JPH0920989A - Zinc electrolyzing method for controlling pb grade in electrolytic zing by using automatic pb analyzer - Google Patents

Zinc electrolyzing method for controlling pb grade in electrolytic zing by using automatic pb analyzer

Info

Publication number
JPH0920989A
JPH0920989A JP7188327A JP18832795A JPH0920989A JP H0920989 A JPH0920989 A JP H0920989A JP 7188327 A JP7188327 A JP 7188327A JP 18832795 A JP18832795 A JP 18832795A JP H0920989 A JPH0920989 A JP H0920989A
Authority
JP
Japan
Prior art keywords
zinc
lead
electrolyte
electrolytic
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7188327A
Other languages
Japanese (ja)
Other versions
JP3423823B2 (en
Inventor
Rintaro Togashi
林太郎 富樫
Katsue Nose
勝栄 能勢
Taro Aichi
太郎 愛知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Akita Seiren KK
Original Assignee
Akita Seiren KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Seiren KK, Dowa Mining Co Ltd filed Critical Akita Seiren KK
Priority to JP18832795A priority Critical patent/JP3423823B2/en
Publication of JPH0920989A publication Critical patent/JPH0920989A/en
Application granted granted Critical
Publication of JP3423823B2 publication Critical patent/JP3423823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE: To efficiently and stably produce the electrolytic zinc low in Pb by continuously monitoring the Pb concn. in a zinc electrolyte to predict the Pb grade of an electrolytic zinc slab and controlling the amt. of an additive to be added and so on. CONSTITUTION: An anode 2 consisting of lead electrode and a cathode 3 are dipped in a zinc electrolyte, power is supplied from an SCR 5 to bring about electrolysis, and an electrolytic zinc slab is deposited on the cathode 3. In this zinc electrolyzing method, the overflowing waste electrolyte is introduced into a circulating tank 6, a frsh electrolyte is replenished to make up for the deficiency, the mixture is transferred to a mixing tank 4 through a circulating pump 7, a lead absorptive additive such as strontium carbonate is added, and the admixture is returned to an electrolytic cell. In that case, the waste electrolyte is sampled in a lead analyzer 8, the Pb in the electrolyte is measured at least every 120min, and the amt. of additive to be added is controlled. A stripping voltammetry analyzer is used as the lead analyzer 8, and the Pb is preferably measured at 43-43 deg.C. An ultrapure zinc contg. <=10ppm Pb is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は湿式亜鉛製錬に関し、特
に鉛品位の低い高純度電気亜鉛を経済的に電解採取する
高純度電気亜鉛の製錬法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrometallurgical zinc smelting, and more particularly to a method for smelting high-purity electrolytic zinc for economically electrolytically extracting high-purity electrolytic zinc having low lead grade.

【0002】[0002]

