JPH09209100A - Postheat treatment for welded member of alpha plus beta titanium alloy - Google Patents

Postheat treatment for welded member of alpha plus beta titanium alloy

Info

Publication number
JPH09209100A
JPH09209100A JP1296196A JP1296196A JPH09209100A JP H09209100 A JPH09209100 A JP H09209100A JP 1296196 A JP1296196 A JP 1296196A JP 1296196 A JP1296196 A JP 1296196A JP H09209100 A JPH09209100 A JP H09209100A
Authority
JP
Japan
Prior art keywords
titanium alloy
heat treatment
type titanium
beta titanium
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1296196A
Other languages
Japanese (ja)
Other versions
JP3365190B2 (en
Inventor
Atsushi Ogawa
厚 小川
Hiroshi Iiizumi
浩志 飯泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP01296196A priority Critical patent/JP3365190B2/en
Publication of JPH09209100A publication Critical patent/JPH09209100A/en
Application granted granted Critical
Publication of JP3365190B2 publication Critical patent/JP3365190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a postheat treatment method capable of giving sufficiently satisfactory characteristics of weld zone and weld heat-affected zone, required of a structural member, without deteriorating the characteristics of a base material of alpha plus beta titanium alloy. SOLUTION: An alpha plus beta titanium alloy, containing the alloying elements (by weight percentage) in which the value of Moeq, defined by equation Moeq=[Mo]+0.67×[V]+0.44× [W]+0.28 ×[Nb]+0.22×[Ta]+2.9×[Fe] +1.6×[Cr]+1.1×[Ni]+1.4× [Co]+0.77X[Cu]-[Al], is regulated to 2-7wt.%, is welded to a titanium material of the same or a different kind and then heated and held to and at a temp. in the range between (Tβ-230) and (Tβ-80) deg.C when the β-transformation temp. of the alpha plus beta titanium alloy is represented by Tβ.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高靭性、および高
延性を有するα+ β型チタン合金溶接部材の後熱処理方
法に関する。
TECHNICAL FIELD The present invention relates to a post heat treatment method for α + β type titanium alloy welded members having high toughness and high ductility.

【0002】[0002]

【従来の技術】チタン合金は高強度、および高靭性等の
特徴を生かして宇宙航空分野のみならず、民生分野にお
いても広く用いられている。近年、軽量構造部材として
のチタン合金の機械的性質に対する要求は厳しくなって
おり、特にチタン合金の溶接部に対しても良好な延性、
靭性が求められている。従来よりチタン合金の溶接部に
対しては、その残留応力を除去することを目的に溶接後
熱処理を施すことが行われている。
2. Description of the Related Art Titanium alloys are widely used not only in the aerospace field but also in the civil field due to their characteristics such as high strength and high toughness. In recent years, the demand for mechanical properties of titanium alloys as lightweight structural members has become strict, and particularly good ductility for welded parts of titanium alloys,
Toughness is required. Conventionally, a welded part of a titanium alloy is subjected to post-weld heat treatment for the purpose of removing residual stress.

【0003】[0003]

【発明が解決しようとする課題】しかるに、純チタンや
α型チタン合金は溶接性に優れるものの、それらに比べ
て高強度を有するα+ β型チタン合金やβ型チタン合金
では、「チタンの加工技術」(社)チタニウム協会編
103頁に記載されているように、溶接により強度や靭
性が低下する場合があった(従来技術1)。
However, although pure titanium and α-type titanium alloys have excellent weldability, α + β-type titanium alloys and β-type titanium alloys, which have higher strength than those, are Technology ”(Company) Titanium Association
As described on page 103, there were cases in which strength and toughness were reduced by welding (prior art 1).

【0004】一方、本発明者らは先に特開平3ー274
238号公報において、強度、靭性、並びに加工性等に
優れたα+ β型チタン合金を提案した(従来技術2)。
本合金は、代表的なα+ β型チタン合金である従来のT
i−6Al−4V合金に比べて、β相の安定度が比較的
高いβリッチα+ β型チタン合金であり、Ti−6Al
−4V合金と同様にTIG溶接、電子ビーム溶接等の溶
融溶接が可能であるものの、溶接後の冷却時に溶接部、
並びに溶接熱影響部での相変態によって延性や靭性が低
下する等の問題点があった。特に、従来技術2に開示さ
れたβリッチα+ β型チタン合金では、従来のチタン合
金に比べて優れた母材の強度ー延靭性を有していること
から、溶接部に於ても従来合金以上の強度ー延靭性特性
が要求されていた。
On the other hand, the inventors of the present invention previously disclosed in Japanese Patent Laid-Open No. 3-274.
In Japanese Patent No. 238, an α + β type titanium alloy excellent in strength, toughness, workability, etc. was proposed (prior art 2).
This alloy is a conventional T which is a typical α + β type titanium alloy.
Compared to the i-6Al-4V alloy, it is a β-rich α + β-type titanium alloy with relatively high β-phase stability.
Although it is possible to perform melt welding such as TIG welding and electron beam welding similarly to the -4V alloy, the welded portion during cooling after welding,
In addition, there is a problem that ductility and toughness are reduced due to phase transformation in the heat affected zone of welding. In particular, the β-rich α + β-type titanium alloy disclosed in Prior Art 2 has excellent strength-ductility of the base metal as compared with the conventional titanium alloy, and therefore, even in the welded portion, The strength and ductility characteristics that are superior to those of alloys were required.

【0005】本発明は、かかる事情に鑑みてなされたも
ので、母材の特性を害することなく溶接部、および溶接
熱影響部の前記特性が構造部材として十分満足すること
ができるβリッチα+ β型チタン合金溶接部材の後熱処
理方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and the β-rich α + which can sufficiently satisfy the above-mentioned characteristics of the weld and the heat-affected zone as a structural member without deteriorating the characteristics of the base metal. An object of the present invention is to provide a method for post heat treatment of a β-type titanium alloy welded member.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、所定範囲のモリブデン
当量(以下「Mo eq」と記す)で定義されるβリッ
チα+ β型チタン合金を同種または異種材料と溶接した
後、所定の後熱処理を施すことによって上記目的を達成
できること、更に上記βリッチα+β型チタン合金の成
分組成を限定することにより、得られる効果がより向上
することを見いだし、本発明を完成したものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a β-rich α + β type defined by a molybdenum equivalent within a predetermined range (hereinafter referred to as “Mo eq”). After the titanium alloy is welded with the same kind or different kinds of materials, the above object can be achieved by performing a predetermined post heat treatment, and further, the effect obtained by further improving the component composition of the β rich α + β type titanium alloy is improved. Then, they have completed the present invention.

【0007】即ち、第一の発明は、 (1)式で規定さ
れるMo eqを2〜7重量%とする合金元素(各成分
は重量%)を含有するα+β型チタン合金を、同種また
は異種チタン材料と溶接した後、前記α+β型チタン合
金のβ変態温度をTβと表したとき(Tβー230)℃
以上(Tβー80)℃以下の温度に加熱保持することを
特徴とするα+ β型チタン合金部材の後熱処理方法であ
る。
That is, the first invention is the same or different type of α + β type titanium alloy containing alloying elements (each component is wt%) having Mo eq defined by the formula (1) as 2 to 7 wt%. When the β transformation temperature of the α + β type titanium alloy is expressed as Tβ after welding with a titanium material (Tβ−230) ° C.
A post-heat treatment method for an α + β type titanium alloy member, which is characterized by heating and holding at a temperature not higher than (Tβ-80) ° C.

【0008】 Mo eq=[Mo]+0.67×[V]+0.44×[W]+0.28×[ Nb]+0.22×[Ta]+2.9×[Fe]+1.6×[Cr]+1.1× [Ni]+1.4×[Co]+0.77×[Cu]−[Al] (1)Mo eq = [Mo] + 0.67 × [V] + 0.44 × [W] + 0.28 × [Nb] + 0.22 × [Ta] + 2.9 × [Fe] + 1.6 × [Cr ] + 1.1 × [Ni] + 1.4 × [Co] + 0.77 × [Cu] − [Al] (1)

【0009】更に、第二の発明は、 Al:3.42〜
5.0%、V:2.1〜3.7%、Mo:0.85〜
2.37%、Fe:0.85〜3.15%、O:0.0
1〜0.25%、残り不可避的不純物からなり、且つA
l,V,Mo,及びFeの含有量が(2)式で規定され
る範囲であるα+β型チタン合金を、同種または異種チ
タン材料と溶接した後、(Tβー230)℃以上(Tβ
ー80)℃以下の温度に加熱保持することを特徴とする
α+β型チタン合金部材の後熱処理方法である。 2%≦[Mo]+0.67×[V]+2.9×[Fe]−[Al]≦7% ( 2)
Further, the second invention is: Al: 3.42 to
5.0%, V: 2.1 to 3.7%, Mo: 0.85
2.37%, Fe: 0.85 to 3.15%, O: 0.0
1 to 0.25%, the remaining unavoidable impurities, and A
After welding an α + β type titanium alloy in which the contents of 1, V, Mo, and Fe are within the range defined by the formula (2) with the same or different titanium materials, (Tβ-230) ° C or higher (Tβ
It is a post-heat treatment method of α + β type titanium alloy member, characterized in that it is heated and maintained at a temperature of −80 ° C. or lower. 2% ≦ [Mo] + 0.67 × [V] + 2.9 × [Fe] − [Al] ≦ 7% (2)

【0010】第一の発明において、α+ β型チタン合金
の成分組成を上記のように限定した理由について述べ
る。(1)式で表されるMo eqはチタンのβ相の安
定度を示すパラメータで、大きいほどβ相が安定である
ことを意味する。該Mo eqが2%未満であると、延
靭性や加工性に優れるβ相の体積率が小さくなり過ぎ、
本来の目的の一つである優れた延靭性が損なわれる。一
方、該Mo eqが7%を越えると、β相が室温におい
ても準安定相として存在するβ型チタン合金になる。β
型チタン合金は時効硬化処理によって高い強度が得られ
るものの、溶接部においてβ結晶粒の粗大化が起こり、
溶接部の延靭性が著しく劣化することが知られている。
この粗大化したβ結晶粒は、後熱処理によって微細化す
ることができず、β型チタン合金の欠点になっている。
従って、Mo eqは2%以上7%以下の範囲に限定す
べきである。
The reason why the component composition of the α + β type titanium alloy in the first invention is limited as described above will be described. Mo eq represented by the formula (1) is a parameter indicating the stability of the β phase of titanium, and the larger the value, the more stable the β phase. If the Mo eq is less than 2%, the volume fraction of the β phase, which is excellent in ductility and workability, becomes too small,
Excellent ductility, which is one of the original purposes, is impaired. On the other hand, when the Mo eq exceeds 7%, the β phase becomes a β type titanium alloy that exists as a metastable phase even at room temperature. β
Although high strength is obtained by age hardening of type-titanium alloy, β crystal grains become coarse in the welded part,
It is known that the ductility of the welded portion is significantly deteriorated.
The coarsened β crystal grains cannot be refined by the post heat treatment, which is a defect of the β type titanium alloy.
Therefore, Mo eq should be limited to the range of 2% or more and 7% or less.

【0011】次に、第二の発明において、成分組成を上
記のように限定した理由について述べる。 Al(アル
ミニウム)はα相安定化元素の一つであり、α+ β型チ
タン合金には必須の元素である。しかし、Al含有量が
3.42%未満ではα+ β型チタン合金になりにくく、
十分な強度が得られない。一方、Al含有量が5.0%
を越えると、延靭性を低下させると共に、加工性、特に
冷間での加工性を著しく劣化させる。従って、Al含有
量は3.42〜5.0%にすべきである。
Next, the reason why the component composition is limited as described above in the second invention will be described. Al (aluminum) is one of the α-phase stabilizing elements and is an essential element for α + β type titanium alloys. However, if the Al content is less than 3.42%, it becomes difficult to form an α + β type titanium alloy,
Sufficient strength cannot be obtained. On the other hand, the Al content is 5.0%
If it exceeds, the ductility is deteriorated and the workability, particularly the workability in cold is significantly deteriorated. Therefore, the Al content should be 3.42-5.0%.

【0012】O(酸素)は通常のα+β型チタン合金と
同量が好ましいが、O含有量が0.01%未満では強度
上昇への寄与が十分ではなく、一方、O含有量が0.2
5%を越えるとAlと同様に延靭性を劣化させる。従っ
て、O含有量は0.01〜0.25%の範囲に限定すべ
きである。
The amount of O (oxygen) is preferably the same as that of a normal α + β type titanium alloy, but if the O content is less than 0.01%, the contribution to the increase in strength is not sufficient, while the O content is 0.2.
If it exceeds 5%, the ductility is deteriorated like Al. Therefore, the O content should be limited to the range of 0.01 to 0.25%.

【0013】V(バナジウム)は、β相を安定化させる
効果は小さいが、β変態点を大きく低下させる重要な元
素である。しかしながら、V含有量が2.1%未満ではβ
変態点の低下が十分でなく、またβ相を安定化する効果
が得られない。一方、V含有量が3.7 %を越えると、β
相の安定度が大きくなり過ぎて強度上昇が十分に得られ
ず、またVは高価な元素であるためコスト高となる。従
って、V含有量は2.1〜3.7 %の範囲に限定すべきであ
る。
V (vanadium) has a small effect of stabilizing the β phase, but is an important element that greatly lowers the β transformation point. However, if the V content is less than 2.1%, β
The transformation point is not sufficiently lowered, and the effect of stabilizing the β phase cannot be obtained. On the other hand, if the V content exceeds 3.7%, β
The stability of the phase becomes too large and the strength cannot be sufficiently increased. Further, since V is an expensive element, the cost becomes high. Therefore, the V content should be limited to the range of 2.1 to 3.7%.

【0014】Mo(モリブデン)は、β相を安定化さ
せ、結晶粒の成長を抑制する効果を有する。しかし、M
o含有量が0.85%未満では焼鈍中に結晶粒が粗大化し上
述した効果が得られない。一方、Mo含有量が2.37%を
越えると、β相が安定化しすぎて強度の上昇が望めな
い。従って、Mo含有量は0.85〜2.37%の範囲に限定す
べきである。
Mo (molybdenum) has the effect of stabilizing the β phase and suppressing the growth of crystal grains. But M
If the o content is less than 0.85%, the crystal grains become coarse during annealing, and the above-mentioned effect cannot be obtained. On the other hand, when the Mo content exceeds 2.37%, the β phase is too stable and the strength cannot be expected to increase. Therefore, the Mo content should be limited to the range of 0.85 to 2.37%.

【0015】Fe(鉄)は、β相を安定化させ、特にβ
相を強化すると共に、溶体化時効処理後の強度上昇に大
きく寄与する。また、チタンの中での拡散速度が大きい
ことから、超塑性成形時の変形抵抗を下げる効果を有す
ると共に、拡散接合性を向上させる作用がある。しか
し、Fe含有量が0.85%未満では強化の効果が十分でな
く、また超塑性成形時の変形抵抗を低下させる効果およ
び拡散接合性を向上させる効果がいずれも十分でない。
一方、Fe含有量が3.15%を越えると、β相が安定化し
すぎて超塑性特性が劣化すると共に、時効処理時の強度
の上昇が望めない。従って、Fe含有量は0.8 〜3.15%
の範囲に限定すべきである。
Fe stabilizes the β phase, especially β
It strengthens the phase and contributes significantly to the strength increase after solution aging treatment. Further, since the diffusion rate in titanium is high, it has the effect of lowering the deformation resistance during superplastic forming, and also has the effect of improving the diffusion bondability. However, if the Fe content is less than 0.85%, the effect of strengthening is not sufficient, and the effect of lowering the deformation resistance during superplastic forming and the effect of improving diffusion bonding are not sufficient.
On the other hand, when the Fe content exceeds 3.15%, the β phase is excessively stabilized, the superplasticity characteristics are deteriorated, and the strength cannot be expected to increase during the aging treatment. Therefore, the Fe content is 0.8-3.15%
Should be limited to the range.

【0016】また、(2)式は第二の発明において限定
した成分により(1)式を書き換えたものであり、その
限定理由は前記Mo eqと同様である。
The expression (2) is obtained by rewriting the expression (1) with the limited components in the second invention, and the reason for the limitation is the same as that of Mo eq.

【0017】次に、熱処理条件の限定理由について説明
する。溶接部および溶接部近傍の熱影響部は、溶接時に
β変態点以上の温度に加熱された後、室温に冷却され
る。(1)式で規定されるMo eqが2 %以上7 %以
下のチタン合金においては、冷却時にβ相中に微細なα
相が析出し、その部分の硬度が上昇し、その結果延靭性
が低下する場合がある。このような材料の溶接後熱処理
は通常のチタン合金の後熱処理と同様に残留応力の緩和
および除去を目的とするのはもちろん、併せて上述の硬
化部が軟化、回復するような条件で行うことが必要であ
る。後熱処理温度が低すぎると軟化が十分でないか、あ
るいは非常に長い熱処理時間を要し実用的でない。ま
た、場合によっては後熱処理時にかえって時効硬化して
しまう。従って、後熱処理温度の下限はTβー230℃
にすべきである。一方、後熱処理温度が高すぎると加熱
中に十分軟化はするものの、その後の冷却中にβ相中に
微細なα相が再び析出し硬化してしまい後熱処理の効果
が得られない。従って、後熱処理温度の上限はTβー8
0℃にすべきである。
Next, the reasons for limiting the heat treatment conditions will be described. The weld and the heat-affected zone near the weld are heated to a temperature not lower than the β transformation point during welding and then cooled to room temperature. In a titanium alloy having a Mo eq defined by the formula (1) of 2% or more and 7% or less, fine α in the β phase during cooling.
In some cases, a phase precipitates, the hardness of that portion increases, and as a result, the ductility and toughness decreases. The post-weld heat treatment of such a material is, in addition to the purpose of relaxing and removing residual stress, similar to the post-heat treatment of ordinary titanium alloys. is required. If the post heat treatment temperature is too low, the softening is not sufficient or a very long heat treatment time is required, which is not practical. Also, in some cases, age hardening occurs instead of the post heat treatment. Therefore, the lower limit of post heat treatment temperature is Tβ-230 ℃
Should be. On the other hand, if the post-heat treatment temperature is too high, it is sufficiently softened during heating, but during the subsequent cooling, the fine α phase is precipitated again in the β phase and hardened, so that the effect of the post heat treatment cannot be obtained. Therefore, the upper limit of the post heat treatment temperature is Tβ-8.
Should be 0 ° C.

【0018】[0018]

【実施例】以下、本発明の実施例を示す。 実施例1 表1に示す化学成分を有する各種α+ β型チタン合金同
志を真空チャンバー内において電子ビーム溶接を行っ
た。それらの接合材料を種々の温度により後熱処理を行
った上で、溶接線が引張試験片の長手方向となるように
ASTMタイプ平板引張り試験片を採取し、室温におい
て引張試験を行った。尚、後熱処理時間はいずれも1.
5時間であった。結果を表2、及び図1に示す。 図1
から明らかなように、Mo eqが2〜7重量%の範囲
内にあるβリッチα+ β型チタン合金は、本発明のTβ
ー230℃以上、Tβー80℃以下の温度における後熱
処理を施すことにより溶接まま材に対して3%以上の伸
びの改善と10%以上の室温伸びが得られたが、Mo
eqが2〜7重量%の範囲を外れるチタン合金では伸び
の改善が3%未満と小さいか、または望めないことが分
かる。
Embodiments of the present invention will be described below. Example 1 Various α + β type titanium alloys having the chemical components shown in Table 1 were electron beam welded in a vacuum chamber. After subjecting these joining materials to post heat treatment at various temperatures, ASTM type flat plate tensile test pieces were sampled so that the weld line was in the longitudinal direction of the tensile test pieces, and the tensile test was performed at room temperature. The post heat treatment time was 1.
5 hours. The results are shown in Table 2 and FIG. FIG.
As is clear from the above, the β-rich α + β-type titanium alloy having Mo eq in the range of 2 to 7% by weight is Tβ of the present invention.
By post heat treatment at a temperature of −230 ° C. or higher and Tβ−80 ° C. or lower, improvement in elongation of 3% or more and room temperature elongation of 10% or more were obtained for the as-welded material.
It can be seen that in the titanium alloy having an eq outside the range of 2 to 7% by weight, the improvement in elongation is as small as less than 3% or is not desired.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】実施例2 Al:4.48%、V:2.98%、Mo:1.89
%、Fe:1.99%、O:0.083%、C:0.0
1%、N:0.007%、H:0.0048%を含有す
るβリッチα+ β型チタン合金(β変態点:905℃、
Mo eq:5.18%)のインゴットをβ相域に加熱
・鍛造後、α+ β相域に加熱し、熱間圧延により厚さ3
mmの薄板とした。この材料に開先加工を施した後、予
めアルゴンガスを充填したチャンバー内において2パス
のTIG溶接を行った。この溶接材を表3に示す条件に
て熱処理を行った上で、実施例1と同様の方法により引
張試験を行った。熱処理時間はいずれも1.5時間であ
った。結果を表3及び図2に示す。これらの結果より、
後熱処理温度範囲として、Tβー230℃以上、Tβー
80℃以下の温度に加熱処理することにより、室温伸び
として10%以上が得られた。
Example 2 Al: 4.48%, V: 2.98%, Mo: 1.89
%, Fe: 1.99%, O: 0.083%, C: 0.0
Β rich α + β type titanium alloy containing 1%, N: 0.007%, H: 0.0048% (β transformation point: 905 ° C,
(Mo eq: 5.18%) is heated and forged in the β phase region, heated to the α + β phase region, and hot rolled to a thickness of 3
It was a thin plate of mm. After beveling the material, 2-pass TIG welding was performed in a chamber previously filled with argon gas. This welded material was heat-treated under the conditions shown in Table 3 and then subjected to a tensile test by the same method as in Example 1. The heat treatment time was 1.5 hours in all cases. The results are shown in Table 3 and FIG. From these results,
As a post heat treatment temperature range, a heat treatment at a temperature of Tβ-230 ° C or higher and Tβ-80 ° C or lower resulted in room temperature elongation of 10% or higher.

【0022】[0022]

【表3】 [Table 3]

【0023】実施例3 実施例2で用いた厚さ3mmのAl:4.48%、V:
2.98%、Mo:1.89%、Fe:1.99%、
O:0.083%、C:0.01%、N:0.007
%、H:0.0048%を含有するβリッチα+ β型チ
タン合金(β変態点:905℃、Mo eq:5.18
%)の薄板を異種チタン合金に溶接し、各種温度にて熱
処理を行った上で、実施例1と同様の方法により引張試
験を行った。溶接はTIG溶接により行い、アルゴンガ
スによるシールド(トーチシールドはアフターシールド
およびバックシールド)を行った。尚、上記異種チタン
合金の化学成分はAl:6.47%、V:4.12%、
Mo:1.89%、Fe:0.204%、O:0.16
%、C:0.034%、N:0.012%、H:0.0
079%である。また、熱処理時間は2時間で、熱処理
後は空冷により室温まで冷却した。結果を表4及び図3
に示す。これらの結果より、後熱処理温度範囲として、
Tβー230℃以上、Tβー80℃以下の温度に加熱処
理することにより、室温伸びとして10%以上が得られ
た。
Example 3 Al used in Example 2 and having a thickness of 3 mm: 4.48%, V:
2.98%, Mo: 1.89%, Fe: 1.99%,
O: 0.083%, C: 0.01%, N: 0.007
%, H: 0.0048% β-rich α + β type titanium alloy (β transformation point: 905 ° C., Mo eq: 5.18)
%) Thin plate was welded to a different titanium alloy, heat treated at various temperatures, and then subjected to a tensile test in the same manner as in Example 1. Welding was performed by TIG welding, and shielded by argon gas (after shield and back shield for torch shield). The chemical composition of the different titanium alloy is Al: 6.47%, V: 4.12%,
Mo: 1.89%, Fe: 0.204%, O: 0.16
%, C: 0.034%, N: 0.012%, H: 0.0
It is 079%. The heat treatment time was 2 hours, and after the heat treatment, it was cooled to room temperature by air cooling. The results are shown in Table 4 and FIG.
Shown in From these results, as the post heat treatment temperature range,
By heat-treating at a temperature of Tβ-230 ° C or higher and Tβ-80 ° C or lower, room temperature elongation of 10% or more was obtained.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【発明の効果】以上詳述したように、本発明の方法によ
ればα+ β型チタン合金溶接部材の特性を向上させるこ
とができるので、本発明の方法により製造されたチタン
合金部材は、宇宙航空および民生分野等において広く利
用することができる。
As described above in detail, according to the method of the present invention, the characteristics of the α + β type titanium alloy welded member can be improved. Therefore, the titanium alloy member produced by the method of the present invention is It can be widely used in aerospace and civilian fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶接後熱処理を行った材料の伸びの改善に及ぼ
すMo eqの影響を示す図
FIG. 1 is a diagram showing an influence of Mo eq on improvement of elongation of a material subjected to heat treatment after welding.

【図2】溶接後熱処理を行った材料の伸びに及ぼす熱処
理温度の影響を示す図
FIG. 2 is a diagram showing the influence of heat treatment temperature on the elongation of the material after the heat treatment after welding.

【図3】溶接後熱処理を行った材料の伸びに及ぼす熱処
理温度の影響を示す図
FIG. 3 is a diagram showing the influence of heat treatment temperature on the elongation of the material after the heat treatment after welding.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (1)式で規定されるMo eqを2〜
7重量%(以下%は重量%を示す)とする合金元素を含
有するα+β型チタン合金を、同種または異種チタン材
料と溶接した後、前記α+β型チタン合金のβ変態温度
をTβと表したとき(Tβー230)℃以上(Tβー8
0)℃以下の温度に加熱保持することを特徴とするα+
β型チタン合金部材の後熱処理方法。 Mo eq=[Mo]+0.67×[V]+0.44×[W]+0.28×[N b]+0.22×[Ta]+2.9×[Fe]+1.6×[Cr]+1.1×[ Ni]+1.4×[Co]+0.77×[Cu]−[Al] ・・・(1)
1. Mo eq defined by the equation (1) is 2 to
When the α + β type titanium alloy containing the alloying element of 7% by weight (hereinafter,% by weight) is welded with the same or different titanium material, and the β transformation temperature of the α + β type titanium alloy is expressed as Tβ. (Tβ-230) ° C or higher (Tβ-8
0) α +, characterized by being heated and maintained at a temperature below ℃
Post-heat treatment method for β-type titanium alloy members. Mo eq = [Mo] + 0.67 × [V] + 0.44 × [W] + 0.28 × [N b] + 0.22 × [Ta] + 2.9 × [Fe] + 1.6 × [Cr] +1 .1 × [Ni] + 1.4 × [Co] + 0.77 × [Cu] − [Al] (1)
【請求項2】 Al:3.42〜5.0%、V:2.1
〜3.7%、Mo:0.85〜2.37%、Fe:0.
85〜3.15%、O:0.01〜0.25%、残り不
可避的不純物からなり、且つAl,V,Mo,及びFe
の含有量が(2)式で規定される範囲であるα+β型チ
タン合金を、同種または異種チタン材料と溶接した後、
(Tβー230)℃以上(Tβー80)℃以下の温度に
加熱保持することを特徴とするα+ β型チタン合金部材
の後熱処理方法。 2%≦[Mo]+0.67×[V]+2.9×[Fe]−[Al]≦7% ( 2)
2. Al: 3.42 to 5.0%, V: 2.1
.About.3.7%, Mo: 0.85 to 2.37%, Fe: 0.
85 to 3.15%, O: 0.01 to 0.25%, remaining unavoidable impurities, and Al, V, Mo, and Fe
After welding the α + β type titanium alloy whose content is within the range defined by the formula (2) with the same or different titanium materials,
A post heat treatment method for an α + β type titanium alloy member, which comprises heating and holding at a temperature of (Tβ-230) ° C or higher and (Tβ-80) ° C or lower. 2% ≦ [Mo] + 0.67 × [V] + 2.9 × [Fe] − [Al] ≦ 7% (2)
JP01296196A 1996-01-29 1996-01-29 Post heat treatment method for α + β type titanium alloy welded members Expired - Fee Related JP3365190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01296196A JP3365190B2 (en) 1996-01-29 1996-01-29 Post heat treatment method for α + β type titanium alloy welded members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01296196A JP3365190B2 (en) 1996-01-29 1996-01-29 Post heat treatment method for α + β type titanium alloy welded members

Publications (2)

Publication Number Publication Date
JPH09209100A true JPH09209100A (en) 1997-08-12
JP3365190B2 JP3365190B2 (en) 2003-01-08

Family

ID=11819862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01296196A Expired - Fee Related JP3365190B2 (en) 1996-01-29 1996-01-29 Post heat treatment method for α + β type titanium alloy welded members

Country Status (1)

Country Link
JP (1) JP3365190B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111935A (en) * 2004-10-15 2006-04-27 Sumitomo Metal Ind Ltd NEAR beta-TYPE TITANIUM ALLOY
KR20170125981A (en) * 2015-03-26 2017-11-15 가부시키가이샤 고베 세이코쇼 α-β type titanium alloy
JP2019181563A (en) * 2018-04-04 2019-10-24 ザ・ボーイング・カンパニーTheBoeing Company Welded titanium structure utilizing dissimilar titanium alloy filler metal for enhanced fatigue life
CN112210736A (en) * 2020-10-13 2021-01-12 西北工业大学 Heat treatment method for regulating and controlling near-beta titanium alloy microstructure and microhardness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111935A (en) * 2004-10-15 2006-04-27 Sumitomo Metal Ind Ltd NEAR beta-TYPE TITANIUM ALLOY
US7910052B2 (en) 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy
KR20170125981A (en) * 2015-03-26 2017-11-15 가부시키가이샤 고베 세이코쇼 α-β type titanium alloy
JP2019181563A (en) * 2018-04-04 2019-10-24 ザ・ボーイング・カンパニーTheBoeing Company Welded titanium structure utilizing dissimilar titanium alloy filler metal for enhanced fatigue life
CN112210736A (en) * 2020-10-13 2021-01-12 西北工业大学 Heat treatment method for regulating and controlling near-beta titanium alloy microstructure and microhardness

Also Published As

Publication number Publication date
JP3365190B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US11718897B2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made therefrom
EP3791003B1 (en) High strength titanium alloys
JP2012528932A (en) High-strength near β-type titanium alloy and method for producing the same
EP3950984A1 (en) Ni-based super-heat-resistant alloy and method for manufacturing ni-based super-heat-resistant alloy
EP3526357B1 (en) High temperature, damage tolerant superalloy, an article of manufacture made from the alloy, and process for making the alloy
EP3318651A1 (en) Austenitic heat-resistant alloy and welded structure
EP3844314B1 (en) Creep resistant titanium alloys
EP3775307B1 (en) High temperature titanium alloys
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP2536673B2 (en) Heat treatment method for titanium alloy material for cold working
JPH0457734B2 (en)
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
JP3365190B2 (en) Post heat treatment method for α + β type titanium alloy welded members
JPS5989744A (en) Weldable titanium alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
JP2915488B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JP2005154850A (en) High strength beta-type titanium alloy
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JP2915491B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JP2915489B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JPS5864364A (en) Manufacture of ni-cr alloy with superior corrosion resistance
JP2915490B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JPH0790526A (en) Heat treatment for beta titanium alloy weld zone
JP2915487B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees