Bearing inner diameter: 400mm Bearing outer diameter: 573mm Bearing pitch diameter: 457mm Number of rollers: 36 / row Roller diameter: 30mm Roller weight: 0.364kg Roller pitch circle diameter: 457mm Test condition Outer ring Rotation speed: 140-830 rpm Inner ring is stationary Roller axial preload: 2-25 KN Roller preload method: Inner ring collar preload and inner ring collar-outer ring collar preload test method When the outer ring rotation speed of the bearing under test is 140 rpm The axial preload (axial load) was gradually increased from 0 to 25 KN, and the roller revolution speed was measured. Next, the same test was performed by setting the outer ring rotation speed to 370 rpm. A series of tests are 140 rpm of outer ring, 370r
It carried out in order of pm, 600 rpm, and 830 rpm.

【0023】次に、ころ公転遠心力Fc ところ軸方向予
圧力Faとの関係式 Fc ・Z/Fa ≡Kii ……(7) Fc ・Z/Fa ≡Kio ……(11) から、ころ公転遠心力Fc /ころ軸方向予圧力比Kii
ioを求めて、ころ公転滑り率SC との関係をプロット
した。ころ公転滑り率SC (%)は、 で定義され、実測のころ公転速度が外輪回転数に近づく
場合を正、内輪回転数に近づく場合を負とする。
Next, the roller revolving centrifugal force F c where axial preload force Fa and the relation F c · Z / F a ≡K ii ...... (7) F c · Z / F a ≡K io ...... ( 11), the roller revolution centrifugal force F c / roller axial preload ratio K ii ,
The K io was calculated and the relationship with the roller revolution slip ratio S C was plotted. The roller revolution slip ratio S C (%) is The case where the measured roller revolution speed approaches the outer ring rotation speed is defined as positive, and the case where it approaches the inner ring rotation speed is defined as negative.

【0024】図6は、内輪つば間予圧時の、ころ公転滑
り率SC ところ公転遠心力/ころ予圧力比Kiiとの関係
をプロットした図である。図7は、内輪つば〜外輪つば
間予圧時の、ころ公転滑り率SC ところ公転遠心力/こ
ろ予圧力比Kioとの関係をプロットした図である。図
6,図7において、ころ公転滑り率SC を概ね0%に抑
制するには、内輪つば間予圧の場合は、Kii≡Fc
Z/Fa ≒0.4、内輪つば〜外輪つば間予圧の場合
は、Kio≡Fc ・Z/Fa ≒0.2となるようにころ軸
方向予圧力Faを設定すればよいことがわかる。
FIG. 6 is a diagram plotting the relationship between the roller revolution slip ratio S C and the revolution centrifugal force / roller preload ratio K ii when preloading between the inner ring collars. FIG. 7 is a graph plotting the relationship between the roller revolution slip ratio S C and the revolution centrifugal force / roller preload ratio K io during preload between the inner ring collar and the outer ring collar. 6 and 7, in order to suppress the roller revolution slip ratio S C to approximately 0%, in the case of inner ring collar preload, K ii ≡F c ·
Z / F a ≒ 0.4, in the case of pre-load between the inner flange-outer flange, may be be set K io ≡F c · Z / F a ≒ 0.2 and comprising as roller axial preload force Fa I understand.

【0025】しかし、通常、滑り損傷はころ公転滑り率
C が50%以上の時に生じるとされている(例えば、
“潤滑”第24巻,第11号(1979)725〜72
8,「転がり軸受における摩耗」の図7「スキッディン
グ損傷発生限界」参照)。本発明にあっては、余裕を見
て、ころ公転滑り率SC 25%を滑り損傷が生じる上限
と規定し、ころ公転遠心力/ころ予圧力比Kii,Kio
次のように定めた。
However, it is generally said that slip damage occurs when the roller revolution slip ratio S C is 50% or more (for example,
"Lubrication" Vol. 24, No. 11 (1979) 725-72
(See Fig. 7 "Skidding damage occurrence limit" in "Rolling bearing wear"). In the present invention, the roller revolution slip ratio S C 25% is defined as the upper limit at which slip damage occurs, and the roller revolution centrifugal force / roller preload ratios K ii and K io are set as follows in view of a margin. It was

【0026】内輪つば間予圧(又は外輪つば間予圧)
の場合は、図6から Kii≡Fc ・Z/Fa ≦1.0 内輪つば〜外輪つば間予圧の場合は、図7から Kio≡Fc ・Z/Fa ≦0.7 これらのKii,Kio値に基づき(8)または(12)か
ら、ころ公転遠心力ところ数に応じて、負荷すべき必要
最小限のころ軸方向予圧力Fa が算出できる。かくし
て、試行錯誤に寄らずに簡単に、滑りを生じさせない適
切なころ軸方向予圧力(アキシャル荷重)Faを円筒こ
ろ軸受に設定することができる。
Inner ring brim preload (or outer ring brim preload)
6 in the case of K ii ≡F c · Z / F a ≦ 1.0 In the case of preload between the inner ring collar and the outer ring collar, in the case of FIG. 7, K io ≡F c · Z / F a ≦ 0.7 From (8) or (12) based on the K ii and K io values of, the required minimum roller axial preload F a to be loaded can be calculated in accordance with the number of revolutions of the roller revolution. Thus, an appropriate roller axial preload (axial load) Fa that does not cause slippage can be easily set in the cylindrical roller bearing without trial and error.

【0027】[0027]

【発明の効果】以上、説明したように、本発明に係る円
筒ころ軸受は、ころの公転滑りを抑制するべく、つばを
介してアキシアル予圧を付与するにあたり、その予圧値
Faの大きさを、内輪つば及び外輪つば間予圧の場合は
Fa≧(ころの公転遠心力×ころ数)/0.7とし、内
輪つば又は外輪つば間予圧の場合はFa≧(ころの公転
遠心力×ころ数)/1.0として設定すればよい。その
ため、従来のようにいちいち試行錯誤を繰り返して適切
なアキシアル予圧値を求める必要はなくなり、簡単に必
要最小限のアキシアル予圧を付与することができ、高速
回転,低荷重の使用条件下で効率良く滑りを抑制してス
キッディングやスミアリング等の損傷を未然に防止でき
るという効果を奏する。
As described above, in the cylindrical roller bearing according to the present invention, when the axial preload is applied through the collar in order to suppress the revolution slip of the roller, the magnitude of the preload value Fa is In case of preload between inner ring collar and outer ring collar, Fa ≧ (rotational centrifugal force of roller × number of rollers) /0.7, and in case of inner ring flange or outer ring collar preload Fa ≧ (revolutionary centrifugal force of roller × number of rollers) It may be set as /1.0. Therefore, it is no longer necessary to repeat trial and error to find an appropriate axial preload value as in the past, and it is possible to easily apply the minimum required axial preload and efficiently under high-speed rotation and low load use conditions. This has the effect of suppressing slippage and preventing damage such as skidding and smearing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒ころ軸受の一実施形態例の断面図
である。
FIG. 1 is a sectional view of an embodiment of a cylindrical roller bearing according to the present invention.

【図2】図1のII矢視で示す外形部分図である。FIG. 2 is a partial external view showing an arrow II in FIG.

【図3】外輪回転の場合の、負荷圏内のころ及び保持器
にかかる力の様子を示す模式図である。
FIG. 3 is a schematic diagram showing a state of a force applied to a roller and a cage within a load zone when an outer ring rotates.

【図4】(a)は円筒ころ軸受の内輪つば間予圧の場合
の、ころに作用する力の様子を示す斜視図、(b)は外
輪回転の場合の、非負荷圏内のころ及び保持器にかかる
力の様子を示す模式図である。
FIG. 4 (a) is a perspective view showing a state of a force acting on a roller in the case of preload between inner ring flanges of a cylindrical roller bearing, and FIG. 4 (b) is a roller and a cage in a non-loaded range in the case of outer ring rotation. It is a schematic diagram which shows a mode of the force applied to.

【図5】円筒ころ軸受の内輪つば〜外輪つば間予圧の場
合の、ころに作用する力の様子を示す斜視図である。
FIG. 5 is a perspective view showing a state of a force acting on the roller in the case of preload between the inner ring flange and the outer ring flange of the cylindrical roller bearing.

【図6】内輪つば間予圧の場合の、ころ公転滑り率Sc
と、ころ遠心力/予圧力比Kiiとの関係をプロットした
グラフである。
[Fig. 6] Roller revolution slip ratio S c in the case of inner ring collar preload
And a roller centrifugal force / preload ratio K ii are plotted.

【図7】内輪つば〜外輪つば間予圧の場合の、ころ公転
滑り率Sc と、ころ遠心力/予圧力比Kioとの関係をプ
ロットしたグラフである。
FIG. 7 is a graph plotting the relationship between the roller revolution slip ratio S c and the roller centrifugal force / preload ratio K io in the case of preload between the inner ring collar and the outer ring collar.

【符号の説明】[Explanation of symbols]

1 外輪 2 内輪 3 ころ 4 保持器 5 内輪つば 1 Outer ring 2 Inner ring 3 Roller 4 Cage 5 Inner ring brim

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 英雄 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Fujiwara 1-5-50 Shinmei Kugenuma, Fujisawa-shi, Kanagawa NSK Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ラジアル円筒ころ軸受のころに、次の関
係を有するアキシアル荷重Faを、つばを介して与えて
ころと軌道輪間の滑りを抑制した円筒ころ軸受。 内輪つば及び外輪つば間予圧の場合は、Fc・Z/Fa
≦0.70 内輪つば又は外輪つば間予圧の場合は、Fc・Z/Fa
≦1.0 ここに、Fcはころの公転遠心力で、ころ質量m,ころ
ピッチ円直径dm,ころ公転角速度ωc との間にFc=
m・1/2 ・dm・ωc 2 の関係を有する。Zは、ころ数
である。
1. A cylindrical roller bearing in which a radial cylindrical roller bearing is provided with an axial load Fa having the following relationship via a collar to suppress slippage between the roller and the bearing ring. In case of preload between inner ring collar and outer ring collar, Fc · Z / Fa
≦ 0.70 Fc · Z / Fa for inner ring collar or outer ring collar preload
≦ 1.0 where Fc is the revolving centrifugal force of the roller, and Fc = between the roller mass m, the roller pitch circle diameter dm, and the roller revolution angular velocity ω c.
It has a relationship of m · 1/2 · dm · ω c 2 . Z is the number of rollers.
JP8016203A 1996-01-31 1996-01-31 Cylindrical roller bearing Pending JPH09210055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8016203A JPH09210055A (en) 1996-01-31 1996-01-31 Cylindrical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016203A JPH09210055A (en) 1996-01-31 1996-01-31 Cylindrical roller bearing

Publications (1)

Publication Number Publication Date
JPH09210055A true JPH09210055A (en) 1997-08-12

Family

ID=11909961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016203A Pending JPH09210055A (en) 1996-01-31 1996-01-31 Cylindrical roller bearing

Country Status (1)

Country Link
JP (1) JPH09210055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035620A1 (en) * 2004-09-27 2006-04-06 Ntn Corporation Cylindrical roller bearing
JP2008121628A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Hermetic compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035620A1 (en) * 2004-09-27 2006-04-06 Ntn Corporation Cylindrical roller bearing
US7712966B2 (en) 2004-09-27 2010-05-11 Ntn Corporation Cylindrical roller bearing
JP2008121628A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Hermetic compressor

Similar Documents

Publication Publication Date Title
WO2012132968A1 (en) Roller bearing
JP2000170774A (en) Conical roller bearing and gear shaft support device for vehicle
JP2009036348A (en) Tandem type double-row angular contact ball bearing and bearing device for pinion shaft
EP1302636B1 (en) Rotatably supporting device for turbocharger
JP2584623Y2 (en) Tapered roller bearing
JPH09210055A (en) Cylindrical roller bearing
JP2003314542A (en) Tapered roller bearing
JP2001241446A (en) Roller bearing
JP2006214456A (en) Roller bearing
JP2000065069A (en) Ball bearing
JP2006214456A5 (en)
JP2002017065A (en) Spindle motor
JP2008115961A (en) Roller bearing and ball bearing
JP2001082462A (en) Double row ball bearing
JP3733992B2 (en) Thrust ball bearing
JP2000027857A (en) Rolling bearing
JP3259560B2 (en) Ball bearing
JP2580233Y2 (en) Rolling bearing
JP2001107952A (en) Conical roller bearing
JP2006112559A (en) Tapered roller bearing
JPH10159579A (en) Rolling bearing for engine auxiliary machine
JP2003042148A (en) Rolling bearing
JP2000274437A (en) Rolling bearing
JP2004176745A (en) Roller bearing
JP2000184652A (en) Spindle motor