【従来の技術】湿式亜鉛製錬における電解工程系統図を
図2に示す。電解槽1の電解液中に浸漬されたアノード
(陽極)2とカソード(陰極)3にSCR(整流器)の
+、−の極がそれぞれ接続されて電力が供給されてい
る。電解槽1からオーバーフローした電解液(電解排
液)は循環槽6に集められ、ここで電解原液を添加混合
して亜鉛濃度の高められた電解液は循環ポンプ7により
添加剤を加えるための混合槽4を経て電解槽1に戻され
る。アノード(陽極)2は一般に硫酸に不溶な鉛または
鉛−銀(1〜3%Ag含有合金)が使用されていて、こ
れが電解継続中にごく少量ではあるが、電解液中に鉛イ
オン、または酸化鉛微粉として移行し、この一部がカソ
ード(陰極)3上に析出または付着して析出亜鉛に混入
する。析出亜鉛を溶融、鋳造して電気亜鉛とする鋳造工
程においては亜鉛から鉛を分離することは不可能なため
に、電解液中に移行した鉛は添加剤に吸着させて除去す
る方法が開発され、一般に行われている。すなわち図2
の混合槽4において電解液に炭酸ストロンチウムあるい
は炭酸バリウムを少量添加して電解液中の鉛イオンおよ
び酸化鉛微粉をこれに吸着させ除去して陰極板上の析出
亜鉛への混入を防止している。析出亜鉛は数時間から数
十時間電着させて後分析に供するため、電解経過中にお
ける添加剤の添加量が適正であったかどうか、また所定
の鉛含有量に管理するため、例えば添加剤添加量の増
減、電解液の管理温度の変更、工程における異常発生の
発見と対処などのアクションがどの程度効果をあげてい
るか検証することも、前記析出亜鉛の分析結果から判断
せざるを得ないが、時間遅れとなって適正な対応ができ
ないことが多いため、やむをえず、安全性を考慮して添
加剤をかなり過剰に添加している。
2. Description of the Related Art FIG. 2 shows a system diagram of an electrolysis process in wet zinc smelting. The anode (anode) 2 and the cathode (cathode) 3 immersed in the electrolytic solution in the electrolytic cell 1 are connected to the positive and negative electrodes of the SCR (rectifier), respectively, to supply electric power. The electrolytic solution (electrolytic drainage solution) overflowing from the electrolytic cell 1 is collected in the circulation tank 6, and the electrolytic solution having the zinc concentration increased by adding and mixing the electrolytic stock solution is mixed by the circulation pump 7 to add the additive. It is returned to the electrolytic cell 1 via the cell 4. The anode (anode) 2 is generally made of sulfuric acid-insoluble lead or lead-silver (1 to 3% Ag-containing alloy), and although this is a very small amount during electrolysis, lead ions or It migrates as lead oxide fine powder, and a part of this is deposited or adhered on the cathode (cathode) 3 and mixed into the deposited zinc. Since it is impossible to separate lead from zinc in the casting process where molten zinc is melted and cast into electric zinc, a method has been developed to remove lead that has migrated into the electrolytic solution by adsorbing it to an additive. , Is generally done. That is, FIG.
In the mixing tank 4 described above, a small amount of strontium carbonate or barium carbonate is added to the electrolytic solution to adsorb and remove lead ions and lead oxide fine powder in the electrolytic solution, thereby preventing the zinc from depositing on the cathode plate. . Precipitated zinc is electrodeposited for several hours to several tens of hours for post-analysis, so whether the additive amount of the additive was appropriate during the course of electrolysis, and to control the lead content to a predetermined value, for example, additive amount It is inevitable to judge from the analysis result of the deposited zinc to verify how effective the action is to increase or decrease the temperature, change the control temperature of the electrolytic solution, detect and cope with abnormal occurrence in the process, Since it is often a time lag and proper measures cannot be taken, it is unavoidable that additives are added in a fairly excessive amount in consideration of safety.

【0003】最純亜鉛の鉛含有量は30ppm 以下とJI
Sに規定されているが、近年需要家の品質に対する要求
が厳しくなり、低鉛品と言われる10ppm 以下への要求
が高くなっている。かくして低鉛品位の亜鉛を効率良く
安定して生産することが必要となってきた。
The lead content of pure zinc is 30 ppm or less and JI
Although it is regulated by S, in recent years, the demands on the quality of customers have become strict, and the demand for 10ppm or less, which is said to be a low lead product, is increasing. Thus, it has become necessary to efficiently and stably produce low lead grade zinc.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は上述の
問題点を解決するために電解液中の鉛の迅速分析法を検
討し、電解工程への組み込み方法を考案して、鉛含有量
が10ppm 以下の最純亜鉛を効率良く、安定して生産す
る方法を開発することである。
The object of the present invention is to study a rapid method for analyzing lead in an electrolytic solution in order to solve the above-mentioned problems, devise a method for incorporating it into an electrolysis process, and obtain a lead content. Is to develop a method for efficiently and stably producing the most pure zinc having a concentration of 10 ppm or less.

【0005】[0005]

【課題を解決するための手段】本発明者らは斯かる問題
を解決するために、まず常時循環している電解液中の鉛
の挙動につき観察し、試料の採取場所、採取法を検討し
た。その結果、電解液のPb濃度を連続的にモニターす
ることにより電気亜鉛スラブのPb品位を予測し、この
予測に基づいて添加剤の添加量を制御する等、工程の操
業条件を操作することにより電解液のPb濃度を適正に
管理すれば、高品質で低コストの電気亜鉛を安定的に製
造できることを見いだした。ここで「連続的にモニター
する」とは、常に循環している電解液を少なくとも12
0分に1回、好ましくは60分に1回、電解槽から排出
された直後の電解液から採取して、この試料液を10分
以内、好ましくは5分以内に分析して電解液の鉛含有量
を確認する方法を言う。これにより析出亜鉛中の鉛含有
量を所定の水準に維持管理するために必要な添加剤の添
加量の調整、電解液管理温度の変更、工程の異常のチェ
ックなどのアクション対策がとれ、鉛含有量が10ppm
以下の最純亜鉛を効率良く安定して生産することができ
たのである。
In order to solve such a problem, the present inventors first observed the behavior of lead in the electrolyte that is constantly circulated, and examined the sampling location and sampling method. . As a result, by continuously monitoring the Pb concentration of the electrolytic solution, the Pb quality of the electrozinc slab is predicted, and based on this prediction, the additive amount of the additive is controlled to control the operating conditions of the process. It has been found that high-quality, low-cost electrolytic zinc can be stably produced by properly controlling the Pb concentration of the electrolytic solution. Here, “continuously monitoring” means that at least 12 electrolytes are constantly circulated.
Once every 0 minutes, preferably once every 60 minutes, it is taken from the electrolytic solution immediately after being discharged from the electrolytic cell, and this sample solution is analyzed within 10 minutes, preferably within 5 minutes, and the lead of the electrolytic solution is analyzed. A method of confirming the content. As a result, it is possible to take action measures such as adjusting the amount of additives required to maintain the lead content in the deposited zinc at a prescribed level, changing the electrolyte control temperature, and checking process abnormalities. The amount is 10ppm
The following pure zinc could be efficiently and stably produced.

【0006】電解液の鉛含有量測定装置としては、試料
の前処理の必要がない、短時間で正確な測定ができる、
低価格である、自動制御装置として組み込みが容易であ
るなどの理由からストリッピングボルタンメトリー装置
が最も適していることを見いだした。
An apparatus for measuring the lead content of an electrolytic solution does not require pretreatment of a sample, and can perform accurate measurement in a short time.
We have found that the stripping voltammetry device is most suitable because of its low cost and easy integration as an automatic control device.

【0007】電解液中の鉛含有量を制御する方法とし
て、炭酸ストロンチウム添加法が一般に知られていて、
添加量を増加することにより析出亜鉛中の鉛含有量がさ
らに低減することが経験から良く知られている。
As a method for controlling the lead content in the electrolytic solution, the strontium carbonate addition method is generally known.
It is well known from experience that the lead content in precipitated zinc is further reduced by increasing the addition amount.

【0008】また電解液の温度、循環液量、電流密度、
電極配置の適不適なども電解液中の鉛含有量に影響を与
えることが知られているが、本発明によれば工程に異常
が発生しているような要因で電解液中の鉛の含有量が上
昇した場合でも、早期に発見できるので、迅速に対応で
きる。
The temperature of the electrolytic solution, the circulating fluid amount, the current density,
It is known that the suitability of the electrode arrangement also affects the lead content in the electrolytic solution, but according to the present invention, the inclusion of lead in the electrolytic solution is caused by a factor such that an abnormality occurs in the process. Even if the amount rises, it can be detected early so that it can be dealt with promptly.

【0009】本発明者らは析出亜鉛の鉛含有量を10pp
m 以下に保持するためには、電解液の温度を42℃、循
環量を1サイクル/30分、電流密度400A/m2の電
解条件のもとで、電解液中の鉛含有量を0.12ppm 以
下、好ましくは0.10ppm以下に管理する必要がある
ことを確認した。ただし、測定するサンプルは電界槽の
排液から添加剤を加える前に採取しなければ正確に工程
を制御することはできない。種々の実験および実操業か
ら得られたデータを基にして、炭酸ストロンチウム添加
量と電解液中の鉛濃度との関係を示す実験式が得られ
た。
The present inventors have found that the lead content of precipitated zinc is 10 pp.
In order to maintain the temperature at or below m, the lead content in the electrolyte should be less than 0.2 under the electrolytic conditions of the temperature of the electrolyte of 42 ° C., the circulation rate of 1 cycle / 30 minutes, and the current density of 400 A / m 2 . It was confirmed that it is necessary to control to 12 ppm or less, preferably 0.10 ppm or less. However, the process to be measured cannot be accurately controlled unless the sample to be measured is taken from the drainage of the electrolytic cell before adding the additive. An empirical formula showing the relationship between the amount of strontium carbonate added and the lead concentration in the electrolyte was obtained based on the data obtained from various experiments and actual operations.

【0010】鉛濃度=A(炭酸ストロンチウム)+B 但しA,Bは実操業から得られた常数 この式から炭酸ストロンチウムの添加量を算出する。Lead concentration = A (strontium carbonate) + B where A and B are constants obtained from actual operation. The addition amount of strontium carbonate is calculated from this formula.

【0011】[0011]

【作用】本発明の骨子は亜鉛電解液に含有する鉛含有量
を迅速かつ正確に測定することである。このためには電
解液サンプルを前処理を必要としないで、短時間に自動
的に測定値が得られる分析方法によらなければならな
い。微量分析法としては比色分析、発光分光分析、原子
吸光分析、ICP分析があるが、いずれも亜鉛電解液を
そのままサンプルとすることはできず、かついずれの分
析方法においても鉛に対する分析精度が悪く採用できな
い。
The essence of the present invention is to quickly and accurately measure the lead content contained in the zinc electrolyte. For this purpose, it is necessary to use an analytical method that can automatically obtain a measured value in a short time without requiring pretreatment of the electrolytic solution sample. Microanalysis methods include colorimetric analysis, emission spectroscopic analysis, atomic absorption analysis, and ICP analysis, but none of them can directly use the zinc electrolyte solution as a sample, and in any analysis method, lead analysis accuracy is high. Badly adopted.

【0012】一方ポーラログラフ法、ストリッピングボ
ルタンメトリー法では亜鉛電解液をそのままサンプルと
して測定でき、しかも鉛に対する分析精度もそれ程低く
ないために両者を検討対象とし、分析精度、操作の簡易
性などから判断してポーラログラフィックアナライザー
P1100を採用した。この分析装置はポーラログラフ
法、ストリッピングボルタンメトリー法の両方に適用で
きる。ここにポーラログラフ法とは、陰極電位を徐々に
下げながら、各電位における電流値を測定することによ
って、目的のイオン濃度を知る方法(特定の電位におけ
る電流値は、その時陰極に析出したイオン数に対応す
る)であり、ストリッピングボルタンメトリー法とは陰
極を目的イオンの析出電位以下になるように保ち、一定
時間一定の電位で予備電解を行い、予備電解の後、陰極
電位を徐々に上げ各電位における電流値を測定すること
によって目的のイオン濃度を知る方法(電流値は、陰極
から溶出したイオン数に対応する)である。本発明の目
的には後者の方が分析精度の良いことが確認された。こ
の装置ではサンプル電解液に何ら前処理を施す必要はな
く分析できるために、電解液から一部を抜き出してその
まま分析装置にかけ、スイッチを入れれば直ちに測定値
が鉛濃度に演算されてCRTに表示される。この場合、
分析に供する試料電解液の温度を41〜43℃の範囲の
一定値に保ってストリッピングボルタンメトリーで分析
する方法をとることにより、驚くほど安定に高精度の鉛
分析値が迅速に得られることを見いだした。したがって
この方法により作業者はCRTを確認して前述の実験
式:A(炭酸ストロンチウム)+Bに代入することによ
り炭酸ストロンチウムの適正な添加量がわかり緻密に制
御できるのである。
On the other hand, in the polarographic method and the stripping voltammetry method, the zinc electrolytic solution can be directly measured as a sample, and the analysis accuracy for lead is not so low. Polarographic analyzer P1100 was adopted. This analyzer can be applied to both polarographic method and stripping voltammetric method. The polarographic method here is a method of knowing the target ion concentration by measuring the current value at each potential while gradually decreasing the cathode potential (the current value at a specific potential is the number of ions deposited on the cathode at that time). The stripping voltammetry method keeps the cathode below the deposition potential of the target ions, performs preliminary electrolysis at a constant potential for a certain period of time, and after the preliminary electrolysis, gradually raises the cathode potential to each potential. Is a method of knowing the target ion concentration by measuring the current value at (the current value corresponds to the number of ions eluted from the cathode). For the purpose of the present invention, it was confirmed that the latter has a higher analysis accuracy. With this device, it is possible to perform analysis without pretreatment of the sample electrolyte, so a portion of the electrolyte is extracted from the electrolyte, put on the analyzer as is, and the switch is turned on to immediately calculate the lead concentration and display it on the CRT. To be done. in this case,
By taking the method of stripping voltammetry by keeping the temperature of the sample electrolyte solution for analysis at a constant value within the range of 41 to 43 ° C, it is possible to obtain lead analysis values of surprisingly stable and high precision rapidly. I found it. Therefore, by this method, the operator can confirm the CRT and substitute it into the above-mentioned empirical formula: A (strontium carbonate) + B to know the proper addition amount of strontium carbonate and precisely control it.

【0013】かくして作業者は即座に炭酸ストロンチウ
ムの投入量を調節できるのである。さらにCRT表示と
添加剤投入装置を連動すれば完全自動化が可能となる。
すなわち本発明の目的が完全に達せられたことになる。
Thus, the operator can immediately adjust the input amount of strontium carbonate. Furthermore, by linking the CRT display and the additive injection device, complete automation becomes possible.
That is, the object of the present invention has been completely achieved.

【0014】次に本発明を実施例により、さらに詳しく
説明する。
Next, the present invention will be described in more detail by way of examples.

【0015】[0015]

【実施例】【Example】

1.測定装置 本発明に使用した分析装置はヤナコ社製ポーラログラフ
ィックアナライザーP1100であり、Zn53g/l 、
2 SO4 190g/l 溶液に鉛を3水準添加して、試料
溶液とした。これら試料溶液を上記分析装置によりスト
リッピングボルタンメトリー法で分析を行って分析精度
を検討した結果±0.01mg/lであった。尚、測定に要
する時間は全て10分以内であった。
1. Measuring apparatus The analyzing apparatus used in the present invention is a polarographic analyzer P1100 manufactured by Yanaco Co., which has a Zn of 53 g / l,
Three levels of lead were added to a H 2 SO 4 190 g / l solution to prepare a sample solution. These sample solutions were analyzed by the stripping voltammetry method using the above-mentioned analyzer to examine the analysis accuracy, and the result was ± 0.01 mg / l. The time required for measurement was 10 minutes or less.

【0016】2.測定装置の設置位置および操作 図1は本発明による測定装置を従来の亜鉛電解工程を示
す図2内に設置した位置を示す。図中8は鉛分析装置、
9はCRTである。電解槽1から排出した電解液(電解
排液)の一部は稀釈、試薬の投入を行う必要はなく直接
測定器に装入される。分析値は鉛(Pb)の濃度に演算
されてCRT9に表示される。作業者はCRT表示を確
認して前述の実験式 鉛濃度=A(炭酸ストロンチウム)+B により炭酸ストロンチウムの必要量を算出し、添加剤添
加用の混合槽4に投入する。CRT表示と実験式とを組
み合わせた投入装置を設置すれば完全自動化ができる。
2. Installation Position and Operation of Measuring Device FIG. 1 shows a position where the measuring device according to the present invention is installed in FIG. 2 showing a conventional zinc electrolysis process. In the figure, 8 is a lead analyzer,
9 is a CRT. A part of the electrolytic solution (electrolytic drainage solution) discharged from the electrolytic cell 1 is directly diluted in the measuring instrument without the need of diluting and charging the reagent. The analytical value is calculated as the concentration of lead (Pb) and displayed on the CRT 9. The operator confirms the CRT display, calculates the necessary amount of strontium carbonate by the above-mentioned empirical formula: lead concentration = A (strontium carbonate) + B, and puts it in the mixing tank 4 for adding the additive. Complete automation can be achieved by installing a charging device that combines CRT display and empirical formula.

【0017】3.測定結果 本発明の効果を調べるために、従来の亜鉛電解操業工程
と、これに本発明による装置並びに作業工程を組み込ん
だ操業の効果を循環亜鉛電解液中の鉛含有量の推移およ
び製品、最純亜鉛中の鉛含有量、投入炭酸ストロンチウ
ム原単位を比較した。
3. Measurement results In order to investigate the effect of the present invention, the effect of the conventional zinc electrolysis operation process and the operation in which the apparatus and the work process according to the present invention are incorporated is circulated, the transition of the lead content in the zinc electrolytic solution and the product, the maximum The lead content in pure zinc and the input unit of strontium carbonate were compared.

【0018】(i) 本発明による操業(制御例) 本発明による工程に基づいて操業を行った場合は、図3
に示すように電解液中のPb2+イオン濃度は0.10pp
m 以下に制御されていることが確認された。電解液中の
Pb含有量を制御した場合の製品亜鉛中の鉛含有量と添
加剤の原単位の推移を図4に例示する。電解液中の鉛含
有量をPb2+として10ppm 以下に制御した結果、製品
最純亜鉛中の鉛含有量は10ppm 以下となり、添加剤使
用量にもバラツキが少なくなり、析出亜鉛1トン当り
1.12kgと従来より減少した。
(I) Operation according to the present invention (example of control) When the operation is performed based on the process according to the present invention, as shown in FIG.
As shown in, the Pb 2+ ion concentration in the electrolyte is 0.10 pp
It was confirmed to be controlled below m. FIG. 4 illustrates the transition of the lead content in the product zinc and the basic unit of the additive when the Pb content in the electrolytic solution is controlled. As a result of controlling the lead content in the electrolytic solution to 10 ppm or less as Pb 2+ , the lead content in the purest zinc in the product is 10 ppm or less, the variation in the additive usage amount is small, and 1 ton of deposited zinc is 1 It was 12 kg, which is a decrease from the past.

【0019】(ii)従来の操業法による操業(比較例) 従来の操業による製品亜鉛中の鉛含有量と添加剤原単位
との関係を図5に示す。製品亜鉛中の鉛含有量は上限で
ある10ppm を超えるものもありバラツキも大きい。ま
た添加剤原単位の変化が大きく、バラツキも大きいこと
から、添加剤の調整に対する対応が後手後手になってい
ることがわかる。さらに添加剤の平均添加量も析出亜鉛
1トン当り1.23kgと高い。
(Ii) Operation by Conventional Operation (Comparative Example) FIG. 5 shows the relationship between the lead content in the product zinc and the additive basic unit by the conventional operation. The lead content in the product zinc exceeds the upper limit of 10 ppm, and there are large variations. In addition, since the change in the basic unit of the additive is large and the variation is large, it can be seen that the adjustment of the additive has been delayed. Furthermore, the average additive amount of the additive is as high as 1.23 kg per ton of deposited zinc.

【0020】[0020]

【発明の効果】本発明の方法に従って電解工程における
電解槽排出液の一部を分析サンプルとして少なくとも1
20分に1回、好ましくは60分に1回取り出し、その
ままストリッピングボルタンメトリー装置により鉛分析
を行って、析出亜鉛中の鉛含有量を管理するために、添
加剤添加量の調整、電解液の温度管理、工程における異
常発生の発見と迅速な対応などのアクション効果を直ち
に知ることができるようになったために、添加剤添加量
が節約でき、かつ鉛含有量が10ppm 以下の最純亜鉛が
効率よく生産できるようになった。
According to the method of the present invention, at least one part of the electrolytic cell discharge liquid in the electrolysis step is used as an analytical sample.
Once every 20 minutes, preferably once every 60 minutes, lead analysis is carried out by a stripping voltammetry device as it is, in order to control the lead content in the precipitated zinc, adjustment of the additive addition amount, Since it became possible to immediately know the action effects such as temperature control, detection of abnormalities in the process, and quick response, the additive amount could be saved and the pure zinc with a lead content of 10 ppm or less would be efficient. It has become possible to produce well.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の亜鉛電解操業工程に鉛分析装置を組み込
んだ本発明による亜鉛電解操業系統図である。
FIG. 1 is a zinc electrolytic operation system diagram according to the present invention in which a lead analyzer is incorporated in a conventional zinc electrolytic operation process.

【図2】従来の亜鉛電解操業系統図である。FIG. 2 is a conventional zinc electrolytic operation system diagram.

【図3】本発明による操業における電解液中の鉛含有量
の1日間の推移を示すチャートの一例である。
FIG. 3 is an example of a chart showing the transition of the lead content in the electrolytic solution during one day in the operation according to the present invention.

【図4】本発明による操業における製品亜鉛の鉛含有量
と炭酸ストロンチウム原単位の管理図である。
FIG. 4 is a control chart of the lead content of the product zinc and the strontium carbonate basic unit in the operation according to the present invention.

【図5】従来の操業における製品亜鉛の鉛含有量と炭酸
ストロンチウム原単位の管理図である。
FIG. 5 is a control chart of lead content of product zinc and strontium carbonate basic unit in a conventional operation.

【符号の説明】[Explanation of symbols]

1 電解槽 2 アノード 3 カソード 4 混合槽 5 SCR 6 循環槽 7 循環ポンプ 8 鉛分析装置 9 CRT 1 Electrolysis tank 2 Anode 3 Cathode 4 Mixing tank 5 SCR 6 Circulation tank 7 Circulation pump 8 Lead analyzer 9 CRT

───────────────────────────────────────────────────── フロントページの続き (72)発明者 愛知 太郎 秋田県秋田市飯島字古道下川端217−9 秋田製錬株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taro Aichi 217-9 Shimokawabata, Koichi Iwajima, Akita City, Akita Prefecture Akita Smelting Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解液中のPb濃度を連続的にモニター
することにより、電気亜鉛スラブのPb品位を予測し、
この予測に基づき添加剤の添加量制御を含む工程操作を
行うことによって、電気亜鉛中のPb品位を管理するこ
とを特徴とする亜鉛電解法。
1. A Pb grade of an electric zinc slab is predicted by continuously monitoring a Pb concentration in an electrolytic solution,
A zinc electrolysis method characterized in that the Pb quality in electrozinc is controlled by performing a process operation including control of the additive amount based on this prediction.
【請求項2】 前記連続的モニターとして電解液中の鉛
含有量を少なくとも120分に1回測定して、電解工程
を操作することにより、析出亜鉛の鉛含有量を制御する
ことを特徴とする請求項1記載の亜鉛電解法。
2. The lead content of the precipitated zinc is controlled by measuring the lead content in the electrolytic solution at least once every 120 minutes as the continuous monitor and operating the electrolysis step. The zinc electrolysis method according to claim 1.
【請求項3】 測定に供される電解液試料は、添加剤を
添加する前に電解槽から排出した電解液から採取し、鉛
含有量を分析装置により測定して、あらかじめ作成した
実験式に当てはめ、添加剤添加量を算出し、添加するこ
とにより、添加剤添加量を制御する請求項2記載の亜鉛
電解法。
3. The electrolytic solution sample used for the measurement is taken from the electrolytic solution discharged from the electrolytic cell before adding the additive, and the lead content is measured by an analyzer to obtain an experimental formula prepared in advance. The zinc electrolysis method according to claim 2, wherein the additive addition amount is controlled by fitting, calculating the additive addition amount, and adding.
【請求項4】 電解液中の鉛含有量を測定する装置とし
てストリッピングボルタンメトリー分析装置を使用し、
電解液の分析試料温度を41〜43℃に保って液の鉛イ
オン濃度を測定することを特徴とする請求項2または3
記載の亜鉛電解法。
4. A stripping voltammetry analyzer is used as a device for measuring the lead content in an electrolytic solution,
The lead ion concentration of the electrolyte is measured while maintaining the temperature of the analytical sample of the electrolyte at 41 to 43 ° C.
The zinc electrolysis method described.
JP18832795A 1995-06-30 1995-06-30 Zinc electrolysis method for controlling Pb quality in electric zinc using Pb automatic analyzer Expired - Fee Related JP3423823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18832795A JP3423823B2 (en) 1995-06-30 1995-06-30 Zinc electrolysis method for controlling Pb quality in electric zinc using Pb automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18832795A JP3423823B2 (en) 1995-06-30 1995-06-30 Zinc electrolysis method for controlling Pb quality in electric zinc using Pb automatic analyzer

Publications (2)

Publication Number Publication Date
JPH0920989A true JPH0920989A (en) 1997-01-21
JP3423823B2 JP3423823B2 (en) 2003-07-07

Family

ID=16221673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18832795A Expired - Fee Related JP3423823B2 (en) 1995-06-30 1995-06-30 Zinc electrolysis method for controlling Pb quality in electric zinc using Pb automatic analyzer

Country Status (1)

Country Link
JP (1) JP3423823B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117053A (en) * 2009-12-07 2011-06-16 Dowa Metals & Mining Co Ltd Zinc electrowinning method
JP2011195879A (en) * 2010-03-19 2011-10-06 Dowa Metals & Mining Co Ltd Method for electroextracting nonferrous metal
WO2012039214A1 (en) * 2010-09-24 2012-03-29 Dowaメタルマイン株式会社 Method for electrowinning of non-iron metal
CN104060301A (en) * 2014-05-08 2014-09-24 昆明有色冶金设计研究院股份公司 System and method for treating waste electrolyte
CN104060301B (en) * 2014-05-08 2016-11-30 昆明有色冶金设计研究院股份公司 A kind of waste electrolyte processing system and method
JP2017057451A (en) * 2015-09-15 2017-03-23 Jx金属株式会社 LOW-α RAY HIGH-PURITY ZINC AND METHOD FOR PRODUCING LOW-α RAY HIGH-PURITY ZINC
CN110964923A (en) * 2019-12-24 2020-04-07 中南大学 Device and method for deep replacement copper extraction under multi-field coupling
CN114507879A (en) * 2022-02-10 2022-05-17 浙江工业大学 Electrolytic synthesis lead succinate ion control system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117053A (en) * 2009-12-07 2011-06-16 Dowa Metals & Mining Co Ltd Zinc electrowinning method
JP2011195879A (en) * 2010-03-19 2011-10-06 Dowa Metals & Mining Co Ltd Method for electroextracting nonferrous metal
WO2012039214A1 (en) * 2010-09-24 2012-03-29 Dowaメタルマイン株式会社 Method for electrowinning of non-iron metal
JP2012067354A (en) * 2010-09-24 2012-04-05 Dowa Metals & Mining Co Ltd Method for electrolytic extraction of nonferrous metal
CN104060301A (en) * 2014-05-08 2014-09-24 昆明有色冶金设计研究院股份公司 System and method for treating waste electrolyte
CN104060301B (en) * 2014-05-08 2016-11-30 昆明有色冶金设计研究院股份公司 A kind of waste electrolyte processing system and method
JP2017057451A (en) * 2015-09-15 2017-03-23 Jx金属株式会社 LOW-α RAY HIGH-PURITY ZINC AND METHOD FOR PRODUCING LOW-α RAY HIGH-PURITY ZINC
CN110964923A (en) * 2019-12-24 2020-04-07 中南大学 Device and method for deep replacement copper extraction under multi-field coupling
CN110964923B (en) * 2019-12-24 2023-09-19 中南大学 Device and method for extracting copper by deep replacement under multi-field coupling
CN114507879A (en) * 2022-02-10 2022-05-17 浙江工业大学 Electrolytic synthesis lead succinate ion control system
CN114507879B (en) * 2022-02-10 2023-10-27 浙江工业大学 Electrolytic synthesis lead succinate ion control system

Also Published As

Publication number Publication date
JP3423823B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
KR100290616B1 (en) Method of controlling component concentration of plating solution in continuous electroplating
US8440555B2 (en) Method for analyzing electrolytic copper plating solution
US4324621A (en) Method and apparatus for controlling the quality of electrolytes
CA1166187A (en) Method for determining current efficiency in galvanic baths
US10047449B2 (en) Device and method for electrolytically coating an object
KR20130104633A (en) Monitoring method of metal ions or oxygen ions applicable to high-concentration non-aqueous electrolyte
US3712857A (en) Method for controlling a reduction cell
JP3423823B2 (en) Zinc electrolysis method for controlling Pb quality in electric zinc using Pb automatic analyzer
US6984299B2 (en) Methods for determining organic component concentrations in an electrolytic solution
US4153521A (en) Method of automatic control and optimization of electrodeposition conditions
ZA200309239B (en) A Method for improving the quality of cathodes in electrolysis.
CN108914162B (en) Method and system for controlling feeding amount of aluminum oxide
CN104562083A (en) Zinc hydrometallurgical process capable of reducing acid-zinc ratio of electrolyte under high manganese condition
JP5406073B2 (en) Copper electrolytic purification apparatus and copper electrolytic purification method using the same
RU2296188C2 (en) Aluminum cell controlling method
FI71027C (en) FOERFARANDE FOER REGLERING AV EN ELEKTROLYTUTFAELLNINGSPROCESSFOER METALLER
KR102549712B1 (en) Method for estimating the corrosion rate of metal
JPH07316896A (en) Method for replenishing metal ions to plating liquid and device therefor
EP0215643A1 (en) Method for monitoring the quality of zinc sulfate electrolyte containing antimony (V)
JP2558388B2 (en) Management method of copper sulfate plating bath
US20240125730A1 (en) Non-reagent chloride analysis in acid copper plating baths
US4437950A (en) Method of controlling aluminum electrolytic cells
RU2220231C2 (en) Process of control over feed of aluminum oxide into electrolytic cells to win aluminum
KR100370576B1 (en) Control method of zinc ion concentration in electric zinc plating solution
CN113046818A (en) Electroplating additive concentration monitoring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees