JPH09208326A - Sintered ceramic material and its production - Google Patents

Sintered ceramic material and its production

Info

Publication number
JPH09208326A
JPH09208326A JP8017466A JP1746696A JPH09208326A JP H09208326 A JPH09208326 A JP H09208326A JP 8017466 A JP8017466 A JP 8017466A JP 1746696 A JP1746696 A JP 1746696A JP H09208326 A JPH09208326 A JP H09208326A
Authority
JP
Japan
Prior art keywords
powder
ceramic
sintered body
granulated
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8017466A
Other languages
Japanese (ja)
Inventor
Daiki Miyamoto
大樹 宮本
Takashi Miyamoto
敬 宮本
Yoshihiko Kuroda
美彦 黒田
Koichi Ando
公一 安藤
Yoshinobu Wada
義信 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Daito KK
Original Assignee
Osaka Prefecture
Daito KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Daito KK filed Critical Osaka Prefecture
Priority to JP8017466A priority Critical patent/JPH09208326A/en
Publication of JPH09208326A publication Critical patent/JPH09208326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a sintered ceramic material capable of economically producing a ceramic material having high Weibull coefficient and high reliability without using particular apparatus and process by using granulated powder and ungranulated powder. SOLUTION: A forming raw material containing granulated ceramic powder and ungranulated ceramic powder is formed and bakes. The ceramic powder is preferably powder of a structural ceramic material such as ZrO2 , Al2 O3 , Si3 N4 or SiC, especially preferably Al2 O3 . The weight - average particle diameter of the granulated ceramic powder is preferably 10-100μm. The amount of the granulated ceramic is preferably 5-60wt.% based on the ungranulated ceramic powder. The granulated ceramic powder is preferably subjected to calculation treatment. The forming raw material is sintered after forming by cast-forming, pressure forming, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、構造用セラミック
ス焼結体及びその製造方法に関し、詳しくは、構造体と
しての強度及び信頼性を有するセラミックス焼結体及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural ceramics sintered body and a method for manufacturing the same, and more particularly to a ceramics sintered body having strength and reliability as a structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】セラミックス焼結体は、耐熱性、耐食
性、耐薬品性等に優れ、プラスチック材料や金属材料に
代わる工業材料として広く利用されている。
2. Description of the Related Art Sintered ceramics are excellent in heat resistance, corrosion resistance, chemical resistance, etc. and are widely used as industrial materials replacing plastic materials and metal materials.

【0003】しかし、これらセラミックスは、破壊靭性
値が低く、焼結時に生じる気孔や異物の混入に起因する
欠陥を有し、応力を加えるとかかる欠陥部分に応力集中
を生じて脆性破壊ひき起こし、そのため強度のばらつき
が大きく、材料としての信頼性に欠けるという面があ
る。
However, these ceramics have a low fracture toughness value and have defects due to the inclusion of pores and foreign substances generated during sintering, and when stress is applied, stress concentration occurs in such defective portions, causing brittle fracture, Therefore, there is a large variation in strength, and the reliability as a material is lacking.

【0004】強度のばらつきの程度は一般にワイブル係
数によって評価されるが、これらセラミックスではワイ
ブル係数が10以下のものが多く、構造材料として十分
な信頼性をもつものが少ない。
The degree of variation in strength is generally evaluated by the Weibull coefficient, but many of these ceramics have a Weibull coefficient of 10 or less, and few structural materials have sufficient reliability.

【0005】かかる問題を改善するために、例えば、欠
陥の原因となる不純物やごみ等が混入しないようにする
ため、セラミックスの製造の全工程をクリーンルーム内
で行ったり、或いは鋳込成形において、型に流し込む前
に微細なメッシュで不純物を除去することが提案されて
いる。また、成形時に粒子を均一に充填して、欠陥を低
減すべく、適切なバインダーシステムの開発や、その他
ウイスカーや長繊維をセラミックスのマトリックス中に
導入してセラミックスの機械的特性を改善する試みが行
われている。
In order to improve such a problem, for example, in order to prevent impurities and dust, which cause defects, from being mixed in, all the steps of manufacturing ceramics are performed in a clean room, or in casting, It has been proposed to remove impurities with a fine mesh before pouring into. In addition, in order to uniformly fill the particles during molding and reduce defects, development of an appropriate binder system and other attempts to improve the mechanical properties of the ceramics by introducing whiskers and long fibers into the ceramics matrix. Has been done.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の手法に
より、強度のばらつきを抑え、高いワイブル係数をもつ
高信頼性のセラミックスを得ようとすると、例えば、ク
リーンルームや特殊な工程が必要であったり、或いは、
個々の条件に適合したバインダーシステムの開発を行わ
なければならず、高度な製造技術や高価な特別の装置が
必要となり、製品のコストの大きな上昇を招く。
However, if an attempt is made to obtain highly reliable ceramics having a high Weibull coefficient by suppressing the variation in strength by the above method, for example, a clean room or a special process may be required. Or
Binder systems that meet individual conditions must be developed, which requires advanced manufacturing technology and expensive special equipment, which greatly increases the cost of the product.

【0007】従って、高いワイブル係数をもつ高信頼性
のセラミックスを、クリーンルーム等の特別な装置を用
いることなく、経済的に提供できることが望まれてい
る。
Therefore, it is desired to provide highly reliable ceramics having a high Weibull coefficient economically without using a special device such as a clean room.

【0008】[0008]

【課題を解決するための手段】本発明者らは、かかる課
題に鑑み、セラミックスの製造法について鋭意検討した
ところ、あらかじめ造粒したセラミックス粉末と、未造
粒のセラミックス粉末とを混合し、これを成形・焼成す
ることより、特別な装置や工程を要せずとも高いワイブ
ル係数をもつ高信頼性のセラミックスを経済的に製造で
きることを見出し、本発明を完成するに至った。
Means for Solving the Problems In view of the above problems, the inventors of the present invention have made extensive studies on a method for producing ceramics. As a result, a mixture of pre-granulated ceramic powder and an ungranulated ceramic powder, It was found that the highly reliable ceramics having a high Weibull coefficient can be economically produced by molding and firing the ceramics without requiring a special device or process, and thus the present invention has been completed.

【0009】すなわち、本発明は、 (1)造粒したセラミックス粉末と、未造粒のセラミッ
クス粉末とを含有する成形原料を成形・焼成することを
特徴とするセラミックス焼結体の製造方法。
That is, the present invention is: (1) A method for producing a ceramic sintered body, which comprises molding and firing a forming raw material containing a granulated ceramic powder and an ungranulated ceramic powder.

【0010】(2)セラミックス粉末がAl23、Zr
2、Si24、SiCから選ばれる少なくとも1つで
ある(1)記載のセラミックス焼結体の製造方法。
(2) Ceramic powder is Al 2 O 3 , Zr
The method for producing a ceramics sintered body according to (1), which is at least one selected from O 2 , Si 2 N 4 , and SiC.

【0011】(3)セラミックス粉末がAl23である
(1)記載のセラミックス焼結体の製造方法。
(3) The method for producing a ceramic sintered body according to (1), wherein the ceramic powder is Al 2 O 3 .

【0012】(4)造粒したセラミックス粉末の平均粒
子径が10〜100μmの範囲である(1)記載のセラ
ミックスの焼結体製造方法。
(4) The method for producing a ceramic sintered body according to (1), wherein the granulated ceramic powder has an average particle diameter in the range of 10 to 100 μm.

【0013】(5)造粒したセラミックス粉末の割合が
未造粒のセラミックス粉末に対して5〜60重量%であ
る(1)記載のセラミックス焼結体の製造方法。
(5) The method for producing a ceramic sintered body according to (1), wherein the proportion of the granulated ceramic powder is 5 to 60% by weight based on the ungranulated ceramic powder.

【0014】(6)造粒したセラミックス粉末が仮焼処
理されている(1)記載のセラミックス焼結体の製造方
法。
(6) The method for producing a ceramic sintered body according to (1), wherein the granulated ceramic powder is calcined.

【0015】(7)鋳込成形法により成形を行う(1)
記載のセラミックス焼結体の製造方法。
(7) Molding is performed by a casting method (1)
A method for producing the ceramics sintered body described.

【0016】(8)加圧成形法により成形を行う(1)
記載のセラミックス焼結体の製造方法、及び、 (9)造粒したセラミックス粉末と、未造粒のセラミッ
クス粉末とを含有する粉末原料を成形・焼結したことを
特徴とするセラミックス焼結体、を提供するものであ
る。
(8) Molding by pressure molding method (1)
A method for producing a ceramics sintered body as described above, and (9) a ceramics sintered body characterized by molding and sintering a powder raw material containing a granulated ceramics powder and an ungranulated ceramics powder, Is provided.

【0017】[0017]

【発明の実施の形態】本発明におけるセラミックス粉末
は、工業材料として使用されるものであれば特に限定さ
れないが、機械特性などからZrO2、Al23、Si2
4、SiCの構造用セラミックスが好適に用いられ、
特に好ましくは、Al23が用いられる。これらセラミ
ックス粉末は、中和沈殿法、アルコラートの加水分解等
の常法により得られた市販のものでよい。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic powder in the present invention is not particularly limited as long as it is used as an industrial material, but ZrO 2 , Al 2 O 3 and Si 2 are used because of their mechanical properties.
N 4 and SiC structural ceramics are preferably used,
Particularly preferably, Al 2 O 3 is used. These ceramic powders may be commercially available ones obtained by a conventional method such as a neutralization precipitation method or an alcoholate hydrolysis.

【0018】本発明の造粒したセラミックス粉末は、造
粒方法の如何を問わず、セラミックス粉末の粒子を凝集
させた状態のものをいい、造粒方法としては、例えば、
セラミックス粉末に公知の有機結合剤や有機分散剤を添
加した後、湿式混合して泥漿状態とし、この泥漿をスプ
レードライヤーにて噴霧乾燥して造粒する方法などが用
いられる。得られた造粒物の平均粒子径は、重量平均粒
子径で10〜100μmであることが好ましく、さらに
好ましくは、10μm〜70μmである。
The granulated ceramic powder of the present invention refers to a state in which the particles of the ceramic powder are agglomerated regardless of the granulation method. Examples of the granulation method include:
A method of adding a known organic binder or organic dispersant to the ceramic powder, wet-mixing the mixture into a sludge state, and spray-drying the sludge with a spray dryer to granulate is used. The average particle size of the obtained granules is preferably 10 to 100 μm, more preferably 10 μm to 70 μm in terms of weight average particle size.

【0019】本発明の造粒したセラミックス粉末は、未
造粒のセラミックス粉末と混合する前に、仮焼処理され
ていることが好ましい。かかる仮焼処理は、上記造粒物
を通常使用される電気炉等を用いて、常圧、大気雰囲気
中で焼成温度700〜1300℃、保持時間1〜4時間
にて行う。仮焼処理を施すことにより、造粒物は収縮を
生じ、これを仮焼処理していないセラミックス粉末中に
分散させることにより、高いワイブル係数のセラミック
ス焼結体を得ることができる。尚、仮焼処理は、用いる
セラミックスの種類により窒素雰囲気下で行う場合や、
或いは、加圧下で行ってもよい。
The granulated ceramic powder of the present invention is preferably calcined before mixing with the ungranulated ceramic powder. Such a calcination treatment is carried out by using an electric furnace or the like which is usually used for the above-mentioned granulated product, at atmospheric pressure and in an air atmosphere at a firing temperature of 700 to 1300 ° C. and a holding time of 1 to 4 hours. The calcination process causes the granulated product to shrink, and by dispersing this in the uncalcined ceramic powder, a ceramics sintered body having a high Weibull coefficient can be obtained. The calcination process may be performed in a nitrogen atmosphere depending on the type of ceramics used,
Alternatively, it may be carried out under pressure.

【0020】本発明のセラミックス焼結体は、上記した
造粒したセラミックス粉末と、造粒していない未造粒の
セラミックス粉末とを混合したものを成形原料として、
これを常法により、成形・焼成することにより得られ
る。造粒したセラミックス粉末の添加割合は、未造粒の
セラミックス粉末に対して5〜60重量%であることが
好ましく、さらに好ましくは、10〜30重量%であ
る。また、成形原料には、公知の有機結合剤や有機分散
剤を添加してもよく、さらに加水調整を行ってもよい。
The ceramic sintered body of the present invention comprises a mixture of the above-mentioned granulated ceramic powder and the non-granulated ungranulated ceramic powder as a forming raw material.
It can be obtained by molding and firing this in a conventional manner. The addition ratio of the granulated ceramic powder is preferably 5 to 60% by weight, more preferably 10 to 30% by weight, based on the ungranulated ceramic powder. In addition, a known organic binder or organic dispersant may be added to the forming raw material, and water may be further adjusted.

【0021】このように調整された成形原料は、鋳込成
形法、加圧成形法、押出成形法、射出成形法など公知の
セラミックス成形法により成形した後、通常使用される
電気炉等を用いて、1000〜1800℃、好ましくは
1400〜1700℃にて、1〜10時間、好ましくは
3〜5時間焼結する。かかる焼結は、用いるセラミック
スの種類により窒素雰囲気下で行う場合や、或いは、加
圧下で行ってもよい。
The molding raw material thus prepared is molded by a known ceramics molding method such as a casting molding method, a pressure molding method, an extrusion molding method, or an injection molding method, and then an electric furnace or the like usually used is used. Sintering at 1000 to 1800 ° C., preferably 1400 to 1700 ° C., for 1 to 10 hours, preferably 3 to 5 hours. Such sintering may be performed in a nitrogen atmosphere or under pressure depending on the type of ceramics used.

【0022】このように本発明の製造方法によれば、あ
らかじめ造粒した粉末と未造粒の粉末を混合して成形・
焼結したものであるため、焼結時において、造粒した粉
末と未造粒の粉末との間で僅かに収縮の違いを生じ、か
かる相違に起因してセラミックス焼結体中において欠陥
の生成を阻止しうる構造を形成して、高信頼性のセラミ
ックス焼結体を提供することができる。
As described above, according to the manufacturing method of the present invention, the powder which has been granulated in advance and the powder which has not been granulated are mixed and molded.
Since it is a sintered product, a slight difference in shrinkage occurs between the granulated powder and the ungranulated powder during sintering, and this difference causes the generation of defects in the ceramic sintered body. It is possible to provide a highly reliable ceramics sintered body by forming a structure capable of preventing the above.

【0023】そして得られたセラミックス焼結体は、高
いワイブル係数をもち、工業材料、とりわけ構造材料と
して好適に用いることができる。
The resulting ceramic sintered body has a high Weibull coefficient and can be suitably used as an industrial material, especially as a structural material.

【0024】[0024]

【発明の効果】本発明のセラミックス焼結体の製造方法
によると、クリーンルームや特殊な工程など高度な製造
技術や高価な特別の装置を要せずとも、強度のばらつき
を抑えた、高いワイブル係数をもつセラミックス焼結体
を経済的に提供でき、かかる製造方法により製造された
セラミックス焼結体は、高信頼性のセラミックスとして
工業材料、とりわけ構造材料として有用に用いることが
できる。
EFFECTS OF THE INVENTION According to the method for manufacturing a ceramics sintered body of the present invention, a high Weibull coefficient that suppresses variations in strength is achieved without requiring advanced manufacturing technology such as a clean room or a special process or expensive special equipment. It is possible to economically provide a ceramics sintered body having, and the ceramics sintered body manufactured by such a manufacturing method can be effectively used as an industrial material, particularly a structural material, as highly reliable ceramics.

【0025】[0025]

【実施例】以下に実施例及び比較例を挙げて本発明を具
体的に説明するが、本発明はこれらの実施例に何ら限定
されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0026】実施例1 セラミックス粉末として、純度99.9%の酸化アルミ
ニウム(昭和電工(株)製ALー180 SGー3、以
下同じ。)を用い、有機結合剤としてオリゴ糖アルコー
ル系結合剤(日研化成(株)製FCー51、以下同
じ。)、有機分散剤としてアニオン系分散剤(東亜合成
(株)製Aー6114、以下同じ。)を、それぞれ酸化
アルミニウム100重量部に対して0.5、0.7重量
部ずつ添加しポットミルで湿式混合して、固形分含有率
が60重量%の泥漿を調整した。この泥漿をスプレード
ライヤーを用いて噴霧乾燥し、未仮焼の造粒物を得て、
これを電気炉で1200℃、2時間、常圧大気雰囲気下
において、仮焼処理を行い造粒物a1を得た。得られた
造粒物の重量平均粒子径は40μmであった。
Example 1 Aluminum oxide having a purity of 99.9% (AL-180 SG-3 manufactured by Showa Denko KK, the same applies hereinafter) was used as the ceramic powder, and an oligosaccharide alcohol-based binder ( Niken Kasei Co., Ltd. FC-51, same as below), and anionic dispersant (A-6114, Toagosei Co., Ltd., same below) as an organic dispersant, respectively, to 100 parts by weight of aluminum oxide. 0.5 and 0.7 parts by weight were added and wet mixed with a pot mill to prepare a slurry having a solid content of 60% by weight. This slurry is spray dried using a spray dryer to obtain an uncalcined granulated product,
This was calcined in an electric furnace at 1200 ° C. for 2 hours in an atmospheric atmosphere of atmospheric pressure to obtain a granulated product a1. The weight average particle diameter of the obtained granulated product was 40 μm.

【0027】次いで、上記と同様の操作により固形分含
有量が80重量%となる泥漿a2を調整し、造粒物a1
と泥漿a2とを、造粒物a1と泥漿a2との固形分の重
量比率が1:4となるように混合し、さらにこの混合物
100重量部に対し、オリゴ糖アルコール系結合剤0.
5重量部、アニオン系分散剤0.7重量部をそれぞれ添
加して、これを加水調整して固形分含有量が80.5重
量%となる成形原料a3を得た。この成形原料a3を真
空ポンプにて減圧脱泡の後、石膏型を用いて鋳込成形を
行い、得られた成形体を電気炉を用いて、1570℃で
4時間焼成し、焼結体Aを得た。
Then, the slurry a2 having a solid content of 80% by weight is prepared by the same operation as described above, and the granulated product a1 is prepared.
And sludge a2 were mixed so that the weight ratio of the solid content of granules a1 and sludge a2 was 1: 4, and 100 parts by weight of this mixture was further mixed with an oligosaccharide alcohol-based binder of 0.
5 parts by weight and 0.7 parts by weight of an anionic dispersant were added, respectively, and the mixture was hydrolyzed to obtain a forming raw material a3 having a solid content of 80.5% by weight. After defoaming this forming raw material a3 with a vacuum pump under reduced pressure, cast molding is performed using a gypsum mold, and the obtained formed body is fired at 1570 ° C. for 4 hours using an electric furnace to obtain a sintered body A. Got

【0028】この焼結体AをJIS R 1601に準
拠して曲げ試験を行い、得られた3点曲げ強度値からワ
イブル係数を求めた。その結果は、平均強度が443.
6MPaで、ワイブル係数が29.2と極めて高い値が
得られた。
This sintered body A was subjected to a bending test in accordance with JIS R 1601 and the Weibull coefficient was obtained from the obtained three-point bending strength value. As a result, the average intensity is 443.
At 6 MPa, the Weibull coefficient was 29.2, which was a very high value.

【0029】実施例2〜7 仮焼温度を1000℃としたこと以外は、実施例1の造
粒物a1を得る操作と同様の操作を行い造粒物を得た。
得られた造粒物を表1に示す重量平均分子径毎に分級
し、各分級された造粒物を、それぞれ実施例1と同様の
操作により、泥漿と混合の後、成形・焼結して焼結体B
〜Gを得た。
Examples 2 to 7 Granules were obtained by the same operation as that for obtaining granules a1 of Example 1 except that the calcination temperature was set to 1000 ° C.
The obtained granules were classified according to the weight average molecular diameters shown in Table 1, and the classified granules were mixed with the slurry by the same operation as in Example 1, and then molded and sintered. And sintered body B
~ G was obtained.

【0030】これら焼結体B〜GについてJIS R
1601に準拠してそれぞれ曲げ試験を行い、得られた
3点曲げ強度値からワイブル係数を求めた。結果を表1
に示す。いずれの焼結体B〜Gについても高いワイブル
係数が得られた。
Regarding these sintered bodies B to G, JIS R
A bending test was performed in accordance with 1601 and a Weibull coefficient was obtained from the obtained three-point bending strength value. Table 1 shows the results
Shown in A high Weibull coefficient was obtained for each of the sintered bodies B to G.

【0031】実施例8〜16 仮焼温度を1000℃としたこと以外は、実施例1の造
粒物a1を得る操作と同様の操作を行い造粒物を得た。
得られた造粒物を表1に示す混合比により、実施例1の
泥漿a2を得る操作と同様の操作で得た泥漿と混合の
後、同じく実施例1と同様の条件で成形・焼結して焼結
体H〜Pを得た。
Examples 8 to 16 Granules were obtained by the same operations as those for obtaining the granules a1 of Example 1 except that the calcination temperature was 1000 ° C.
The obtained granulated product was mixed with the sludge obtained by the same operation as that for obtaining the sludge a2 of Example 1 according to the mixing ratio shown in Table 1, and then molded and sintered under the same conditions as in Example 1. Then, sintered bodies HP were obtained.

【0032】これら焼結体H〜PについてJIS R
1601に準拠してそれぞれ曲げ試験を行い、得られた
3点曲げ強度値からワイブル係数を求めた。結果を表1
に示す。いずれの焼結体H〜Pについても高いワイブル
係数が得られた。
Regarding these sintered bodies H to P, JIS R
A bending test was performed in accordance with 1601 and a Weibull coefficient was obtained from the obtained three-point bending strength value. Table 1 shows the results
Shown in A high Weibull coefficient was obtained for each of the sintered bodies HP.

【0033】実施例17 実施例1の成形原料a3を得る操作と同様の操作を行
い、成形原料を得た。この成形原料を200Kg/cm2
仮成形した後、CIP成形機を用いて4000Kg/cm2
で成形した。得られた成形体を電気炉にて1570℃で
4時間焼成し、焼結体Qを得た。
Example 17 A molding raw material was obtained by performing the same operation as that for obtaining the molding raw material a3 of Example 1. This molding raw material was temporarily molded at 200 kg / cm 2 and then 4000 kg / cm 2 using a CIP molding machine.
Molded. The obtained molded body was fired in an electric furnace at 1570 ° C. for 4 hours to obtain a sintered body Q.

【0034】この焼結体QをJIS R 1601に準
拠して曲げ試験を行い、得られた3点曲げ強度値からワ
イブル係数を求めた。その結果は、平均強度が530.
3MPaで、ワイブル係数24.0と高い値が得られ
た。
This sintered body Q was subjected to a bending test in accordance with JIS R 1601 and the Weibull coefficient was obtained from the obtained three-point bending strength value. The result shows that the average intensity is 530.
A high Weibull coefficient of 24.0 was obtained at 3 MPa.

【0035】比較例1 実施例1の泥漿a2を得る操作と同様の操作により泥漿
を得て、この泥漿を石膏型を用いて鋳込成形し、得られ
た成形体を電気炉を用いて、1570℃で4時間焼成
し、焼結体Rを得た。
Comparative Example 1 A sludge was obtained by the same operation as that for obtaining the sludge a2 of Example 1, the sludge was cast-molded using a gypsum mold, and the obtained compact was used in an electric furnace. Sintered body R was obtained by firing at 1570 ° C. for 4 hours.

【0036】この焼結体RをJIS R 1601に準
拠して曲げ試験を行い、得られた3点曲げ強度値からワ
イブル係数を求めた。その結果は、平均強度が382.
0MPaで、ワイブル係数が9.0であった。
This sintered body R was subjected to a bending test in accordance with JIS R 1601 and the Weibull coefficient was obtained from the obtained three-point bending strength value. The result shows that the average intensity is 382.
At 0 MPa, the Weibull coefficient was 9.0.

【0037】比較例2 実施例1の造粒物a1を得る操作と同様の操作により造
粒物を得た後、この造粒物を200Kg/cm2で仮成形し
た後、CIP成形機を用いて4000Kg/cm2で成形し
た。得られた成形体を電気炉にて1570℃で4時間焼
成し、焼結体Sを得た。
Comparative Example 2 After obtaining a granulated product by the same operation as that for obtaining the granulated product a1 of Example 1, this granulated product is temporarily molded at 200 Kg / cm 2 , and then a CIP molding machine is used. And molded at 4000 kg / cm 2 . The obtained molded body was fired in an electric furnace at 1570 ° C. for 4 hours to obtain a sintered body S.

【0038】この焼結体SをJIS R 1601に準
拠して曲げ試験を行い、得られた3点曲げ強度値からワ
イブル係数を求めた。その結果は、平均強度が458.
9MPaで、ワイブル係数7.8であった。
This sintered body S was subjected to a bending test in accordance with JIS R 1601 and the Weibull coefficient was obtained from the obtained three-point bending strength value. The result shows that the average intensity is 458.
The Weibull coefficient was 7.8 at 9 MPa.

【0039】[0039]

【表1】 [Table 1]

フロントページの続き (72)発明者 黒田 美彦 大阪府大阪市北区中之島3丁目6番32号 大トー株式会社内 (72)発明者 安藤 公一 大阪府大阪市北区中之島3丁目6番32号 大トー株式会社内 (72)発明者 和田 義信 大阪府大阪市北区中之島3丁目6番32号 大トー株式会社内Front Page Continuation (72) Inventor Yoshihiko Kuroda 3-6-3 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Oto Co., Ltd. (72) Inventor Koichi Ando 3-63-2 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Oto Corporation (72) Inventor Yoshinobu Wada 3-6-3 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Oto Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 造粒したセラミックス粉末と、未造粒の
セラミックス粉末とを含有する成形原料を成形・焼成す
ることを特徴とするセラミックス焼結体の製造方法。
1. A method for producing a ceramics sintered body, which comprises molding and firing a forming raw material containing granulated ceramics powder and ungranulated ceramics powder.
【請求項2】 セラミックス粉末がAl23、Zr
2、Si24、SiCから選ばれる少なくとも1つで
ある請求項1記載のセラミックス焼結体の製造方法。
2. The ceramic powder is Al 2 O 3 , Zr.
The method for producing a ceramics sintered body according to claim 1, which is at least one selected from O 2 , Si 2 N 4 , and SiC.
【請求項3】 セラミックス粉末がAl23である請求
項1記載のセラミックス焼結体の製造方法。
3. The method for producing a ceramic sintered body according to claim 1, wherein the ceramic powder is Al 2 O 3 .
【請求項4】 造粒したセラミックス粉末の平均粒子径
が10〜100μmの範囲である請求項1記載のセラミ
ックスの焼結体製造方法。
4. The method for producing a ceramics sintered body according to claim 1, wherein the granulated ceramic powder has an average particle diameter in the range of 10 to 100 μm.
【請求項5】 造粒したセラミックス粉末の割合が未造
粒のセラミックス粉末に対して5〜60重量%である請
求項1記載のセラミックス焼結体の製造方法。
5. The method for producing a ceramic sintered body according to claim 1, wherein the ratio of the granulated ceramic powder is 5 to 60% by weight based on the ungranulated ceramic powder.
【請求項6】 造粒したセラミックス粉末が仮焼処理さ
れている請求項1記載のセラミックス焼結体の製造方
法。
6. The method for producing a ceramic sintered body according to claim 1, wherein the granulated ceramic powder is calcined.
【請求項7】 鋳込成形法により成形を行う請求項1記
載のセラミックス焼結体の製造方法。
7. The method for producing a ceramics sintered body according to claim 1, wherein the molding is performed by a casting method.
【請求項8】 加圧成形法により成形を行う請求項1記
載のセラミックス焼結体の製造方法。
8. The method for producing a ceramics sintered body according to claim 1, wherein the forming is performed by a pressure forming method.
【請求項9】 造粒したセラミックス粉末と、未造粒の
セラミックス粉末とを含有する粉末原料を成形・焼結し
たことを特徴とするセラミックス焼結体。
9. A ceramic sintered body obtained by molding and sintering a powder raw material containing a granulated ceramic powder and an ungranulated ceramic powder.
JP8017466A 1996-02-02 1996-02-02 Sintered ceramic material and its production Pending JPH09208326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8017466A JPH09208326A (en) 1996-02-02 1996-02-02 Sintered ceramic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8017466A JPH09208326A (en) 1996-02-02 1996-02-02 Sintered ceramic material and its production

Publications (1)

Publication Number Publication Date
JPH09208326A true JPH09208326A (en) 1997-08-12

Family

ID=11944803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8017466A Pending JPH09208326A (en) 1996-02-02 1996-02-02 Sintered ceramic material and its production

Country Status (1)

Country Link
JP (1) JPH09208326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542463A (en) * 2006-07-07 2009-12-03 コミツサリア タ レネルジー アトミーク Method for producing a masterbatch for injection molding or extrusion molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542463A (en) * 2006-07-07 2009-12-03 コミツサリア タ レネルジー アトミーク Method for producing a masterbatch for injection molding or extrusion molding

Similar Documents

Publication Publication Date Title
GB2203141A (en) Ceramic materials containing aluminium titanate
JPH09208326A (en) Sintered ceramic material and its production
JP2004269350A (en) Yttrium oxide (y2o3) sintered compact and method of manufacturing the same
EP0753493B1 (en) Process for producing a ceramic sintered body using a granulated molding powder
JPS6230668A (en) Manufacture of homogeneous yttria-alumina-doped silicon nitride product
JPH02267160A (en) High strength alumina
US4970036A (en) Process for producing green compacts by molding sinterable ceramic mixtures based on silicon nitride
EP0704414A1 (en) Alumina fiber granules, process for producing the granules and a process for producing a porous article using the granules
JP2000159570A (en) Production of compact cordierite sintered product
JP2010052963A (en) METHOD FOR PRODUCING SILICON NITRIDE-BONDED SiC REFRACTORY
JP2788182B2 (en) Ceramic raw materials
JPH02290642A (en) Manufacture of ceramic core
JPH06107454A (en) Alumina sintered body and production thereof
JP3312436B2 (en) Processing of recyclable ceramics
JPH06157152A (en) Fiber reinforced composite gradient material and it production
JP2863285B2 (en) Alumina container and method for producing the same
Mujahid et al. Processing and microstructure of alumina-based composites
JP2820710B2 (en) Break ring for horizontal continuous casting
JPH08277168A (en) Formed article of oxide-based ceramic and its production
EP0758630B1 (en) Slurry compositions for plastic molding purposes and products obtained thereof
JP2001179719A (en) Production of alumina-glass composite porous body and producing method for light permeable alumina with porous mold made thereof
Bromley et al. High Green Strength Compacted Powder
EP0670189A2 (en) Slurry compositions for cast molding purposes, a method of molding cast moldings wherein these slurry compositions are used, and sinters wherein these moldings have been fired.
JPH10158071A (en) Graphite patching material
JPH10259060A (en) Production of ceramic